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Abstract. “Perfect zero-knowledge arguments” is a cryptographic primitive which
allows one polynomial-time player to convince another polynomial-time player of
the validity of an NP statement, without revealing any additional information (in the
information-theoretic sense). Here the security achieved ison-line: in order to cheat
and validate a false theorem, the prover must break a cryptographic assumption on-line
during the conversation, while the verifier cannot find (ever) any information uncondi-
tionally. Despite their practical and theoretical importance, it was only known how to
implement zero-knowledge arguments based on specific algebraic assumptions.
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In this paper we show a general construction which can be based onany one-way
permutation. The result is obtained by a construction of an information-theoretic secure
bit-commitment protocol. The protocol is efficient (both parties are polynomial time)
and can be based on any one-way permutation.

Key words. Computer security, Interative protocols, Cryptography.

1. Introduction

Reducing complexity assumptions for basic cryptographic primitives is a major current
research program in cryptography. Characterizing the necessary and sufficient com-
plexity conditions needed for primitives helps us develop the theoretical foundations of
cryptography. Further, reducing requirements for a primitive may imply more concrete
underlying functions for its practical implementations.

From this perspective, we study here the requirements for the existence of zero-
knowledge arguments for proving the “validity of an NP assertion.” Informally, proving
some fact in zero-knowledge (a notion introduced in [19]) is a way for one player
(called the “prover”) to convince another player (called the “verifier”) that a certain fact
is true, while not revealing any additional information. In our setting, both players are
polynomially bounded and the prover is presumed to have the witness for the proof of the
NP statement. This has a large variety of applications in cryptography and distributed
computing (see [19] and [18]). In such applications the prover may choose the NP-
instance in such a way so that the witness is known (e.g., by evaluating a one-way
function on some input) or possess some secret information that constitutes the witness.
We must rely on complexity assumptions, since protocols for implementing the above
task with polynomial-time players imply the existence of one-way functions (see [22]
and [35]). The assumptions could be used in two different ways:

1. Zero-knowledgeproofs [19], [18]: The prover, even with infinite computational
power, cannot convince the verifier to accept a false theorem. However, the proof
itself is onlycomputationally secure: i.e., if the verifier (or anyone overhearing the
execution of the protocol) ever breaks the cryptographic assumption, say after 100
years, additional knowledge about the proof can be extracted.

2. Perfect zero-knowledgearguments[6]: The verifier cannot extract additional in-
formation even if he is given infinite time (i.e., security isperfector information
theoretic); however, the prover (assumed to be polynomial time) can cheat in its
proof only if he manages to break the assumptionon-line during the execution of
the protocol. This is the reason to call it an “argument” rather than a “proof.”

In many settings, zero-knowledge arguments, which were introduced by Brassard et
al. [6], may be preferable to zero-knowledge proofs: the verifier must only be sure that
the prover did not break the assumptionduring their interaction(which lasted, say,
10 seconds or 10 minutes). Notice that while assuring that the assumption canneverbe
broken may be unreasonable, the assumption that something cannot be brokenduring the
next10minutescan be based on the current state of the art. On the other hand, the prover
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has an absolute (i.e., information-theoretic) guarantee that no additional information
is released, even if the verifier spends as much time as he desires trying (off-line) to
extract it. Thus, the notion of zero-knowledge arguments is useful if there is a need to
maintain secrecy for a very long time independent of the possible future advance of
cryptanalysis.

So far the complexity assumptions needed for constructing perfect zero-knowledge
arguments are not general—they require specific algebraic assumptions. This is in con-
trast with zero-knowledge interactive proofs, which can be based on any one-way func-
tion. In this work we dispose of specific algebraic assumptions for zero-knowledge
arguments:

Main Result. If one-way permutations exist, then there exist perfect zero-knowledge
arguments for any inNP.

We obtain this result by constructing an information-theoretically secure bit-commit-
ment scheme which can be based on any one-way permutation. The scheme is efficient
and thussimulatableby an expected polynomial-time algorithm. We can then apply
the known reduction of “perfectly-secure computationally-binding bit commitment” to
“perfect zero-knowledge argument.” Most of the paper is devoted to the description of
the bit-commitment scheme and its correctness and security proof.

1.1. Background

Past successes in establishing basic cryptographic primitives on general assumptions
(initiated in [37]) have shown that various primitives, which were originally based on
specific algebraic functions, can be based on the existence of general one-way functions
or permutations. For example, Naor [30] showed that computationally secure bit com-
mitments (i.e., bit commitments whichcan bebroken off-line given sufficient resources)
can be constructed from a pseudo-random generator. Such generators [3], [37] were first
implemented based on a discrete logarithm assumption in [3] and following a sequence
of papers [37], [27], [16], [17] it was shown thatany one-way function suffices [20],
[21]. Similarly, digital-signatures can now be based on any one-way function [31], [36].
Furthermore, these primitives (and primitives derived from them, e.g., identification)
were shown to imply a one-way function (thus they are equivalent) [22].

Concerning secure proofs, Goldreich et al. [18] showed that zero-knowledgeproofs
forNP can be done using computationally secure bit-commitment protocols which, as
indicated above, can be obtained from any one-way function. This applies to generalIP
proofs as well [24]. On the other hand, zero-knowledge proofs for nontrivial languages
imply the existence of one-way functions [35].

In contrast to computational zero-knowledgeproofs, the only known constructions for
perfect zero-knowledgeargumentsfor NP was under specific algebraic assumptions [6],
[4], [24], [7], [2], [23] or under the assumption thatcollision intractable hash functions
exist (first shown in [31]; see [11] for more information), which in turn is only known
to be constructed under specific algebraic assumptions [5], [8], [9]. Our result gives
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the first general reduction: zero-knowledge NP-arguments can be constructed given
anyone-way permutation, by first constructing an information theoretically secure bit
commitment.

1.2. Organization of the Paper

In Section 2 we give the model, the formal definitions of the problem, and the as-
sumptions. Specifically, we present the model of interactive machines, the notion of
commitment and of one-way functions and permutations, and the definition of per-
fect zero-knowledge arguments. In Section 3 we present the new method for basing
a perfectly-secure bit commitment on a one-way permutation and prove its security.
In Section 4 we discuss possible extensions of our techniques. For completeness, we
provide in the Appendix a comparison between this work and other recent work on
commitments.

2. Model and Definitions

We now review the model and definitions of bit commitment, one-way permutations,
and perfect zero-knowledge arguments (a.k.a. computationally sound proofs). In gen-
eral we follow Goldreich [13]. The parties in the protocols are modeled asInteracting
Turing machines, as defined by [19], which share an access to a security parametern,
a common input, and communication tapes. In addition each has an output tape, a pri-
vate random tape (or string, a.k.a. as its coin-flips), and an auxiliary private input tape.
When we say that a machine is polynomial time it is polynomial in the security param-
eter (given in unary) and in general all other inputs (including the auxiliary) should be
polynomial in the security parameter. We call a functionρ(n) negligible if, for all poly-
nomialsp(n), ρ(n) = o(1/p(n)). That is, it is asymptotically smaller than all inverse
polynomials.

Before we continue we should clarify a few issues regarding uniformity. Most cryp-
tographic primitives come in two flavors: (i) uniform, where the adversary is assumed to
be a probabilistic polynomial-time machine and (ii) nonuniform, where the adversary’s
computational power is modeled by a polynomial-sized circuit. (See [12] and [13] for
an extensive treatment of the subject.) Construction of one cryptographic primitive from
another may beuniformity preserving, meaning that the new primitive is secure against
probabilistic polynomial-time adversaries if the original primitive is secure against such
adversaries. Alternatively, it may be onlynonuniform, meaning that the new primitive
is secure only if the original primitive is secure against polynomial-sized circuits. (In
all cases we are aware of, if the construction is uniformity preserving, then it is also
nonuniformity preserving, hence the usage of “only”; furthermore, this can be formal-
ized to cover most cases.) Our construction of perfectly secure computationally binding
bit commitments from one-way permutation is uniformity preserving. However, when
using such bit commitments to construct zero-knowledge arguments for languages inNP
some delicate issues that are beyond the scope of this paper arise. Therefore we provide
only the nonuniform version of the zero-knowledge arguments and refer to [12] as the
source for making the uniform case.
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2.1. Commitment

A bit-commitment protocol involves two interacting parties, the Sender and the Receiver.
It can be thought of as the Sender giving the Receiver a locked box with a secret bit
inside. The Receiver does not learn anything about the bit, but at a later stage, when the
box is opened, he is sure that the contents of the box were not altered. More formally, a
bit-commitment protocol consists of two stages:

• Thecommitstage: the SenderS has a bitb on its input tape, to which she wishes to
commit to the ReceiverR. The sender and the receiver exchange messages. At the
end of this stageR has some information that “represents”b written on its output
tape.
• Thereveal(opening) stage: S andR exchange messages (where their output tapes

from the commit stage are serving as input tapes for this stage). At the end of the
exchangeR writes on his output tape either “OK for bitb” or “NOT OK.”

We should take care in defining what we mean by cheating in the context of information-
theoretic commitment. Consider the following experiment: after the commit stageS is
“split” into S0 andS1 and participates in two executions of the reveal protocol with two
identical copies ofR whose state is initialed to be that ofR after the commit stage. If
both executions end up withRwriting “OK” on the tape, but the two bits written are not
the same, thenS is considered to have successfully cheated. More precisely, at any point
in time the state of an interactive machine is determined by its random stringr and the
messages it receivedEm. The sender is specified by two machines{S0,S1} so that when
given the same random string,S0 andS1 haveidenticalbehavior during the commit, i.e.,
when sent the same input messages, they respond back with the same message (this is
what is meant byS is split after the commit phase). If we have two interacting machines
and we fix their random strings, then the outcome of their interaction is deterministic.
We denote it by〈R(r ),S(s)〉 wherer is the random string ofR ands is the random
string ofS.

Definition 1. We say that a senderS = {S0,S1} cheatsa receiverR with probability
at mostρ if the following holds: the probability that the executions〈R(r ),S0(s)〉 and
〈R(r ),S1(s)〉 end up following the reveal stage with “OK” but with with two different
bits, is at mostρ where the probability is over the choice ofr ands.

By a protocol we actually mean a family of protocols, indexed by the security parameter
n. As is usual in computational-based cryptography, security is a function ofn. Note
that in the definition below only the probability of cheating depends onn (but security
is independent ofn).

Definition 2. To be aperfectly secure computationally binding commitment, the pro-
tocol must obey the following for some negligibleρ(n):

1. (Viability) If both players are honest (i.e., follow the protocol as specified), then
for any input bitb ∈ {0, 1} the senderS gets, the receiver outputs at the end of the
reveal stage the “OK for bitb” with probability one.
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2. (Security property) For anyR′ the distributions of the conversation between an
(honest)S andR′ in caseb = 0 andb = 1 are identical. Note that the computational
resources ofR′ are not bounded.

3. (Binding property) The probability that any probabilistic polynomial timeS ′ =
{S ′0,S ′1} can successfully cheat is at mostρ(n) where the probability is over the
random tapes ofS ′ andR.

4. (Efficiency) S andR’s algorithms can be executed in polynomial in the security
parametern time by a probabilistic Turing Machine.

Remark1. Suppose that in property 1 above instead of requiring that the distributions
in caseb = 0 and in caseb = 1 be identical we require that they will be close to
each other to withinρ(n) under, say, theL1 norm. Then we get astatistically secure
computationally binding commitment. This is good enough for many applications.

2.2. One-Way Functions and Permutations

We now define the underlying cryptographic primitive we assume. Letf be a length-
preserving functionf : {0, 1}∗ → {0, 1}∗ computable in polynomial time. Bya ∈R A
we mean that the elementa is randomly chosen from the setA.

Definition 3. f is one-wayif, for every probabilistic polynomial-time algorithmA,
for all polynomialsp, and all sufficiently largen,

Pr [ f (x) = f (A( f (x))) | x ∈R {0, 1}n] <
1

p(n)
,

where the probability is over the random choices ofx and the random tape ofA.

The above definition is of astrong one-way function. Its existence is equivalent to
the existence of aweak one-way functionusing Yao’s amplification technique [37] or
the more security preserving method of [15] which is applicable only to permutations
or regular functions. (A weak one-way function has the same definition as above, but
the hardness of inversion is smaller, i.e., its probability is inverse polynomially away
from 1.)

If in addition f is 1–1 and length preserving, then we say thef is a one-way per-
mutation. For the construction of Section 3 we require a one-way permutationf . Note
that the construction there assumes a one-way permutationf on {0, 1}n. Suppose that
instead we have a one-way permutationf ′: S 7→ S where S ⊂ {0, 1}n is an easily
recognizable and large set (nonnegligible fraction of{0, 1}n), e.g., all numbers smaller
thanP where 2n−1 ≤ P < 2n, as is the case in the number-theoretic constructions. Then
we can construct from it a weak one-way permutationf : {0, 1}n 7→ {0, 1}n by taking
f (x) = f ′(x) if x ∈ S and f (x) = x otherwise. Using the amplification techniques of
[37] and [15] we can then obtain astrongone-way permutation on a domain{0, 1}n′ for
n′ linear inn.

The goal of this paper is to present a construction of perfectly secure computationally
binding commitment from any one-way permutation.



Perfect Zero-Knowledge Arguments forNPUsing Any One-Way Permutation 93

2.3. Perfect Zero-Knowledge Arguments

We now briefly discuss perfect zero-knowledge arguments (a.k.a computationally sound
proof systems). The reason we are brief is that this paper does not deal with them directly,
but their existence is a known consequence of the construction of the perfectly secure
computationally binding commitment protocol. For a more thorough discussion see [13].

In a proof system there are two interacting machines commonly called the proverP
and the verifierV . The two parties share access to a security parametern and a common
input x which the prover “claims” is in a languageL. The prover should have in its
auxiliary input tape a witness for this fact. In addition each party has an output tape, a
private random tape, and perhaps more information on their auxiliary private input tape.
The three properties the proof system should have are: (i) Completeness, meaning that if
x ∈ L, then the interaction should cause the verifier to write “ACCEPT” on its output tape
(which we denote “ACCEPT∈ 〈P,V〉(x)). (ii) Soundness, which in this case is only
computational, i.e., for any “bad” prover who is polynomially bounded, the probability
that it makes the verifier write “ACCEPT” whenx 6∈ L is small. (iii) Zero-knowledge,
which here we require to be perfect, i.e., for every “bad” verifier it is possible to simulate
precisely its output and message distribution.

Definition 4 (Perfect Zero-Knowledge Arguments). A pair of interactive machines
(P,V) is aperfect zero-knowledge arguments system for a languageL if both machines
are polynomial time and:

1. (Completeness) For everyx ∈ L there is a witnessy such that

Pr[“ACCEPT” ∈ 〈P(y),V〉(x)] ≥ 2
3.

We say that that the completeness isperfectif for every x ∈ L there is a witnessy
such that

Pr[“ACCEPT” ∈ 〈P(y),V〉(x)] = 1.

2. (Computational soundness) For every polynomial-time interactive machineP′ and
for a sufficiently large security parametern, for every sufficiently longx 6∈ L and
all auxiliary inputsy,

Pr[“ACCEPT” ∈ 〈P(y),V〉(x)] ≤ 1
3.

3. (Perfect zero-knowledge) For every verifierV ′ (with no bound on its computational
resources) there is a simulator which is a probabilistic expected polynomial-time
machineMV ′ , such that on any positive instancex ∈ L and auxiliary inputy for the
prover andh for the verifier, the outputMV ′ produces givenx andh, the random
variableSIMV ′(x, h), is distributed identically to〈P(y),V ′(h)〉(x).

As is the case in general, the( 1
3,

2
3) gap can be made arbitrary large bysequentiallyre-

peating the protocol.1 The major result we are interested in is that it is possible to obtain

1 It was recently shown that when an argument is repeated inparallel the gap does not necessary decrease
[1].
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perfect zero-knowledge arguments given an information-theoretic secure bit commit-
ment. We state the nonuniform version of the result. As mentioned in the beginning of
Section 2, obtaining a uniform result can be done following [12].

Theorem 1[6], [18]. If nonuniform perfectly secure computationally binding commit-
ment exist, then every languageL ∈ NP has a perfect zero-knowledge argument with
perfect completeness.

3. Perfectly Secure Simulatable Bit Commitment

We present a perfectly secure bit-commitment scheme and a proof of its security. To get
the intuition, consider the following protocol:

• The senderS selects a randomx ∈ {0, 1}n and computesy = f (x).
• The receiverR chooses a 2-to-1 hash functionh: {0, 1}n 7→ {0, 1}n−1 and sends its

description toS.
• S sendsw = h(y).
• At this point, from the receiver’s point of view there are exactly two possible values

for y, denotedy0 andy1 (i.e., h(y0) = h(y1) = w andy0 < y1). Let y = yc. To
commit tob, the sender sendsd = b⊕ c.
• To revealb,R sendsx = f −1(y).

As long ash is guaranteed to be 2-to-1, then it is equally likely thaty = y0 and
y = y1 so the security ofS is maintained. That is, even ifR choosesh adversarially,
for anyh which is 2-to-1, givenw = h(y) the probability thaty = y0 or y = y1 is the
same overS coin-flips. Therefore the distribution of(w, d) is independent of the value
of b. If h is “random” enough (pairwise independence is sufficient), theny is paired
with a randomy′ and hence the chances thatS may find f −1(y′) are low. However, if
S choosesy only after it learns ofh, then it may be feasible to findx0 andx1 such that
h( f (x0)) = h( f (x1)). Indeed, this is the case, unlessh◦ f is acollision intractablehash
function, which we do not know how to construct under the assumption that one-way
permutations exist.2

In order to take care of “late choosers,” the above protocol is refined and the hash
function is disclosed gradually, in return for bits of information regardingy. The hash
function is defined by an(n − 1) × n binary matrixH of rankn − 1 overGF[2] and
h(x) = Hx. The rows ofH are revealed step by step, and in response for each rowS
sends the inner product ofy and the row. The rest of the protocol is as above. We call this
technique “interactive hashing.” We note that a similar idea was proposed independently
in a full information setting by Goldreich et al. [14].

Though a deviousS cannot be forced to choosey at the beginning of the protocol,
what we show is that there is enough freedom inR’s movements thatS can be forced
(with nonnegligible probability) to pairy with an arbitraryy′.

2 If f is indeed collision intractable, the resulting scheme is very close to the one proposed in [31] or [11].
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3.1. The Scheme

Let f be a strong one-way permutation on{0, 1}n. Let S denote the sender andR the
receiver. In the beginning of the protocol,S is given a secret input bitb. B(x, y) denotes
the dot-product mod 2 ofx andy.

Commit Stage

Commit to a bitb.

1. The senderS selectsx ∈R {0, 1}n at random and computesy ← f (x). S keeps
bothx andy secret fromR.

2. The receiverR selectsh1, h2, . . . , hn−1 ∈ {0, 1}n such that eachhi is a random
vector overGF[2] of the form 0i−11{0, 1}n−i (i.e.,i −1 zeros followed by a one fol-
lowed by an arbitrary choice for the lastn− i positions). Note thath1, h2, . . . , hn−1

are linearly independent overGF[2]. We callh1, h2, . . . , hn−1 R’s queries.
3. For j from 1 ton− 1
• R sendshj to S.
• S sendscj ← B(hj , y) toR.

4. At this point there are exactly two vectorsy0, y1 ∈ {0, 1}n such that, for bothi ∈
{0, 1}, cj = B(yi , hj ) for all 1≤ j ≤ n− 1. Definey0 to be the lexicographically
smaller of the two vectors. BothS andR computey0 andy1 by solving the linear
system.3 Let c ∈ {0, 1} be such thaty = yc (only S knowsc).

5. S computesd = b⊕ c and sends it toR.

Reveal Stage

The receiverR’s input from the commit stage isc1, c2, . . . , cn−1 andd, as well asR’s
queriesh1, h2, . . . , hn−1.

1. S sendsb andx toR.
2. R verifies thaty = f (x) obeyscj = B(hj , y) for all 1 ≤ j ≤ n− 1 and verifies

that y = yc wherec = d ⊕ b.

3.2. Proof of Security

Theorem 2. If f is a one-way permutation, then the scheme presented in Section3.1
is a perfectly secure computationally binding bit-commitment scheme.

Theorem 2 follows from the lemmata below, the Security Lemma and the Binding
Lemma, respectively (the viability and efficiency of the scheme can be verified easily).
The proof of the Security Lemma is relatively straightforward, but the Binding Lemma
turns out to be trickier and requires a delicate proof.

Lemma 1 (Security). For anyreceiverR′, the distribution of the conversations at the
commitstage is independent of the value of the bit b.

3 The way the queries are chosen implies that solving the system can be done inO(n2) time.
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Proof. We show inductively onj , that for any choice ofh1, h2, . . . , hj the conditional
distribution ofy givenh1, h2, . . . , hj , c1, c2, . . . , cj is uniform in the subspace defined by
h1, h2, . . . , hj andc1, c2, . . . , cj . The inductive step holds, since the linear independence
of h1, h2, . . . , hj implies that

Pr[B(hj , y) = 0|h1, h2, . . . hj−1, c1, c2, . . . , cj−1] = 1
2.

Thus, at Step 4 the probability thatc = 0 (i.e., y = y0) is exactly1
2, asy is distributed

uniformly in {y0, y1}. Therefore, for any method of choosing the queries the distribution
of

(h1, h2, . . . , hn−1, c1, c2, . . . , cn−1, d)

is the same whenb = 0 andb = 1.

Recall that we consider a cheating sender to be successful if following the commit
stage it can make the receiver accept two different values as the bit committed. In
our protocol that means that the cheating sender can findx0, x1 ∈ {0, 1}n such that
x0 6= x1 but y0 = f (x0) and y1 = f (x1) are both consistent withh1, . . . , hn−1 and
c1, . . . , cn−1. The “Binding” Lemma below states that if there exists a sender that can
cheat with nonnegligible probability, then it can be used to invert the presumed one-way
permutationf on a nonnegligible fraction of the inputs, contradicting our assumption.

Lemma 2 (Binding). Assume there exists a probabilistic polynomial timeS ′(n) that
following the commit stage can reveal to a honest receiver two different values for b with
nonnegligible probabilityε = ε(n) where the probability is overS ′ and the receiverR
coin-flips. Then there exists a probabilistic polynomial-time algorithmA that inverts f
on nonnegligible fraction of the y’s in{0, 1}n.

Proof. We describe how to construct an algorithmA for inverting f whose run time is
larger thanS ′’s by at most ap(n, 1/ε)multiplicative factor and its probability of success
in computing f −1(y) for y ∈R {0, 1}n is at least 1/p(n, 1/ε) wherep is some (fixed)
polynomial.

We begin by makingS ′ deterministic which can be done using standard techniques.
Suppose that we choose an assignment to the random tape ofS ′ and count the number
of queries ofR (i.e., h1, . . . , hn−1) on whichS ′ succeeds in cheating. By assumption,
if the assignment is random, then the expected fraction of such queries is at leastε. Let
Ä be the set of assignments on whichS ′ is successful on at leastε/2 of R’s queries.
By a simple counting argument we can conclude thatÄ consists of at leastε/2 of
the possible assignments. AlgorithmA described below requiresS ′ to be deterministic.
Therefore we choosem= 2n/ε random assignmentsω1, ω2, . . . , ωm and runm times the
algorithmAwith the random tape ofS ′ initialized withω1, ω2, . . . , ωm. With probability
1− (1− ε/2)m ≥ 1− e−n someωi ∈ Ä. Therefore from now on we assume thatS ′ is
deterministic and its probability of success overR’s queries is at leastε/2.

Let T be the rooted tree of depthn− 1 defined by the queries sent byR. A nodeUi

at thei th level is defined by queriesh1, h2, . . . , hi−1 where for all 1≤ k ≤ i − 1 the
queryhk is of the form 0k−11{0, 1}n−k. Each ofUi ’s 2n−i outgoing edges corresponds to
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a queryR may send in thei th round of the form 0i−11{0, 1}n−i and leads to a different
node at the(i +1)th level. The behavior ofS ′ specifies a labeling of the edges ofT with
{0, 1}. For a nodeUi defined by queriesh1, h2, . . . , hi−1 the label of an edgehi is the
responseci of S ′ to the queryhi in the i th round, given that the previous queries were
h1, h2, . . . , hi−1. We denote it byLS ′(Ui , hi ). Given thatS ′ is deterministic and thatA
has complete control over it, it is possible to compute this labeling.

For a leafUn defined by queriesh1, h2, . . . , hn−1, letU1,U2, . . . ,Un−1 be the nodes on
the path from the root toUn and let{y0(Un), y1(Un)} be the set of images consistent with
the labeling ofS ′, i.e.,LS ′(Ui , hi ) = B(yb, hi ) for all 1≤ i ≤ n− 1 andb ∈ {0, 1}. We
say that the leafUn is good if given thatR’s queriesh1, h2, . . . , hn−1, thenS ′ succeeds
in opening the bit committed in two different ways: i.e.,S ′ inverts bothy0(Un) and
y1(Un).

In general, giveny, A’s strategy is to try to find a good leafUn such that the labels
LS ′ on the edges leading to it are consistent withy, i.e., y ∈ {y0(Un), y1(Un)}. If Un is
indeed good, then it yields the inverses ofy0(Un) andy1(Un) and hence ofy. Such a leaf
is found by developing the path node by node. Intuitively, for any labeling ofT at any
nodeUi and for ay that is consistent with the labels leading toUi the probability that
B(hi , y) = LS ′(Ui , hi ) for a random queryhi is 1

2 (the intuition is that an inner product
of random vector with two different vectors yields independent results). Therefore to find
a nodeUi+1 consistent withy should take on the average two inspections of randomhi ’s.
However, an important thing to note is that sinceS ′ may be cheating, its answers need
not be consistent and that on the same queryhi the senderS ′ may give different answers
depending on the previous queries. Therefore the above intuition is not accurate and
this is the source of the difficulty in constructing and analyzing the invertorA. Roughly
speaking, we must use the randomness ofy itself to argue that the label of a randomh
has a fair chance of agreeing withB(h, y). We should also not “waste” this randomness
too quickly, before getting close enough to a leaf.

Description of the Inverting AlgorithmA

Recall our notation:B(h, y) denotes the inner product ofh andy, Ui is a node of level
i defined by queriesh1, h2, . . . , hi−1, andLS ′(Ui , hi ) is the answer ofS ′ on hi , given
that the previous queries wereh1, h2, . . . , hi−1.
A gets as an input a random imagey in {0, 1}n and it attempts to inverty. In order to

compute f −1(y),A tries to find a good leafu such thaty ∈ {y0(u), y1(u)}. Obviously,
if it finds such a leaf it can succeed in invertingy. Starting at the root,A develops node
by node a path consistent withy. Fix j to ben − 8(log(n/ε) + 2). The algorithmA
consists ofj − 1 rounds.

The state ofA at the beginning of thei th round (1≤ i < j ) can be described
by a nodeUi of the i th level of the treeT defined by queriesh1, h2, . . . , hi−1. Let
U1,U2, . . . ,Ui−1 be the path from the root toUi . The property thatA maintains is that
the labelsc1, c2, . . . , ci−1 along the path are consistent withy, i.e., for all 1≤ k ≤ i −1
we haveck = LS ′(Uk, hk) = B(hk, y).

At thei th roundAperforms the following: a random queryh∈R {h|h=0i−11{0, 1}n−i }
is chosen. If the outgoing edgeh is labeled properly, i.e.,LS ′(Ui , h) = B(h, y), then
hi ← h and the path is expanded to the new nodeUi led byhi . Otherwise,S ′ is reset
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to the state before its reply, and a new candidate forhi is chosen. This is repeated until
either a success or until there are no more candidates left, in which caseA aborts.

If A reaches thej th level, it guesses the remainingn− j querieshj , hj+1, . . . , hn−1

by choosing them uniformly at random from the proper sets of queries.A then checks
whether the path to the leaf is labeled consistently withB(y, hk) for k = j, . . . ,n− 1.
If this is the case and the leaf reached is good, thenA has succeeded in invertingy.
Otherwise abort.

Analysis of the Inverting AlgorithmA

The rest of this proof is devoted to showing thatA as defined above has probability at
leastε10/65e3(4n)8 for invertingy. Note thatA as described above does not necessarily
halt after a polynomial number of steps. However, as we shall see following Claim 7,
we can limit thetotal number of unsuccessful attempts at finding consistenth’s to 8n
without decreasing significantly the probability thatA succeeds in invertingy.

Notation. Since we are dealing with several types of vectors of lengthn overGF[2]
we distinguish them by referring to those vectors that are sent byR asqueries, and to
those vectors which may be the image thatA attempts to invert asimages. Let Ui be
a node at thei th level of the treeT defined byh1, h2, . . . , hi−1 and letc1, c2, . . . , ci−1

be the labelsLS ′ assigned to the path toUi . We say thaty ∈ {0, 1}n is an image in Ui

if B(hk, y) = ck for all 1 ≤ k < i . We denote the set of images ofUi by I(Ui ); we
know that|I(Ui )| = 2n−i+1. We say thath ∈ {0, 1}n is aquery of Ui if it is of the form
0i−11{0, 1}n−i . There are 2n−i queries at a nodeUi of the i th level.

Let A(U, y) = |{h : h is a query ofU andB(h, y) = LS ′(U, h)}|. An imagey is
balanced in Ui , a node of thei th level if

1

2

(
1− 1

n

)
≤ A(Ui , y)

2n−i
≤ 1

2

(
1+ 1

n

)
.

Hence for an imagey that is balanced inUi , roughly half of the answers to the queries
at nodeUi agree withy. An imagey is fully balanced in U , a node of thej th level,
if it is balanced in all the ancestors ofU . Let F(U ) be the set ofy ∈ I(U ) that are
fully balanced inU . The motivation for considering fully balanced images is that the
probability thatA reaches a certain nodeU with an imagey ∈ F(U ) is close to what it
would be in caseS ′ was honest. For a set of queriesH at a nodeU and an imagey of
U thediscrepancy of y at H is∣∣∣∣|{h ∈ H : LS ′(U, h) = B(y, h)}| − |H |

2

∣∣∣∣ ,
i.e., the difference between the “expected” number of agreeing queries and the actual
number of queries inH that agree withy. Finally, recall thatj = n− 8(log(n/ε)+ 2)
and setγ = n2−(5/8)(n− j ).

Roadmap. Our main problem in analyzing algorithmA is in showing that no labeling
LS ′ can bias the walk toward a set of leaves containing a small subset of the images.
Claims 1 and 2 show that, for any labelingLS ′ , for any nodeU almost all the images of
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U are fully balanced. The motivation for considering fully balanced images is expressed
in Claim 3 by showing that the probability ofA reaching a certain nodeU with an image
y ∈ F(U ) is close to what it would be in caseS ′ was honest. This is also the reasonA
stops testing queries at levelj and continues further by guessing the rest of the sequence:
otherwise the nodes may be unbalanced and the probabilities too biased.

Though initially a nonnegligible fraction of the leaves are good, there is a danger
thatS ′ leadsA to those directions that have only few good leaves. Claims 4 and 5 say
that this is not the case and that with reasonable probability whenA reaches thej th
level it has many good leaves whose images are fully balanced. Claim 6 implies that the
probability that our random guess is correct is not far from being inversely proportional
to the number of leaves of a subtree rooted at levelj (which is polynomial). Finally,
Claim 7 combines all the above to show that the probability of success is nonnegligible.

Claim 1. Let U be node of the ith level and let H⊂ {h|h = 0i−11{0, 1}n−i } be a subset
of the queries of U of size at most2n− j . For any h∈ H let ah be a random variable over
z ∈R I(U ) such that ah = 1 if B(h, z) = LS ′(U, h) and0 otherwise. Then

Pr

[∣∣∣∣∣∑
h∈H

ah − 1
2|H |

∣∣∣∣∣ ≥ 2(7/8)(n− j )

]
≤ 2−(3/4)(n− j ).

Proof. First note that any pair of queries with differenth′, h′′ ∈ H has the property
that h′′ is linearly independent ofh′, h1, h2, . . . , hi−1. For anyh ∈ H we have that
Pr[ah = 1] = 1

2 and Var[ah] = 1
4. For everyh′ 6= h′′ the eventsah′ andah′′ are pairwise

independent (this follows from the linear independence ofh′ andh′′) and hence

Var

[∑
h∈H

ah

]
= 1

4|H | ≤ 2n− j−2.

We are essentially interested in

Pr

[∣∣∣∣∣∑
h∈H

ah − E

[∑
h∈H

ah

]∣∣∣∣∣ ≥ 27/8(n− j )

]
(1)

sinceE[
∑

h ah] = 1
2|H |. By Chebyschev’s inequality

Pr

[∣∣∣∣∣∑
h∈H

ah − E

[∑
h∈H

ah

]∣∣∣∣∣ ≥ λ√Var[
∑

ah]

]
≤ 1

λ2
.

Takingλ = 2(3/8)(n− j ) we get that (1) is at most 2−(3/4)(n− j ).

Claim 2. For any node Uj of level j and random z∈ I(Uj ) we havePr[z ∈ F(Uj )] ≥
1− γ for γ = n2−(5/8)(n− j )

Proof. Let U1,U2, . . . ,Uj−1 be the nodes on the path toUj . We should show that
for any Ui along the path mostz ∈ I(Uj ) are balanced. We cannot apply Claim 1
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directly, since a randomy ∈ I(Uj ) is not random inI(Ui ). To apply the claim, we
first take care of the queries ofUi that arenot linearly independent ofhi , . . . , hj−1.
There are at most 2j−i (out of 2n−i ) such queries and we (pessimistically) count them as
contributing to the discrepancy. LetH ′ be the remaining queries ofUi . We partition them
into 2j−i subsets according to the values of bitsi + 1 through j . For each̀ ∈ {0, 1} j−i

let H` = {h|h = 0i−11`{0, 1}n− j } ∩ H ′. EachH` is of size at most 2n− j and has the
following important property.

Fact 1. For every different h′, h′′ ∈ H` we have that hi , . . . , hj−1, h′, h′′ are linearly
independent.

Proof. In any subset ofhi , . . . , hj−1, h′, h′′ that sums toE0 an even number of elements
out ofhi , h′, h′′must participate. Sinceh′ andh′′ are linearly independent ofhi , . . . , hj−1,
it is the case thathi does not participate in the sum. However, sinceh′, h′′ ∈ H` and
have the same bits in locationi through j , no member ofhi+1, . . . , hj−1 can participate
in the sum. Sinceh′ 6= h′′ no vector fromhi , . . . , hj−1, h′, h′′ participates and we get
the desired linear independence.

Given this property we have that forh′, h′′ ∈ H` and a randomz ∈R I(Uj ) the random
variablesah′ andah′′ are independent. Therefore, as in the proof of Claim 1 we have that,
for any` ∈ {0, 1} j−i ,

Pr

(∣∣∣∣∣∑
h∈H`

ah − E

[∑
h∈H`

ah

]∣∣∣∣∣ > 2(7/8)(n− j )

)
≤ 2−(3/4)(n− j ). (2)

Let b` be the indicator for the event|∑h∈H`
ah − E[

∑
h∈H`

ah]| > 2(7/8)(n− j ). From (2)
we know Pr[b`] ≤ 2−(3/4)(n− j ). By Markov’s inequality we can conclude that

Pr

[ ∑
`∈{0,1} j−i

b` >
2 j−i

2(1/8)(n− j )

]
≤ 2−(5/8)(n− j ).

That is, the probability that, for more than a fraction 2−1/8(n− j ) of the`’s, the setH` has
a discrepancy larger than 2(7/8)(n− j ) is at most 2−(5/8)(n− j ). Thus with probability at least
1− 2−(5/8)(n− j ) the total discrepancy at nodeUi is at most

2 j−i + 2−1/8(n− j )2n− j 2 j−i + (1− 2−1/8(n− j ))2(7/8)(n− j )2 j−i ≤ 2 · 27n/8+ j/8−i

= 2n−i · 2−(1/8)(n− j )+1,

where the first summand is an upper bound on the contribution of the queries not inH ′,
the second the contribution of theH`’s whereb` = 1, and the third the contribution of
the H`’s whereb` = 0. Hence forz ∈R I(Uj ) with probability at least 1− 2−(5/8)(n− j )

we have

2n−i−1− 2n−i · 2−(1/8)(n− j )+1 ≤ A(Ui , z) ≤ 2n−i−1+ 2n−i · 2−(1/8)(n− j )+1
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and sincej = n− 8(log(n/ε)+ 2)

1

2

(
1− 1

n

)
≤ 1

2 − 2−1/8(n− j )+1 ≤ A(Ui , z)

2n−i
≤ 1

2 + 2−1/8(n− j )+1 ≤ 1

2

(
1+ 1

n

)
.

The probability thatz is balanced in all the levels is therefore at least 1−n2−(5/8)(n− j ) =
1− γ .

Claim 3. For any node Uj of level j and any z∈ F(Uj ),

1

2ne

j−1∏
i=1

1

2n−i−1
≤ Pr[A reaches Uj and y= z] ≤ e

2n

j−1∏
i=1

1

2n−i−1
,

where the probability is uniform over the choices of y and the coin-flips ofA.

Proof. To get the first inequality,

Pr[A reachesUj andy = z] = 1

2n
·

j−1∏
i=1

1

A(Ui , z)

≥ 1

2n
·

j−1∏
i=1

1

(1+ 1/n) · 2n−i−1

≥ 1

2n(1+ 1/n)n

j−1∏
i=1

1

2n−i−1

≥ 1

2ne

j−1∏
i=1

1

2n−i−1
.

Similarly, for the second inequality

Pr[A reachesUj andy = z] = 1

2n
·

j−1∏
i=1

1

A(Ui , z)

≤ 1

2n
·

j−1∏
i=1

1

(1− 1/n) · 2n−i−1

≤ e

2n

j−1∏
i=1

1

2n−i−1
.

Recall that a leafUn is good if given that R’s queries lead toUn, thenS ′ succeeds
in opening the bit committed in two different ways: i.e.,S ′ inverts on bothy0(Un) and
y1(Un). Since we stopn− j levels above the leaves we are interested in nodes that have
many good leaves in the subtree below them. The reason we need many and not just one
is that a single good node may not have any of its images in the set of fully balanced
images at the root of the subtree. Call an internal nodeU good if at leastε/4 of the
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leaves at the subtree rooted atU are good. By assumption, the fraction of good leaves is
at leastε/2. Therefore, the fraction of good nodes among those of any fixed level and in
particular thej th level is at leastε/4, since all of them have the same number of leaves.

Claim 4. The probability thatA reaches some good node Uj of the jth level and
y ∈ F(Uj ) is at leastε(1− γ )/4e where the probability is over the choice of y(the
imageA attempts to invert) and the coin-flips ofA.

Proof. Let Uj be a good node of thej th level. Then

Pr[A reachesUj andy ∈ F(Uj )] =
∑

z∈F(Uj )

Pr[y = z andA reachesUj ]

≥
∑

z∈F(Uj )

1

e2n
·

j−1∏
i=1

1

2n−i−1

≥ 2n− j+1(1− γ )
e2n

·
j−1∏
i=1

1

2n−i−1

= (1− γ )
e

j−1∏
i=1

1

2n−i
.

Here the first inequality follows from Claim 3 and the second from Claim 2. Since there
are

∏ j−1
i=1 2n−i nodes at thej th level and at least a fraction,ε/4, of them are good, the

probability that the image chosen is fully balanced at a good node of thej th level is at
leastε(1− γ )/4e.

Claim 5. In any good node Uj of level j the fraction of the good leaves at the subtree
rooted in Uj that have at least one image inF(Uj ) is at leastε/8.

Proof. Any pair of imagesy1 6= y2 in I(Uj ) can be together in at most 1/2n− j of the
leaves of the subtree rooted atUj : in any nodeU ′ along the way fromU to the leaves
and for random queryh of U ′ we have Pr[B(h, y1) = B(h, y2)] = 1

2. By Claim 2 there
are at mostγ2n− j+1 images inI(Uj ) that are not fully balanced inUj . Therefore the
fraction of the leaves of the subtree rooted inUj where both of their images are from
I(Uj )\F(Uj ) is bounded by (

γ2n− j+1

2

)
· 1

2n− j

(i.e., the number of pairs of images fromI(Uj )\F(Uj ) times the fraction of leaves that
can appear together). Since(

γ2n− j+1

2

)
1

2n− j
≤ 2γ 22n− j = n22−(1/4)(n− j )+1 = n22−2(logn/ε+2)+1 ≤ ε

2

8
,

we have that at leastε/4− ε2/8≥ ε/8 of the leaves are both good and have at least one
image inF(Uj ).
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Claim 6. For any good node Uj of level j and any z∈ F(Uj ), given thatA reaches Uj

and y∈ F(Uj ), the probability that y= z is at least1/e22n− j+1 where the probability
is over the choice of y and the coin-flips ofA.

Proof. For fixedUi andz ∈ F(Uj ) we would like to bound from below the value

Pr[A reachesUj andy = z]

Pr[A reachesUj andy ∈ F(Uj )]
. (3)

We know from the first inequality of Claim 3 that

Pr[A reachesUj andy ∈ F(Uj )] =
∑

y′∈F(Uj )

Pr[A reachesUj andy = y′]

≤ |F(Uj )| · e

2n

j−1∏
i=1

1

2n−i−1

≤ |I(Uj )| · e

2n
·

j−1∏
i=1

1

2n−i−1

≤ e · 2n− j+1

2n
·

j−1∏
i=1

1

2n−i−1
.

On the other hand, from the second inequality of Claim 3, for anyz ∈ F(U ) we have
that

Pr[A reachesUj andy = z] ≥ 1

e2n

j−1∏
i=1

1

2n−i−1
.

Therefore (3) is at least 1/e22n− j+1.

Claim 7. The probability thatA is successful is at leastε10/65e3(4n)8 where the
probability is over the choice of the image y andA coin-flips.

Proof. Define the events: (a)A reaches a good nodeU at level j and thaty ∈ F(U )
and (b) thathj , hj+1, . . . , hn−1 define a path to a good leaf that has at least one image in
F(U ). Call this imagez (select arbitrarily if both images are inF(U )). If y = z, thenA
is successful. By Claim 6 we know that the probability thaty = z is at least 1/e22n− j+1.
The probability that (a) occurs is at leastε(1− γ )/4e by Claim 4 and that (b) occurs
given (a) is at leastε/8 by Claim 5. Therefore the probability thatA succeeds is at least

ε(1− γ )
4e

· ε
8
· 1

e22n− j+1
= ε2 (1− γ )

32 · e3 · 2n− j+1
>

ε10

65e3(4n)8
,

where the last inequality follows from the fact thatj = n− 8(log(n/ε)+ 2).

Note that we have consideredA successful wheny was fully balanced at levelj ,
without taking into account the time it took forA to arrive at this position. However,
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given thaty is fully balanced at levelj , the probability thatA had many unsuccessful
candidates until it reached thej th level is small: we know thaty is balanced atUi for
all 1 ≤ i < j and thereforeA(U, y)/2n−i > 1

4. Therefore the probability thatA had
to try more (in total) than 8n candidates for thehi ’s until reaching levelj is exponen-
tially small in n. If we bound the run time ofA by 8n2 (including the query time),
then the probability of success is still at leastε10/65e3(4n)8 − exp(−n). If ε is non-
negligible, then this is nonnegligible as well. This concludes the proof of Lemma 2 and
Theorem 2.

3.3. Obtaining Perfect Zero-Knowledge Arguments

We have shown a uniform reduction from the existence of a one-way permutation to the
existence of perfectly secure computationally binding bit-commitment protocols. The
result holds in the nonuniform setting as well. Therefore, applying Theorems 1 and 2 we
get

Corollary 1. If any nonuniformly secure one-way permutation exists, then there exist
perfect zero-knowledge arguments for proving membership for all languages in NP.

4. Concluding Remarks and Possible Extensions

We now review some technical and general issues arising from this work.

Probability of success. In the proof of the Binding Lemma we did not attempt to
optimize the probability of success as a function ofε and the resulting polynomial is
of a rather high degree. However, it seems that our method of designing algorithmA
does not yield success probability that is linear inε. It is interesting whether we can
get the dependency to belinear in ε times some polynomial inn. This would make the
reductionlinear preservingin Luby’s [28] terminology, whereas the current one is only
polynomial preserving.

One-way permutations versus functions. Where is the assumption thatf is a permuta-
tion used? First it is needed for the Secrecy Lemma, in order to argue thatc1, c2, . . . , cn−1

yield no information abouty. Consider the case wheref is analmostpermutation, that
is, all but a negligible fraction of the strings in{0, 1}n have exactly one pre-image.

Call a leafu secureif both y0(u)andy1(u)have exactly one pre-image. IfRandS reach
a secure leaf, thenRcannot guessbwith probability better than12. Initially most leaves are
secure, andδ, the fraction of insecure leaves, is negligible. However, a devious receiver
R′ may bias the fraction of insecure leaves by its queries. Letδ = δ1, δ2, . . . , δn−1 be
the fractions of insecure leaves at an execution of the commit protocol. Suppose thatci

is random. Then for any strategy ofR′ the expected value ofδi+1 is δi and therefore
E[δn−1] = δ. From Markov’s inequality it follows that Pr[δn−1] 6= 0 is negligible. Note
however that theci ’s are not quite random. Nevertheless, we can define a property similar
to balancedthat assures us thatci is not far from being uniform in{0, 1} and thus obtain
the desired security property.

As for the binding requirement, the difference between the case wheref is a per-
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mutation and an almost permutation is thaty is not necessarily uniform inI(U ), given
thatA reachesU . However, by a similar argument to the balanced property, with high
probability the conditional distribution ofy is not far from uniform inI(U ).

In casef is a general one-way function the above arguments may fail miserably. For
starters, most leaves will have the property that the number of pre-imagesy0 andy1 are
different. Then there is the danger that a deviousR′will skew the probability even further,
making the guess ofb extremely easy (so that even splittingb intob = b1⊕b2⊕· · ·⊕bn

would be futile).

Dynamic adversaries. We point out another advantage of perfectly secure compu-
tationally binding bit commitments (over computationally secure ones). Consider the
following scenario which is a variant of one proposed by Goldreich (personal commu-
nication) in order to model dynamic adversaries. There aren senders and receivers who
perform a bit-commitment protocol. The input bits given to the senders are drawn ac-
cording to some joint distribution on which there is some auxiliary information. The
commitments are performed separately and independently, but following the commit
stage an adversary may decide (based on the communication exchanged) to “corrupt”
n/2 of the senders who provide him with all their internal information, including the
random string used in the protocol. The question is whether the remainingn/2 bits are
still protected as they were before. Since the bits may be related, the proper comparison
should be with an weaker adversary that does not get to see the messages exchanged
during the commit stage, but can ask to get thevalueof n/2 bits. Whatever the strong
adversary can compute on then bits should be computable by the weaker adversary (the
computational power of both adversaries should be similar).

Intuitively, this should be the case, since then parties act independently. However,
attempts to prove this have been futile in case the bit commitment iscomputationally
secure; the problem is in running a simulation, since the adversary gets to see the com-
mitmentsbeforeit decides which parties to corrupt, and the simulation is polynomially
bounded. On the other hand, for perfectly secure bit commitment it is the case that the
remainingn/2 bits are protected information theoretically. The reason is that the mes-
sages sent during the commit stage are independent of the actual value of the bits, so a
computationally powerful simulator may use the strong adversary to create a weak one
(in this case both of them are computationally unbounded).

Other applications of interactive hashing. The techniques of interactive hashing pre-
sented here were useful in constructing fail-stop signatures [11] by replacing a collision-
free one-way hash functions, and in designing zero-knowledge proofs from honest-
verifier zero-knowledge proofs [34], [10]. It would be interesting to know if further
applications of the techniques to reduction of computational complexity assumptions
are possible.

One plausible scenario is replacing the collision intractable hash functions used in the
work of Kilian [25] and Micali [29] in order to reduce the communication complexity of
NP arguments. Essentially, what is needed there is a commitment to a large string whose
communication complexity is much smaller than the length of the string. Our protocol
requiresn2 bits of communication in order to commit to a single bit, so it may not seem
applicable to this problem. Note however that in case we use our protocol to commit
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to many bits, the queriesR sends may be shared among the bit commitments giving us
amortized complexity close ton− 1, still far from the desiredo(1).

Suppose that we give up the information-theoretic security ofS and go for compu-
tational bindingand security (i.e., both parties are protected “only” computationally).
In this case, consider the following protocol: the sender commits to a seed of a pseudo-
random sequence using a computationally secure scheme such as [30]. The bit-wise Xor
of the pseudo-random sequence and the string is still pseudo-random and computation-
ally protects the string. This Xored sequence is then partitioned into blocks of sizen.
Each of these blocks is then used as thex’s in our protocol of Section 3.1. That is, the
commiter computesf (x) and replies ton− 1 successive queriesh1, h2, . . . , hn−1 with
B( f (x), hi ). Steps 4 and 5 are not executed, since the commitment is really tox itself.
As suggested above, the receiver’s queries are shared between the blocks. To open the
commitment the seed is revealed along with all the blocks (thex’s). This yields amor-
tized communication complexity for the commit phase of roughly 1− 1/n per bit of the
original string. Reducing the amortized communication complexity too(1) seems to be
challenging.

Finally, an interesting question is whether the highly interactive nature of our protocol
(n− 1 rounds) is essential?
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Appendix. Relation to Recent Work on Bit Commitment

Bit-commitment (BC) protocols allow a Sender (Commiter) to be bound to a bit which is
kept secret from the Receiver. Later, the Sender can “open” that bit in a unique way (i.e.,
like a sealed envelope). Recently, several models in which some parties arerequiredto
have computational power beyond polynomial time were investigated. It is worthwhile
pointing out the differences between those models and the current work.

By “From Strong to Weak BC” we call BC protocols in which the binding is perfect,
i.e., even an infinitely powerful Sender cannot cheat, except with negligible probability,
but where the security is computational, i.e., the Receiver is assumed to be polynomial
time and no such Receiver can figure out the bit committed with nonnegligible advantage
(if a complexity assumption holds). The combined results of [20], [21], and [30] imply
that if one-way functions exist, then there is a (Strong-to-Weak) BC which doesnot
require the Sender (and of course the receiver) to do nonpolynomial work, that is, it is
an efficient protocol and the underlying assumption in this case is optimal [22].

The work in [33] investigated commitments between strong and polynomial-time
players where the strong player actually needs to use his superpolynomial-time power.
Thus, the main issue in that paper is how the hardness assumptions change and can
be relaxed when there is a large difference in computational power of players (rather
than being polynomial time for both players, as needed in cryptographic applications).
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It is shown that unless Distributional-NP= RP, a possibly weaker assumption than the
existence of one-way functions, there is a (Strong-to-Weak) BC from a Sender with
an (NP ∪ co-NP) power to a polynomial-time Receiver; the Sender actually spends
exponential time in order to execute the protocol. (See [26] for definitions of hard-on-
the-average problems). Thus, when the Sender uses nonpolynomial power this theoretical
result relaxes the assumptions in [30].

By “from Weak to Strong BC” we denote BC protocols in which the secrecy is
information-theoretic, but the binding is computational, i.e., with high probability a
polynomial-time commiter cannot change the value of the commitment (if a complexity
assumption holds). In [33] it is also shown that given any one-way function, there is a
(Weak-to-Strong) BC from a polynomial-time Sender to a (PSPACE) Receiver which
actually spends exponential time in order to execute the protocol. The result is based on
an oblivious transfer protocol among unequal-power players from [32].

In contrast, in this paper the protocols of both parties require only (low order) polyno-
mial time to execute. This is the appropriate model for cryptographic applications. We
made no use of trapdoor properties, as BCs and secure interactive proofs do not need
decryptions of arbitrary messages, but rather need to be able to display the pre-images
of prespecified messages.
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