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Abstract. The security of hash functions based on a block cipher with a block length
of m bits and a key length df bits, wherek < m, is considered. New attacks are
presented on a large class of iterated hash functions with-gi2hash result which
processes in each iteration two message blocks using two encryptions. In particular, the
attacks break three proposed schemes: Parallel-DM, the PBGV hash function, and the
LOKI DBH mode.
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1. Introduction

A hash functionis an easily implementable mapping from the set of all binary se-
guences to the set of binary sequences of some fixed lengtierated hash function

is a hash function Hagh based on an easily computable functh@, -) from two bi-
nary sequences of respective lengthandl to a binary sequence of length. If the
length of the input string is not a multiple of the input string is padded using an
unambiguous padding rule. The padded inplis then split intol -bit blocks M;, or

M = (M1, My, ..., Mp). Thehash result H= H, of lengthmis obtained by computing

* Part of the results in this paper were presented at Eurocrypt '94. Lars R. Knudsen is a postdoctoral
researcher, sponsored by the Danish Technical Science Foundation. Bart Preneel is an N.F.W.O. postdoctoral
researcher, sponsored by the National Fund for Scientific Research (Belgium).
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iteratively
Hi = h(Hi_1, Mj), i=12...,n, D

whereHy is a specifiednitial value. The functionh is called thehash round function
or the compression function. Hash functions which satisfy some security properties are
widely used in cryptographic applications such as digital signatures, password protection
schemes, and conventional message authentication.

For iterated hash functions, seven attacks can be distinguished:

1. Preimage attackGiven Hy and HasliHg, M) find M’ such that HastHy, M’) =
HashHg, M).

2. 2nd preimage attackGivenHgandM, find M’ suchthatM’ M butHaslkiHgy, M")
= HashHp, M).

3. Free-start preimage attacksiven Hp and HaskHo, M), find H) andM’ such that
Hash(H}, M’) = Hash(Hg, M).

4. Free-start2nd preimage attackGiven Hy and M, find H} and M" such that
H§, M) #£ (Ho, M) but HasliH}, M") = Hash(Hg, M).

5. Collision attack GivenHy, find M andM’ such thatvl’ # M but HasliHg, M) =
Hash(Hg, M).

6. Semi-free-start collision attack-ind Hyo, M, and M’ such thatM’ # M but
HashHg, M) = Hash(Hg, M).

7. Free-start collision attackFind Ho, H}, M, andM’ such thatH}, M’) # (Ho, M)
but Hast{H}, M") = Hashi(Ho, M).

This list of attacks is from [11]. Similar definitions appear in [12] and [14]. It depends
on the application which of these attacks on hash functions are relevant; if an attack
applies, one has to impose that it is computationally infeasible for the hash function in
guestion. For example, for password protection, a preimage attack is the only possible
attack providedy is included in the definition of the hash function. In most applications
Ho is specified and fixed, and the only feasible attacks are attacks 1, 2, and 5; attacks
3, 4, 6, and 7 cannot be used since a hash result computed from a different initial value
will not be accepted. However, these attacks correspond to attacks on the hash round
function, and as such have some value as certificational attacks. However, if the sender is
free to choose an@r to changeHy, they can be realistic attacks. Note that the free-start
and semi-free-start attacks are never harder than the attacks Whésespecified in
advance. Also, a collision attack cannot be harder than a 2nd preimage attack.

For anm-bit hash function, brute-force preimage (and 2nd preimage) attacks, in which
an M’ is randomly chosen until one hits a givéh = Hash(Hy, M), require about
2™ evaluations of Hagh). It follows from the usual “birthday argument” that brute-
force collision attacks require about2 evaluations of Hagh). In most cases preimage
attacks require abouf"Zomputations of the round functiérwhile brute-force collision
attacks require about™ computations of the round functidn Using the method of
“distinguished points” [17], [19], the collision attacks can be implemented with little
memory. This collision search technique can be parallelized efficiently; the reader is
referred to [19] for more details.

To avoid some trivial attacks [12], the following strengthening of iterated hash func-
tions was proposed independently by Dartyf3] and Merkle [13].
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Definition 1 (MD-Strengthening (Merkle—Danagd Strengthening)). Consider an it-
erated hash function Hash and a message to be hashidd= (M1, Mp, ..., Mp).
Specify an extra message blddk_ ; containing the length d¥1 (before padding) in bits.
The hash result o is defined as HagiM’), whereM’ = (M1, My, ..., My, Mni1).

The attacks presented in this paper produce messages of equal length, and are therefore
independent of MD-strengthening.

The following connection between a hash function and its hash round function can be
proved [3], [12], [13].

Theorem 1. Free-start collision and free-start preimage attacks against an iterated
hash function with MD-strengthening have roughly the same complexities as free-start
collision and free-start preimage attacks against the hash round function

This paper considers iterated hash functions based on block ciphers with block length
and key length both equal ta bits. Such a block cipher defines, for eanbbit key, a
reversible mapping from the set of aitbit plaintexts onto the set of att-bit ciphertexts.

In the following Ez (X) denotes the encryption of tlme-bit plaintext X under them-bit

key Z, andDz(Y) denotes the decryption of time-bit ciphertextY under than-bit key

Z. Note that it is possible to extend the attacks to the case where the key length is less
than the block length, such as DES [5], which has a 64-bit block length and a 56-bit
key. It is assumed that the block cipher has no weaknesses, i.e., for every key it can be
modeled as a random permutation (see, for example, [13]).

The hash rateof an iterated hash function (or, equivalently, of a round function) is
defined as the number of-bit message blocks processed per encryption or decryp-
tion. Thecomplexityof an attack is the total number of operations, i.e., encryptions or
decryptions, required for the attack to succeed with a high probability.

The following results from probability theory are used [4], [7]:

Lemma 1. Whendrawingasample of sizer from asetof N elements with replacements
where t N — oo and r/N — z, the probability that a given element is drawn con-
verges to

1—exp(—2). 2

Lemma 2. Whendrawingasample of sizer from asetof N elements with replacements
where r N — oo and r?/(2N) — 1, the distribution of the number of coincidences
converges to a Poisson distribution with expected valoe

c

Pr(# coincidences=c) = e * . L c>0. 3

The probability that there is at least one coincidence is given by
1 — exp(—Ai). 4

An identical result holds when two samples of sizes r and s are drawn from a set of N
elements with replacementghere s, N — co andrs/N — A.
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The remainder of this paper is organized as follows. In Sectgndle block length hash
functionsare reviewed, i.e., hash functions based on block ciphers with-hit hash

result. In Section 8ouble block length hash functioase considered, i.e., hash functions
with a 2m-bit hash result. Section 4 presents a new attack, the “solving one-half” attack.
Section 5 contains the main result of the paper: it describes attacks on all double block
length hash functions of hash rate 1. In the last section the conclusions are given as well
as some open problems.

2. Single Block Length Hash Functions

In [15] it was shown that there exist basically two single block length hash functions
believed to be secure, namely, the scheme known as the Davies—Meyer scheme:

Hi = Em (Hi—1) @ Hi—1, 5)
and the scheme proposed independently by Miyaguchi [10] and Preneel [14]:
Hi = Em (Hi—1) @ Hi_1 & M;. (6)

All other secure single block length hash functions can be transformed into either (5) or
(6) by linear transformations of the inpuk4; and H;_; [15]. For example, the single
block length hash function of the International Standard/i&®C 10118-2 [9] is obtained
by interchangingV; andH; in the first scheme. The schemes (5) and (6) are believed to
be secure in the sense that the complexities of free-start collision and preimage attacks
are 22 and 2", respectively.

Since most block ciphers have a block length of 64 bits, the complexity of a brute-force
collision attack is only about®. A second consideration is tha*Dff-line operations
for a preimage attack are becoming more and more realistic [20]. In this context it is
important to note that “Moore’s law” states that the cost of computation reduces by a
factor of four every 3 years.

3. Double Block Length Hash Functions

The previous section motivates the attempts which have been made to construct hash
round functions based on two parallel or consecutive runs of a block cipher, yielding a
2m-bit hash result. Natural requirements for these hash functions are that the complexity
of a preimage attack is higher thaf® 2nd more importantly that the complexity of a
collision attack is substantially higher thafi/2.

One such scheme is MDC-2, which was developed by Brachtl et al. [1] for use in
combination with DES; its generalization to an arbitrary block cipher is included in
ISO/IEC 10118-2 [9]:

Tt = By (M) @ Mi = LT || RTY,
T? = Epz (M) ® M = LT? || RT?,
i-1
(7
Hil — LTIl ” R-l;z,
H? = LT? | RT.
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It is believed that the complexities for preimage and collision attacks on MDC-2 are
about 2™2 and 2", respectively. For DES, with a block size of 64 bits, these attacks
require about & and 2* operations, since the effective key size in this construction

is only 54 bits (two of the 56 key bits are fixed to make the two encryption functions
different and to avoid weak DES-keys).

The hash rate of MDC-2 is onlg, i.e., the hash function takes two encryptions per
message block, which implies that MDC-2 is at least twice as slow as the underlying
block cipher. In addition, each hash round function requires two key schedulings. Several
attempts have been made to construct fast double block length hash functions with hash
rate 1 [2], [8], [14], [16].

Consider the following general form of a double block length hash function:

H!
H?

Forahash raté schemeA, B, andC are binary linear combinations of thebit vectors
Ht! ., H? ;,andM;, andR, S, andT are binary linear combinations of the vectéts |,
H?Z ;. Mi, andH!. For a hash rate 1 scheme, the messilgis divided into blocks
(M1, M2) of I = 2m bits (eachM; of m bits), i.e.,M = (M}, M2, ..., M} M2). A,
B, andC are binary linear combinations of tie-bit vectorsH ;, HZ |, M}, andM?,
andR, S, andT are binary linear combinations of the vectsts ;, H? ;, M1, M2, and
HZ. If H! andH? can be computed independently, the hash function is cpheallel;
if H? depends o, the hash function is calleskrial
This paper presents attacks on all hash functions of hash rate 1 defined by (8). In
particular our attacks break the following three proposed schemes.

EAB) & C,
Er(S & T. ®

Parallel-DM [8] (see also Fig. 1)

H' = Eyiemz(HI; © MD) @ HL; © M, 9
Hi2 = EMil(Hiz—l @D Miz) @ Hiz—l ©® I\/liz’ ©

HE E b H
——

Mil —1: :{?

Mi2 — ]
E—

H|2—l D E r/ Hi2

Fig. 1. The 2n-bit round function of the Parallel-DM scheme.
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The PBGV hash functidi 6]

H' = Eyienz(HT ® HZ ) & M @ HY; @ HZ 10
H? = Eyion (M2@ HZ,) & MZ @ HL, @ HE . (10
The LOKI DBH modé2]
H' = Enz emz(HZ; & M) @ HY @ HZ & M, (11
H? = By emi(HZ @ MP@ HY @ HL @ HZ & M.

The LOKI DBH mode is a variant of a scheme presented by Quisquater and Girault at
Eurocrypt '89.

The following free-start attacks on double block length hash functions were given
in [8]:

Theorem 2. For the2m-bit iterated hash function with hash ra%a)r 1 whose2m-bit
round function is of typé8), there exist a free-start preimage attack and a free-start
collision attack with complexities aboRtx 2™ and2 x 2™/2, respectively

Also in [8], the following approach was suggested to the design of double block length
hash functions: hash functions meeting these upper bounds for the free-start attacks are
said to beoptimumagainst a free-start attack. For such a hash funcjaimumsecurity
against free-start attacks can be obtained if the scheme is equivalent to either two runs of
(5) or two runs of (6) by a simple invertible transformation of the inpdfs M2, H.! |,
and H? ;. The designer hopes that for the complete hash function, with a fixed initial
value, the complexity of collision and preimage attacks are higher than the proven lower
bounds for the free-start attacks. One example of such a construction is Parallel-DM (9).

The attacks presented in the remainder of this paper are attacks with a given, fixed
initial value.

4. The Solving One-Half Attacks

In this section a general class of attacks is proposed which exploits the fact that one of
the equations of (8) can be solved for the message blocks. First attacks on the parallel
version are presented.

Theorem 3. Consider a double block length hash function with round function of the
form (12), where each hcontains one encryption
Hil = hl(Hil,l, Hi2,13 Mil, Miz), (12)
H? = h*(H,, HZ, MY M),

If T operations are required to find one pair M1, Miz) for any given value of
(H! ,, H? ), such thatthe resulting-tuple(H?! ;, HZ ,, M1, M?) yields the fixed value
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for H! (or H? or H! @ H?), there exisnd preimage and preimage attacks on the hash
function with complexities abo@T + 3) x 2™; and there exists a collision attack on the
hash function with complexity abo( + 3) x 2™/2,

Proof. The attacks start by choosing arbitrary message blobks M?), for i =
1,...,n— 2, and by computing the valugsl! ,, H? ,) forward from the given initial
values(Hg, H?). Then one searches for the four message bladks ;, M2 ;) and

(M}, M2) such that the hash result is hit (in the case of a (2nd) preimage attack) or for a
pair of four correcting blocks which yield a collision. The initial & — 2) operations

can be ignored in the complexity measurements, < 2™.

The(2nd) preimage attack Let (H}, H?) be the hash result of a messagé where

n > 2. For a preimage attack, a messadeyielding this hash result has to be found,
and for the 2nd preimage attabk’ is given and a messad¢ # M’ yielding this hash
result needs to be found. The attacker proceeds as follows:

1. Compute forward the paiH?! ;, H2 ,) from the given valuesH?! ,, H2 ,) and
a pair of message blocks! ;, M2 ).

2. Find the pair(M}, M?2) from the pair(H} ;, HZ ;) obtained above so that the
4-tuple(H}! |, HZ ;. M}, M2) yields the given value of the hash resilf.

3. Compute the value fdd? from the 4-tuple(H} ;, H2 ;, M1, M2).

Repeat the above procedur@times for different choices @M} _;, M2 ,). SinceH? is

m bits long, the probability of hitting the right value &f? is equal to 0.63, according to
Lemma 1 withz = 1. Step 1 takes two operations, step 2 takesxperations, and step 3
takes one operation, in tot@ll + 3 operations. Note that if the mapping betwedh ,,
M2 ,,orM! ; @ M2 | andH? is bijective, the choice of the message blocks in step 1
can be optimized such that the probability of success is equal to 1.

The collision attack Two different sets of messages bloakd} ;, M2, M1, M2)
and(M:_,, M2_ M’} M’2) which produce the same hash resif, H2) have to be
found. Choose a value fdd !} and proceed in the same way as in the preimage attack,
i.e., perform steps 1-3 above. Repeat this procedUfetines. SinceH? is m bits long,

the probability of finding two different messages with equal valuesibfis equal to
0.39, where Lemma 2 has been applied wits: Z. Note that in this case the message

2
blocks have to be chosen such that the mapping betMgep, M2 |, orM! , & M2 |

n—1s
andH? is not bijective. O

If the collision attack fails, the number of operations can be doubled; it follows from
Lemma 2 that the success probability will increase to about 0.86 2). Also observe

that the collision attack can be extended to the case where the message blocks used in
the firstn — 2 iterations are different for the colliding pair.

Proposition 1. The attacks described in Theor8mwman be implemented with only small
memory
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Proof. First note that the preimage attack requires only very little memory. The values
of H? computed in step 3 can be immediately tested against the given vahijg &or

the collision attack 2/ values ofH? can be collected and a match between them found.
However, the method of [17] and [19] can be used to reduce the required memory.
From there it follows that a nonbijective functioin has to be defined. The values of
H2 computed in step 3 of the attack are images of a funcBoon input random
values(M! ,, M2 ). Choose random values ¢k} ,, M2 ) = (r1,r5), and define
H2(1) = f(ry) andH2(j) = f(H2(j — 1)), where f(a) = F(a,ry). In the rare
cases wherd defines a bijection, the attack will fail. However, there are many ways to
constructf from F, and for a particular hash function itis easy to find such a nonbijective
mapping. O

Theorem 3 can be extended to serial double block length hash functions as follows.

Theorem 4. Consider a double block length hash function of hash fatéth round
function of the forn{13), where each hcontains one encryption

H = hi(HL,, HZ . ME M), 13
{Hiz = h?(H1, HZ; M M2 HD). @9
If T operations are required to find one pair oM!, M?) for any given value of
(H! ,, H? ), suchthatthe resulting-tuple(H.! ;, H2 ;, M, M?) yields the fixed value
for H, the complexities dInd preimage and preimage attacks on the hash function are
about(T + 3) x 2™; and the complexity of a collision attack on the hash function is
about(T + 3) x 22,

Note that in the collision attacks above (and in the rest of this paper) one of the
two values of the hash resulH}, H?) can be chosen, while the second one will be a
random value. That s, two messages with hash re@djts X) for givenH! and random
X can be found. Finding such a collision by combining a brute-force preimage attack
and a birthday attack requires abotft'Z operations, compared witi"2perations for
a random collision. Thus, the collision attacks presented are more powerful than the
standard ones.

5. Attacks on All Hash Rate 1 Schemes

In this section it is shown that for any double block length hash function of type (8) with
hash rate 1, preimages and collisions can be found in time much less than by brute force.
In particular this holds for the Parallel-DM (9), the PBGV hash function (10), and the
LOKI DBH hash function (11).
The results apply to double block length hash functions for whigi{or H?) can be
written as
1
A Ef{l
H'=Ea®@C with | B |=£-| & | (14)
C I
Mi2
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Here the vector elements arebit strings and_ is a 3x 4 block matrix with thgm x m)
identity or zero matrix as blocks. The binary34 matrix L is now defined as follows:
when.;; is an identity (resp. zero) matrik,; is one (resp. zero). The rank bfdenotes
the formal rank ofC. Also, L1 andL, denote the submatrices bfconsisting ofL;; for
j = 1,2 andforj = 3, 4, respectively.

This description includes all double block length hash functions of hash rate 1 (serial
or parallel), as defined in (8), but also more complex schemes. As an example, for LOKI
DBH (11) one gets

0 011
L=(1 1 0 0.
1110
Also, A andB of (14) will be rewritten as follows:

Al Hi{l Mi1
s lg]en ]
whereN; andN; are 2x 2 binary submatrices af. Similarly, N; andN, are the binary

matrices derived from\; and.\2, respectively.
Before stating the main result of the paper, a simple lemma is proved.

Lemma 3. |If the rank of L; is less than twpthen there exist collisigrnd preimage
and preimage attacks on the hash function with complex3tie®™?2, 3x 2™, and4 x 2™,
respectively

Proof. If the rank of L, is at most oneH?! depends on a subspace @i, M?)

of dimension at most one. Consider first the collision and (2nd) preimage attacks. It
follows that an attacker has at least one degree of freedom tofindl@es ofM!, M2,

or M & M? yielding the given value of the hash resHit, thus Theorem 4 holds with

T = 0. For the preimage attack an attacker would first have to perform a brute-force
attack of complexity ? to find message blocks that hasiHb. Subsequently, Theorem 4
holds withT = 0. O

Theorem 5. For the double block length hash functions of hash gtior which one
of the round functions has the form(8), there exisnd preimage and preimage attacks
with complexities of about x 2™M. Furthermore there exists a collision attack with
complexity of abouB x 23™4, For all but two classes of hash functigribere exists a
collision attack with complexity of abodtx 2™/,

Proof. Consider the general form (8). In the following the hash round fundtiomill
be attacked and the notation of (14) will be used. The proof is divided into three cases
depending on the rank df, denoted by Rar.).

e RankL) =1
This implies that Ranit_,) < 1 and the result follows from Lemma 3.
e RanklL) =2

It follows that one of the rows of can be expressed as a linear combination of the
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other two. Assume first that the third row can be expressed as a linear combination of
the first two. From (15) it follows that Raik,) = RankL,). If Rank(N;) = 1 the
result follows from Lemma 3. If Rari,) = 2, thenN is invertible and from (15) one

obtains
1 1
e =t e e e 5 )] @

For the 2nd preimage attack and the collision attack proceed as follows. For the given
hash resuIHil, let (a, b) be the values of A, B) used in the computation cHil. Using

(16) with (a, b) for (A, B), one finds(M}, M?) for any values(H?! ;, H? ;) and H..

Thus, Theorem 4 holds witfi >~ 0 (it is assumed that the time for the additions is
negligible), yielding a 2nd preimage inx3 2™ operations, and a collision in 8 2™2
operations.

For the preimage attack start with a brute-force attackdgn by trying 2" values
of (M, M?). This requires 2 operations and will have a success probability 630
(or 1 if a bijective mapping can be found), according to Lemma 1. Continue as in the
2nd preimage attack. The overall complexity of the preimage attack«i2% with a
probability of success at lea€.63)? ~ 0.39.

This completes the proof for the case where the third rolv o&n be expressed as a
linear combination of the first two. Consider next the case where the second row can be
expressed as a linear combination of the first and third rows. ExprasdC in a similar
way asA andB in (15) and define the submatrictl and N; accordingly. It follows
that the above proof holds also in this case and in the other cases wherd Rangk.

The Parallel-DM (9) is an instance of this class of hash functions.

e RankL) =3
Two cases are distinguished:

RankN,) < 1. If RankN,;) = 0, then RankL,) = 1 and the result follows from
Lemma 3. If RankN,) = 1, thenA and B depend on a one-dimensional subspace of
(M1, My). Let Mag represent this subspace. Since it can be assumed thatlRark 2

(if Rank(L,) < 2, Lemma 3 applies againd, depends on a one-dimensional subspace
of (Mg, My) represented b, whereMc # Mag.

For any given(H.! ;, HZ ), choose a value dflxg and compute the corresponding
values(a, b) of (A, B) and then ofz = E,(b). Use the degree of freedom dfc to
calculate the valueof C such thatH? is hit, i.e., such that® z = H.!. Now Theorem 4
holds withT ~ 1.

The PBGV hash function (10) is an instance of this class of hash functions.

Rank'N,) = 2. Since RanWl) = 3, none of the rows of can be written as a linear
combination of two other rows. Suppo& b, c} is the standard basis for the image
space olL. Then{a, b, c® ra® yb} is a basis for the image space for any = 0, 1.
Thereforer, y that yield a basiga, b, ¢’} can be found (by elementary row operations)

such that
; (N1 N2
e- ().

Clearly, anyC’ is independent ok, M?2.
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If (A,y) = (0,0), thenH! = EA(B) @ C'. Here the solving one-half attack of
Theorem 4 applies witil ~ 1. Indeed, first obtain the valug of C’ from the given
values of(H! ;, HZ ;). Then choose a valueof A, and compute the valueof B as
b = Da(c’ @ HY). Now (16) can be used to find the corresponding valugs/gdf M2);
this is possible since Ragk,) = 2.

If (A,y) =(1,0)), thenHi1 = Ea(B)® A® C'. Similarly, first find the value’ of C’,
then choose a valueof A, and compute the valueof B fromb = D,(c’ @ Hn1 @ a).
Again Theorem 4 holds with ~ 1.

If (x, ) = (0, 1), thenH! = EA(B)®B@®C'. Itis assumed without loss of generality
thatC’ = H} ;. For this class of hash functions, Theorem 4 does not apply. However, in
the following meet-in-the-middle attacks are described which are faster than brute-force
attacks. First the (2nd) preimage is given, and then the collision attack.

The attacks start by choosing arbitrary message bloks M2), fori =
1,...,n—2, and by computing the valugsl® ,, H2 ,) forward from the
given initial valueg Hg, HZ). Then one searches for the four message blocks
(ML, M2 )and(M}, M2) such that the hash resultis hit (in the case of a
(2nd) preimage attack) or for a pair of four correcting blocks which yield a
collision. The initial 2- (n — 2) operations can be ignored in the complexity
measurements if « 2™.

The(2nd) preimage attack
1. Backward step: choos&alues(a, b) of (A, B) and compute

Hl =cd =E.b)@boH}

for the given value oH}.
2. Forward step: choose™2values for (M/%;, M/2)) and compute
(H)2y. Hy2)) from (H,, HZ ).
Find matchesH/t;, = H/},. For every match use (16) to find the values
of (M}, M2) from (a, b) and (H;*;, H/?,) (note RankN) = 2). Finally
compute the corresponding valuetf. The quantities in the meet-in-middle
attack arem bits long, so this gives about

2M x 2m
2m

=2m

values of(H! ;, H2 ;, M}, M2) all hitting the same value ofi}. Thus,
according to Lemma 1 messages hittingf as well will be found with
probability about 0.63; the total number of operations is about2?'.

The collision attack
1. Backward step: choosé™* values(a, b) for A andB and compute

HY =c =Esb)@®be H}

for the given value oH}!.
2. Forward step: choose®2* values for (M/*;, M/?}) and compute
(H[A,, H2) from (HY,, HZ ).
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Find matche$i*; = H/* ;. For every match compute the valuesif, M?)
from (a, b) and(H/%,, H/”?,) using (16) and the corresponding value-.
Since the quantities in the meet-in-middle attackrarkits long, this gives
about

23m/4 % 23m/4

2I’T‘|

values of(H! ;, H2 ;, M1, M2) all hitting the same value ofi}. Thus,
according to Lemma 2 with = % among these a match fot? will be

found with probability 0.39. The total number of operations is equal to
3 x 28m/4,

— 2m/2

If (A, y) =(1,1),then Hi1 = Ea(B) @ B @ C’. Choose random valu€a, b) of A and
B and compute

C=E.by@adbeHl

Then proceed similarly as in the previous case.
The LOKI DBH hash function (11) is an instance of this class of hash functions.

The following result can be deduced from the proof of Theorem 5:

Corollary 1.  For the 2m-bit iterated hash function with hash ratewhere(at leas)
one of I-||1 and I-|2 in the hash round function has the form ofsecure single block
length hash functiorthere exis2nd preimage attacks with complexities of ab8ut
2™, preimage attacks with complexities of abaui 2™, and collision attacks with
complexities of abolg x 2M/2,

Proof. Since all single block length hash functions have Rank< 2, the result
follows directly from the proof of Theorem 5. O

Corollary 1 implies that the method of [8] to construct schemes which are optimum
against free-start attacks, such as the Parallel-DM (9), has a serious shortcoming: it will
always result in schemes vulnerable to attacks with complexities similar to brute-force
attacks on single block length hash functions.

The attacks presented in this paper can be applied also to schemes where the key
length is less than the block lengtk & m), such as DES [5]. Clearly, Theorem 4 also
applies to such schemes, as nothing is assumed about the block and key length of the
block cipher. Theorem 5 holds as well in that case. The hash round functions for such
hash functions are of the forrh=|il = E;(B) ¢ C, whereA is a vector, obtained from
selectingk bits of A, and whereA, B, andC are defined as in (14). It is easy to extend
the above proof of Theorem 5 to take this into account. Also note that block ciphers
for whichk > m (butk ~ m) yield more complex schemes, but with no significant
improved security.

Proposition 2. The attacks described in Theoré&man be implemented with only small
memory
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Proof. The cases where Theorem 4 was used were already proved in Proposition 1.
It suffices to show the case where Rénk = 3, RankN,) = 2, and(, y) = (0, 1).

The other cases are treated similarly. A variant of the method of [17] and [19] can be
used. The values af, computed in step 1 of the attack, are images of a fundipire.,

F(a, b), and the values oH,,, computed in step 2 are images of a functi®ni.e.,
G(M/2,, M/2)). Fixb, M/, andM/?, and letf andg be the functions obtained from

F andG, respectively, with one of the two arguments fixed. Choose a random walue
and define

cd@ = f(r),
H4 (D = g(c (D)),

k) = f(H (k- 1),
H2 (k) = g(c(k)).

Whenever there is a match(j) = g(j’) the values ofH! ;, H2 ;, M}, and M?
can be computed such that the same given valug ofs hit. For the preimage attack,
immediately check whether the given valuef is hit as well. For the collision attack
these values are stored until a sufficient number have been collected to find a match in the
second chain as well. Alternatively, the methods of distinguished points can be applied
one more time to these values. O

6. Conclusion

Attacks have been described on double block length hash functions, whose hash round
functions use two encryptions of a block cipher to hash two message blocks. The main
result is that for all double block length hash functions of this type, there exist preimage
attacks and collision attacks with complexities much less than for brute-force attacks.
Therefore, it is not possible to obtain a double block length hash function, as defined
in this paper, which is at least as secure and faster than MDC-2. The attacks in this
paper have been described for block ciphers with key size equal to the block length.
They can be extended to the case where the key size is slightly larger or smaller than the
block size such as DES. It is left as an open question whether it is possible to improve
MDC-2 by considering either three encryptions in a double block length hash mode, or by
constructing triple (on-fold) block length hash functions with a hash rate greater gaan
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