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Abstract. A secret sharing scheme permits a secret to be shared among participants of
ann-element group in such a way that only qualified subsets of participants can recover
the secret. If any nonqualified subset has absolutely no information on the secret, then
the scheme is calledperfect. Thesharein a scheme is the information that a participant
must remember.

In [3] it was proved that for a certain access structure any perfect secret sharing
scheme must give some participant a share which is at least 50% larger than the secret
size. We prove that for eachn there exists an access structure onn participants so that
any perfect sharing scheme must give some participant a share which is at least about
n/logn times the secret size.1 We also show that the best possible result achievable by
the information-theoretic method used here isn times the secret size.

Key words. Secret sharing, Ideal secret sharing schemes, Polymatroid structures,
Perfect security.

1. Introduction

An important issue in secret sharing schemes is the size of the shares distributed to the
participants, since the security of a system degrades if the amount of the information that
must be kept secret increases. The problem of giving bounds on the size of the secret
some participant must have has received considerable attention in the last few years, see,
e.g., [10], [3], and [4].

Capocelliet al. [3] showed that in a certain access structure with four participants the
number of the bits some participant must remember is at least 1.5 times the number of bits
in the secret. They generalized the construction to any number of participants with the
same bound. Their method was information-theoretic, namely, the results were followed
by a close examination of theentropyof the information a group of the participants have.
The connection between the entropy and matroid-theory was observed by Fujishige [7],
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and in the context of a secret sharing scheme by Brickell and Davenport [2] and by
Kurosawaet al. [9]. Here we expand these ideas to our main result:

Theorem 1.1. For each n there exists an access structureA on n participants so that
any perfect secret sharing scheme assigns a share of length about n/logn times the
length of the secret to some participant.

We give a construction which shows that apart from the logn factor, our result is the
best possible. That is, the information-theoretic method cannot yield a lower bound for
the size of the share of the participants better thann times the size of the secret.

We call a participantx unimportantif no unqualified group becomes qualified by
adaptingx. Obviously, in any secret sharing scheme the share of an unimportant partic-
ipant can be safely disregarded, thusx’s share can be considered zero. The following
theorem is implicit in [3]:

Theorem 1.2. In any perfect secret sharing scheme, all important participants must
have a share at least as large as the secret itself.

This bound is the best possible, as Capocelliet al. [3] observed that in any access
structure fixing any participantx, it is possible to distribute the shares so thatx’s share
will be of the same length as the secret.

2. Preliminaries

In this section we review the technical concepts as well as some earlier results. For a
complete treatment of information theory the reader is referred to [6]; its application to
secret sharing is explained in details in [3]. For the sake of completeness we repeat here
some definitions and lemmas.

2.1. Information-Theoretic Notions

Given a probability distribution{p(x)}x∈X on a finite setX, define theentropyof X,
H(X), as

H(X) = −
∑
x∈X

p(x) log p(x).

The entropyH(X) is a measure of the average information content of the elements in
X. It is well known thatH(X) is a good approximation to the average number of bits
needed to represent the elements ofX faithfully. By definition, the entropy is always
nonnegative.

Given two setsX andY and a joint probability distribution{p(x, y)}x∈X,y∈Y on the
Cartesian product ofX andY, the conditional entropy H(X|Y) of X assumingY is
defined as

H(X|Y) =
∑
y∈Y

p(y)H(X|Y = y), (1)
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where “X|Y = y” is the probability distribution derived fromp by fixing the value
y ∈ Y. The conditional entropy can also given in the form

H(X|Y) = H(XY)− H(Y), (2)

whereY is the marginal distribution. From definition (1) it is easy to see thatH(X|Y) ≥ 0.
Themutual informationbetweenX andY is defined by

I (X;Y) = H(X)− H(X|Y) = H(Y)− H(Y|X)
= H(X)+ H(Y)− H(XY)

and is always nonnegative:I (X;Y) ≥ 0. This inequality expresses the intuitive fact that
the knowledge ofY, on average, can only decrease the uncertainty one has onX.

Similarly to the conditional entropy, theconditional mutual informationbetweenX
andY given Z is defined as

I (X;Y|Z) = H(X|Z)− H(X|Y Z)

= H(X Z)+ H(Y Z)− H(XY Z)− H(Z), (3)

and is also nonnegative:I (X;Y|Z) ≥ 0.

2.2. Secret Sharing Schemes

In the following, individuals are denoted by small letters,a, b, x, y, etc., sets (groups) of
individuals by capital letters,A, B, X, Y, etc., and finally collections of groups by script
letters,A, B. We useP to denote the set ofparticipantswho will share the secret.

An access structureon ann-element setP of participants is a collectionA of subsets
of P: only exactly the qualified groups are collected intoA. We denote a group simply
by listing its members, sox denotes both a member ofP and the group which consists
solely ofx. It will always be clear from the context which meaning we are using.

A secret sharing scheme permits a secret to be shared amongn participants in such a
way that only qualified subsets of them can recover the secret. Secret sharing schemes
satisfying the additional property that unqualified subsets can gain absolutely no in-
formation about the secret are calledperfectas opposed to schemes where unqualified
groups may obtain some information on the secret (e.g., the ramp schemes in [1]).

A natural property of the access structures is itsmonotonicity, i.e., A ∈ A and A ⊆
B ⊆ P implies B ∈ A. This property expresses the fact that if any subset ofB can
recover the secret, then the participants inB can also recover the secret. Also, a natural
requirement is that the empty set should not be inA, i.e., there must be some secret.
Access systems of this type are calledSperner systems, named after E. Sperner who was
first to determine the maximal number of subsets in such a system [11].

Let P be the set of participants, letA be a Sperner system onP, and letS be the set
of secrets. Asecret sharing scheme, given a secrets, assigns to each memberx ∈ P a
randomsharefrom some domain. The shares are thus random variables with some joint
distribution determined by the value of the secrets ∈ S. Thus a scheme can be regarded
as a collection of random variables, one for the secret and one for eachx ∈ P. The
scheme determines the joint distribution of thesen + 1 random variables. Forx ∈ P,
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x’s share, which is (the value of) a random variable, is denoted byx. For a subsetA of
participants,A also denotes the joint (marginal) distribution of the shares assigned to the
participants inA.

Following [3] we call the schemeperfectif the following hold:

1. Any qualified subset can reconstruct the secret, that is, the shares of the participants
in A uniquely determine the secret. This meansH(s|A) = 0 for all A ∈ A.

2. Any nonqualified subset has absolutely no information on the secret, i.e.,s and
the shares of members ofA are statistically independent: knowing the shares in
A, the conditional distribution ofs is exactly the same as itsa priori distribution.
Translated to information-theoretic notions this givesH(s|A) = H(s) for all
A /∈ A.

By the above discussion the entropy of the secret,H(s), can be considered as the
lengthof the secret. Any lower bound on the entropy ofx ∈ P immediately gives a
lower bound on the size ofx’s share: ifH(x) ≥ λH(s), thenx’s share is at leastλ times
the size of the secret.

2.3. Polymatroid Structure

Let Q be any finite set, and letB = 2Q be the collection of the subsets ofQ. Let
f : B→ R be a function assigning real numbers to subsets ofQ and supposef satisfies
the following conditions:

(i) f (A) ≥ 0 for all A ⊆ Q, f (∅) = 0,
(ii) f is monotone, i.e., ifA ⊆ B ⊆ Q, then f (A) ≤ f (B),
(iii) f is submodular, i.e., ifA andB are different subsets ofQ, then f (A)+ f (B) ≥

f (A∩ B)+ f (A∪ B).

The system(Q, f ) is calledpolymatroid. If, in addition, f takes only integer values and
f (x) ≤ 1 for one-element subsets, then the system is amatroid.

Fujishige in [7] observed that having a finite collection of random variables, we will
get a polymatroid by assigning the entropy to each subset.

Proposition 2.1. By defining f(A) = H(A)/H(s) for each A⊆ P ∪ {s} we get a
polymatroid.

Proof. We check (i)–(iii) of the definition of the polymatroid. (i) is immediate since
the entropy is always nonnegative. (ii) follows from (2) by lettingX = B, Y = A. Then
XY = X ∪ Y = X, i.e.,

f (B)− f (A) = H(XY)− H(Y) = H(X|Y) ≥ 0.

Similarly, (iii) follows easily from (3) and from the fact that the conditional mutual
information I (X;Y|Z) ≥ 0.

Unfortunately, it is not known whether the converse of this proposition holds, i.e., all
polymatroids over a finite set can be obtained as the entropy of appropriately chosen
random variables [5]. We elaborate on this later.
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In our case the random variables, the “secret,” plays a special role. By our extra
assumption on the conditional entropies containings, we can calculate the value of
f (As) from f (A) for any A ⊆ P.

Proposition 2.2. If the secret sharing scheme is perfect, then for any A⊆ P we have

if A ∈ A, then f(As) = f (A);
if A /∈ A, then f(As) = f (A)+ 1.

Proof. If A ∈ A, then A is a qualified subset, and thusH(s|A) = 0. By definition,
H(s|A) = H(s A)− H(A), and the first claim follows.

If A /∈ A, thenA is an unqualified subset, and thenH(s|A) = H(s), which yields the
second claim.

Now we consider the functionf defined in Proposition 2.1 restricted to the subsets
of P. From this restriction we can easily calculate the whole function; and since the
extension is also a polymatroid, the restriction will satisfy some additional inequalities.

Proposition 2.3. The function f defined in Proposition2.1satisfies the following ad-
ditional inequalities:

(i) if A ⊆ B, A /∈ A, and B∈ A, then f(B) ≥ f (A)+ 1;
(ii) if A ∈ A, B ∈ A, but A∩B /∈ A, then f(A)+ f (B) ≥ f (A∩B)+ f (A∪B)+1.

Proof. If A ⊆ B, thenAs⊆ Bs, therefore by the monotonicity off we have

f (A)+ 1= f (As) ≤ f (Bs) = f (B),

which gives (i). Similarly, using the submodularity for the setsAs, Bs we get (ii).

The claim of this proposition can be reversed: given any polymatroidf on the subsets
of P satisfying (i) and (ii) above and extendingf to the subsets ofP ∪ {s} as defined in
Proposition 2.2, we get a polymatroid.

3. Results

We start by proving

Theorem 3.1. In any perfect secret sharing scheme, all important participant must
have a share at least as large as the secret itself.

Proof. Suppose an access structureA is given on the setP of participants,x ∈ P
is an important person shown byC ⊆ P, i.e., C /∈ A but Cx ∈ A. Also given any
perfect secret sharing scheme, consider the functionf defined in Proposition 2.1. Since
f (x) = H(x)/H(s), f (x) ≥ 1 impliesH(x) ≥ H(s), i.e., that the (average) size ofx’s
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share must be at least as large as the (average) size of the secret. Thus we have to show
only that f (x) ≥ 1.

SinceC /∈ A andCx ∈ A, by Proposition 2.3(i) we havef (Cx) ≥ f (C) + 1. f is
submodular on the subsets ofP, so we also have

f (C)+ f (x) ≥ f (Cx)+ f (C ∩ {x}) = f (Cx)+ f (∅) = f (Cx)

sincex /∈ C. Combining this withf (Cx) ≥ f (C)+ 1 we get the desired result.

Theorem 3.2. For each n there exists an access structureA on n participants so that
any perfect secret sharing scheme assigns a share of length about n/logn times the
length of the secret to some participant.

Proof. Suppose an access structureA, to be defined later, is given on then-element
setP of participants. Letk be the largest integer with 2k+ k− 2≤ n. Suppose also that
a perfect secret sharing scheme is given, and consider again the functionf defined in
Proposition 2.1. We have to find a participantx ∈ P such thatf (x) is at least(2k−1)/k
which is approximately equal ton/logn (for example, it is always betweenn/2 logn
andn/logn).

We illustrate the construction by an example fork = 2. Let a, b, c, d be different
members ofP. (Since 2k+k−2= 4≤ n, there are at least four members inP.) Let the
setsab, ca, andcdbbe minimal sets in the Sperner systemA, i.e., none of their proper
subsets is inA (see Fig. 1, elements ofA are denoted by solid dots).

Now consider the following differences:

(i) f (cdab)− f (cd);
(ii) f (cab)− f (c);

(iii) f (ab)− f (∅).
Sincecdab∈ A andcd /∈ A, by Proposition 2.3(i) we have (i)≥ 1. We claim that each
difference is at least 1 larger than the previous one. To show this, we use Proposition 2.3(ii)
and the submodularity off as follows. Sincecdb and cab are both inA, but their
intersectioncb /∈ A, we have

f (cdb)+ f (cab) ≥ f (cdab)+ f (cb)+ 1.

Applying the submodularity tocd andcb we have

f (cd)+ f (cb) ≥ f (cdb)+ f (c).

Fig. 1. The casek = 2.
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Adding and rearranging the terms we get

f (cab)− f (c) ≥ f (cdab)− f (cd)+ 1,

which shows that (ii)≥ (i) + 1.
Similarly, applying Proposition 2.3(ii) toca andab and the submodularity toc anda

we get (iii)≥ (ii)+1≥ (i)+2≥ 3. Now sincef (a)+ f (b) ≥ f (ab) (by submodularity
again), which is≥ 3, either f (a) or f (b) must be at least 1.5, i.e., eithera or b must
have a share with size 50% bigger than the size of the secret. This was the main result
in [3] using a slightly different access structure.

Now we turn to the general construction. LetA be ak-element set of individuals, and
let A = A0, A1, . . . , A2k−1 = ∅ be a decreasing enumeration of all of its subsets so
that if i < j , thenAi 6⊆ Aj . Let B = {b1, b2, . . ., b2k−2} be disjoint fromA, our set of
individuals will beA∪B. Sincek+2k−2≤ n we can pickA andB from P. Let B0 = ∅,
and in generalBi = {b1, b2, . . ., bi }. The minimal elements of the access structureA
will be Ui = Ai ∪ Bi for i = 0, 1, . . ., 2k − 2. They are pairwise incomparable, i.e.,
none of them is a subset of the other; this means that they can indeed form the minimal
elements in an access structure. To check it, leti < j , thenbj ∈ Uj −Ui (i.e.,Uj 6⊆ Ui ),
and∅ 6= Ai − Aj ⊆ Ui −Uj (i.e.,Ui 6⊆ Uj ).

Lemma 3.3. Under these assumptions, for each0≤ i < 2k − 2,

[ f (Bi ∪ A)− f (Bi )] − [ f (Bi+1 ∪ A)− f (Bi+1)] ≥ 1.

Proof. Just mimic the proof for the casek = 2. ChoosingX = Bi∪A,Y = Bi+1∪Ai+1,
both of them are inA sinceX ⊇ Ui , andY = Ui+1, while X ∩ Y = Bi ∪ Ai+1 /∈ A. To
see this it is enough to check that, for allj , Uj = Aj ∪ Bj 6⊆ Bi ∪ Ai+1. Indeed, if j ≤ i ,
thenAj 6⊆ Ai+1; if j > i , thenBj 6⊆ Bi . Therefore by Proposition 2.3(ii) we have

f (X)+ f (Y) ≥ f (X ∪ Y)+ f (X ∩ Y)+ 1,

or, by rearranging,

[ f (Bi ∪ A)− f (Bi ∪ Ai+1)] − [ f (Bi+1 ∪ A)− f (Bi+1 ∪ Ai+1)] ≥ 1. (4)

The submodularity off applied toX = Bi ∪ Ai+1 andY = Bi+1 gives

f (X)+ f (Y) ≥ f (X ∪ Y)+ f (X ∩ Y),

i.e., also by rearranging the terms

[ f (Bi ∪ Ai+1)− f (Bi )] − [ f (Bi+1 ∪ Ai+1)− f (Bi+1)] ≥ 0. (5)

By adding inequalities (4) and (5) we get the claim of the lemma.

Lemma 3.4. f (A) ≥ 2k − 1.
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Proof. Note that f (A∪ B2k−2)− f (B2k−2) ≥ 1 by Proposition 2.3(i) sinceA ∈ A but
B2k−2 /∈ A. Now adding this to the inequality in Lemma 3.3 for all 0≤ i < 2k − 2 we
get

f (B0 ∪ A)− f (B0) ≥ 2k − 1,

which, byB0 = ∅, gives the result.

Finally, by iterated application of the submodularity inequality,

f (a1)+ f (a2)+ · · · + f (ak) ≥ f (A),

thus at least one off (ai ) ≥ (2k − 1)/k, which was to be proven.

We show that apart from the logn factor, our result is the best possible. Namely, the
method cannot give a better lower bound thann times the length of the secret.

Theorem 3.5. Given any access structureA on the n-element set P, we can always
find a polymatroid function f so that

(i) f satisfies the conditions of Proposition2.3;
(ii) f (x) ≤ n for all elements x∈ P.

Proof. Let A be ak-element subset ofP, define

f (A) = n+ (n− 1)+ · · · + (n+ 1− k).

This function assignsn to each one-element set. IfA is a proper subset ofB, then
f (B) − f (A) is the sum of|B − A| consecutive positive integers, therefore it is≥1,
and equality holds only ifB = P and A is an(n − 1)-element subset. This proves (i)
of Proposition 2.3, and also proves the monotonicity off . To check (ii), suppose that
A∩ B is a proper subset of bothA andB. Observe that(A∪ B)− A andB− (A∩ B) is
the same nonempty set, and suppose this difference contains, say,` ≥ 1 elements. Then
both f (A∪ B)− f (A) and f (B) − f (A∩ B) are the sums of̀ consecutive integers,
and sinceA∪ B has more elements thanB, each number in the first sum is bigger than
the corresponding number in the second sum. Thus

f (A∪ B)− f (A) > f (B)− f (A∩ B),

and since the values are integers, the difference between the two sides is at least 1, as
was required.

4. Conclusion and Future Work

We have constructed an access structureA on n elements so that any perfect secret
sharing scheme must assign a share which is of size at leastn/logn times the size of the
secret. The best previous upper bound was 1.5 [3]. From the other side, for our access
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structure we can construct a scheme which, for each secret bit, assigns at mostn bits to
each participant. This means that in this case the upper and lower bounds are quite close.

Recall that the access structureA is generated by the minimal subsetsUi for i =
0, 1, . . . ,2k − 2. Lets be a secret bit, and for eachi pick |Ui | random bits so that their
mod 2 sum is equal tos. Distribute these bits among the members ofUi . Each participant
gets as many bits as theUi ’s he or she is in, thus each share is at most 2k − 1≤ n bits.

We have seen in Theorem 3.5 that using polymatroids we cannot prove essentially bet-
ter lower bounds. For general access structures, however, the known general techniques
produce exponentially large shares [8]. In order to turn the construction in Theorem 3.5
into an actual secret sharing scheme, thus proving that every access structure can be
realized within ann-factor blow-up in shares, the first obstacle to be overcome is the
following problem.

Problem 4.1. Can every polymatroid be represented as the entropy of appropriately
chosen random variables?

An affirmative answer would help in completing the construction. However, intuition
says that the answer isno [5], and sometimes the size of a share must be much larger. In
this case we have to deal with additional inequalities the entropy function does not share
with polymatroids. These might help in establishing better lower bounds for the size of
the shares.
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