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Abstract. “Perfect zero-knowledge arguments” is a cryptographic primitive which
allows one polynomial-time player to convince another polynomial-time player of
the validity of an NP statement, without revealing any additional information (in the
information-theoretic sense). Here the security achievezhifine in order to cheat

and validate a false theorem, the prover must break a cryptographic assumption on-line
during the conversatigrwhile the verifier cannot find (ever) any information uncondi-
tionally. Despite their practical and theoretical importance, it was only known how to
implement zero-knowledge arguments based on specific algebraic assumptions.

* A preliminary version of this paper appearedidvances in Cryptology—Cryp®2 ProceedingsLecture
Notes in Computer Science 740, Springer-Verlag, Berlin, 1993. The research of the first author was supported
by grants from the Israel Science Foundation administered by the Israeli Academy of Sciences and by a US—
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Research Center. Part of this work was done while the second author was at the International Computer Science
Institute at Berkeley and the University of California at Berkeley.
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In this paper we show a general construction which can be basedyone-way
permutation. The result is obtained by a construction of an information-theoretic secure
bit-commitment protocol. The protocol is efficient (both parties are polynomial time)
and can be based on any one-way permutation.

Key words. Computer security, Interative protocols, Cryptography.

1. Introduction

Reducing complexity assumptions for basic cryptographic primitives is a major current
research program in cryptography. Characterizing the necessary and sufficient com-
plexity conditions needed for primitives helps us develop the theoretical foundations of
cryptography. Further, reducing requirements for a primitive may imply more concrete
underlying functions for its practical implementations.

From this perspective, we study here the requirements for the existence of zero-
knowledge arguments for proving the “validity of an NP assertion.” Informally, proving
some fact in zero-knowledge (a notion introduced in [19]) is a way for one player
(called the “prover”) to convince another player (called the “verifier”) that a certain fact
is true, while not revealing any additional information. In our setting, both players are
polynomially bounded and the prover is presumed to have the witness for the proof of the
NP statement. This has a large variety of applications in cryptography and distributed
computing (see [19] and [18]). In such applications the prover may choose the NP-
instance in such a way so that the witness is known (e.g., by evaluating a one-way
function on some input) or possess some secret information that constitutes the witness.
We must rely on complexity assumptions, since protocols for implementing the above
task with polynomial-time players imply the existence of one-way functions (see [22]
and [35]). The assumptions could be used in two different ways:

1. Zero-knowledgeproofs[19], [18]: The prover, even with infinite computational
power, cannot convince the verifier to accept a false theorem. However, the proof
itself is onlycomputationally securé.e., if the verifier (or anyone overhearing the
execution of the protocol) ever breaks the cryptographic assumption, say after 100
years, additional knowledge about the proof can be extracted.

2. Perfect zero-knowledgargumentq6]: The verifier cannot extract additional in-
formation even if he is given infinite time (i.e., securitypisrfector information
theoretic); however, the prover (assumed to be polynomial time) can cheat in its
proof only if he manages to break the assumptiodine during the execution of
the protocol This is the reason to call it an “argument” rather than a “proof.”

In many settings, zero-knowledge arguments, which were introduced by Brassard et
al. [6], may be preferable to zero-knowledge proofs: the verifier must only be sure that
the prover did not break the assumptidaring their interaction(which lasted, say,

10 seconds or 10 minutes). Notice that while assuring that the assumptioe\eie
broken may be unreasonable, the assumption that something cannot bechnokgithe
nextl0 minutescan be based on the current state of the art. On the other hand, the prover



Perfect Zero-Knowledge Arguments fdP Using Any One-Way Permutation 89

has an absolute (i.e., information-theoretic) guarantee that no additional information
is released, even if the verifier spends as much time as he desires trying (off-line) to
extract it. Thus, the notion of zero-knowledge arguments is useful if there is a need to
maintain secrecy for a very long time independent of the possible future advance of
cryptanalysis.

So far the complexity assumptions needed for constructing perfect zero-knowledge
arguments are not general—they require specific algebraic assumptions. This is in con-
trast with zero-knowledge interactive proofs, which can be based on any one-way func-
tion. In this work we dispose of specific algebraic assumptions for zero-knowledge
arguments:

Main Result. If one-way permutations exjghen there exist perfect zero-knowledge
arguments for any itlv/P.

We obtain this result by constructing an information-theoretically secure bit-commit-
ment scheme which can be based on any one-way permutation. The scheme is efficient
and thussimulatableby an expected polynomial-time algorithm. We can then apply
the known reduction of “perfectly-secure computationally-binding bit commitment” to
“perfect zero-knowledge argument.” Most of the paper is devoted to the description of
the bit-commitment scheme and its correctness and security proof.

1.1. Background

Past successes in establishing basic cryptographic primitives on general assumptions
(initiated in [37]) have shown that various primitives, which were originally based on
specific algebraic functions, can be based on the existence of general one-way functions
or permutations. For example, Naor [30] showed that computationally secure bit com-
mitments (i.e., bit commitments whidan bebroken off-line given sufficient resources)
can be constructed from a pseudo-random generator. Such generators [3], [37] were first
implemented based on a discrete logarithm assumption in [3] and following a sequence
of papers [37], [27], [16], [17] it was shown thahy one-way function suffices [20],
[21]. Similarly, digital-signatures can now be based on any one-way function [31], [36].
Furthermore, these primitives (and primitives derived from them, e.g., identification)
were shown to imply a one-way function (thus they are equivalent) [22].

Concerning secure proofs, Goldreich et al. [18] showed that zero-knowperdgés
for NP can be done using computationally secure bit-commitment protocols which, as
indicated above, can be obtained from any one-way function. This applies to géReral
proofs as well [24]. On the other hand, zero-knowledge proofs for nontrivial languages
imply the existence of one-way functions [35].

In contrast to computational zero-knowledgeofs the only known constructions for
perfect zero-knowledgargumentgor NP was under specific algebraic assumptions [6],
[41, [24], [7], [2], [23] or under the assumption thetllision intractable hash functions
exist (first shown in [31]; see [11] for more information), which in turn is only known
to be constructed under specific algebraic assumptions [5], [8], [9]. Our result gives
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the first general reduction: zero-knowledge NP-arguments can be constructed given
any one-way permutation, by first constructing an information theoretically secure bit
commitment.

1.2. Organization of the Paper

In Section 2 we give the model, the formal definitions of the problem, and the as-
sumptions. Specifically, we present the model of interactive machines, the notion of
commitment and of one-way functions and permutations, and the definition of per-
fect zero-knowledge arguments. In Section 3 we present the new method for basing
a perfectly-secure bit commitment on a one-way permutation and prove its security.
In Section 4 we discuss possible extensions of our techniques. For completeness, we
provide in the Appendix a comparison between this work and other recent work on
commitments.

2. Model and Definitions

We now review the model and definitions of bit commitment, one-way permutations,
and perfect zero-knowledge arguments (a.k.a. computationally sound proofs). In gen-
eral we follow Goldreich [13]. The parties in the protocols are modelddtasacting
Turing machinesas defined by [19], which share an access to a security parameter

a common input, and communication tapes. In addition each has an output tape, a pri-
vate random tape (or string, a.k.a. as its coin-flips), and an auxiliary private input tape.
When we say that a machine is polynomial time it is polynomial in the security param-
eter (given in unary) and in general all other inputs (including the auxiliary) should be
polynomial in the security parameter. We call a functigin) negligible if, for all poly-
nomialsp(n), p(n) = o(1/p(n)). That is, it is asymptotically smaller than all inverse
polynomials.

Before we continue we should clarify a few issues regarding uniformity. Most cryp-
tographic primitives come in two flavors: (i) uniform, where the adversary is assumed to
be a probabilistic polynomial-time machine and (ii) nonuniform, where the adversary’s
computational power is modeled by a polynomial-sized circuit. (See [12] and [13] for
an extensive treatment of the subject.) Construction of one cryptographic primitive from
another may beniformity preservingmeaning that the new primitive is secure against
probabilistic polynomial-time adversaries if the original primitive is secure against such
adversaries. Alternatively, it may be ontpnuniform meaning that the new primitive
is secure only if the original primitive is secure against polynomial-sized circuits. (In
all cases we are aware of, if the construction is uniformity preserving, then it is also
nonuniformity preserving, hence the usage of “only”; furthermore, this can be formal-
ized to cover most cases.) Our construction of perfectly secure computationally binding
bit commitments from one-way permutation is uniformity preserving. However, when
using such bit commitments to construct zero-knowledge arguments for languddfes in
some delicate issues that are beyond the scope of this paper arise. Therefore we provide
only the nonuniform version of the zero-knowledge arguments and refer to [12] as the
source for making the uniform case.
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2.1. Commitment

A bit-commitment protocol involves two interacting parties, the Sender and the Receiver.
It can be thought of as the Sender giving the Receiver a locked box with a secret bit
inside. The Receiver does not learn anything about the bit, but at a later stage, when the
box is opened, he is sure that the contents of the box were not altered. More formally, a
bit-commitment protocol consists of two stages:

e Thecommitstage: the Sendérhas a bib on its input tape, to which she wishes to
commit to the ReceiveR. The sender and the receiver exchange messages. At the
end of this stag&®k has some information that “represenksivritten on its output
tape.

e Thereveal(opening stage S andR exchange messages (where their output tapes
from the commit stage are serving as input tapes for this stage). At the end of the
exchangeR writes on his output tape either “OK for Wit or “NOT OK.”

We should take care in defining what we mean by cheating in the context of information-
theoretic commitment. Consider the following experiment: after the commit stage
“split” into Sg andS; and participates in two executions of the reveal protocol with two
identical copies ofR whose state is initialed to be that &f after the commit stage. If
both executions end up witR writing “OK” on the tape, but the two bits written are not
the same, thef is considered to have successfully cheated. More precisely, at any point
in time the state of an interactive machine is determined by its random steind the
messages it receivad. The sender is specified by two machifés, S1} so that when
given the same random string, andS; haveidenticalbehavior during the commit, i.e.,
when sent the same input messages, they respond back with the same message (this is
what is meant by is split after the commit phase). If we have two interacting machines
and we fix their random strings, then the outcome of their interaction is deterministic.
We denote it by(R(r), S(s)) wherer is the random string gR ands is the random
string of S.

Definition 1. We say that a send& = {Sp, S1} cheatsa receiverR with probability
at mostp if the following holds: the probability that the executiofR(r), Sp(s)) and
(R(r), S1(s)) end up following the reveal stage with “OK” but with with two different
bits, is at mosp where the probability is over the choicerofnds.

By a protocol we actually mean afamily of protocols, indexed by the security parameter
n. As is usual in computational-based cryptography, security is a function Nbte
that in the definition below only the probability of cheating depends @out security
is independent o).

Definition 2. To be aperfectly secure computationally binding commitméme pro-
tocol must obey the following for some negligitdén):

1. (Viability) If both players are honest (i.e., follow the protocol as specified), then
for any input bitb € {0, 1} the sende& gets, the receiver outputs at the end of the
reveal stage the “OK for bl with probability one.
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2. (Security property For any R’ the distributions of the conversation between an
(honest)S andR’ incaséb = O andb = 1 are identical. Note that the computational
resources oRR’ are not bounded.

3. (Binding property The probability that any probabilistic polynomial tind® =
{Sp, 81} can successfully cheat is at mgsin) where the probability is over the
random tapes aof’ andR.

4. (Efficiency S andR'’s algorithms can be executed in polynomial in the security
parameten time by a probabilistic Turing Machine.

Remarkl. Suppose that in property 1 above instead of requiring that the distributions
in caseb = 0 and in casd = 1 be identical we require that they will be close to
each other to withirp(n) under, say, thé.; norm. Then we get atatistically secure
computationally binding commitmerithis is good enough for many applications.

2.2. One-Way Functions and Permutations

We now define the underlying cryptographic primitive we assume.fLbé a length-
preserving functionf: {0, 1}* — {0, 1}* computable in polynomial time. By eg A
we mean that the elemeatis randomly chosen from the sét

Definition 3. f is one-wayif, for every probabilistic polynomial-time algorithid,
for all polynomialsp, and all sufficiently large,

| 1
Prif(x) = f(A(f(x) [ xer {0,1}"] < S

where the probability is over the random choices @ind the random tape of.

The above definition is of atrong one-way functiorits existence is equivalent to
the existence of aveak one-way functionsing Yao’s amplification technique [37] or
the more security preserving method of [15] which is applicable only to permutations
or regular functions. (A weak one-way function has the same definition as above, but
the hardness of inversion is smaller, i.e., its probability is inverse polynomially away
from 1.)

If in addition f is 1-1 and length preserving, then we say th& aone-way per-
mutation. For the construction of Section 3 we require a one-way permutdtidtote
that the construction there assumes a one-way permutétmm{0, 1}". Suppose that
instead we have a one-way permutatibh S — SwhereS c {0, 1}" is an easily
recognizable and large set (nonnegligible fractioriGfl}"), e.g., all numbers smaller
thanP where 2-1 < P < 2", as is the case in the number-theoretic constructions. Then
we can construct from it a weak one-way permutatfor{0, 1}" + {0, 1}" by taking
f(x) = f'(x) if x € Sand f (x) = x otherwise. Using the amplification techniques of
[37] and [15] we can then obtainstrongone-way permutation on a domgi, 1}" for
n’ linear inn.

The goal of this paper is to present a construction of perfectly secure computationally
binding commitment from any one-way permutation.
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2.3. Perfect Zero-Knowledge Arguments

We now briefly discuss perfect zero-knowledge arguments (a.k.a computationally sound
proof systems). The reason we are briefis that this paper does not deal with them directly,
but their existence is a known consequence of the construction of the perfectly secure
computationally binding commitment protocol. For a more thorough discussion see [13].
In a proof system there are two interacting machines commonly called the gPover
and the verifieN . The two parties share access to a security parameted a common
input x which the prover “claims” is in a languagé. The prover should have in its
auxiliary input tape a witness for this fact. In addition each party has an output tape, a
private random tape, and perhaps more information on their auxiliary private input tape.
The three properties the proof system should have are: (i) Completeness, meaning that if
x € L,thentheinteraction should cause the verifier to write “ACCEPT” on its output tape
(which we denote ACCEPT € (P, V)(x)). (ii) Soundness, which in this case is only
computational, i.e., for any “bad” prover who is polynomially bounded, the probability
that it makes the verifier write “ACCEPT” when ¢ L is small. (iii) Zero-knowledge,
which here we require to be perfect, i.e., for every “bad” verifier it is possible to simulate
precisely its output and message distribution.

Definition 4 (Perfect Zero-Knowledge Arguments). A pair of interactive machines
(P, V) is aperfect zero-knowledge arguments system for a langgdafeoth machines
are polynomial time and:

1. (Completenegd-or everyx € L there is a witnesg such that
PI*ACCEPT” € (P(y), V)(x)] > 2.

We say that that the completenespésfectif for every x € L there is a witnesg
such that

Pr*ACCEPT” € (P(y), V)(X)] = 1.

2. (Computational soundnesBor every polynomial-time interactive machiRéand
for a sufficiently large security parameterfor every sufficiently longk ¢ £ and
all auxiliary inputsy,

PIACCEPT” € (P(y), V)(X)] < 1.

3. (Perfect zero-knowledy&or every verifieV’ (with no bound on its computational
resources) there is a simulator which is a probabilistic expected polynomial-time
machineMy-, such that on any positive instance £ and auxiliary inputy for the
prover anch for the verifier, the outpuMy,» produces giverx andh, the random
variableSIMy/ (X, h), is distributed identically t@P (y), V'(h))(x).

Asisthe casein general, tl(lé, %) gap can be made arbitrary largessquentiallye-
peating the protocdl The major result we are interested in is that it is possible to obtain

11t was recently shown that when an argument is repeatedrallel the gap does not necessary decrease

[1.



94 M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung

perfect zero-knowledge arguments given an information-theoretic secure bit commit-
ment. We state the nonuniform version of the result. As mentioned in the beginning of
Section 2, obtaining a uniform result can be done following [12].

Theorem 1[6], [18]. If nonuniform perfectly secure computationally binding commit-
ment existthen every languagé€ € NP has a perfect zero-knowledge argument with
perfect completeness

3. Perfectly Secure Simulatable Bit Commitment

We present a perfectly secure bit-commitment scheme and a proof of its security. To get
the intuition, consider the following protocol:

e The sendeS selects a random € {0, 1}" and computey = f (x).

e The receivefR chooses a 2-to-1 hash functibn{0, 1}" — {0, 1}"~! and sends its
description taS.

e S sendsw = h(y).

e Atthis point, from the receiver’s point of view there are exactly two possible values
for y, denotedyy andy; (i.e.,h(yo) = h(y1) = w andyy < y1). Lety = y.. To
commit tob, the sender senads= b & c.

e Torevealb, R sendsx = f~1(y).

As long ash is guaranteed to be 2-to-1, then it is equally likely tyat= y, and
y = y1 so the security of is maintained. That is, even R choosed adversarially,
for anyh which is 2-to-1, giverw = h(y) the probability thaty = yg or y = y; is the
same ovelS coin-flips. Therefore the distribution @fv, d) is independent of the value
of b. If his “random” enough (pairwise independence is sufficient), thés paired
with a randomy’ and hence the chances tigamay find f ~1(y’) are low. However, if
S choosey only after it learns ofh, then it may be feasible to firnky andx; such that
h(f(Xg)) = h(f(X1)). Indeed, thisis the case, unldss f is acollision intractablehash
function, which we do not know how to construct under the assumption that one-way
permutations exist.

In order to take care of “late choosers,” the above protocol is refined and the hash
function is disclosed gradually, in return for bits of information regardin@he hash
function is defined by ain — 1) x n binary matrixH of rankn — 1 overGF[2] and
h(x) = Hx. The rows ofH are revealed step by step, and in response for eaclsrow
sends the inner product gfand the row. The rest of the protocol is as above. We call this
technique “interactive hashing.” We note that a similar idea was proposed independently
in a full information setting by Goldreich et al. [14].

Though a deviouss cannot be forced to chooseat the beginning of the protocol,
what we show is that there is enough freedorRis movements thas can be forced
(with nonnegligible probability) to paiy with an arbitraryy’.

21f f is indeed collision intractable, the resulting scheme is very close to the one proposed in [31] or [11].
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3.1. The Scheme

Let f be a strong one-way permutation (9 1}". Let S denote the sender aril the
receiver. In the beginning of the protoc6ljs given a secret input biit B(x, y) denotes
the dot-product mod 2 of andy.

Commit Stage
Commit to a bith.

1. The sende§ selectsx er {0, 1}" at random and computgs < f(x). S keeps
bothx andy secret fromR.

2. The receivefR selectshy, hy, ..., ha_1 € {0, 1}" such that each; is a random
vector oveiGF[2] of the form 0—11{0, 1}" (i.e.,i — 1 zeros followed by a one fol-
lowed by an arbitrary choice for the last-i positions). Note thdty, hy, ..., hy_1
are linearly independent ov&F[2]. We callhy, hy, ..., h,_1 R’s queries.

3. Forj from1lton—1
e R sends; to S.

e Ssendx < B(hj,y) toR.

4. At this point there are exactly two vectoyg y; € {0, 1}" such that, for both €
{0, 1}, ¢j = B(y;, hy) forall 1 < j < n — 1. Definey, to be the lexicographically
smaller of the two vectors. Both andR computeyp andy; by solving the linear
systen® Letc e {0, 1} be such thay = y. (only S knowsc).

5. S computesd = b @ c and sends it tdr.

Reveal Stage

The receivefR’s input from the commit stage i, Cy, ..., C,_1 andd, as well ask’s
querieshy, hy, ..., hy_1.

1. S sendd andx to R.
2. R verifies thaty = f(x) obeysc; = B(h;, y) forall 1 < j < n— 1 and verifies
thaty = y. wherec=d & b.

3.2. Proof of Security

Theorem 2. If f is a one-way permutatigrthen the scheme presented in Sec8dh
is a perfectly secure computationally binding bit-commitment scheme

Theorem 2 follows from the lemmata below, the Security Lemma and the Binding
Lemma, respectively (the viability and efficiency of the scheme can be verified easily).
The proof of the Security Lemma is relatively straightforward, but the Binding Lemma
turns out to be trickier and requires a delicate proof.

Lemma 1 (Security). For anyreceiverR’, the distribution of the conversations at the
commitstage is independent of the value of the bitb

3 The way the queries are chosen implies that solving the system can be doge?irtime.
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Proof. We show inductively orj, that for any choice dfi1, h,, ..., h; the conditional
distribution ofy givenhy, h,, ..., hj, ¢1, o, . .., ¢j isuniformin the subspace defined by
hy, hy, ..., hjandcy, ¢y, . . ., 6. The inductive step holds, since the linear independence

of hy, hy, ..., hj implies that
Pl’[B(hj ,¥Y) =0lhy, hy, ... hjfl, C1,Co, ..., ijl] = %

Thus, at Step 4 the probability that= 0 (i.e.,y = Yo) is exactly%, asy is distributed
uniformly in {yo, y1}. Therefore, for any method of choosing the queries the distribution
of

(hls h27 D) hnfla C1,C2, ..., Cpn-1, d)

is the same wheh = 0 andb = 1. O

Recall that we consider a cheating sender to be successful if following the commit
stage it can make the receiver accept two different values as the bit committed. In
our protocol that means that the cheating sender canxgng, € {0, 1}" such that
Xo # X1 butyy = f(xg) andy; = f(x;) are both consistent with,, ..., h,_; and
C1,...,Cy1. The “Binding” Lemma below states that if there exists a sender that can
cheat with nonnegligible probability, then it can be used to invert the presumed one-way
permutationf on a nonnegligible fraction of the inputs, contradicting our assumption.

Lemma 2 (Binding). Assume there exists a probabilistic polynomial ti§ién) that
following the commit stage can reveal to a honest receiver two different values for b with
nonnegligible probabilityy = &(n) where the probability is ove$’ and the receiveR
coin-flips Then there exists a probabilistic polynomial-time algoritinthat inverts f

on nonnegligible fraction of the y’s if0, 1}".

Proof. We describe how to construct an algorittdrior inverting f whose run time is
larger thanS’’s by at most gp(n, 1/¢) multiplicative factor and its probability of success
in computing f ~1(y) for y er {0, 1}" is at least 1p(n, 1/¢) where p is some (fixed)
polynomial.

We begin by makings” deterministic which can be done using standard techniques.
Suppose that we choose an assignment to the random t&peanél count the number
of queries ofR (i.e., hy, ..., ha_1) on whichS’ succeeds in cheating. By assumption,
if the assignment is random, then the expected fraction of such queries is at leeist
Q be the set of assignments on whi§his successful on at leasy2 of R’s queries.
By a simple counting argument we can conclude fatonsists of at least/2 of
the possible assignments. Algorithidescribed below require$ to be deterministic.
Therefore we choosa = 2n/s random assignmenis, w, . . . , wm and rumimtimes the
algorithm.4 with the random tape &’ initialized withw1, ws, . . . , wm. With probability
1-(1-¢/2™>1—e"somew; € Q2. Therefore from now on we assume tlstis
deterministic and its probability of success o#s queries is at least/2.

Let T be the rooted tree of depth— 1 defined by the queries sent & A nodeU;
at theith level is defined by querigs, hy, ..., hj_; where forall 1< k < i — 1 the
queryh, is of the form 6—11{0, 1}"~. Each ofU;’s 2"~ outgoing edges corresponds to
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a queryR may send in théth round of the form 0-11{0, 1}"~' and leads to a different
node at thei + 1)th level. The behavior of’ specifies a labeling of the edgesTofvith

{0, 1}. For a noddJ; defined by querieky, h,, ..., hj_; the label of an edgh; is the
response; of S’ to the quenyh; in theith round, given that the previous queries were
hi, hy, ..., hi_1. We denote it byL s (U;, h;). Given thatS’ is deterministic and thatl
has complete control over it, it is possible to compute this labeling.

For alealU, defined by queriels, ho, ..., h,_1,letUs, Uy, ..., U,_1 bethe nodeson
the path from the root to, and let{yy(Uy), y1(Un)} be the set of images consistent with
the labeling ofS’, i.e.,Ls (Ui, hj) = B(yp, hj) forall1 <i <n—1andb € {0, 1}. We
say that the ledf, is good if given thatR's querieshy, ho, ..., hy_1, thenS’ succeeds
in opening the bit committed in two different ways: i.&/, inverts bothyy(U,) and
y1(Un).

In general, givery, A’s strategy is to try to find a good le&f, such that the labels
Ls on the edges leading to it are consistent with.e.,y € {yo(Uy), y1(Up)}. If Uy is
indeed good, then it yields the inverses/pfUn,) andy; (U,) and hence of. Such a leaf
is found by developing the path node by node. Intuitively, for any labeling af any
nodeU; and for ay that is consistent with the labels leadingipthe probability that
B(h;, y) = Ls (Ui, hy) for a random query; is% (the intuition is that an inner product
of random vector with two different vectors yields independent results). Therefore to find
anoddJ; ;1 consistent witly should take on the average two inspections of randdsn
However, an important thing to note is that sii€emay be cheating, its answers need
not be consistent and that on the same ghetite sendes’ may give different answers
depending on the previous queries. Therefore the above intuition is not accurate and
this is the source of the difficulty in constructing and analyzing the invettaRoughly
speaking, we must use the randomnesg i$elf to argue that the label of a randdm
has a fair chance of agreeing willith, y). We should also not “waste” this randomness
too quickly, before getting close enough to a leaf.

Description of the Inverting Algorithim

Recall our notationB(h, y) denotes the inner product bfandy, U; is a node of level
i defined by queriely, hy, ..., hi_1, andL s (U;, h;) is the answer o’ on h;, given
that the previous queries wehne, hy, ..., hij_1.

A gets as an input a random imagé {0, 1}" and it attempts to invert. In order to
computef ~1(y), A tries to find a good lead such thaty € {yo(u), y1(u)}. Obviously,
if it finds such a leaf it can succeed in invertiggStarting at the rootA develops node
by node a path consistent with Fix j to ben — 8(log(n/e) + 2). The algorithmA
consists ofj — 1 rounds.

The state of4 at the beginning of théth round (1< i < j) can be described
by a nodeU; of theith level of the treeT defined by querie$,, hy, ..., hj_;. Let
Uz, Uy, ..., Uj_1 be the path from the root id;. The property thad maintains is that
the labelsy, ¢, . . ., ¢i_1 along the path are consistent withi.e., forall 1<k <i—1
we havecy = Ls (Ug, hk) = B(hk, y)

Attheith roundA performs the following: arandom quemeg {hjh=0'"11{0, 1}"'}
is chosen. If the outgoing eddreis labeled properly, i.el.s (Ui, h) = B(h, y), then
hi < h and the path is expanded to the new nbllded by h;. Otherwise S’ is reset
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to the state before its reply, and a new candidatdnfas chosen. This is repeated until
either a success or until there are no more candidates left, in whichdcakerts.

If A reaches thgth level, it guesses the remaining- j queriesh;, hj 1, ..., hy_1
by choosing them uniformly at random from the proper sets of quedigdben checks
whether the path to the leaf is labeled consistently \Bitly, hy) fork = j,...,n— 1.

If this is the case and the leaf reached is good, tHelmas succeeded in inverting
Otherwise abort.

Analysis of the Inverting Algorithrd

The rest of this proof is devoted to showing tbéts defined above has probability at
leasts1%/65e3(4n)8 for invertingy. Note that4 as described above does not necessarily
halt after a polynomial number of steps. However, as we shall see following Claim 7,
we can limit thetotal number of unsuccessful attempts at finding consigténto 8n
without decreasing significantly the probability thétsucceeds in inverting.

Notation Since we are dealing with several types of vectors of lengthier G F[2]
we distinguish them by referring to those vectors that are sef® bgqueries, and to
those vectors which may be the image thaattempts to invert agnages. Let U; be
a node at theth level of the tre€el defined byhy, hy, ..., hj_; and letcy, cp, ..., G_1
be the labeld s assigned to the path td;. We say thaty € {0, 1}" is animage in U;
if B(hg,y) = ¢ forall 1 < k < i. We denote the set of images Uf by Z(U;); we
know that|Z(U;)| = 2"'*1. We say thah € {0, 1}" is aquery of U; if it is of the form
0'-11{0, 1} There are 2" queries at a nodé; of theith level.

Let AU,y) = |{h : hisaquery oJU andB(h,y) = Ls (U, h)}|. An imagey is
balanced in U;, a node of theth level if

1 1 AU;,y) 1 1

2(1 n)S i 2<1+n)'
Hence for an imagg that is balanced itJ;, roughly half of the answers to the queries
at nodeU; agree withy. An imagey is fully balanced in U, a node of thejth level,
if it is balanced in all the ancestors bf. Let F(U) be the set ofy € Z(U) that are
fully balanced inU. The motivation for considering fully balanced images is that the
probability thatA reaches a certain nodlewith an imagey € F(U) is close to what it
would be in cas&’ was honest. For a set of queriglsat a nodeéJ and an imagey of
U thediscrepancy of y atH is

Lal
l{the H:Ls (U, h) =By, W} - - |
i.e., the difference between the “expected” number of agreeing queries and the actual
number of queries i that agree withy. Finally, recall thatj = n — 8(log(n/e) + 2)
and sety = n2-6/80-D),

Roadmap Our main problem in analyzing algorith# is in showing that no labeling
Ls can bias the walk toward a set of leaves containing a small subset of the images.
Claims 1 and 2 show that, for any labelibg, for any nodeJ almost all the images of
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U are fully balanced. The motivation for considering fully balanced images is expressed
in Claim 3 by showing that the probability of reaching a certain nod¢ with an image

y € F(U) is close to what it would be in cag¥ was honest. This is also the reasdn
stops testing queries at leviehnd continues further by guessing the rest of the sequence:
otherwise the nodes may be unbalanced and the probabilities too biased.

Though initially a nonnegligible fraction of the leaves are good, there is a danger
thatS’ leadsA to those directions that have only few good leaves. Claims 4 and 5 say
that this is not the case and that with reasonable probability wheeaches thgth
level it has many good leaves whose images are fully balanced. Claim 6 implies that the
probability that our random guess is correct is not far from being inversely proportional
to the number of leaves of a subtree rooted at Igv@lhich is polynomial). Finally,
Claim 7 combines all the above to show that the probability of success is nonnegligible.

Claim 1. LetU be node oftheth level and let HC {h|h = 0'-11{0, 1}"'} be a subset
of the queries of U of size at m@t!. Forany he H let &, be a random variable over
zerZ(U)suchthatg = 1if B(h, z) = Lg (U, h) and0 otherwise Then

Pr[Zah—%|H|

heH
Proof. First note that any pair of queries with differamt h” € H has the property
thath” is linearly independent dfi, hy, h,, ..., hj_;. For anyh € H we have that
Prlap = 1] = % and Varpy] = %. For everyh’ £ h” the eventsy, anday,. are pairwise
independent (this follows from the linear independencl’ @ndh”) and hence

Var[z ah} =iH| <2172
heH

We are essentially interested in

pr[zah—a[zah}

heH heH
sinceE[) , an] = %|H |. By Chebyschev’s inequality

heH
Taking s = 2/90-1) we get that (1) is at most /90—, O

> 2(7/8><nj)} < -GN,

> 27/8(n_j):| (1)

Claim 2. For any node | of level j and random z Z(U;) we havePr[z € F(Uj)] >
l1—yfory = n2-6/8)m—j)

Proof. Let Uy, Uy, ..., U;_1 be the nodes on the path t§). We should show that
for any U; along the path most € Z(U;) are balanced. We cannot apply Claim 1
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directly, since a randony € Z(U;) is not random irZ(U;). To apply the claim, we
first take care of the queries &f; that arenot linearly independent ofy;, ..., hj_s.
There are at most'i2' (out of 2'~') such queries and we (pessimistically) count them as
contributing to the discrepancy. LEt' be the remaining queries of. We partition them
into 2/~ subsets according to the values of bits 1 throughj. For eaclt € {0, 1}

let H, = {hih = 0—11¢{0, 1}"~1} N H’. EachH; is of size at most™®! and has the
following important property.

Fact 1. For every different hh” € H, we have that h ..., hj_1, ', h” are linearly
independent

Proof. Inanysubsetoh, ..., hj_i, b, h” that sums t® an even number of elements
outofh;, h’, h”mustpart|C|pate Sind& andh” are linearly independentbf, ..., hj_1,

it is the case thaly; does not participate in the sum. However, sihteh” < Hl and
have the same bits in locatiorthroughj, no member oh;,4, ..., h;_; can participate
in the sum. Sincd’ # h” no vector fromh;, ..., hj_1, i, h” participates and we get
the desired linear independence. O

Given this property we have that fbf, h” € H, and arandora er Z(U;) the random
variablesayy anda, are independent. Therefore, as in the proof of Claim 1 we have that,
forany¢ € {0, 1}! ',

pr(zah_E{zah}

heH, heH,
Letb, be the indicator for the even} , _, an — E[Y .y, an]l > 278D From (2)
we know Prp,] < 2-®/%M-_ By Markov’s inequality we can conclude that

< 2~ 6/80-])
[ Z be > <1/8><n 1)] 2 :

£e{0,1}) -

- 2<7/8)(n—i)> < 2-@a0-]) )

That is, the probability that, for more than a fractiorif@”*“ of the¢’s, the setH, has
adiscrepancy larger that’2?"~1) is at most 2*/®®=1)_Thus with probability at least
1 — 2-6/80-) the total discrepancy at nodlg is at most

211 4 o~ YBIn=Don—ipi—i 4 (1 — 2~ YBM=D)(W/&(-pi-T ~ . pIn/8+]/8-
— 2n—i . 2—(1/8)(n—j)+1’

where the first summand is an upper bound on the contribution of the querieshhgt in
the second the contribution of thé,’s whereb, = 1, and the third the contribution of
the H,'s whereb, = 0. Hence foiz er Z(U;) with probability at least - 2-6/80=D
we have

2n—i—1 _ 2n—i . 2—(1/8)(“—])+1 < A(U| , Z) < 2n—i—1 + 2n—i . 2—(1/8)(n—i)+1
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and sincej = n — 8(log(n/¢) + 2)

1 1 _ . AU, 2) _ . 1 1
(1)<l o8-+l L TR0 T 1y o8-+l - 2 (14 T )
2( n>_2 ST s2t =2\**q

The probability that is balanced in all the levels is therefore at leastri2- /80— —
1—vy. O

Claim 3. For any node Y of level j and any = F(U;),

= 1
on | on—i-1’

1= 1 o
—[[ == <PrlAreaches Yand y=12] < —
ne 1 on—i-1

K
a8

where the probability is uniform over the choices of y and the coin-flips. of

Proof. To get the first inequality,

1 =
Pr[Areached); andy =7 = — -
[A j y=12 Z S TN

1 = 1

> — .

-2 41 (A+1/ny .2 1

l -_

= 1+1/nmn nzn i—-1
112

z na n—i—1
2ne ok 2

Similarly, for the second inequality
1 =2
Pr[A reached); andy = 7] = — -
[A j y=12 Z Y TN

1 =t 1

< — .

-2 1 (A-1/ny- 2n-i-1
et 1

= ﬁ on—i—-1 O

Recall that a leall,, is goodif given that R's queries lead tdJ,,, thenS’ succeeds
in opening the bit committed in two different ways: i.8’,inverts on bothys(U,) and
y1(Up). Since we stom — | levels above the leaves we are interested in nodes that have
many good leaves in the subtree below them. The reason we need many and not just one
is that a single good node may not have any of its images in the set of fully balanced
images at the root of the subtree. Call an internal nddgood if at leaste/4 of the
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leaves at the subtree rooted htare good. By assumption, the fraction of good leaves is
atleast:/2. Therefore, the fraction of good nodes among those of any fixed level and in
particular thejth level is at least /4, since all of them have the same number of leaves.

Claim 4. The probability that4 reaches some good nodg ©f the jth level and
y € F(U;) is at leaste(1 — y)/4e where the probability is over the choice ofthe
image.A attempts to invejtand the coin-flips ofd.

Proof. LetU; be a good node of thigh level. Then

Pr[A reached); andy € F(U))] = Z Prly = zand.A reachesJ;]
zeF(Uj)

1 =1
Z @.Ezn—i—l

e F(Uj)

v

v

2n7j+1(1_ Y) -1 1
e2n ’ 1_!. on—i—1
i=

:<1—y>ﬁ 1

n—i

Here the first inequality follows from Claim 3 and the second from Claim 2. Since there
are]_[i':_l1 2"~ nodes at thg th level and at least a fraction/4, of them are good, the
probability that the image chosen is fully balanced at a good node dtthlevel is at
leasts(1 — y)/4e. O

Claim 5. Inany good node Uof level j the fraction of the good leaves at the subtree
rooted in | that have at least one image /(U ) is at leasts /8.

Proof. Any pair of imagesy; # Y. in Z(U;) can be together in at mosf2"! of the
leaves of the subtree rootedld: in any nodelU’ along the way fron to the leaves
and for random querk of U’ we have PB(h, y;) = B(h, y»)] = % By Claim 2 there
are at mosty2"i*+! images inZ(U;) that are not fully balanced ib;. Therefore the
fraction of the leaves of the subtree rootedpwhere both of their images are from

Z(UpD\F () is bounded by
J/2n—j+1 1
(%) 7

(i.e., the number of pairs of images frafiU; )\ F (U;) times the fraction of leaves that
can appear together). Since

N

8 )

n—j+1 ) .
(72 , >2nlj < 22001 = 22 WAN-DH1 _ n2p-2logn/e+2+1 &

we have that at leasy/4 — £2/8 > ¢/8 of the leaves are both good and have at least one
image inF(U;). |
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Claim 6.  For any good node [of level j and any = F (U)), given thatA reaches
and y e F(Uj), the probability that y= z is at leastl/e?2"~1* where the probability
is over the choice of y and the coin-flips.f

Proof. For fixedU; andz € F(U;) we would like to bound from below the value

Pr[A reached); andy = 7]
PrlA reachedJ; andy € F(U))]’

3

We know from the first inequality of Claim 3 that

Pr[A reached); andy € F(Uj)] = Z Pr[A reachedJ; andy = y']

y'eFUj)
el 1
< FO)l 5[5
I=
j—1
e 1
< ZU)I o [ 5
i=1
e.n—i+l i-1 1
=

On the other hand, from the second inequality of Claim 3, foraryF(U) we have
that

1
on—i—1°

1=
Pr[A reachedJ; andy = 7] > —
[A jandy =7] > o E
Therefore (3) is at least/#?2"~ 1 +1, O

Claim 7. The probability thatA is successful is at leagt'?/65¢3(4n)® where the
probability is over the choice of the image y addcoin-flips

Proof. Define the events: (a)l reaches a good nod¢ at level j and thaty € F(U)

and (b) thah;, hj14, ..., hy_1 define a path to a good leaf that has at least one image in
F(U). Call this imagez (select arbitrarily if both images are Ji(U)). If y = z, thenA

is successful. By Claim 6 we know that the probability that zis at least 12"~ i+1,

The probability that (a) occurs is at leastl — y)/4e by Claim 4 and that (b) occurs
given (a) is at least/8 by Claim 5. Therefore the probability thatsucceeds is at least

8(1—)/).5. 1- _ .2 (1—y). . £10
4e 8 e22n-i+l 32.e3.2n-i+1 7 65e3(4n)8’

where the last inequality follows from the fact that= n — 8(log(n/e) + 2). O

Note that we have consideredl successful whery was fully balanced at levej,
without taking into account the time it took fo to arrive at this position. However,
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given thaty is fully balanced at leve], the probability that4d had many unsuccessful
candidates until it reached th¢h level is small: we know thay is balanced at; for

all1 <i < j and thereforeA(U, y)/2" > %. Therefore the probability thatl had

to try more (in total) than 8 candidates for thé;’s until reaching levelj is exponen-
tially small in n. If we bound the run time ofd by 8n? (including the query time),
then the probability of success is still at lead?/65e¢3(4n)® — exp(—n). If ¢ is non-
negligible, then this is nonnegligible as well. This concludes the proof of Lemma 2 and
Theorem 2. O

3.3. Obtaining Perfect Zero-Knowledge Arguments

We have shown a uniform reduction from the existence of a one-way permutation to the
existence of perfectly secure computationally binding bit-commitment protocols. The
result holds in the nonuniform setting as well. Therefore, applying Theorems 1 and 2 we
get

Corollary 1. If any nonuniformly secure one-way permutation existsn there exist
perfect zero-knowledge arguments for proving membership for all languages in NP

4. Concluding Remarks and Possible Extensions
We now review some technical and general issues arising from this work.

Probability of success In the proof of the Binding Lemma we did not attempt to
optimize the probability of success as a functiore@nd the resulting polynomial is
of a rather high degree. However, it seems that our method of designing algotithm
does not yield success probability that is lineakint is interesting whether we can
get the dependency to tieear in ¢ times some polynomial in. This would make the
reductionlinear preservingn Luby’s [28] terminology, whereas the current one is only
polynomial preserving

One-way permutations versus function®Vhere is the assumption thats a permuta-
tion used? Firstitis needed for the Secrecy Lemma, in orderto argue that. .., ¢,
yield no information abouy. Consider the case whefeis analmostpermutation, that
is, all but a negligible fraction of the strings {0, 1}" have exactly one pre-image.
Callaleafu securéf both yp(u) andy; (u) have exactly one pre-imageRfandsS reach
asecure leaf, theR cannot guedswith probability better thaé. Initially mostleaves are
secure, and, the fraction of insecure leaves, is negligible. However, a devious receiver
R’ may bias the fraction of insecure leaves by its queriesjLetdy, 2, ..., dn_1 be
the fractions of insecure leaves at an execution of the commit protocol. Suppose that
is random. Then for any strategy & the expected value &, is §; and therefore
E[8n-1] = 8. From Markov's inequality it follows that P8]_;] # 0 is negligible. Note
however that the;'s are not quite random. Nevertheless, we can define a property similar
to balancedthat assures us thatis not far from being uniform if0, 1} and thus obtain
the desired security property.
As for the binding requirement, the difference between the case whése per-
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mutation and an almost permutation is tlgas not necessarily uniform iéi(U), given
that.A reached). However, by a similar argument to the balanced property, with high
probability the conditional distribution of is not far from uniform inZ (U).

In casef is a general one-way function the above arguments may fail miserably. For
starters, most leaves will have the property that the number of pre-inyagesly, are
different. Then there isthe danger that a deviBUwill skew the probability even further,
making the guess difextremely easy (so that even splittingntob = by @b, & - - - d by,
would be futile).

Dynamic adversaries We point out another advantage of perfectly secure compu-
tationally binding bit commitments (over computationally secure ones). Consider the
following scenario which is a variant of one proposed by Goldreich (personal commu-
nication) in order to model dynamic adversaries. Thersnaenders and receivers who
perform a bit-commitment protocol. The input bits given to the senders are drawn ac-
cording to some joint distribution on which there is some auxiliary information. The
commitments are performed separately and independently, but following the commit
stage an adversary may decide (based on the communication exchanged) to “corrupt”
n/2 of the senders who provide him with all their internal information, including the
random string used in the protocol. The question is whether the remaipithbits are

still protected as they were before. Since the bits may be related, the proper comparison
should be with an weaker adversary that does not get to see the messages exchanged
during the commit stage, but can ask to getvyhkieof n/2 bits. Whatever the strong
adversary can compute on thdits should be computable by the weaker adversary (the
computational power of both adversaries should be similar).

Intuitively, this should be the case, since thgarties act independently. However,
attempts to prove this have been futile in case the bit commitmertngputationally
secure the problem is in running a simulation, since the adversary gets to see the com-
mitmentsbeforeit decides which parties to corrupt, and the simulation is polynomially
bounded. On the other hand, for perfectly secure bit commitment it is the case that the
remainingn/2 bits are protected information theoretically. The reason is that the mes-
sages sent during the commit stage are independent of the actual value of the bits, so a
computationally powerful simulator may use the strong adversary to create a weak one
(in this case both of them are computationally unbounded).

Other applications of interactive hashing The techniques of interactive hashing pre-
sented here were useful in constructing fail-stop signatures [11] by replacing a collision-
free one-way hash functions, and in designing zero-knowledge proofs from honest-
verifier zero-knowledge proofs [34], [10]. It would be interesting to know if further
applications of the techniques to reduction of computational complexity assumptions
are possible.

One plausible scenario is replacing the collision intractable hash functions used in the
work of Kilian [25] and Micali [29] in order to reduce the communication complexity of
NP arguments. Essentially, what is needed there is a commitment to a large string whose
communication complexity is much smaller than the length of the string. Our protocol
requiresn? bits of communication in order to commit to a single bit, so it may not seem
applicable to this problem. Note however that in case we use our protocol to commit
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to many bits, the querieR sends may be shared among the bit commitments giving us
amortized complexity close to— 1, still far from the desired(1).

Suppose that we give up the information-theoretic security ahd go for compu-
tational bindingand security (i.e., both parties are protected “only” computationally).
In this case, consider the following protocol: the sender commits to a seed of a pseudo-
random sequence using a computationally secure scheme such as [30]. The bit-wise Xor
of the pseudo-random sequence and the string is still pseudo-random and computation-
ally protects the string. This Xored sequence is then partitioned into blocks af.size
Each of these blocks is then used asxtein our protocol of Section 3.1. That is, the
commiter computed (x) and replies ton — 1 successive querids, ho, ..., h,_; with
B(f(x), hj). Steps 4 and 5 are not executed, since the commitment is readlitdelf.
As suggested above, the receiver’s queries are shared between the blocks. To open the
commitment the seed is revealed along with all the blocksxXte This yields amor-
tized communication complexity for the commit phase of roughtyl/n per bit of the
original string. Reducing the amortized communication complexity(th seems to be
challenging.

Finally, an interesting question is whether the highly interactive nature of our protocol
(n — 1 rounds) is essential?
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Appendix. Relation to Recent Work on Bit Commitment

Bit-commitment (BC) protocols allow a Sender (Commiter) to be bound to a bit which is
kept secret from the Receiver. Later, the Sender can “open” that bit in a unique way (i.e.,
like a sealed envelope). Recently, several models in which some partiesjanedto

have computational power beyond polynomial time were investigated. It is worthwhile
pointing out the differences between those models and the current work.

By “From Strong to Weak BC” we call BC protocols in which the binding is perfect,
i.e., even an infinitely powerful Sender cannot cheat, except with negligible probability,
but where the security is computational, i.e., the Receiver is assumed to be polynomial
time and no such Receiver can figure out the bit committed with nonnegligible advantage
(if a complexity assumption holds). The combined results of [20], [21], and [30] imply
that if one-way functions exist, then there is a (Strong-to-Weak) BC which does
require the Sender (and of course the receiver) to do nonpolynomial work, that is, it is
an efficient protocol and the underlying assumption in this case is optimal [22].

The work in [33] investigated commitments between strong and polynomial-time
players where the strong player actually needs to use his superpolynomial-time power.
Thus, the main issue in that paper is how the hardness assumptions change and can
be relaxed when there is a large difference in computational power of players (rather
than being polynomial time for both players, as needed in cryptographic applications).



Perfect Zero-Knowledge Arguments fdP Using Any One-Way Permutation 107

It is shown that unless Distributional-NP RP, a possibly weaker assumption than the
existence of one-way functions, there is a (Strong-to-Weak) BC from a Sender with
an (NP U co-NP) power to a polynomial-time Receiver; the Sender actually spends
exponential time in order to execute the protocol. (See [26] for definitions of hard-on-
the-average problems). Thus, when the Sender uses nonpolynomial power this theoretical
result relaxes the assumptions in [30].

By “from Weak to Strong BC” we denote BC protocols in which the secrecy is
information-theoretic, but the binding is computational, i.e., with high probability a
polynomial-time commiter cannot change the value of the commitment (if a complexity
assumption holds). In [33] it is also shown that given any one-way function, there is a
(Weak-to-Strong) BC from a polynomial-time Sender toPSPACE Receiver which
actually spends exponential time in order to execute the protocol. The result is based on
an oblivious transfer protocol among unequal-power players from [32].

In contrast, in this paper the protocols of both parties require only (low order) polyno-
mial time to execute. This is the appropriate model for cryptographic applications. We
made no use of trapdoor properties, as BCs and secure interactive proofs do not need
decryptions of arbitrary messages, but rather need to be able to display the pre-images
of prespecified messages.
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