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Abstract. The security of hash functions based on a block cipher with a block length
of m bits and a key length ofk bits, wherek ≤ m, is considered. New attacks are
presented on a large class of iterated hash functions with a 2m-bit hash result which
processes in each iteration two message blocks using two encryptions. In particular, the
attacks break three proposed schemes: Parallel-DM, the PBGV hash function, and the
LOKI DBH mode.
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1. Introduction

A hash functionis an easily implementable mapping from the set of all binary se-
quences to the set of binary sequences of some fixed length. Aniterated hash function
is a hash function Hash(·) based on an easily computable functionh(·, ·) from two bi-
nary sequences of respective lengthsm andl to a binary sequence of lengthm. If the
length of the input string is not a multiple ofl , the input string is padded using an
unambiguous padding rule. The padded inputM is then split intol -bit blocks Mi , or
M = (M1,M2, . . . ,Mn). Thehash result H= Hn of lengthm is obtained by computing

∗ Part of the results in this paper were presented at Eurocrypt ’94. Lars R. Knudsen is a postdoctoral
researcher, sponsored by the Danish Technical Science Foundation. Bart Preneel is an N.F.W.O. postdoctoral
researcher, sponsored by the National Fund for Scientific Research (Belgium).
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iteratively

Hi = h(Hi−1,Mi ), i = 1, 2, . . . ,n, (1)

whereH0 is a specifiedinitial value. The functionh is called thehash round function
or the compression function. Hash functions which satisfy some security properties are
widely used in cryptographic applications such as digital signatures, password protection
schemes, and conventional message authentication.

For iterated hash functions, seven attacks can be distinguished:

1. Preimage attack: Given H0 and Hash(H0,M) find M ′ such that Hash(H0,M ′) =
Hash(H0,M).

2. 2nd preimage attack: GivenH0 andM , findM ′ such thatM ′ 6= M but Hash(H0,M ′)
= Hash(H0,M).

3. Free-start preimage attack: GivenH0 and Hash(H0,M), find H ′0 andM ′ such that
Hash(H ′0,M ′) = Hash(H0,M).

4. Free-start 2nd preimage attack: Given H0 and M , find H ′0 and M ′ such that
(H ′0,M ′) 6= (H0,M) but Hash(H ′0,M ′) = Hash(H0,M).

5. Collision attack: GivenH0, find M andM ′ such thatM ′ 6= M but Hash(H0,M ′) =
Hash(H0,M).

6. Semi-free-start collision attack: Find H0, M , and M ′ such thatM ′ 6= M but
Hash(H0,M ′) = Hash(H0,M).

7. Free-start collision attack: Find H0, H ′0, M , andM ′ such that(H ′0,M ′) 6= (H0,M)
but Hash(H ′0,M ′) = Hash(H0,M).

This list of attacks is from [11]. Similar definitions appear in [12] and [14]. It depends
on the application which of these attacks on hash functions are relevant; if an attack
applies, one has to impose that it is computationally infeasible for the hash function in
question. For example, for password protection, a preimage attack is the only possible
attack providedH0 is included in the definition of the hash function. In most applications
H0 is specified and fixed, and the only feasible attacks are attacks 1, 2, and 5; attacks
3, 4, 6, and 7 cannot be used since a hash result computed from a different initial value
will not be accepted. However, these attacks correspond to attacks on the hash round
function, and as such have some value as certificational attacks. However, if the sender is
free to choose and/or to changeH0, they can be realistic attacks. Note that the free-start
and semi-free-start attacks are never harder than the attacks whereH0 is specified in
advance. Also, a collision attack cannot be harder than a 2nd preimage attack.

For anm-bit hash function, brute-force preimage (and 2nd preimage) attacks, in which
an M ′ is randomly chosen until one hits a givenH = Hash(H0,M), require about
2m evaluations of Hash(·). It follows from the usual “birthday argument” that brute-
force collision attacks require about 2m/2 evaluations of Hash(·). In most cases preimage
attacks require about 2m computations of the round functionh while brute-force collision
attacks require about 2m/2 computations of the round functionh. Using the method of
“distinguished points” [17], [19], the collision attacks can be implemented with little
memory. This collision search technique can be parallelized efficiently; the reader is
referred to [19] for more details.

To avoid some trivial attacks [12], the following strengthening of iterated hash func-
tions was proposed independently by Damg˚ard [3] and Merkle [13].
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Definition 1 (MD-Strengthening (Merkle–Damg˚ard Strengthening)). Consider an it-
erated hash function Hash(·) and a message to be hashedM = (M1,M2, . . . ,Mn).
Specify an extra message blockMn+1 containing the length ofM (before padding) in bits.
The hash result ofM is defined as Hash(M ′), whereM ′ = (M1,M2, . . . ,Mn,Mn+1).

The attacks presented in this paper produce messages of equal length, and are therefore
independent of MD-strengthening.

The following connection between a hash function and its hash round function can be
proved [3], [12], [13].

Theorem 1. Free-start collision and free-start preimage attacks against an iterated
hash function with MD-strengthening have roughly the same complexities as free-start
collision and free-start preimage attacks against the hash round function.

This paper considers iterated hash functions based on block ciphers with block length
and key length both equal tom bits. Such a block cipher defines, for eachm-bit key, a
reversible mapping from the set of allm-bit plaintexts onto the set of allm-bit ciphertexts.
In the followingEZ(X) denotes the encryption of them-bit plaintextX under them-bit
key Z, andDZ(Y) denotes the decryption of them-bit ciphertextY under them-bit key
Z. Note that it is possible to extend the attacks to the case where the key length is less
than the block length, such as DES [5], which has a 64-bit block length and a 56-bit
key. It is assumed that the block cipher has no weaknesses, i.e., for every key it can be
modeled as a random permutation (see, for example, [13]).

The hash rateof an iterated hash function (or, equivalently, of a round function) is
defined as the number ofm-bit message blocks processed per encryption or decryp-
tion. Thecomplexityof an attack is the total number of operations, i.e., encryptions or
decryptions, required for the attack to succeed with a high probability.

The following results from probability theory are used [4], [7]:

Lemma 1. When drawing a sample of sizer from a set of N elements with replacements,
where r, N → ∞ and r/N → z, the probability that a given element is drawn con-
verges to

1− exp(−z). (2)

Lemma 2. When drawing a sample of sizer from a set of N elements with replacements,
where r, N → ∞ and r2/(2N) → λ, the distribution of the number of coincidences
converges to a Poisson distribution with expected valueλ or

Pr(# coincidences= c) = e−λ · λ
c

c!
, c ≥ 0. (3)

The probability that there is at least one coincidence is given by

1− exp(−λ). (4)

An identical result holds when two samples of sizes r and s are drawn from a set of N
elements with replacements, where r, s, N →∞ and rs/N → λ.



62 L. R. Knudsen, X. Lai, and B. Preneel

The remainder of this paper is organized as follows. In Section 2single block length hash
functionsare reviewed, i.e., hash functions based on block ciphers with anm-bit hash
result. In Section 3double block length hash functionsare considered, i.e., hash functions
with a 2m-bit hash result. Section 4 presents a new attack, the “solving one-half” attack.
Section 5 contains the main result of the paper: it describes attacks on all double block
length hash functions of hash rate 1. In the last section the conclusions are given as well
as some open problems.

2. Single Block Length Hash Functions

In [15] it was shown that there exist basically two single block length hash functions
believed to be secure, namely, the scheme known as the Davies–Meyer scheme:

Hi = EMi (Hi−1)⊕ Hi−1, (5)

and the scheme proposed independently by Miyaguchi [10] and Preneel [14]:

Hi = EMi (Hi−1)⊕ Hi−1⊕ Mi . (6)

All other secure single block length hash functions can be transformed into either (5) or
(6) by linear transformations of the inputsMi and Hi−1 [15]. For example, the single
block length hash function of the International Standard ISO/IEC 10118-2 [9] is obtained
by interchangingMi andHi in the first scheme. The schemes (5) and (6) are believed to
be secure in the sense that the complexities of free-start collision and preimage attacks
are 2m/2 and 2m, respectively.

Since most block ciphers have a block length of 64 bits, the complexity of a brute-force
collision attack is only about 232. A second consideration is that 264 off-line operations
for a preimage attack are becoming more and more realistic [20]. In this context it is
important to note that “Moore’s law” states that the cost of computation reduces by a
factor of four every 3 years.

3. Double Block Length Hash Functions

The previous section motivates the attempts which have been made to construct hash
round functions based on two parallel or consecutive runs of a block cipher, yielding a
2m-bit hash result. Natural requirements for these hash functions are that the complexity
of a preimage attack is higher than 2m and more importantly that the complexity of a
collision attack is substantially higher than 2m/2.

One such scheme is MDC-2, which was developed by Brachtl et al. [1] for use in
combination with DES; its generalization to an arbitrary block cipher is included in
ISO/IEC 10118-2 [9]:

T1
i = EH1

i−1
(Mi )⊕ Mi = LT1

i ‖ RT1
i ,

T2
i = EH2

i−1
(Mi )⊕ Mi = LT2

i ‖ RT2
i ,

H1
i = LT1

i ‖ RT2
i ,

H2
i = LT2

i ‖ RT1
i .

(7)
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It is believed that the complexities for preimage and collision attacks on MDC-2 are
about 23m/2 and 2m, respectively. For DES, with a block size of 64 bits, these attacks
require about 281 and 254 operations, since the effective key size in this construction
is only 54 bits (two of the 56 key bits are fixed to make the two encryption functions
different and to avoid weak DES-keys).

The hash rate of MDC-2 is only12, i.e., the hash function takes two encryptions per
message block, which implies that MDC-2 is at least twice as slow as the underlying
block cipher. In addition, each hash round function requires two key schedulings. Several
attempts have been made to construct fast double block length hash functions with hash
rate 1 [2], [8], [14], [16].

Consider the following general form of a double block length hash function:{
H1

i = EA(B) ⊕ C,
H2

i = ER(S) ⊕ T.
(8)

For a hash rate12 scheme,A, B, andC are binary linear combinations of them-bit vectors
H1

i−1, H2
i−1, andMi , andR, S, andT are binary linear combinations of the vectorsH1

i−1,
H2

i−1, Mi , and H1
i . For a hash rate 1 scheme, the messageM is divided into blocks

(M1
i ,M2

i ) of l = 2m bits (eachM j
i of m bits), i.e.,M = (M1

1,M2
1, . . . ,M1

n,M2
n). A,

B, andC are binary linear combinations of them-bit vectorsH1
i−1, H2

i−1, M1
i , andM2

i ,
andR, S, andT are binary linear combinations of the vectorsH1

i−1, H2
i−1, M1

i , M2
i , and

H1
i . If H1

i andH2
i can be computed independently, the hash function is calledparallel;

if H2
i depends onH1

i , the hash function is calledserial.
This paper presents attacks on all hash functions of hash rate 1 defined by (8). In

particular our attacks break the following three proposed schemes.

Parallel-DM [8] (see also Fig. 1){
H1

i = EM1
i ⊕M2

i
(H1

i−1⊕ M1
i )⊕ H1

i−1⊕ M1
i ,

H2
i = EM1

i
(H2

i−1⊕ M2
i )⊕ H2

i−1⊕ M2
i ,

(9)
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Fig. 1. The 2m-bit round function of the Parallel-DM scheme.
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The PBGV hash function[16]{
H1

i = EM1
i ⊕M2

i
(H1

i−1⊕ H2
i−1)⊕ M1

i ⊕ H1
i−1⊕ H2

i−1,

H2
i = EM1

i ⊕H1
i−1
(M2

i ⊕ H2
i−1)⊕ M2

i ⊕ H1
i−1⊕ H2

i−1.
(10)

The LOKI DBH mode[2]{
H1

i = EH2
i−1⊕M2

i
(H2

i−1⊕ M1
i )⊕ H1

i−1⊕ H2
i−1⊕ M1

i ,

H2
i = EH1

i−1⊕M1
i
(H2

i−1⊕ M2
i ⊕ H1

i )⊕ H1
i−1⊕ H2

i−1⊕ M2
i .

(11)

The LOKI DBH mode is a variant of a scheme presented by Quisquater and Girault at
Eurocrypt ’89.

The following free-start attacks on double block length hash functions were given
in [8]:

Theorem 2. For the2m-bit iterated hash function with hash rate1
2 or 1 whose2m-bit

round function is of type(8), there exist a free-start preimage attack and a free-start
collision attack with complexities about2× 2m and2× 2m/2, respectively.

Also in [8], the following approach was suggested to the design of double block length
hash functions: hash functions meeting these upper bounds for the free-start attacks are
said to beoptimumagainst a free-start attack. For such a hash functionoptimumsecurity
against free-start attacks can be obtained if the scheme is equivalent to either two runs of
(5) or two runs of (6) by a simple invertible transformation of the inputsM1

i , M2
i , H1

i−1,
and H2

i−1. The designer hopes that for the complete hash function, with a fixed initial
value, the complexity of collision and preimage attacks are higher than the proven lower
bounds for the free-start attacks. One example of such a construction is Parallel-DM (9).

The attacks presented in the remainder of this paper are attacks with a given, fixed
initial value.

4. The Solving One-Half Attacks

In this section a general class of attacks is proposed which exploits the fact that one of
the equations of (8) can be solved for the message blocks. First attacks on the parallel
version are presented.

Theorem 3. Consider a double block length hash function with round function of the
form (12),where each hi contains one encryption:{

H1
i = h1(H1

i−1, H2
i−1,M1

i ,M2
i ),

H2
i = h2(H1

i−1, H2
i−1,M1

i ,M2
i ).

(12)

If T operations are required to find one pair of(M1
i ,M2

i ) for any given value of
(H1

i−1, H2
i−1), such that the resulting4-tuple(H1

i−1, H2
i−1,M1

i ,M2
i ) yields the fixed value
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for H1
i (or H2

i or H1
i ⊕ H2

i ), there exist2nd preimage and preimage attacks on the hash
function with complexities about(T +3)×2m; and there exists a collision attack on the
hash function with complexity about(T + 3)× 2m/2.

Proof. The attacks start by choosing arbitrary message blocks(M1
i ,M2

i ), for i =
1, . . . ,n− 2, and by computing the values(H1

n−2, H2
n−2) forward from the given initial

values(H1
0 , H2

0 ). Then one searches for the four message blocks(M1
n−1,M2

n−1) and
(M1

n,M2
n) such that the hash result is hit (in the case of a (2nd) preimage attack) or for a

pair of four correcting blocks which yield a collision. The initial 2· (n− 2) operations
can be ignored in the complexity measurements, ifn¿ 2m.

The(2nd) preimage attack. Let (H1
n , H2

n ) be the hash result of a messageM ′, where
n ≥ 2. For a preimage attack, a messageM yielding this hash result has to be found,
and for the 2nd preimage attackM ′ is given and a messageM 6= M ′ yielding this hash
result needs to be found. The attacker proceeds as follows:

1. Compute forward the pair(H1
n−1, H2

n−1) from the given values(H1
n−2, H2

n−2) and
a pair of message blocks(M1

n−1,M2
n−1).

2. Find the pair(M1
n,M2

n) from the pair(H1
n−1, H2

n−1) obtained above so that the
4-tuple(H1

n−1, H2
n−1,M1

n,M2
n) yields the given value of the hash resultH1

n .
3. Compute the value forH2

n from the 4-tuple(H1
n−1, H2

n−1,M1
n,M2

n).

Repeat the above procedure 2m times for different choices of(M1
n−1,M2

n−1). SinceH2
n is

m bits long, the probability of hitting the right value ofH2
n is equal to 0.63, according to

Lemma 1 withz= 1. Step 1 takes two operations, step 2 takesT operations, and step 3
takes one operation, in totalT + 3 operations. Note that if the mapping betweenM1

n−1,
M2

n−1, or M1
n−1⊕ M2

n−1 andH2
n is bijective, the choice of the message blocks in step 1

can be optimized such that the probability of success is equal to 1.

The collision attack. Two different sets of messages blocks(M1
n−1,M2

n−1, M1
n,M2

n)

and(M ′1n−1,M ′2n−1,M ′1n,M ′2n)which produce the same hash result(H1
n , H2

n ) have to be
found. Choose a value forH1

n and proceed in the same way as in the preimage attack,
i.e., perform steps 1–3 above. Repeat this procedure 2m/2 times. SinceH2

n is m bits long,
the probability of finding two different messages with equal values ofH2

n is equal to
0.39, where Lemma 2 has been applied withλ = 1

2. Note that in this case the message
blocks have to be chosen such that the mapping betweenM1

n−1, M2
n−1, or M1

n−1⊕ M2
n−1

andH2
n is not bijective.

If the collision attack fails, the number of operations can be doubled; it follows from
Lemma 2 that the success probability will increase to about 0.86 (λ = 2). Also observe
that the collision attack can be extended to the case where the message blocks used in
the firstn− 2 iterations are different for the colliding pair.

Proposition 1. The attacks described in Theorem3can be implemented with only small
memory.
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Proof. First note that the preimage attack requires only very little memory. The values
of H2

n computed in step 3 can be immediately tested against the given value ofH2
n . For

the collision attack 2m/2 values ofH2
n can be collected and a match between them found.

However, the method of [17] and [19] can be used to reduce the required memory.
From there it follows that a nonbijective functionf has to be defined. The values of
H2

n computed in step 3 of the attack are images of a functionF on input random
values(M1

n−1,M2
n−1). Choose random values of(M1

n−1,M2
n−1) = (r1, r2), and define

H2
n (1) = f (r1) and H2

n ( j ) = f (H2
n ( j − 1)), where f (a) = F(a, r2). In the rare

cases wheref defines a bijection, the attack will fail. However, there are many ways to
constructf from F , and for a particular hash function it is easy to find such a nonbijective
mapping.

Theorem 3 can be extended to serial double block length hash functions as follows.

Theorem 4. Consider a double block length hash function of hash rate1 with round
function of the form(13),where each hi contains one encryption:{

H1
i = h1(H1

i−1, H2
i−1,M1

i ,M2
i ),

H2
i = h2(H1

i−1, H2
i−1,M1

i ,M2
i , H1

i ).
(13)

If T operations are required to find one pair of(M1
i ,M2

i ) for any given value of
(H1

i−1, H2
i−1), such that the resulting4-tuple(H1

i−1, H2
i−1,M1

i ,M2
i ) yields the fixed value

for H1
i , the complexities of2nd preimage and preimage attacks on the hash function are

about(T + 3) × 2m; and the complexity of a collision attack on the hash function is
about(T + 3)× 2m/2.

Note that in the collision attacks above (and in the rest of this paper) one of the
two values of the hash result(H1

n , H2
n ) can be chosen, while the second one will be a

random value. That is, two messages with hash results(H1
n , X) for givenH1

n and random
X can be found. Finding such a collision by combining a brute-force preimage attack
and a birthday attack requires about 23m/2 operations, compared with 2m operations for
a random collision. Thus, the collision attacks presented are more powerful than the
standard ones.

5. Attacks on All Hash Rate 1 Schemes

In this section it is shown that for any double block length hash function of type (8) with
hash rate 1, preimages and collisions can be found in time much less than by brute force.
In particular this holds for the Parallel-DM (9), the PBGV hash function (10), and the
LOKI DBH hash function (11).

The results apply to double block length hash functions for whichH1
i (or H2

i ) can be
written as

H1
i = EA(B)⊕ C with

 A
B
C

 = L ·


H1
i−1

H2
i−1

M1
i

M2
i

. (14)
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Here the vector elements arem-bit strings andL is a 3×4 block matrix with the(m×m)
identity or zero matrix as blocks. The binary 3× 4 matrix L is now defined as follows:
whenLi j is an identity (resp. zero) matrix,Li j is one (resp. zero). The rank ofL denotes
the formal rank ofL. Also, L1 andL2 denote the submatrices ofL consisting ofLi j for
j = 1, 2 and for j = 3, 4, respectively.

This description includes all double block length hash functions of hash rate 1 (serial
or parallel), as defined in (8), but also more complex schemes. As an example, for LOKI
DBH (11) one gets

L =
0 0 1 1

1 1 0 0
1 1 1 0

 .
Also, A andB of (14) will be rewritten as follows:[

A
B

]
= N1 ·

[
H1

i−1
H2

i−1

]
⊕N2 ·

[
M1

i
M2

i

]
, (15)

whereN1 andN2 are 2×2 binary submatrices ofL. Similarly, N1 andN2 are the binary
matrices derived fromN1 andN2, respectively.

Before stating the main result of the paper, a simple lemma is proved.

Lemma 3. If the rank of L2 is less than two, then there exist collision, 2nd preimage,
and preimage attacks on the hash function with complexities3×2m/2, 3×2m, and4×2m,
respectively.

Proof. If the rank of L2 is at most one,H1
i depends on a subspace of〈M1

i ,M2
i 〉

of dimension at most one. Consider first the collision and (2nd) preimage attacks. It
follows that an attacker has at least one degree of freedom to find 2m values ofM1

i , M2
i ,

or M1
i ⊕ M2

i yielding the given value of the hash resultH1
n , thus Theorem 4 holds with

T = 0. For the preimage attack an attacker would first have to perform a brute-force
attack of complexity 2m to find message blocks that hash toH1

n . Subsequently, Theorem 4
holds withT = 0.

Theorem 5. For the double block length hash functions of hash rate1, for which one
of the round functions has the form of(8), there exist2nd preimage and preimage attacks
with complexities of about4 × 2m. Furthermore, there exists a collision attack with
complexity of about3× 23m/4. For all but two classes of hash functions, there exists a
collision attack with complexity of about4× 2m/2.

Proof. Consider the general form (8). In the following the hash round functionH1
i will

be attacked and the notation of (14) will be used. The proof is divided into three cases
depending on the rank ofL, denoted by Rank(L).

• Rank(L) = 1
This implies that Rank(L2) ≤ 1 and the result follows from Lemma 3.

• Rank(L) = 2
It follows that one of the rows ofL can be expressed as a linear combination of the
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other two. Assume first that the third row can be expressed as a linear combination of
the first two. From (15) it follows that Rank(N2) = Rank(L2). If Rank(N2) = 1 the
result follows from Lemma 3. If Rank(N2) = 2, thenN2 is invertible and from (15) one
obtains [

M1
i

M2
i

]
= N−1

2 ·
[

N1 ·
[

H1
i−1

H2
i−1

]
⊕
[

A
B

]]
. (16)

For the 2nd preimage attack and the collision attack proceed as follows. For the given
hash resultH1

i , let (a, b) be the values of(A, B) used in the computation ofH1
i . Using

(16) with (a, b) for (A, B), one finds(M1
i ,M2

i ) for any values(H1
i−1, H2

i−1) and H1
i .

Thus, Theorem 4 holds withT ' 0 (it is assumed that the time for the additions is
negligible), yielding a 2nd preimage in 3× 2m operations, and a collision in 3× 2m/2

operations.
For the preimage attack start with a brute-force attack onH1

i , by trying 2m values
of (M1

i ,M2
i ). This requires 2m operations and will have a success probability of 0.63

(or 1 if a bijective mapping can be found), according to Lemma 1. Continue as in the
2nd preimage attack. The overall complexity of the preimage attack is 4× 2m with a
probability of success at least(0.63)2 ' 0.39.

This completes the proof for the case where the third row ofL can be expressed as a
linear combination of the first two. Consider next the case where the second row can be
expressed as a linear combination of the first and third rows. ExpressA andC in a similar
way asA and B in (15) and define the submatricesN ′1 and N ′2 accordingly. It follows
that the above proof holds also in this case and in the other cases where Rank(L) = 2.

The Parallel-DM (9) is an instance of this class of hash functions.

• Rank(L) = 3
Two cases are distinguished:

Rank(N2) ≤ 1. If Rank(N2) = 0, then Rank(L2) = 1 and the result follows from
Lemma 3. If Rank(N2) = 1, thenA and B depend on a one-dimensional subspace of
〈M1,M2〉. Let MAB represent this subspace. Since it can be assumed that Rank(L2) = 2
(if Rank(L2) < 2, Lemma 3 applies again),C depends on a one-dimensional subspace
of 〈M1,M2〉 represented byMC, whereMC 6= MAB.

For any given(H1
i−1, H2

i−1), choose a value ofMAB and compute the corresponding
values(a, b) of (A, B) and then ofz = Ea(b). Use the degree of freedom ofMC to
calculate the valuec of C such thatH1

i is hit, i.e., such thatc⊕ z= H1
i . Now Theorem 4

holds withT ' 1.
The PBGV hash function (10) is an instance of this class of hash functions.

Rank(N2) = 2. Since Rank(L) = 3, none of the rows ofL can be written as a linear
combination of two other rows. Suppose{a, b, c} is the standard basis for the image
space ofL. Then{a, b, c⊕ λa⊕ γb} is a basis for the image space for anyλ, γ = 0, 1.
Thereforeλ, γ that yield a basis{a, b, c′} can be found (by elementary row operations)
such that

L′ =
(

N1 N2

∗ 0

)
.

Clearly, anyC′ is independent ofM1
i ,M2

i .
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If (λ, γ ) = (0, 0), then H1
i = EA(B) ⊕ C′. Here the solving one-half attack of

Theorem 4 applies withT ' 1. Indeed, first obtain the valuec′ of C′ from the given
values of(H1

i−1, H2
i−1). Then choose a valuea of A, and compute the valueb of B as

b = Da(c′ ⊕ H1
n ). Now (16) can be used to find the corresponding values of(M1

i ,M2
i );

this is possible since Rank(N2) = 2.
If (λ, γ ) = (1, 0), thenH1

i = EA(B)⊕ A⊕C′. Similarly, first find the valuec′ of C′,
then choose a valuea of A, and compute the valueb of B from b = Da(c′ ⊕ H1

n ⊕ a).
Again Theorem 4 holds withT ' 1.

If (λ, γ ) = (0, 1), thenH1
i = EA(B)⊕B⊕C′. It is assumed without loss of generality

thatC′ = H1
n−1. For this class of hash functions, Theorem 4 does not apply. However, in

the following meet-in-the-middle attacks are described which are faster than brute-force
attacks. First the (2nd) preimage is given, and then the collision attack.

The attacks start by choosing arbitrary message blocks(M1
i ,M2

i ), for i =
1, . . . ,n− 2, and by computing the values(H1

n−2, H2
n−2) forward from the

given initial values(H1
0 , H2

0 ). Then one searches for the four message blocks
(M1

n−1,M2
n−1) and(M1

n,M2
n) such that the hash result is hit (in the case of a

(2nd) preimage attack) or for a pair of four correcting blocks which yield a
collision. The initial 2· (n− 2) operations can be ignored in the complexity
measurements ifn¿ 2m.

The(2nd) preimage attack:
1. Backward step: choose 2m values(a, b) of (A, B) and compute

H ′1n−1 = c′ = Ea(b)⊕ b⊕ H1
n

for the given value ofH1
n .

2. Forward step: choose 2m values for (M ′′1n−1,M ′′2n−1) and compute
(H ′′1n−1, H ′′2n−1) from (H1

n−2, H2
n−2).

Find matchesH ′′1n−1 = H ′1n−1. For every match use (16) to find the values
of (M1

n,M2
n) from (a, b) and(H ′′1n−1, H ′′2n−1) (note Rank(N2) = 2). Finally

compute the corresponding value ofH2
n . The quantities in the meet-in-middle

attack arem bits long, so this gives about

2m × 2m

2m
= 2m

values of(H1
n−1, H2

n−1,M1
n,M2

n) all hitting the same value ofH1
n . Thus,

according to Lemma 1 messages hittingH2
n as well will be found with

probability about 0.63; the total number of operations is about 4× 2m.

The collision attack:
1. Backward step: choose 23m/4 values(a, b) for A andB and compute

H ′1n−1 = c′ = Ea(b)⊕ b⊕ H1
n

for the given value ofH1
n .

2. Forward step: choose 23m/4 values for (M ′′1n−1,M ′′2n−1) and compute
(H ′′1n−1, H ′′2n−1) from (H1

n−2, H2
n−2).
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Find matchesH ′′1n−1 = H ′1n−1. For every match compute the values of(M1
i ,M2

i )

from (a, b) and(H ′′1n−1, H ′′2n−1) using (16) and the corresponding value ofH2
n .

Since the quantities in the meet-in-middle attack arem bits long, this gives
about

23m/4× 23m/4

2m
= 2m/2

values of(H1
n−1, H2

n−1,M1
n,M2

n) all hitting the same value ofH1
n . Thus,

according to Lemma 2 withλ = 1
2, among these a match forH2

n will be
found with probability 0.39. The total number of operations is equal to
3× 23m/4.

If (λ, γ ) = (1, 1), thenH1
i = EA(B)⊕ B⊕C′. Choose random values(a, b) of A and

B and compute

c′ = Ea(b)⊕ a⊕ b⊕ H1
n .

Then proceed similarly as in the previous case.
The LOKI DBH hash function (11) is an instance of this class of hash functions.

The following result can be deduced from the proof of Theorem 5:

Corollary 1. For the2m-bit iterated hash function with hash rate1, where(at least)
one of H1

i and H2
i in the hash round function has the form of a(secure) single block

length hash function, there exist2nd preimage attacks with complexities of about3×
2m, preimage attacks with complexities of about4 × 2m, and collision attacks with
complexities of about3× 2m/2.

Proof. Since all single block length hash functions have Rank(L) ≤ 2, the result
follows directly from the proof of Theorem 5.

Corollary 1 implies that the method of [8] to construct schemes which are optimum
against free-start attacks, such as the Parallel-DM (9), has a serious shortcoming: it will
always result in schemes vulnerable to attacks with complexities similar to brute-force
attacks on single block length hash functions.

The attacks presented in this paper can be applied also to schemes where the key
length is less than the block length (k < m), such as DES [5]. Clearly, Theorem 4 also
applies to such schemes, as nothing is assumed about the block and key length of the
block cipher. Theorem 5 holds as well in that case. The hash round functions for such
hash functions are of the formH1

i = EÃ(B) ⊕ C, whereÃ is a vector, obtained from
selectingk bits of A, and whereA, B, andC are defined as in (14). It is easy to extend
the above proof of Theorem 5 to take this into account. Also note that block ciphers
for which k > m (but k ≈ m) yield more complex schemes, but with no significant
improved security.

Proposition 2. The attacks described in Theorem5can be implemented with only small
memory.
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Proof. The cases where Theorem 4 was used were already proved in Proposition 1.
It suffices to show the case where Rank(L) = 3, Rank(N2) = 2, and(λ, γ ) = (0, 1).
The other cases are treated similarly. A variant of the method of [17] and [19] can be
used. The values ofc′, computed in step 1 of the attack, are images of a functionF , i.e.,
F(a, b), and the values ofH ′′1n−1, computed in step 2 are images of a functionG, i.e.,
G(M ′′1n−1,M ′′2n−1). Fix b, M ′′1n−1, andM ′′2n−1 and let f andg be the functions obtained from
F andG, respectively, with one of the two arguments fixed. Choose a random valuer
and define

c′(1) = f (r ),

H ′′1n−1(1) = g(c′(1)),

c′(k) = f (H ′′1n−1(k− 1)),

H ′′1n−1(k) = g(c′(k)).

Whenever there is a matchf ( j ) = g( j ′) the values ofH1
n−1, H2

n−1,M1
n, and M2

n
can be computed such that the same given value ofH1

n is hit. For the preimage attack,
immediately check whether the given value ofH2

n is hit as well. For the collision attack
these values are stored until a sufficient number have been collected to find a match in the
second chain as well. Alternatively, the methods of distinguished points can be applied
one more time to these values.

6. Conclusion

Attacks have been described on double block length hash functions, whose hash round
functions use two encryptions of a block cipher to hash two message blocks. The main
result is that for all double block length hash functions of this type, there exist preimage
attacks and collision attacks with complexities much less than for brute-force attacks.
Therefore, it is not possible to obtain a double block length hash function, as defined
in this paper, which is at least as secure and faster than MDC-2. The attacks in this
paper have been described for block ciphers with key size equal to the block length.
They can be extended to the case where the key size is slightly larger or smaller than the
block size such as DES. It is left as an open question whether it is possible to improve
MDC-2 by considering either three encryptions in a double block length hash mode, or by
constructing triple (orn-fold) block length hash functions with a hash rate greater than1

2.
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