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Abstract. A secret sharing scheme permits a secret to be shared among participants of
ann-element group in such a way that only qualified subsets of participants can recover
the secret. If any nongualified subset has absolutely no information on the secret, then
the scheme is callggerfect Thesharein a scheme is the information that a participant
must remember.

In [3] it was proved that for a certain access structure any perfect secret sharing
scheme must give some participant a share which is at least 50% larger than the secret
size. We prove that for eachthere exists an access structurengparticipants so that
any perfect sharing scheme must give some participant a share which is at least about
n/logn times the secret siZeWe also show that the best possible result achievable by
the information-theoretic method used hera iimes the secret size.

Key words. Secret sharing, Ideal secret sharing schemes, Polymatroid structures,
Perfect security.

1. Introduction

An important issue in secret sharing schemes is the size of the shares distributed to the
participants, since the security of a system degrades if the amount of the information that
must be kept secret increases. The problem of giving bounds on the size of the secret
some participant must have has received considerable attention in the last few years, see,
e.g., [10], [3], and [4].

Capocelliet al. [3] showed that in a certain access structure with four participants the
number of the bits some participant must remember is at I€asties the number of bits
in the secret. They generalized the construction to any number of participants with the
same bound. Their method was information-theoretic, namely, the results were followed
by a close examination of trentropyof the information a group of the participants have.
The connection between the entropy and matroid-theory was observed by Fujishige [7],
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and in the context of a secret sharing scheme by Brickell and Davenport [2] and by
Kurosaweet al. [9]. Here we expand these ideas to our main result:

Theorem 1.1. For each n there exists an access structdren n participants so that
any perfect secret sharing scheme assigns a share of length aplmgtmtimes the
length of the secret to some participant

We give a construction which shows that apart from thenléactor, our result is the
best possible. That is, the information-theoretic method cannot yield a lower bound for
the size of the share of the participants better théimes the size of the secret.

We call a participank unimportantif no unqualified group becomes qualified by
adaptingx. Obviously, in any secret sharing scheme the share of an unimportant partic-
ipant can be safely disregarded, thds share can be considered zero. The following
theorem is implicit in [3]:

Theorem 1.2. In any perfect secret sharing schena#l important participants must
have a share at least as large as the secret itself

This bound is the best possible, as Capoaallal [3] observed that in any access
structure fixing any participan, it is possible to distribute the shares so tkiatshare
will be of the same length as the secret.

2. Preliminaries

In this section we review the technical concepts as well as some earlier results. For a
complete treatment of information theory the reader is referred to [6]; its application to
secret sharing is explained in details in [3]. For the sake of completeness we repeat here
some definitions and lemmas.

2.1. Information-Theoretic Notions

Given a probability distributiorfp(x)}xex on a finite setX, define theentropyof X,
H(X), as

H(X) == p(x)log p(x).

xeX

The entropyH (X) is a measure of the average information content of the elements in
X. It is well known thatH (X) is a good approximation to the average number of bits
needed to represent the elementsXofaithfully. By definition, the entropy is always
nonnegative.

Given two setsX andY and a joint probability distributiofip(x, y)}xex,yey 0N the
Cartesian product oK andY, the conditional entropy HX|Y) of X assumingY is
defined as

HXIY) =) pyHX]Y =), D

yeY
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where “X|Y = y” is the probability distribution derived fronp by fixing the value
y € Y. The conditional entropy can also given in the form

H(X]Y) = H(XY) — H(Y), 2

whereY isthe marginal distribution. From definition (1) itis easy to seelth@|Y) > 0.
Themutual informatiorbetweenX andY is defined by

LX) = HX) = HX[Y) = H(Y) = H(Y[X)
= H(X) + H(Y) — H(XY)

and is always nonnegative(X; Y) > 0. This inequality expresses the intuitive fact that
the knowledge o¥, on average, can only decrease the uncertainty one h&s on
Similarly to the conditional entropy, theonditional mutual informatiotetweenX
andY given Z is defined as
I (X;Y]|2) H(X|Z) — H(X|Y 2)

= HXZ2)+ H(Y2Z) — H(XY 2 — H(2), 3)

and is also nonnegativé(X; Y|Z) > 0.

2.2. Secret Sharing Schemes

In the following, individuals are denoted by small lettexsh, X, y, etc., sets (groups) of
individuals by capital lettersh, B, X, Y, etc., and finally collections of groups by script
letters, A, B. We useP to denote the set gfarticipantswho will share the secret.

An access structuren ann-element seP of participants is a collectiosl of subsets
of P: only exactly the qualified groups are collected irtoWe denote a group simply
by listing its members, sr denotes both a member Bfand the group which consists
solely ofx. It will always be clear from the context which meaning we are using.

A secret sharing scheme permits a secret to be shared ampanjcipants in such a
way that only qualified subsets of them can recover the secret. Secret sharing schemes
satisfying the additional property that unqualified subsets can gain absolutely no in-
formation about the secret are calleerfectas opposed to schemes where unqualified
groups may obtain some information on the secret (e.g., the ramp schemes in [1]).

A natural property of the access structures igrtmotonicityi.e., A € AandA C
B € P implies B € A. This property expresses the fact that if any subseB afin
recover the secret, then the participant8inan also recover the secret. Also, a natural
requirement is that the empty set should not belin.e., there must be some secret.
Access systems of this type are calfggkrner systemaamed after E. Sperner who was
first to determine the maximal number of subsets in such a system [11].

Let P be the set of participants, let be a Sperner system dh and letS be the set
of secrets. Asecret sharing schemgiven a secres, assigns to each membere P a
randomsharefrom some domain. The shares are thus random variables with some joint
distribution determined by the value of the seaet S. Thus a scheme can be regarded
as a collection of random variables, one for the secret and one forxeact. The
scheme determines the joint distribution of these 1 random variables. Fot € P,
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X’s share, which is (the value of) a random variable, is denotexl Fypr a subseA of
participants A also denotes the joint (marginal) distribution of the shares assigned to the
participants inA.

Following [3] we call the schemperfectif the following hold:

1. Any qualified subset can reconstruct the secret, thatis, the shares of the participants
in A uniquely determine the secret. This me&hs|A) = 0 for all A € A.

2. Any nonqualified subset has absolutely no information on the secret aad
the shares of members éf are statistically independent: knowing the shares in
A, the conditional distribution of is exactly the same as igspriori distribution.
Translated to information-theoretic notions this givdgs|A) = H(s) for all
Ag¢ A

By the above discussion the entropy of the sedris), can be considered as the
length of the secret. Any lower bound on the entropyxot P immediately gives a
lower bound on the size of's share: ifH (x) > AH (s), thenx’s share is at leasttimes
the size of the secret.

2.3. Polymatroid Structure

Let Q be any finite set, and lg8 = 2° be the collection of the subsets . Let
f: B — R be afunction assigning real numbers to subset3 ahd supposé satisfies
the following conditions:

i) f(A)=0forallAC Q, f(¥) =0,
(i) f is monotone, i.e.,iA C B C Q, thenf(A) < f(B),
(i) f issubmodular, i.e., iAandB are different subsets @, thenf (A) + f(B) >
f(ANnB)+ f(AU B).

The systen{Q, f) is calledpolymatroid If, in addition, f takes only integer values and
f (x) < 1 for one-element subsets, then the systenrmmmaoid

Fujishige in [7] observed that having a finite collection of random variables, we will
get a polymatroid by assigning the entropy to each subset.

Proposition 2.1. By defining {A) = H(A)/H(s) for each AC P U {s} we get a
polymatroid

Proof. We check (i)—(iii) of the definition of the polymatroid. (i) is immediate since
the entropy is always nonnegative. (ii) follows from (2) by lettidg= B, Y = A. Then
XY =XUY =X,le,

f(B) — f(A) = H(XY) — H(Y) = H(X|Y) > 0.

Similarly, (iii) follows easily from (3) and from the fact that the conditional mutual
informationl (X; Y|Z) > 0. O

Unfortunately, it is not known whether the converse of this proposition holds, i.e., all
polymatroids over a finite set can be obtained as the entropy of appropriately chosen
random variables [5]. We elaborate on this later.
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In our case the random varialde the “secret,” plays a special role. By our extra
assumption on the conditional entropies contairsngve can calculate the value of
f (As) from f (A) forany A C P.

Proposition 2.2. If the secret sharing scheme is perfeben for any AC P we have

if A e A, then f(As) = f(A);
if A¢ A, then f(As) = f(A) + 1.

Proof. If A € A, thenAis a qualified subset, and thits(s|A) = 0. By definition,
H(s|A) = H(sA — H(A), and the first claim follows.

If A¢ A, thenAis an unqualified subset, and thEr{s|A) = H (s), which yields the
second claim. O

Now we consider the functior defined in Proposition 2.1 restricted to the subsets
of P. From this restriction we can easily calculate the whole function; and since the
extension is also a polymatroid, the restriction will satisfy some additional inequalities.

Proposition 2.3. The function f defined in Propositi¢hl satisfies the following ad-
ditional inequalities

() fACB,A¢ A and Be A, then f(B) > f(A) +1;
(i) ifAe A BeAbutANB ¢ A, then f(A)+ f(B) > f(ANB)+ f(AUB)+1.

Proof. If A C B,thenAsC Bs, therefore by the monotonicity df we have
f(A)+1= f(As) < f(Bs) = f(B),

which gives (i). Similarly, using the submodularity for the sAs Bswe get (ii). O

The claim of this proposition can be reversed: given any polymafraid the subsets
of P satisfying (i) and (ii) above and extendirgto the subsets dP U {s} as defined in
Proposition 2.2, we get a polymatroid.

3. Results
We start by proving

Theorem 3.1. In any perfect secret sharing schenadl important participant must
have a share at least as large as the secret itself

Proof. Suppose an access structutes given on the seP of participantsx € P

is an important person shown Ity € P, i.e.,C ¢ A butCx € A. Also given any
perfect secret sharing scheme, consider the fundtidefined in Proposition 2.1. Since
f(X) = HX)/H(s), f(X) > LimpliesH(x) > H(s), i.e., that the (average) size 6
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share must be at least as large as the (average) size of the secret. Thus we have to show
only that f (x) > 1.

SinceC ¢ A andCx € A, by Proposition 2.3(i) we havé(Cx) > f(C) + 1. f is
submodular on the subsetsBf so we also have

fO+fX)=>FfCX+FCN{X)H=TFCx)+ fW@) = f(Cx

sincex ¢ C. Combining this withf (Cx) > f(C) 4+ 1 we get the desired result. O

Theorem 3.2. For each n there exists an access structdren n participants so that
any perfect secret sharing scheme assigns a share of length aplmgtmtimes the
length of the secret to some participant

Proof. Suppose an access structuteto be defined later, is given on timeelement
setP of participants. Lek be the largest integer with2- k — 2 < n. Suppose also that
a perfect secret sharing scheme is given, and consider again the fufdtieiined in
Proposition 2.1. We have to find a participan¢ P such thatf (x) is at leas{2* — 1)/ k
which is approximately equal to/logn (for example, it is always betweeary2logn
andn/logn).

We illustrate the construction by an example ko= 2. Leta, b, ¢, d be different
members oP. (Since # 4+ k — 2 = 4 < n, there are at least four membersRr) Let the
setsab, ca, andcdbbe minimal sets in the Sperner systetni.e., none of their proper
subsets is ind (see Fig. 1, elements of are denoted by solid dots).

Now consider the following differences:

(i) f(cdab — f(cd);
(i) f(cab) — f(c);
(i) f(ab) — ().
Sincecdabe A andcd ¢ A, by Proposition 2.3(i) we have (i 1. We claim that each
differenceis atleast 1 largerthan the previous one. To show this, we use Proposition 2.3(ii)

and the submodularity of as follows. Sincecdb and cab are both inA, but their
intersectiorch ¢ A, we have

f(cdb) + f(cab) > f(cdab + f(cb) + 1.
Applying the submodularity tod andcb we have

f(cd) + f(cb) > f(cdb) + f(c).

e cdab
oga \c cdb\ o.cab TTe—
N o g /'{i
o’ed 7\ o%a ob
o’c \\o/

Fig. 1. The cas&k = 2.
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Adding and rearranging the terms we get
f(cab) — f(c) > f(cdab — f(cd) + 1,

which shows that (i (i) + 1.

Similarly, applying Proposition 2.3(ii) toa andab and the submodularity toanda
we get (iii) > (i) +1 > (i) +2 > 3. Now sincef (a)+ f (b) > f (ab) (by submodularity
again), which is > 3, either f (a) or f (b) must be at least.5, i.e., either or b must
have a share with size 50% bigger than the size of the secret. This was the main result
in [3] using a slightly different access structure.

Now we turn to the general construction. L&be ak-element set of individuals, and
let A = Ay, Ay, ..., Ax_1 = ¥ be a decreasing enumeration of all of its subsets so
thatifi < j,thenA € Aj. Let B = {by, by, ..., bx_5} be disjoint fromA, our set of
individuals will be AU B. Sincek+2X —2 < nwe can pickA andB from P. Let By = ¢,
and in generaB; = {by, by, ..., bj}. The minimal elements of the access structdre
willbe Uy = A, UB; fori =0, 1,..., 2 — 2. They are pairwise incomparable, i.e.,
none of them is a subset of the other; this means that they can indeed form the minimal
elements in an access structure. To check it, letj, thenb; € U; —U; (i.e.,U; £ Uj),
andg # A — A C Ui —U; (i,e.,U £ Uj).

Lemma 3.3. Under these assumptiorfer eachO < i < 2¢ — 2,

[f(BEUA) — f(B)] - [f(BiaUA) — f(Bip] > 1

Proof. Justmimicthe proofforthe cake= 2. Choosingk = BJUA,Y = Bj;1UA 11,
both of them are ind sinceX 2 U;, andY = U1, while XNY =B U A;; ¢ A. To
see this it is enough to check that, for pllJ; = A;j UB; € B U Ai41. Indeed, ifj <,
thenA; € Ay, if j > i, thenB; € B;. Therefore by Proposition 2.3(ii) we have
fOX)+ f(Y)= f(XUY)+ f(XNY)+1,

or, by rearranging,

[(FBUA - FBUA]-[f(B1UA - (B 1UA]>1 (4
The submodularity of applied toX = B; U Aj ;1 andY = Bj; gives

fOX)+ f(Y)= f(XUY)+ f(XNY),
i.e., also by rearranging the terms
[F(BUA )~ F(B)]-[f(BiaUA 1)~ f(Byp] =0. )

By adding inequalities (4) and (5) we get the claim of the lemma. O

Lemma3.4. f(A) >2¢—1.
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Proof. Note thatf (AU Bx_») — f(Bx_») > 1 by Proposition 2.3(i) sincé € A but
Bx_» ¢ A. Now adding this to the inequality in Lemma 3.3 for alk0i < 2¢ — 2 we
get

f(BoUA) — f(Bo) = 2 - 1,
which, by By = ¢, gives the result. O

Finally, by iterated application of the submodularity inequality,
f@a)+ f@)+---+ fa = f(A),

thus at least one of (g;) > (2¢ — 1)/k, which was to be proven. O

We show that apart from the logfactor, our result is the best possible. Namely, the
method cannot give a better lower bound tinaimes the length of the secret.

Theorem 3.5. Given any access structuré on the n-element set,Rve can always
find a polymatroid function f so that

(i) f satisfies the conditions of Propositi@rs;
(i) f(x) <nforall elements x P.

Proof. Let A be ak-element subset d?, define
f(A=n+M-D+---++1-Kk).

This function assigns to each one-element set. K is a proper subset oB, then
f(B) — f(A) is the sum of B — A| consecutive positive integers, therefore itis1,
and equality holds only iB = P and A is an(n — 1)-element subset. This proves (i)
of Proposition 2.3, and also proves the monotonicityf offo check (ii), suppose that
AN B is aproper subset of bothandB. Observe thatAU B) — AandB — (AN B) is
the same nonempty set, and suppose this difference containé,sdyelements. Then
both f (AU B) — f(A) and f(B) — f (AN B) are the sums of consecutive integers,
and sinceA U B has more elements thd) each number in the first sum is bigger than
the corresponding number in the second sum. Thus

f(AUB) — f(A) > f(B)— f(ANB),

and since the values are integers, the difference between the two sides is at least 1, as
was required. O

4. Conclusion and Future Work

We have constructed an access structdren n elements so that any perfect secret
sharing scheme must assign a share which is of size atidastn times the size of the
secret. The best previous upper bound w&s[3]. From the other side, for our access
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structure we can construct a scheme which, for each secret bit, assigns athtieso
each participant. This means that in this case the upper and lower bounds are quite close.

Recall that the access structureis generated by the minimal subséisfor i =
0,1,...,2¢— 2. Lets be a secret bit, and for eaclpick |U; | random bits so that their
mod 2 sum is equal t& Distribute these bits among the memberSlafEach participant
gets as many bits as thg’s he or she is in, thus each share is at mést A < n bits.

We have seen in Theorem 3.5 that using polymatroids we cannot prove essentially bet-
ter lower bounds. For general access structures, however, the known general techniques
produce exponentially large shares [8]. In order to turn the construction in Theorem 3.5
into an actual secret sharing scheme, thus proving that every access structure can be
realized within am-factor blow-up in shares, the first obstacle to be overcome is the
following problem.

Problem 4.1. Can every polymatroid be represented as the entropy of appropriately
chosen random variables?

An affirmative answer would help in completing the construction. However, intuition
says that the answeri® [5], and sometimes the size of a share must be much larger. In
this case we have to deal with additional inequalities the entropy function does not share
with polymatroids. These might help in establishing better lower bounds for the size of
the shares.
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