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Abstract. This paper presents an RSA-like public-key cryptosystem that can only be
broken by factoring its modulus. Messages are encoded as units in a purely cubic field,
and the encryption exponent is a multiple of 3. Similar systems with encryption powers
of the form 2 as well as 8 were designed by Rabin, Williams, and Loxton et al. Our
scheme is more general than previously developed methods in that it allows a broader
class of primes for its modulus, namely any pair of distinct prirpeg = 1(mod 3

rather thanp = 4(mod9 andq = 7(mod 9. The system employs several number
theoretic techniques in the cyclotomic fie@{/—3), including Euclidean division,

rapid evaluation of cubic residuacity characters, and the computation of prime divisors
of rational primes.

Keywords. Public-key cryptosystem, Purely cubic field, Cubic residuacity character,
Euclidean division.

1. Introduction

While RSA [12] is undoubtedly the most well-known and widely used public-key cryp-
tosystem, the question of whether knowledge of the factorization of the moRuitus
required in order to break RSA remains open. This problem has led to the development of
a variety of public-key systems whose securitgdglivalento the difficulty of factoring
the modulus, i.e., for which it is necessary to factor the modulus in order to retrieve
plaintext from ciphertext without using the secret key. The basic idea underlying all
these systems is to replace the public RSA encryption expaeynt.e, wherea is a
small prime (usuallyp = 2 or 3, but larger values of are possible). Upon raising a
ciphertext to the secret exponahtthe decrypter obtains not the original message, but
its Ath power. As a result, the encrypter needs to provide a clue indicating which of the
Ath roots (modR) of this power is the correct message.

Rabin was the first to make use of this idea (with- 2) in his well-known signature
scheme [11]. Two quadratic cryptosystems as well as a cubic scheme were developed
by Williams [16], [17], [18] (see also [13] in connection with [17]). A different cubic
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scheme s due to Loxton et al. [10]. All these methods utilize arithmetic in some quadratic
number field, with the exception of [16] which, like RSA, uses modular arithmetic in
the rational integers. Recently, Scheidler and Williams extended the ideas of [18] to
cyclotomic fields of degree higher than 2 and designed a cryptosystem with expenent 5
[15], [14].

All the above schemes were shown to be as difficult to break as it is to factor their
moduli. Since the proof of this result is of a constructive nature and can thus be converted
into a chosen ciphertext attack, care must be taken when using these systems. While the
overall asymptotic complexity of these methods isthe same as that of RSA, the algorithms
tend to be more involved, both mathematically and computationally. Furthermore, all
the above techniques, with the exception of [17], impose restrictions on the primes used
in the modulus. Hence, there is a price to pay for the additional information regarding
the security of these methods compared with that of RSA.

This paper presents an RSA-like public-key cryptosystem with exporer(i.8.,

A = 3), that is based on arithmetic in a purely cubic field. The ideas are loosely based on
Williams’s quadratic scheme [17]. The modulBss the product of two distinct primes

p,q = 1(mod 3. This means that our method allows a wider class of primes than the
cubic techniques [18], [10] which are restrictedgo= 4 (mod 9 andq = 7(mod 9

(the scheme in [14] allowp, q = 4 or 7 (mod 9). Like previous designs, our method'’s
security is equivalent to the difficulty of factorirg in the above sense. The blocksize

is twice as large as that of previous schemes, though no message expansion occurs. The
public key is essentially the same size as an RSA key, and the complexity of encryption
is the same as that of RSA for large encryption exponents, but worse by a factor that
is linear in the size of the modulus for small encryption exponents. The secret key
tends to be twice as large as an RSA key, thereby making decryption roughly twice as
expensive as RSA decryption. Other drawbacks of our system are similar to those of
comparable techniques, in particular, its vulnerability to a chosen ciphertext attack and
its rather involved mathematical machinery. Consequently, the scheme loses some of
its practicality over RSA, but the underlying number theoretic principles and methods,
such as Euclidean division and rapid computation of cubic residuacity symbols, are of
mathematical interest.

The paper is organized as follows. The next section outlines the mathematical basis
for our cryptosystem. Section 3 discusses modular arithmetic in purely cubic fields and
Section 4 presents the schemeitself. Section 5 analyzes the method’s security. In Section 6
we give the underlying algorithms in more detail. Specifically, we present techniques
for Euclidean division, evaluating cubic residuacity characters without factoring, and
computing prime divisors of rational primes in the cyclotomic field of degree 2.

2. Notation and Preliminaries

For a brief summary on purely cubic fields, see, for example, p. 198 of [4]. Let:

D be a cube-free rational integer,

8 be the unique real cube root Bf, sos = ¥/D,

K = Q(9) the purely cubic field generated By(K : Q) = 3,
¢ a nontrivial cube root of unity, = (-1 4 +/—3)/2,
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Fig. 1. Lattice diagram of field extensions.

k = Q(¢) the cyclotomic field generated lgy (k : Q) = 2,
L = K(¢) =k(8) = Q(3, ¢) the Galois closure df, (L : Q) = 6.

Here, £ : Q) denotes the degree of a figldverQ. A diagram of these field extensions
is displayed in Fig. 1. Double lines indicate normal extensions and the numbers next to
the lines give the relative degree of the extension.

For a fieldF (F = k, K, or L), denote the ring of integers iR by Og. Clearly,
O =Z[t] =Z®Z;,0k 2 Z[8] = Z @ Z5 & Z§% andOL 2 Z[¢][8] = Z[¢] &
Z[¢]8 @ Z[¢]82. Equality is not necessarily satisfied for the latter two inclusions (see
pp. 136ff. of [2]), but in our cryptoscheme, we only consider algebraic integers of the
form ag + a18 + @82 whereay, a1, a € Z[¢].

The Galois groufis of L overQ has two generatoks, T defined by

T=¢,  °=¢3 8 =¢8, 8 =5

Here,o is the restriction of the complex conjugationlto G is isomorphic to the
symmetric groufss; the generators db satisfy

6’=13=(c1)’=1

Foré e L, we write in shor® = 9,07 =@’,0" = 0"

L is a normal extension of degree 3 okewhose Galois group is generated by
Foré < L, the relative norm o is N x(6) = 06'6” € k. If 6 € K, thenN_x(0) =
NK|Q(9) € Q. Write N (@) for N|_||<(9).

Let p be a rational prime such thatdoes not divideD andp = 1(mod 3. Since
k = Q(+/—3) and the Legendre symbol-3/p) = 1, p splits into two primes irZ[¢],
i.e., p = n wherer is a prime inZ[¢].

For anyd € Z[¢], we havedP = 6 (modr), hence if9 is not a multiple ofr, there is
a uniquek € {0, 1, 2} such thapP~1/3 = ¢k (modr ). Thecubic residuacity character
[0/7]is defined to be*. Fordistinct primes, ¥ € Z[¢],wesetp/zy] = [6/7][0/¥].
It is well known that for6, n, & € Z[¢] relatively prime, pn/&] = [6/€][n/€] and
[6/&] = [n/&]if 6 = n (Mod§), i.e.,& dividesd — n in Z[¢] (see p. 112 of [6]).

Any prime divisormr of p in Z[¢] splits into three distinct prime idealB, P’ =
PT,P” = P” in O if [D/mx] =1, i.e., if D is a cubic residue (mo@).  is inert in
O, if[D/x] # 1 (see [5]). In the latter case” = =, and the map (modx) on O,
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is the Frobenius automorphispgiven by exponentiation bp, so6P = 6’ (modx) or
6P = 0” (modr) for all & € O, . HenceN () = §P*+P+1 (modx) in O, . In the special
case wherdN () = 1 (modmn), it follows from the inertness of in O, that

9(D2+D+1)/3 = é‘k (modn)

for somek € {0, 1, 2}.
Leta € O, 7 f o, N = N(a) € Z[¢], and setg = a/a’ = «?a” /N. Then
N(8) = 1, henceBP*+P+D/3 = rk(modsr) for somek e {0, 1, 2}. In this casek
is given as follows. Ifa? = o' (modx), thenB = o1~P (modx) and gP°*+P+D/3 =
(P TP A=p/3 = N@=P/3 = [N /7]~ (modr). Similarly, if P = «” (modr), then
B = o P° (modr) andg(P*+PHD/3 = (NPHL)A-P/3 = NA-P)/3 = [N /7] (mod).
This result gives rise to the following theorem, which is the basis of our cryptosystem.

Theorem 2.1. Let p, q be distinct rational primes such that ¢ = 1 (mod 3, and let
7, ¢ be prime divisors of p and,gespectivelyin k. Setp = 7y, R = pg = pp, and
f = ((p2+ p+ 1(@%+q+ 1))/9. Let D € Z satisfy[D/x] = [D/y] ! # 1. Let
o € Z[8] be such thafN(a)/p] = 1, and set = a/a’. Theng’ = ¢ (modp) for
some ke {0, 1, 2}.

Proof. Without loss of generality, assume thd@ fr] = ¢, [D/v¥] = ¢2. We have
§P~1 = DP-DB = [D/x] = ¢ (modr) and, similarly,s9-1 = ¢? (mody). Hence
8P = 8 (modn) ands® = §” (mody). If o = ag + @18 + axé?, ag, a1, @ € Z, then, by
Fermat's Little Theorem,

aP =al +afsP +afs?P =ay+ a8’ +@s?=o’ (modn),
similarly «9 = o’ (mody). If B = «/d/, thenp = o> P (modn), B = ot %
(mody), hence by our previous observatiogP+PtD/3 = [N/x]! =
[N/¥] (modr), @ +a+D/3 = [N /] (mody), whereN = N(a). Since(p? + p +
/3 = (@>+ g+ 1)/3 = 1(mod3, it follows that gf = [N/y]@+a+d/3 =
[N/y] (modn) and ' = [N/y]P+PHD/2 = [N/y] (mody), so if [N/y] = ¢¥,
0<k <2, theng’ = ¢k (modp). O

Corollary 2.2. Lete d e Z satisfy3ed = 1(modf). Theng®d = ¢! 8 (modp) for
some le {0, 1, 2}.

Proof. Let3ed=1+xf,x e Z,and set =kx(mod3,0<I| <2, wherekis asin
Theorem 2.1. Then, by the theorem,

pei=ptT = (8B =" =¢'p (modp). O

The basic idea for our cryptosystem is to encode a message as /& &nit/o’ as
above and encrypt it g8 (modp). To decrypt, we compute®)? = ¢! 8 (modp) by
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Corollary 2.2. If the decrypter knows then he or she can obtafy and, finally, the
original message.

Note that there are(® — 1)/3 cubic nonresiduegnod p), so there aré4(p—1)(q —
1))/9values oD (modR) suchthafD/n] # 1andD/y] # 1.Ifwe selectsuchavalue
of D and replace) by v if [D/z] = [D/v], thenD is as desired, and approximately
44% (four-ninths) of all integers satisfy that property. The following lemma shows that
we can always find a small value Bfthat is suitable.

Lemma 2.3. Under the assumption of the Extended Riemann Hypot{tEeRid), there
exists a value D such th@D/m] # 1, [D/v] # 1,and D < 4(log R)*.

Proof. Since the set of values d (modR) with [D/x] = 1 is a proper subgroup
of (Z/RZ)* the smallesD value outside this set satisfi& < 2(log R)? by a theorem
due to Bach [1] (assuming ERH). An analogous result holdg/fdret D; (modR) be
the smallest cubic nonresidymodp) and letD, (modR) be the smallest nonresidue
(modq), so Dy, D, < 2(log R)?. If D, is also a nonresidugmodq) or D is also a
nonresidugmod p), then the result of the lemma holds wih = D; (in the former
case) oD = D; (inthe latter case). Iflp; /] = [D2/n] = 1, thenD = D; D, satisfies
the lemma. O

For our scheme, we need an efficient method to perform arithmetic mpdsla .

3. Arithmetic (mod p)

Arithmetic (modp) ink. Letp =ro+r1¢,ro.r € Z,SOR= pp =r& —rory +r2.

Then gcdrg, R) = gedr;, R) = 1. Setr = —rorl’l(modR), 0 <r < R Then
r = ¢ (modp), and any algebraic integey + x1¢ € Z[¢] satisfiesxg + x1¢ =

X (modp) wherex € Z andx = Xg + x3r (modR), 0 < x < R. Hence, arithmetic
(modp) in k reduces to rational integer arithmetimodR).

Arithmetic (modp) in L. By the above remark, any integer Zj¢][ 4] is congruent
(modp) to an integer inZ[§]. The cryptosystem in particular requires us to compute
B (modp), whereg = a/a’ anda € Z[8]. Write B = (1/N)a?a” whereN = N(a) €

Z. We will always have godN, R) = 1, soN~1 (modR) exists. Nowo?a” = ag +

a18 + ax82 (modp) for someag, a;, a» € Z. Thenp = by + by + by8? (modp) where

B = N~1a (modR) and 0< bj < Rfori = 0,1, 2. Hence;8 (modp) is associated
with a triple of rational integerghyg, bi, b,), where all three integers are between 0
inclusive andR exclusive.

Modular exponentiation ifD_. Let 8 = by + b1d + 082 (modp), bg, by, b, € Z,
and letn € Z. Theng" (modp) can be computed using a well-known exponentiation
technique (see p. 441f. of [7]).

Algorithm 3.1.

Input:,B = by + b1d + b282, b, by, b, € Z,0< g, by, b, < R.
Output:# = " (modp), 6 = to + 118 + 1282, to, t1, 1o € Z,0 < tp, t1, tr < R.
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Algorithm:
1. Seth < 1,n <« B.
2. Setb <~ n(mod2, (b=0o0r1),n <« [n/2].
3. Ifb=1, then
Setd < 68 (modp),
If n = 0, then outpu® and stop.
4. Sety < n? (modp). Goto Step 2.

Here, every product of the forip = z5 4+ 718 + 2,82 (modp) whereé = X +
X18 + X282 (modp) andg = yo + 18 + y»82 (modp) is computed using the formulas

Zy = XoYo+ X1¥2D +x2y1D  (modR),
Z1 = XoY1 + X1Yo + X2y2D (modR),
Z; = XoY2 + X1Y1 + X2¥Yo (ModR).

Clearly, this method require®(logn(log R)?) bit operations assuming standard inte-
ger arithmetic implementation, ar@i(lognlog Rlog log Rlog log logR) bit operations
under fast (e.g., FFT-based) implementation of integer arithmetic.

4. The Cryptosystem

Letp,q, R, 7, ¢, p, D, e andd be as in Theorem 2.1 and Corollary 2.2 (an algorithm
for computingr andy is given in Section 6).

Generally, in RSA-related cryptosystems, messages are assumed to be rational integers
M between 0 andR and relatively prime td&R. Note that the case g¢ll, R) # 1 reveals
the factorization oR, an extremely unlikely event if both andq are large. In fact, the
probability that an arbitrary rational integer between 0 &id not relatively prime to
R is so small that we henceforth ignore this case.

In our scheme we encode messagepaiss of rational integer§mg, m;) such that
0 < mp,m; < R and gcdmgmy, R) = 1. This results in a blocksize that is twice
as large as that of RSA. Mathematically, we associate with the megsgge;) the
algebraic integep = mg + M8 + 82 € Z[8]. The unitu/u’ uniquely determines the
pair (Mg, my):

Lemma4.l. Letwa,y € Z[¢][d] satisfyay’ = ya'. Then there exist,ac € Z[¢] such
thatay = ca.

ay’ = ya'. Multiplying and comparing the coefficients ofd,,ands? yields

D¢(¢ — D(a1Cr — @) = 0,
(¢ — D(aico — agcy) = 0,
(¢ =D&+ D(agc, — axcp) = 0,

whence followsagc, = Cpap, a1C, = C1ap, SO0ayy = Coo. O
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Corollary 4.2. Leta, y € Z[§] satisfyay’ = ya’ (modp). Thena and y (modp)
differ only by a factor inz/RZ.

It follows that normalizinge = mg + my8 + 82 such that the coefficient @ is 1
guarantees that/u’ uniquely determines the coefficientg andm;.
Next, we need to ensure that géd( ), R) = 1.

Lemma4.3. If ag, a;, @ € Z, gcdag, R) = 1, thengcdN, R) = 1, where N =
N(ao + a18 + a8?).

Proof. Supposep | N, i.e., p dividesN. Thenx | ae’a” in O, wherea = a9 +
a18 + a»82. The inertness ot in O, impliesz | «” in O, forsomei € {0, 1, 2}. Since
7 = 7’, itfollows thatr | «® foralli € {0, 1,2}, hencer |« + o’ +a” = 3ayin OL.
Thusp = =7 | 982 in O_ and hence iiZ, contradicting gctho, R) = 1. O

Since u does not necessarily satisfiN{u)/p] = 1 as required by Theorem 2.1,
the designer needs to find a suitable facioe Z[§] such that N(un)/p] = 1. Set
S={(s5% €2°|0<s < Rands =0orgcds,R) = 1fori =0,1,2,
[N(so + $18 + $6%)/p] # 1}. The following lemma shows that there are alm§a3
elements irS.

Lemmad4.4. Fori = 0,1,2,setSi(p) = {(X, Y, Z2) € z3 |0<Xx,y,z< p-—-1,
(X, ¥.2) # (0,0,0), [N(x+ Y8 + z8%) /] = ¢'}. Then|Si(p)| = (p* — 1)/3 for
i=012.

Proof. Sincer isinertinO., the residue fieléf = O_ /7O, is a finite field ofp® ele-
ments. Letw be a generator of the cyclic multiplicative groep= F\0. Thenforany €
O, suchthaty = w (modx), we have N (w) /7] = ¢¥for somek, wherek £ 0 (mod 3,
asw is a cube irF otherwise. Letr € Z[§], thena = »¥*" (modr) for somel, n € Z
suchthatO< | < (p*—4)/3and0<n < 2,50 N(«)/7] = [N(w)/7]" = ¢k". Soa €
Si(p) ifand only ifi = kn(mod 3, and the three distinct values 0, 1, 2xaforrespond to
the three distinct values B, 2k (mod 3 of i. Since there are exactlp®—1) /3 valuesy =
3" (modr) (0 <1 < (p® — 4)/3), the result follows. O

Suppose now thatN(w)/p] = ¢™, m € {0, 1, 2}, for a message.. Choosep € S
such that N(p)/p] = ¢? wheree = 1 or 2. Then

I:N(szgm):| — I:N(M)] I:N(go)]zsm — §m+282m =1
o o p

ase? = 1 (mod 3. ¢ will be part of the public key. In practice, we would wish to choose
¢ =S+ S18 + 82 so that thes (i = 0, 1, 2) are small. In fact, it is easy to fingd so
thats; = 1 ands, = 0, i.e.,¢ = s+ § where O< s < Rand gcds, R) = 1:
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Lemma4.5. Fori =0,1,2,setTi(p)={xeZ|1<x<p-1[x3+D)/n] =<'}
Then

‘IT(D)I - —‘ ENGY)
Proof. Fori € {0,1,2}andx € {1,2,..., p— 1}, set

= (P52 (P52)-¢)

thenh; (x) = 0ifand only if [(x3+ D)/x] % ¢', andh; (x) = (' ="' — ¢ =
3¢2 otherwise. So, sincg*t 4+ ¢~ = —¢':

1 =t
1T (p)| = @;hm

! x3+D2+i x>+ D L p-1

T 3¢ 14 3 T 3
By Theorem 5.41 on p. 225 of [9], we have for any nontrivial cubic charagter
(modp):

p-1
Y x(*+D)| <2/p.
x=1

Since both the residuacity symbol and its square are cubic charéoied), it follows

S

Note that the bound (ﬁﬁ can be improved t¢2,/p + 7)/3 using results from [3],
but the proof is somewhat longer, and, for our purposes, the cor@ﬁsmnore than
sufficient.

The above lemmaimplies that abouttwothirdsofail Z,0 < s < R,gcds, R) = 1,
satisfy [N(p)/m] # 1, wherep = s+ §. We would hope to find a suitable value ©f
that is small.

We are now ready to present our scheme.

+

g 1
"T(p)"T < Z[ 3

><

1
3
4
3

< O

3%

Key Generation

1. Choose two distinct large rational primpsq such thatp,q = 1(mod 3. Set
R=pgandf = ((p?+ p+ 1(a%+q+ 1))/9.

2. Find prime divisorsr, ¢ in Z[¢] of p andq, respectively. Computg = nyy =
ro+rig;ro,rie”z.
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FindD € Z suchthatO< D < R,gcdD, R) = 1, and D/7] = [D/v]~ # 1.
Chooseec Z,0<e < Randsolve8d=1(modf)ford,0<d < f.

Findg =s+ 8 € Z[§] suchthat 0< s < R, gcds, R) = 1, and N(¢)/p] # 1.
Set the public key t&, = (D, s, ro, r1, €) and the secret key tds = {d}. Discard
p,q, f,m,andy.

o0k w

Clearly, the factorization oR enables a cryptanalyst to computeand solve the
congruence in Step 4, thereby retrieving the secretkey

NotethatR = r2—ror1+r2 > r2—|rorq|+r2 = (|ro|—Ira1))2+Iror1| > |ror1|. Hence,
if a user manages to find a small valuespthe public key requires only marginally more
storage than a public RSA key. Sindean be as large ak, the secret key may require
up to 2logR bits of memory, i.e., twice as much as a secret RSA key.

Precomputatiorineed only be done once per key):

1. Computg =ror;* (modR),0 <1 < R
2. ComputeN, = N(p) =s®+ D and [N, /p] = ¢, e =1or2.
3. ComputeN? = qul (modR), 0 < N < R.

Encryption Encrypt a messagémg, m;), 0 < mg,m; < R, gcdmgmg, R) = 1 as
follows:

1. Setu = mg + My + 82, N, = N(u) = m3 + m3D + D? — 3mom; D.

2. Compute N,./p] = ¢™ me {0,1,2}, andN = N * (modR), 0 < N < R.

3. Seta = pue*m(modp) and B = a/o’ = (N;)ZsmN;jaza” = by + b +
b252 (mod,o), 0<bg, by, b < R.

4. Fori = 0,1,2, computer'g(modp). Sort the triples(ribg, riby,riby)
(modR) in lexicographical order, obtaining a corresponding ordering of the values
r'g,i =0,1,2;say,Bo < p1 < B ldentifyn € {0, 1, 2} such thaip = ;.

5. Computes® = byY + b{®s + by’ 52 (modp), 0 < b® < Rfori =0, 1, 2.

6. Findl = min{i | b® % 0(modR)} € {0, 1, 2}.
Computeb* = (b®)~1 (modR), 0 < b* < R.
SetEy = b*b{) 1) mous (MOAR), Ez = b*b{{), 1ea3 (MOAR), 0 < Ey, Ez < R,
where all subscripts are taken to be between 0 and 2.

7. TransmitC = (Eq, E», |, m, n).

Step 7 shows that ciphertexts in our scheme are pairs of integers betweeRJastd
like plaintexts. Note that we will almost always hdve 0, SoE; = (bée))*lbie) (modR),
E» = (b)) 16 (modR).

A rapid method for computing residuacity symbobé/[p] is given in Section 6. For
N e Z, computing N/p] and N~ (modR) can be combined into a single algorithm.

Decryption Upon receivingC = (Eq, Ep, |, m, n):

1. If| =0, then set = 1+ E;8 + E»82.
If1 =1, then set = E, + § + E162.
If | =2, then set = E; + E»8 + 82
ComputeN ().
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N

. ComputeN; = N(§)"*(modR), 0 < N} < R. Then comput® = (Ng$3)d =
to + t18 + 1262 (modp), 0 < to, t1, t, < R.

3. Fori = 0,1,2, computer'd (modp). Sort the triples(r'to, r'ty, r't,) (modR)
in lexicographical order, obtaining a corresponding ordering of the vallées
(I =0,1 2); Say,eo < 01 < 6o. Identify@n.

4. Computen = 6n(¢'/9)*™ = a((9)?9"NDZ*™ = e + €18 + % (modR),
O<e.e,& <R

5. Define the matrix

M

eg—1 eD—r e Dr2
e er—1 eDr?
& er  er?-1

and solve the system of linear congruences given by

X
M( y)zo (modR)
z

for x, y, X. SetMy = xz * (modR), M; = yz ! (modR), 0 < mg, m; < R.

Theorem 4.6. Encryption and decryption as given above are well-defined operations
Furthermore (Mg, M1) = (Mg, My).

Proof. Consider first the encryption algorithm. We havé(§)/p] = 1, so by Corol-
lary 2.2, 8%9 = ¢*g (modp) for somek e {0, 1, 2}. It is easy to see that the triples
(r'bo, r'by, riby) (modR) in Step 4 are all distinct, so is well defined. Furthermore,
one of thebi(e) in Step 6 must be nonzero, d*, E;, andE; are also well defined.

Now consider the decryption algorithm. Step 1 yields= b*8°(modp), hence
N@E = (b)*(modR) and N; in Step 2 exists. Furthermore(,Ngg?’)d =
(Ng‘(b*)3ﬁ:“e)d = g% = kg (modp) for somek e {0, 1, 2} by Corollary 2.2. So
the ordered sequenc, 6:, 6,) is the same as the sequerig, 81, B2) in Step 4 of the
encryption routine. Thereforé, = B, = B = a/a’ = ue®™ /1 (¢)*Mandn = /.
By Corollary 4.2 mg andm; are uniquely determined and are computed as follows. The
congruencex + y8 + 282 = (e + €18 + &8%)(x + yré + zr?82) (modp) is equivalent
to the system of congruences given by

X
M( y)so (modR)
z

which is obtained by multiplying and comparing coefficients o8,Jands? (note that
detM) = N(n) — 1 = 0(modR)). Again by Corollary 4.2x + y§ + 28> = Fpu
Fmg + Fmy8 + F82 (modp) for someF e Z. Hence,F = z(modR) and m
xZ 1 = My (ModR), my = M; (ModR). Since 0< My, My, Mg, My < R, it follows that
My = mo andm; = ml. O
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Clearly, this scheme can also be used for generating signatures, since Theorem 4.6
still holds if e andd are exchanged.

5. Security
For the security analysis of our scheme, we require a number of lemmas.
Lemmab5.1l. Leta = ay + a8 + 8% y = Gy + &b + 82, ag,a1,C,C1 € Z,

gcd@arcoty, R) = 1. If o3(y)® = y3()? thena = «; for some i€ {0, 1,2}
wherea; = f,"!ys" and

1 if i =0,
fi=1c if =1,
Co if 1 =2
Henceo; = a0+ & 18 + 82 where
Co if i =0, C if i =0,
ao=1Dc?t if =1, a1=1cct if i=1
Deicgt  if i =2 Dg,t  if i =2

Proof. If (ay")?® = (ya)3, then(ay’ — ya')(ay’ — ¢ya')(ay’ — ¢?ya’) = 0, hence
ay’ = ¢'yo’ for somei € {0, 1, 2}. Comparing coefficients of 5, ands? yields

a0Co + a1D¢? 4+ D¢ = agco¢ + D¢t 4+ ¢ D2,
a0C1L + a1Co + D2 = apcit' 4+ a4 D2,
aol? +aCil +Co = apl' +acrg' T+ cog' 2

Solving forag anda; for eachi € {0, 1, 2} yields the result. O

Corollary 5.2. Leta, y be as in Lemm&.1. If «3(y")* = y3(')® (modp), then
a=o = flys (modn), a = o5 = f'y8! (mody) for some i j € {0, 1, 2}.

Lemma5.3. Leta, y be asin Lemm&.1and leta®(y')® = y3(’)® (modp). Then
there exists ie {0, 1, 2} such thatx = o = fflys' (modp) if and only if[N(«)/p] =
[N()/p].

Proof. By Corollary 5.2, = f'ys' (modrn), @ = f'y¢! (mody) for some
i,j € {0,1,2}, so N(@) = f°N(y)D'(modp) and N(@) = f°N(y)D!
(modaq). Therefore N («) /] = [N(y)/7][D/x]' and N («)/¥] = [N(y)/¥1[D/¥ 1.
Since D/v] = [D/x]7%, it follows that [N(a)/p] = [N(y)/pl[D/x]'~}. Now
[D/7] # 1,50 N(a)/p] =[N(y)/p]ifand onlyifi = j. O

Lemmab5.4. Lety = ¢y + C18 + 82, Co,C1 € Z, gedCocy, R) = 1, [N(y)/p] # 1.
Then there are exactly three solutioms= ap + a8 + 82 to the congruence3(y’)® =
y3(@)® (modp) such that @, a; € Z, gcd@ar, R) = 1,and[N(«)/p] = 1.
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Proof. By Corollary 5.2 = aj = f'y8' (modn), « = ai = f;'y8! (mody) for
somei, j € {0, 1, 2}. From the proof of Lemma 5.3N(«)/p] = [N(y)/p][D/7]~}.
We must have # | as otherwise N(«)/p] = [N(y)/p] # 1. Since D/n] # 1,
there are exactly three paifis j), 0 <i, j < 2suchthat # j and [N(y)/p][D/7]
=1. O

Corollary 5.5. Leta = ag + a18 + 8%, y = Co + 18 + 82 be as in Lemm&.4. For
k € {0,1,2},lety = cco+ Cc18 + 82 where

co (modR) if k=0,
o= {Dc;' (modR) if k=1,
Dcicy'  (modR)  if k=2,

cc;t (modR)  if k=1,
Dcy'  (modR)  if k=2

Then p= gcd(ay — Gi o, R) or p = gcd(ay — Gi 1, R) for someie {0, 1, 2}.

¢c; (modR) if k=0,
Ck1 =

Proof. w = f 'y (modp) where

c1  (modR) if k=1,
co (modR) if k=2

1 (modR) if k=0,
f =

By Lemma 5.4,a = y (modr), o = y; (mody) wherei, j € {0, 1,2} satisfy
[N(y)/pl[D/x]'~! = 1. In particularj # j. It follows that

8 =Co (modp), a=¢1 (modp),
a = Cjo (modg), ar =¢j1  (modq).

If Go £ ¢ o(modp), thenp | @ — Co, 1 @8 — G, SOP = gcd@ — G o, R).

If o = ¢jo(modp), thenci 1 # ¢ 1(modp) as otherwise« = y; (modp),
i.e., i = |, contradicting Lemma 5.3. Hence by analogous reasonmg—
gcda; — G 1, R). O

Corollary 5.5 shows that knowledge of two algebraic integerg satisfying the
conditions of Lemma 5.4 yields the factorization of the moduRus

Lemmab5.6. Lety = co+C18+82,Co, ¢ € Z, gcdCocy, R) = 1,and[N(y)/p] # 1.
Let B, Ey, |, n be the quantities defined by applying Stégof the encryption method
to# = y/y’ in place ofB. Then there exists = ay + a;6 + 8% such that g, a; € Z,
gcdagas, R) = 1, [N(a)/p] = 1, 3(y)® = y3(@)® (modp), and the ciphertext
corresponding to the messa@m®, a;) is C = (Eq, E, I, 0, n).

Proof. It suffices to show that one of the three solutions given by Lemma 5.4 corre-
spondsto the desired ciphertext. bgbe any one of the solutions, then all three solutions
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are given byy; = gflaoai (modp) for suitableg; € Z,i = 0, 1, 2. Note thatm = 0
in the ciphertexts corresponding to all thegeLet 8 = ao/a and letgy, 1, B2 be the
values obtained in Step 4 of the encryption process. Singg = (ao/a(g);—‘ (modp)
fori =0,1,2, we see thaf(a; /o) | | =0, 1,2} = {Bo, B1. B2}. Identify o; such that
Bn = «i /o] and setr = «;. Thena andy have the same value afin their respective
ciphertext.

Now, by Corollary 5.2¢ = f;~*yé' (modr), « = f;"'y8! (mody) for somei, j €
{0, 1,2} and suitablef;, fj € Z, sof, = 6¢~' (modr) and g, = ¢~ (mody).
Therefore, Step 6 of the encryption algorithm yields the same valuesgaf and E;
for both 8, and6. O

Itis now possible to show that the problem of breaking our system is equivalent to the
difficulty of factoring the moduluR in the following sense.

Theorem 5.7. If Ais an algorithm that decrypts any ciphertext€(Eg, E, 1, m, n),
then.A can be used to factor.R

Proof. Lety = ¢y + ¢18 + 82 be such thaty, ¢; € Z, gedcocy, R) = 1, and
[N(y)/p] # 1 (note thaty as defined in Step 5 of the key generation is a possible
candidate fory). Seté = y/y’ andm = 0 (a false value fom in the ciphertext
corresponding to the “messag&b, c1)). Apply Steps 4-6 of the encryption routine
to 0, obtaining a ciphertex€ = (Ei, Ez, 1,0, n). Applying A to C yields a “mes-
sage”(ag, a;) Wherea = ag + a;8 + 82 satisfies N(«)/p] = 1 by Lemma 5.6. For
k=0,1, 2, computey = Cco+ Ck.15 + 52 where they, are defined as in Corollary 5.5.
Then by the same corollarp = gcd(@ — ¢ 0, R) or p = gcda; — ¢i 1, R) for some

i €{0,1,2}. O

If A decrypts a fraction Ak of all ciphertexts, we expect to be able to fack®using
A afterk trials at a value of.

Unfortunately, the method described in Theorem 5.7 can be used for a chosen cipher-
text attack, if an adversary is able to convince a decrypter to decipher the ciphertext
corresponding to an algebraic integewhere N(y)/p] # 1 and reveal the correspond-
ing plaintext.

6. Algorithms

In this section we give two algorithms required for implementing our cryptosystem. The
first algorithm computes the residuacity charactgd], «, w € Z[¢], without making
use of the factorization ab in Z[¢]. Both the method and the underlying tools are
analogous to those used for computing Jacobi symbdfs(see [19], [18], and [14]).
The second algorithm finds for a rational prippe= 1 (mod 3 a prime divisorr in Z[¢]
(see [14]).

An algebraic integek = kg + ki, ko, ki € Z, is said to beprimary if kg =
0(mod 3 andk; = 2(mod 3. It is easy to see that, for amy € Z[¢], exactly one of
+i, +¢k, and=+¢ 2 is primary. Primary integers, o € Z[¢] that are relatively prime
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satisfy thecubic law of reciprocityf«x /o] = [w/«]. Thecomplementariegive the values
of the residuacity character [w] for certain special values af, namely f1/w] = 1,
[¢/w] = ¢YIN@-D and [(1 - ¢)/w] = ¢@d®o+D wherew = wq + w1 is primary
(see pp. 113ff. of [6]). Note thatZ ¢ is the only prime divisor irZ[¢] of 3.

Computing residuacity characters For k, w € Z[¢] relatively prime, we can now
compute k/w] as follows. First, we find the unique primary integér= +¢'w, i €
{0, 1, 2}. Thenwe compute, A € Z[¢]suchthak = gw+A andii < k. This process
is calledEuclidean divisiorand is the analogue iA[¢] to division with remainder in
Z. We describe below how to find andi. Next, we extract powers of 4 ¢ from A to
obtaini such thatk = A(1— ¢)! for somej > 0 and 1— ¢ t 4 in Z[¢] (or equivalently,

3¢ i in Z). Finally, we determine the unique primary inte@e& +c%h, k € {0, 1,2},
and apply the cubic law of reciprocity tﬁ,{&]. Then from the complementaries,

B [{ }} -0 - BT 1

where® = o + w1Z. We can now repeat the procedure wisiyk] in place of /).
Sincexk is a positive rational integer which strictly decreases in each iteration, the
algorithm must eventually terminate with a primary value sfich thakx = 1,i.e..x =

—¢, atwhich point k /] can be evaluated directly from the appropriate complementary.

It can be shown that the total number of iterations is essentially the same as the number
of division with remainder steps required to compute@ed ww), i.e., O(log ww).

K
@

>

EuclideandivisionirZ[¢]. Forx,w € Z[K], integersp, A € Z[¢]suchthak = pw+A
andix < ww can be found as follows. Defing, x; € Q by k/w = k®/ww = X+ X1£.
Setyy = Ne(Xp), Y1 = Ne(xp), where forz € Q, Ne(z) denotes the nearest rational
integer toz, i.e.,|z— Ne(2)| < % Setp = Yo+ Y1¢ andir = k — gw. Theng, A € Z[],
Kk = ¢pw + A, and
A K K 2 2 3
— = <— —§0>(— —w) =X —Yo) — Xo— Yoo — YD+ (X1 —y)° < 3,
ww w w
SOAA < %wa < ww. We point out that a more general, but slightly more complicated
technique due to Lenstra [8] yields. < %wa
If we setM = max«, wo}, then Euclidean division required((log M)?) bit op-
erations using standard arithmetic addog M log log M log log logM) bit operations
using fast arithmetic. Hence in the cryptosystem, the valuBl &}/ o] can be computed
in O((log R)®) standard bit operations and @((log R)?log log Rlog log logR)) fast
bit operations.

Computing greatest common divisors and prime divisoiBhe Euclidean division tech-
nigue can be used to compute greatest common divis@§zihin the same fashion as
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division with remainder irZ generates rational gcd’s. Forw € Z[¢], simply perform
Euclidean division repeatedly, until the curent remainder is zero, at which point the
previous remainder yields the greatest common divisar ahdw (unique up to sign

and factors®, k e {0, 1, 2}). The gcd is found afte©(log maX«x, ww}) Euclidean
division steps.

In this way, a prime divisorr of a rational primep = 1(mod 3 can be found by
computingr = gcd(p, ¢ — r) wherer is defined as in Step 1 of the precomputation in
Section 4. This require® (log R) Euclidean divisions.

Asisthe case with the rational Euclidean algorithm, this gcd algorithm can be extended
to yield a pair of integer§, n € Z[¢] such thatké + wn = gcdk, w). If we compute
[N/p] for arational integeN (modR), we can comput®l—* (modR) at the same time.
Simply keep track of the outputs of each Euclidean division and use them to compute
a representatiolNé + pn = gcd(N, p) = +¢* for somek e {0, 1, 2}. Multiplying
this equation by its complex conjugate yield€£E + Népn + NEpn + Ry = 1,
so the inverse oN (modR) is the rational integeN£& + £p7 + £ pn (ModR). This
computation does not increase the overall asymptotic complexity of the residuacity
symbol computation.

The above results show that the overall asymptotic bit complexity of encryption is
O((log R)®) using standard arithmetic ar@(log RloglogRlogloglogR) using fast
arithmetic, regardless of the size of the encryption expoadrur large values o, this
is the same as RSA; however, if a small encryption exponent is used (as is commonly
done with RSA), then this is worse than RSA by a factor offogince the decryption
exponent is usually of size 2 |dg (rather than lodR for an RSA exponent), decryption
of our system requires slightly more than twice the effort of RSA decryption, although
asymptotically their respective complexities are identical and equal to the bit complexity
of encryption.
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