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Abstract. This note continues a sequence of attempts to define efficient digital signa-
ture schemes based on low-degree polynomials, or to break such schemes. We consider
a scheme proposed by Satoh and Araki [5], which generalizes the Ong—Schnorr—Shamir
scheme to the noncommutative ring of quaternions. We give two different ways to break
the scheme.
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1. Introduction

The present note continues a sequence of attempts to define efficient digital signature
schemes based on low-degree polynomials, or to break such schemes.

Ong, Schnorr, and Shamir [3] presented a sighature scheme based on low-degree poly-
nomials modulo a compositeof secret factorization, namely? + ky?> = m (modn).

This scheme was subsequently broken by Pollard and Schnorr [4], who used a method
of descent to solve this particular polynomial.

A similar scheme was put forth by Shamir [6] and soon broken by Coppersmith, et
al. [2]. These researchers did not solve for the secret key, but found a polynomial satisfied
by that key. By an analogy to Galois theory, they adjoined ta a formal root of this
polynomial, performed calculations in this extension ring, and found that the root itself
was not required.

A common problem with low-degree polynomial signhature schemes is that each sig-
nature reveals a polynomial equation satisfied by the secret key. If one collects enough
signatures, one can combine the resulting polynomials to gather information about the
secret key. We take this route to analyze the present scheme.

This paper involves a scheme proposed by Satoh and Araki [5], based on the noncom-
mutative ring of quaternions; this scheme is a generalization of the Ong—Schnorr—Shamir
[3] scheme. In our solution we gather three legitimate signatures on arbitrary messages.
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Each signature gives an equation satisfied by the secrat.Keégmbining the three, we
can find some scalar multipke of t=1, such thatr r is an unknown square root of a
known element oZ /n. Working in the quaternions we are able to get around this square
root, producing a key which will work equally as well as for signing future messages.

Our paper is organized as follows. In Section 2 we review the ring of quaternions,
especially as used with the integers nmo&ection 3 reviews the Pollard—Schnorr attack.
Section 4 describes the Satoh—Araki scheme. In Section 5 we show how to collect and
solve equations involving the secret keyand produce the equivalent keywith which
future messages can be signed. A second solution is given in Section 6, which does not
need to see legitimate signatures, but which requires a bit of computation to produce
each new signature. Section 7 demonstrates that we cannot push these attacks further; we
cannot obtain the secret key, either for this scheme or the original Ong—Schnorr—Shamir
scheme. We conclude in Section 8.

2. Quaternions modn

The Satoh—Araki signature scheme operates in aRd quaternions modulo a com-
posite numben. The factorization oh is secret. Even the legitimate user need not know
the factorization.

An elemenix of the ringR is a 4-tuple(a, b, c, d) of elements o /n (the integers
modulon). This element is usually written @s+ bi + ¢j + dk. The special elements
i, ], k satisfy the noncommutative multiplication rules:

i2=j2=k2=—1,

ij = k=-ji,
jk =i=-kj,
ki =) =—ik.

Greek letterg, B, .. . represent elements & while Roman lettera, b, c, . .. represent
elements o /n. We denote bw* the Hermite conjugat®f «:

@, b,c,d)* = (a, —b, —c, —d);
by N(«) thenormof «:
N(@,b,c,d)=(a b,c,d)yab,cd*=a2+b>+c?+d>cz/n;
and bya" thetransposeof «:
(@, b,c,d)T =(a, b, —c,d).

Elements of the forn{a, b, 0, d) are termedsymmetricbecause they satisty = o.
Elements of the fornga, 0, 0, 0) € Z/n are calledscalars

Multiplication is noncommutative.

The multiplicative group of invertible elements Bfis denotedR*. The inverse is
computed by

o= (@*a) ta* = N(@) ta*
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whenever it exists, that is, whenewd(w) is relatively prime tan; recall thatN («) is a
scalar so that its inversion is easy.

The transpose satisfiéss)" = gTa". We also havga™) ™! = (@ 1)T.

The powers of any elemeatare integer linear combinations of 1 amdn particular,
if « = a+ bi + ¢j + dk,

o =a(2a—a*) = —N(a) + 2aa,

so thatw? is a linear combination of 1 ang, and the other powers follow by induction.
3. The Pollard—Schnorr Result

We use the result due to Pollard and Schnorr [4]:
Theorem 1. Suppose the Generalized Riemann Hypothesis hithds) there is a prob-
abilistic algorithm which upon input k m, and n withgcdkm, n) = 1, will solve
x? +ky? = m (mod n) with an expected number of(@ogn)?|log log|k||) arithmeti-
cal operations on @ogn)-bit numbers

We also use a generalization due to Adleman et al. [1]:

Theorem 2. Let n be an odd positive integemd let f(x, y) be given by {x,y) =
Ax? + Bxy+ Cy? + Dx + Ey+ F, and defineA( ), the determinant of fas follows

2A B D
Af =det|] B 2C E
D E 2F

If gcdAf,n) = 1, then there exists an algorithm requiring (IBg(s~* logn) log* n)
arithmetic operations on integers of size(I@gn) bits that will give a solution to
f(x,y) =0 (modn) with probabilityl — ¢.

Remark The generalization of Theorem 1 to general quadratic forms (Theorem 2) is
achieved by completing the square, but Theorem 2 also dispenses with the Generalized
Riemann Hypothesis.

4. The Satoh—Araki Scheme

The Satoh—Araki scheme generalizes the Ong—Schnorr—Shamir scheme to the ring of
guaternions mod. In this schema is a large composite modulus whose factorization

is not public; even the legitimate user need not know the factorization. The private key
is a random ring elemente R*. The public key is the symmetric ring element

K = —(rT)’ltfl. @)

A messageu is encoded as symmetricelement ofR. A signature(oy, o,) of u is
computed as follows: Pick € R* randomly. Computer;, = p~*u + p" andor =
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t(p~tu — p"). The signature is verified when the equatiqn & o o1 + 0] ko7 is
satisfied.

5. Breaking the Scheme

For our first solution we need to see the signatures of three arbitrary messages. Each
signature(o, o,) satisfies the important property that

o] T Yo, is symmetric. 2)
We verify this as follows:
ot loy = (p T+ p) @D —p")
O™ +p)p e —ph
w Do — (e e+ po i — pp"
wp Do — 4w —pp’
=ulp Hptu—pp'

and each term is manifestly symmetric. (Recall fhas symmetric.)

We would like to calculate or r —1, but this seems too hard. Instead, we find an element
7 which is a scalar multiple of ~1. Each such scalar multiple = ¢z, ¢ € Z/n, also
satisfies the property that 7o is symmetric. This is a linear homogeneous condition
on the coefficients of. o

Suppose we see three signatuie®, 02“)) on three messages’, i = 1, 2, 3. Each
gives a linear homogeneous relation on the coefficients amely, thato,) Ty is
symmetric. By experiment we see that these three relations are in general nonredundant.

Remark The three equations being redundant would correspond to the vanishing of a
certain 3x 3 determinant modulp, wherep is one of the unknown factors of the integer

n. This determinant is a polynomial of low degréen several random variables. The
fact that the determinant failed to vanish in our experiments, implies that the determinant
is not identically 0 (mod p), which implies that its probability of vanishing &(d/ p).
Sincep is so large we can safely ignore this probability of failure. Even in the remote
case of failure, if a determinant vanished modplout not modulay, then the Euclidean
algorithm would allow us to factan via gcddet n) = p. A similar situation will hold
whenever we “hope” that something does not “accidentally” vanish.

Since the three relations are nonredundant, they restrict the space of pastitde
one-dimensional space. That is, they determing to an unknown multiplicative scalar
0:m =Lt~ ¢ € Z/n. We select one such representative

We know the public kex = —(z7)~1z. So we can compute

zZ = (JTT)_lKT[_l
— e*l_L.T (_(,L.T)fl_[fl) ‘[671

= —02eZ/n.
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We knowz but not/. It is infeasible to take square roots4iy'n, so that we cannot
computet from z. However, in the quaternions we can easily find an element with a
given norm, and this will serve in place of finding a square root.

Here we use a special case of the Pollard—Schnorr attack (Theorem 1)knkete
to find integer<, d satisfying

c®+d?2=—z"1 (modn).
Then
(c+dpTc+dj)=(c—dp)c+d)=c>+d*=—-z"1 (modn).
We can now define our “equivalent key?”
v =7n"Yc+dj).
Equation (1) relating andz can be restated as
K = —(«N)y et
-1 = 1Tkt

We show that this equation is also satisfiedvlin place ofz:

v kv c+dp)T@HTer e+ dj)
= (c—dj) (@ HTkr ) (c+dj)

(c—djz(c+dj)

(c—dj)(c+dj)z

= (2 +d?*z

= —1 (modn).

Thus the “private keyd corresponds to the public keyin the prescribed manner. This
implies that the attacker can useo create signatures, exactly as the legitimate user
usesr.

To computev we only needed to see three legitimate signatures and do a minimal
amount of computation.

In some sense this attack is unsatisfactory. It depended on (2), which in turn depended
on the very structured way that, o, were computed. They could have been computed
in a more random fashion; for exampda,could have been left-multiplied by a random
elementg satisfying8™p = 1, freshly calculated for each message, which would not
affect the validity of the signature, but would block the present attack. So in the next
section we present an attack that does not depend on the particular method of generating
signatures outlined in [5].

6. A Second Attack

In our second attack we do not need to see any legitimate signatures. We need only the
public keyx (and modulusn). To sign a given message we perform three Pollard—
Schnorr computations.
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We are given the public key and a message, both symmetric elements &, and
we are required to find elements, o, of R satisfyingo, o1 + 05 ko2 = 4.

The space of symmetric elementsR®is a three-dimensional linear space o¥gn.
With very high probability the three symmetric elements 1 form a linear basis for
this space; we assume this to be the case.

For unknown elements, b, d of Z/n, consider the produ@ = (a+ bi +dk)"« (a+
bi + dk). Being symmetricS can be expressed as a linear combination of andk,
with coefficients being quadratic functionsafb, d. That is,

(@+ bi + dk)Tk(a + bi + dk) = Q1(a, b, d)1 + Qax(a, b, d)i + Qs(a, b, dyk,
Qi(a, b, d) = gi11a% + gi12ab + g13ad + Gi22b? + Gizshd + gizsd?,
Qjk € Z/n.

The entriesyjx of Q; are linear functions of the entries of

A preview of the computation: We find a setting afb, d making S a linear com-
bination of 1 andu. This enables us to arrange that in our signature equafior-2
o] 01+ 0, ko2, both sides lie in the two-dimensional subspace spanned by f ane
can select parameters to make the coefficients afree, and then the coefficients of 1,
so that the signature equation holds. At each stage we need to solve a Pollard—Schnorr
equation.

Let u = my + myi + mgk with (my, m3) # (0, 0), and set

Ql(a9 bv d) QZ(as bs d) Q3(av b7 d)
R(a, b,d) = myQs(a, b, d) — m3Qa(a, b, d).

1 0 0
R(a, b,d) = det my my ms3 )

R(a, b, d) is a quadratic function ad, b, d. Our first task is to find, b, d (not all zero)
such thatR(a, b, d) = 0 (mod n); this is equivalent t&5 being a linear combination
of 1 and . For this purpose we use Theorem 2, with= 1,a = x, b = vy, and
R(@a, b, 1) = f(x,y). For this theorem we need to assume thatiggd ), n) = 1, that
is, that for each primep dividing n, Af # 0 (mod p). However, each coefficient of
R(a, b, 1) is a polynomial of total degree 2 in the coefficientsuofndk, so thatAf is
a polynomial of total degree 6 in the coefficientsioéindx . Also, Af is not identically
0 (because it is nonzero in some experimental instances), so it will fmed@ p) with
negligible probabilityO(1/ p). So with high probability Theorem 2 applies, and we can
easily finda, b satisfyingR(a, b, 1) = 0 (mod n).

This means that we have computed scadals c, e satisfying

(@4 bi+k)x(@+bi +k) =c+eu.
For scalarsf, g, h, p yet undetermined, we are going to have

o1 = h+pj,
@-+bi+k)(f + ).

02
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Then our desired signature equation will be

_?

dp =
= (h+p)Th+ p) + (f +gwT@+bi +Kk)x@+bi + K (f +gu)
= (P4 p) + (f +guc+ew)(f +gu
= (h®+ p?+cf?) + (2cfg+ efP)u + (2efg+ cP)u? + (eP)us.

(rlTol + O’2TICO’2

As noted in Section 242 and . are linear combinations ¢f and 1. Suppose we
calculate

2

noo=qu+r,
n = su+t,
q,r,s,t € Z/n.

Then our desired equation is

4 =7 (W2 + p? + cf2 + 1 (2efg+ c?) + t(ed)
+ [2cfg+ ef2 + q(2efg+ cg?) + s(ed)] .

The free variables arg g, h, p, and the known constants aree, q, 1, s, t, and the ring
elementu.

The coefficient ofu in the above equation is a quadraticfing. We use Theorem 2
to find f, g satisfying

4 = 2cfg+ ef? 4 q(2efg+ cg?) + s(edf).
Having done this, another application recovers unknowrnssatisfying
0= (h?+ p?) + cf2 4+ r(2efg+ cg®) + t(ed).

Putting it all together, we have used the Pollard—Schnorr attack or its generaliza-
tion (Adleman—Estes—McCurley) three times to find a signateiyeo,) satisfying the
signature equation for a givedn u.

Remark The Pollard—Schnorr solution to the equatidr-ky? = m (mod n) requires
that bothk andm be nonzero. In each of our applications of the solution, this will be the
case with high probability.

7. Impossibility Results

We collect here some impossibility results, showing that in some sense our attacks are
the best possible.

In our first attack we found a scalar multiple of the secret keyWe also found an
“equivalent” secret key which we could use in place afto sign messages. However,
itis infeasible to find an equivalent secret key which is simultaneously a scalar multiple
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of the true secret key, even given the signatures of many chosen messages. The same is
true of the original Ong—Schnorr—Shamir scheme.

In our second attack, knowing only the public key, we can generate valid signatures
of arbitrary messages. However, without seeing signatures generated by the legitimate
owner, it is infeasible to compute an equivalent secret key.

Theorem 3. Assume it is infeasible to factor hen given the legitimate signatures
of polynomially many chosen messagdess infeasible to find any quantity which is
both a scalar multiple of the secret keyand also an equivalent secret key

Proof. The legitimate secret key and noncep generate a signatuie;, o,) on the
message. by

o= ptutp,
_ -1 T
o2 = T(p " u—p).

Using the same process, an alternate secretkey—r and noncey’ = u(p )" would
generate a signature;, o) on the same message by

o = p'pu tu+p =01,
oy = —t(p'w tu—p ) = o2

So, with arbitrary chosen plaintext, we cannot distinguish between the secret keys
andzt’.

Suppose (without loss of generality) tiat pqis the product of two primes. Consider
a third secret key”, satisfying

s _ | (modp)
" =1 (modg) |-

By the Chinese Remainder Theorerfiwould also be an acceptable secret key. It follows
that the only “equivalent keys” which are scalar multiples @fre+t and+zt".

Suppose we are able to recover an equivalent secret key which is simultaneously a
scalar multiple of the true secret key, using the signatures of polynomially many chosen
messages. Then we can faatoNamely, givem, we select and compute the public key
«, and begin producing signatures. (Recall that we do not need to know the factorization
of n to do so.) Using the oracle, we recover a key, eitheror +=t”. The recovered key
will be unequal tott with probability at least 12; say the key ig”. Each coordinate
of t” — t is divisible by p, and at least one coordinate is not divisibledyyso that for
the price of computing a few gcd’s withwe will recoverp. O

Remark The same idea shows that in the original Ong—Schnorr—Shamir scheme, even
with polynomially many signatures of chosen messages, it is infeasible to recover an
“equivalent secret key,” namely, a square root of the public key.

Our next result shows that, if we have no legitimate signatures, the second attack is
the best we can hope for.
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Theorem 4. Given only the public keyve cannot find an equivalent secret key

Proof. An oracle to do so would enable us to factoNamely, select a random integer
x and compute = x2> (mod n). Use the Pollard—Schnorr attack to find integerd
satisfyingc? + d?> = z (modn). Define a public keyr = ¢ + di. Use the oracle to
find a ring element satisfyingz'kt = —1. By multiplicativity of norm, we know
that N(zT")N(k)N(r) = N(—1). However,N (k) = ¢ + d? = x? (modn), whence
1= N(1)°N(x) = (N(u)x)? (mod n), so that gceh, N(u)x — 1) is (with probability
at least }¥2) a nontrivial factor of. O

8. Conclusions

We have presented two solutions to the Satoh—Araki signature scheme. The first depended
on the particular way of generating signatures outlined in [5] to generate linear equations
on the coefficients of the secret keygiving us an unknown scalar multiple of related

by a square root. We finessed the square root calculation by taking advantage of the
freedom of the quaternion ring. The second solution worked only from the public key
and the message, with no need to see previous legitimate signatures, and worked with
high probability, requiring only three applications of a Pollard—Schnorr solution. Both
are computationally quite efficient.
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