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Abstract. This paper presents an RSA-like public-key cryptosystem that can only be
broken by factoring its modulus. Messages are encoded as units in a purely cubic field,
and the encryption exponent is a multiple of 3. Similar systems with encryption powers
of the form 2e as well as 3e were designed by Rabin, Williams, and Loxton et al. Our
scheme is more general than previously developed methods in that it allows a broader
class of primes for its modulus, namely any pair of distinct primesp,q ≡ 1(mod 3)
rather thanp ≡ 4(mod 9) andq ≡ 7(mod 9). The system employs several number
theoretic techniques in the cyclotomic fieldQ(

√−3), including Euclidean division,
rapid evaluation of cubic residuacity characters, and the computation of prime divisors
of rational primes.

Key words. Public-key cryptosystem, Purely cubic field, Cubic residuacity character,
Euclidean division.

1. Introduction

While RSA [12] is undoubtedly the most well-known and widely used public-key cryp-
tosystem, the question of whether knowledge of the factorization of the modulusR is
required in order to break RSA remains open. This problem has led to the development of
a variety of public-key systems whose security isequivalentto the difficulty of factoring
the modulus, i.e., for which it is necessary to factor the modulus in order to retrieve
plaintext from ciphertext without using the secret key. The basic idea underlying all
these systems is to replace the public RSA encryption exponente by λe, whereλ is a
small prime (usually,λ = 2 or 3, but larger values ofλ are possible). Upon raising a
ciphertext to the secret exponentd, the decrypter obtains not the original message, but
its λth power. As a result, the encrypter needs to provide a clue indicating which of the
λth roots (modR) of this power is the correct message.

Rabin was the first to make use of this idea (withλ = 2) in his well-known signature
scheme [11]. Two quadratic cryptosystems as well as a cubic scheme were developed
by Williams [16], [17], [18] (see also [13] in connection with [17]). A different cubic
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scheme is due to Loxton et al. [10]. All these methods utilize arithmetic in some quadratic
number field, with the exception of [16] which, like RSA, uses modular arithmetic in
the rational integers. Recently, Scheidler and Williams extended the ideas of [18] to
cyclotomic fields of degree higher than 2 and designed a cryptosystem with exponent 5e
[15], [14].

All the above schemes were shown to be as difficult to break as it is to factor their
moduli. Since the proof of this result is of a constructive nature and can thus be converted
into a chosen ciphertext attack, care must be taken when using these systems. While the
overall asymptotic complexity of these methods is the same as that of RSA, the algorithms
tend to be more involved, both mathematically and computationally. Furthermore, all
the above techniques, with the exception of [17], impose restrictions on the primes used
in the modulus. Hence, there is a price to pay for the additional information regarding
the security of these methods compared with that of RSA.

This paper presents an RSA-like public-key cryptosystem with exponent 3e, (i.e.,
λ = 3), that is based on arithmetic in a purely cubic field. The ideas are loosely based on
Williams’s quadratic scheme [17]. The modulusR is the product of two distinct primes
p,q ≡ 1(mod 3). This means that our method allows a wider class of primes than the
cubic techniques [18], [10] which are restricted top ≡ 4(mod 9) andq ≡ 7(mod 9)
(the scheme in [14] allowsp,q ≡ 4 or 7 (mod 9)). Like previous designs, our method’s
security is equivalent to the difficulty of factoringR in the above sense. The blocksize
is twice as large as that of previous schemes, though no message expansion occurs. The
public key is essentially the same size as an RSA key, and the complexity of encryption
is the same as that of RSA for large encryption exponents, but worse by a factor that
is linear in the size of the modulus for small encryption exponents. The secret key
tends to be twice as large as an RSA key, thereby making decryption roughly twice as
expensive as RSA decryption. Other drawbacks of our system are similar to those of
comparable techniques, in particular, its vulnerability to a chosen ciphertext attack and
its rather involved mathematical machinery. Consequently, the scheme loses some of
its practicality over RSA, but the underlying number theoretic principles and methods,
such as Euclidean division and rapid computation of cubic residuacity symbols, are of
mathematical interest.

The paper is organized as follows. The next section outlines the mathematical basis
for our cryptosystem. Section 3 discusses modular arithmetic in purely cubic fields and
Section 4 presents the scheme itself. Section 5 analyzes the method’s security. In Section 6
we give the underlying algorithms in more detail. Specifically, we present techniques
for Euclidean division, evaluating cubic residuacity characters without factoring, and
computing prime divisors of rational primes in the cyclotomic field of degree 2.

2. Notation and Preliminaries

For a brief summary on purely cubic fields, see, for example, p. 198 of [4]. Let:

D be a cube-free rational integer,
δ be the unique real cube root ofD, soδ = 3

√
D,

K = Q(δ) the purely cubic field generated byδ, (K : Q) = 3,
ζ a nontrivial cube root of unity,ζ = (−1±√−3)/2,
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L Q= (δ, ζ )

k = Q(ζ)K= Q(δ)

Q

2 3

3 2

Fig. 1. Lattice diagram of field extensions.

k = Q(ζ ) the cyclotomic field generated byζ , (k : Q) = 2,
L = K(ζ ) = k(δ) = Q(δ, ζ ) the Galois closure ofK , (L : Q) = 6.

Here, (F : Q) denotes the degree of a fieldF overQ. A diagram of these field extensions
is displayed in Fig. 1. Double lines indicate normal extensions and the numbers next to
the lines give the relative degree of the extension.

For a fieldF (F = k,K , or L), denote the ring of integers inF by OF. Clearly,
Ok = Z[ζ ] = Z ⊕ Zζ , OK ⊇ Z[δ] = Z ⊕ Zδ ⊕ Zδ2, andOL ⊇ Z[ζ ][δ] = Z[ζ ] ⊕
Z[ζ ]δ ⊕ Z[ζ ]δ2. Equality is not necessarily satisfied for the latter two inclusions (see
pp. 136ff. of [2]), but in our cryptoscheme, we only consider algebraic integers of the
form a0+ a1δ + a2δ

2 wherea0, a1, a2 ∈ Z[ζ ].
The Galois groupG of L overQ has two generatorsσ, τ defined by

ζ τ = ζ, ζ σ = ζ 2, δτ = ζ δ, δσ = δ.

Here,σ is the restriction of the complex conjugation toL . G is isomorphic to the
symmetric groupS3; the generators ofG satisfy

σ 2 = τ 3 = (στ)2 = 1.

For θ ∈ L , we write in shortθσ = θ , θτ = θ ′, θτ 2 = θ ′′.
L is a normal extension of degree 3 overk whose Galois group is generated byτ .

For θ ∈ L , the relative norm ofθ is NL |k(θ) = θθ ′θ ′′ ∈ k. If θ ∈ K , thenNL |k(θ) =
NK |Q(θ) ∈ Q. Write N(θ) for NL |k(θ).

Let p be a rational prime such thatp does not divideD and p ≡ 1(mod 3). Since
k = Q(

√−3) and the Legendre symbol(−3/p) = 1, p splits into two primes inZ[ζ ],
i.e., p = ππ whereπ is a prime inZ[ζ ].

For anyθ ∈ Z[ζ ], we haveθ p ≡ θ (modπ), hence ifθ is not a multiple ofπ , there is
a uniquek ∈ {0, 1, 2} such thatθ(p−1)/3 ≡ ζ k (modπ). Thecubic residuacity character
[θ/π ] is defined to beζ k. For distinct primesπ,ψ ∈ Z[ζ ], we set [θ/πψ ] = [θ/π ][θ/ψ ].
It is well known that forθ, η, ξ ∈ Z[ζ ] relatively prime, [θη/ξ ] = [θ/ξ ][η/ξ ] and
[θ/ξ ] = [η/ξ ] if θ ≡ η (modξ), i.e.,ξ dividesθ − η in Z[ζ ] (see p. 112 of [6]).

Any prime divisorπ of p in Z[ζ ] splits into three distinct prime idealsP, P′ =
Pτ , P′′ = Pτ 2

in OL if [ D/π ] = 1, i.e., if D is a cubic residue (modp). π is inert in
OL if [ D/π ] 6= 1 (see [5]). In the latter case,πτ = π , and the mapτ (modπ) on OL
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is theFrobenius automorphism, given by exponentiation byp, soθ p ≡ θ ′ (modπ) or
θ p ≡ θ ′′ (modπ) for all θ ∈ OL . HenceN(θ) ≡ θ p2+p+1 (modπ) in OL . In the special
case whereN(θ) ≡ 1(modπ), it follows from the inertness ofπ in OL that

θ(p
2+p+1)/3 ≡ ζ k (modπ)

for somek ∈ {0, 1, 2}.
Let α ∈ OL , π - α, N = N(α) ∈ Z[ζ ], and setβ = α/α′ = α2α′′/N. Then

N(β) = 1, henceβ(p
2+p+1)/3 ≡ ζ k (modπ) for somek ∈ {0, 1, 2}. In this case,k

is given as follows. Ifα p ≡ α′ (modπ), thenβ ≡ α1−p (modπ) andβ(p
2+p+1)/3 ≡

(α p2+p+1)(1−p)/3 ≡ N(1−p)/3 ≡ [N/π ]−1 (modπ). Similarly, if α p ≡ α′′ (modπ), then
β ≡ α1−p2

(modπ) andβ(p
2+p+1)/3 ≡ (N p+1)(1−p)/3 ≡ N2((1−p)/3) ≡ [N/π ] (modπ).

This result gives rise to the following theorem, which is the basis of our cryptosystem.

Theorem 2.1. Let p,q be distinct rational primes such that p,q ≡ 1(mod 3), and let
π,ψ be prime divisors of p and q, respectively, in k. Setρ = πψ , R= pq = ρρ, and
f = ((p2 + p+ 1)(q2 + q + 1))/9. Let D ∈ Z satisfy[D/π ] = [D/ψ ]−1 6= 1. Let
α ∈ Z[δ] be such that[N(α)/ρ] = 1, and setβ = α/α′. Thenβ f ≡ ζ k (modρ) for
some k∈ {0, 1, 2}.

Proof. Without loss of generality, assume that [D/π ] = ζ , [D/ψ ] = ζ 2. We have
δ p−1 ≡ D(p−1)/3 ≡ [D/π ] ≡ ζ (modπ) and, similarly,δq−1 ≡ ζ 2 (modψ). Hence
δ p ≡ δ′ (modπ) andδq ≡ δ′′ (modψ). If α = a0+ a1δ + a2δ

2, a0,a1,a2 ∈ Z, then, by
Fermat’s Little Theorem,

α p ≡ ap
0 + ap

1 δ
p + ap

2 δ
2p ≡ a0+ a1δ

′ + a2δ
′2 ≡ α′ (modπ),

similarly αq ≡ α′′ (modψ). If β = α/α′, then β ≡ α1−p (modπ), β ≡ α1−q2

(modψ), hence by our previous observation,β(p
2+p+1)/3 ≡ [N/π ]−1 ≡

[N/ψ ] (modπ), β(q
2+q+1)/3 ≡ [N/ψ ] (modψ), whereN = N(α). Since(p2 + p +

1)/3 ≡ (q2 + q + 1)/3 ≡ 1(mod 3), it follows that β f ≡ [N/ψ ](q
2+q+1)/3 ≡

[N/ψ ] (modπ) andβ f ≡ [N/ψ ](p
2+p+1)/3 ≡ [N/ψ ] (modψ), so if [N/ψ ] = ζ k,

0≤ k ≤ 2, thenβ f ≡ ζ k (modρ).

Corollary 2.2. Let e, d ∈ Z satisfy3ed ≡ 1(mod f ). Thenβ3ed ≡ ζ lβ (modρ) for
some l∈ {0, 1, 2}.

Proof. Let 3ed= 1+ x f , x ∈ Z, and setl ≡ kx (mod 3), 0≤ l ≤ 2, wherek is as in
Theorem 2.1. Then, by the theorem,

β3ed ≡ β1+x f ≡ (β f )xβ ≡ ζ kxβ ≡ ζ lβ (modρ).

The basic idea for our cryptosystem is to encode a message as a unitβ = α/α′ as
above and encrypt it asβ3e (modρ). To decrypt, we compute(β3e)d ≡ ζ lβ (modρ) by
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Corollary 2.2. If the decrypter knowsl , then he or she can obtainβ, and, finally, the
original message.

Note that there are 2(p− 1)/3 cubic nonresidues(modp), so there are(4(p−1)(q−
1))/9 values ofD (modR) such that[D/π ] 6= 1 and [D/ψ ] 6= 1. If we select such a value
of D and replaceψ by ψ if [ D/π ] = [D/ψ ], then D is as desired, and approximately
44% (four-ninths) of all integers satisfy that property. The following lemma shows that
we can always find a small value ofD that is suitable.

Lemma 2.3. Under the assumption of the Extended Riemann Hypothesis(ERH), there
exists a value D such that[D/π ] 6= 1, [D/ψ ] 6= 1, and D≤ 4(log R)4.

Proof. Since the set of values ofD (modR) with [D/π ] = 1 is a proper subgroup
of (Z/RZ)∗ the smallestD value outside this set satisfiesD ≤ 2(log R)2 by a theorem
due to Bach [1] (assuming ERH). An analogous result holds forψ . Let D1 (modR) be
the smallest cubic nonresidue(modp) and letD2 (modR) be the smallest nonresidue
(modq), so D1, D2 ≤ 2(log R)2. If D1 is also a nonresidue(modq) or D2 is also a
nonresidue(modp), then the result of the lemma holds withD = D1 (in the former
case) orD = D2 (in the latter case). If [D1/ψ ] = [D2/π ] = 1, thenD = D1D2 satisfies
the lemma.

For our scheme, we need an efficient method to perform arithmetic moduloρ = πψ .

3. Arithmetic (modρ)

Arithmetic (modρ) in k. Let ρ = r0 + r1ζ , r0, r1 ∈ Z, so R= ρρ = r 2
0 − r0r1 + r 2

1.
Then gcd(r0, R) = gcd(r1, R) = 1. Setr ≡ −r0r

−1
1 (modR), 0 < r < R. Then

r ≡ ζ (modρ), and any algebraic integerx0 + x1ζ ∈ Z[ζ ] satisfiesx0 + x1ζ ≡
x (modρ) wherex ∈ Z and x ≡ x0 + x1r (modR), 0 ≤ x < R. Hence, arithmetic
(modρ) in k reduces to rational integer arithmetic(modR).

Arithmetic (modρ) in L . By the above remark, any integer inZ[ζ ][δ] is congruent
(modρ) to an integer inZ[δ]. The cryptosystem in particular requires us to compute
β (modρ), whereβ = α/α′ andα ∈ Z[δ]. Write β = (1/N)α2α′′ whereN = N(α) ∈
Z. We will always have gcd(N, R) = 1, so N−1 (modR) exists. Nowα2α′′ ≡ a0 +
a1δ + a2δ

2 (modρ) for somea0,a1,a2 ∈ Z. Thenβ ≡ b0+ b1δ + b2δ
2 (modρ) where

βi ≡ N−1ai (modR) and 0≤ bi < R for i = 0, 1, 2. Hence,β (modρ) is associated
with a triple of rational integers(b0, b1, b2), where all three integers are between 0
inclusive andR exclusive.

Modular exponentiation inOL . Let β ≡ b0 + b1δ + b2δ
2 (modρ), b0, b1, b2 ∈ Z,

and letn ∈ Z+. Thenβn (modρ) can be computed using a well-known exponentiation
technique (see p. 441f. of [7]).

Algorithm 3.1.

Input:β = b0+ b1δ + b2δ
2, b0, b1, b2 ∈ Z, 0≤ b0, b1, b2 < R.

Output:θ ≡ βn (modρ), θ = t0+ t1δ + t2δ2, t0, t1, t2 ∈ Z, 0≤ t0, t1, t2 < R.
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Algorithm:
1. Setθ ← 1, η← β.

2. Setb← n (mod 2), (b = 0 or 1), n← bn/2c.
3. If b = 1, then

Setθ ← θβ (modρ),
If n = 0, then outputθ and stop.

4. Setη← η2 (modρ). Goto Step 2.

Here, every product of the formξϕ ≡ z0 + z1δ + z2δ
2 (modρ) whereξ ≡ x0 +

x1δ + x2δ
2 (modρ) andϕ ≡ y0+ y1δ + y2δ

2 (modρ) is computed using the formulas

z0 ≡ x0y0+ x1y2D + x2y1D (modR),

z1 ≡ x0y1+ x1y0+ x2y2D (modR),

z2 ≡ x0y2+ x1y1+ x2y0 (modR).

Clearly, this method requiresO(logn(log R)2) bit operations assuming standard inte-
ger arithmetic implementation, andO(logn log R log logR log log logR) bit operations
under fast (e.g., FFT-based) implementation of integer arithmetic.

4. The Cryptosystem

Let p, q, R, π , ψ , ρ, D, e, andd be as in Theorem 2.1 and Corollary 2.2 (an algorithm
for computingπ andψ is given in Section 6).

Generally, in RSA-related cryptosystems, messages are assumed to be rational integers
M between 0 andR and relatively prime toR. Note that the case gcd(M, R) 6= 1 reveals
the factorization ofR, an extremely unlikely event if bothp andq are large. In fact, the
probability that an arbitrary rational integer between 0 andR is not relatively prime to
R is so small that we henceforth ignore this case.

In our scheme we encode messages aspairs of rational integers(m0,m1) such that
0 < m0,m1 < R and gcd(m0m1, R) = 1. This results in a blocksize that is twice
as large as that of RSA. Mathematically, we associate with the message(m0,m1) the
algebraic integerµ = m0 +m1δ + δ2 ∈ Z[δ]. The unitµ/µ′ uniquely determines the
pair (m0,m1):

Lemma 4.1. Letα, γ ∈ Z[ζ ][δ] satisfyαγ ′ = γα′. Then there exist a, c ∈ Z[ζ ] such
that aγ = cα.

Proof. Let α = a0 + a1δ + a2δ
2, γ = c0 + c1δ + c2δ

2, (a0,a1,a2, c0, c1, c2 ∈ Z[ζ ]),
αγ ′ = γα′. Multiplying and comparing the coefficients of 1,δ, andδ2 yields

Dζ(ζ − 1)(a1c2− a2c1) = 0,

(ζ − 1)(a1c0− a0c1) = 0,

(ζ − 1)(ζ + 1)(a0c2− a2c0) = 0,

whence followsa0c2 = c0a2, a1c2 = c1a2, soa2γ = c2α.
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Corollary 4.2. Let α, γ ∈ Z[δ] satisfyαγ ′ ≡ γα′ (modρ). Thenα and γ (modρ)
differ only by a factor inZ/RZ.

It follows that normalizingµ = m0 + m1δ + δ2 such that the coefficient ofδ2 is 1
guarantees thatµ/µ′ uniquely determines the coefficientsm0 andm1.

Next, we need to ensure that gcd(N(µ), R) = 1.

Lemma 4.3. If a0, a1, a2 ∈ Z, gcd(a0, R) = 1, thengcd(N, R) = 1, where N=
N(a0+ a1δ + a2δ

2).

Proof. Supposep | N, i.e., p divides N. Thenπ | αα′α′′ in OL , whereα = a0 +
a1δ+ a2δ

2. The inertness ofπ in OL impliesπ | ατ i
in OL for somei ∈ {0, 1, 2}. Since

π = π ′, it follows thatπ | ατ i
for all i ∈ {0, 1, 2}, henceπ | α + α′ + α′′ = 3a0 in OL .

Thus p = ππ | 9a2
0 in OL and hence inZ, contradicting gcd(a0, R) = 1.

Sinceµ does not necessarily satisfy [N(µ)/ρ] = 1 as required by Theorem 2.1,
the designer needs to find a suitable factorη ∈ Z[δ] such that [N(µη)/ρ] = 1. Set
S = {(s0, s1, s2) ∈ Z3 | 0 ≤ si < R andsi = 0 or gcd(si , R) = 1 for i = 0, 1, 2,
[N(s0+ s1δ + s2δ

2)/ρ] 6= 1}. The following lemma shows that there are almost2
3 R3

elements inS.

Lemma 4.4. For i = 0, 1, 2, setSi (p) = {(x, y, z) ∈ Z3 | 0 ≤ x, y, z ≤ p − 1,
(x, y, z) 6= (0, 0, 0), [N(x + yδ + zδ2)/π ] = ζ i }. Then |Si (p)| = (p3 − 1)/3 for
i = 0, 1, 2.

Proof. Sinceπ is inert inOL , the residue fieldF = OL/πOL is a finite field ofp3 ele-
ments. Letw be a generator of the cyclic multiplicative groupF∗ = F\0. Then for anyω ∈
OL such thatω ≡ w (modπ), we have [N(ω)/π ] = ζ k for somek, wherek 6≡ 0(mod 3),
asw is a cube inF otherwise. Letα ∈ Z[δ], thenα ≡ ω3l+n (modπ) for somel , n ∈ Z
such that 0≤ l ≤ (p3−4)/3 and 0≤ n ≤ 2, so [N(α)/π ] = [N(ω)/π ]n = ζ kn. Soα ∈
Si (p) if and only if i ≡ kn(mod 3), and the three distinct values 0, 1, 2 ofn correspond to
the three distinct values 0,k, 2k (mod 3)of i . Since there are exactly(p3−1)/3 valuesα ≡
ω3l+n (modπ) (0≤ l ≤ (p3− 4)/3), the result follows.

Suppose now that [N(µ)/ρ] = ζm, m ∈ {0, 1, 2}, for a messageµ. Chooseϕ ∈ S
such that [N(ϕ)/ρ] = ζ ε whereε = 1 or 2. Then[

N(µϕ2εm)

ρ

]
=
[

N(µ)

ρ

] [
N(ϕ)

ρ

]2εm

= ζm+2ε2m = 1

asε2 ≡ 1(mod 3). ϕ will be part of the public key. In practice, we would wish to choose
ϕ = s0 + s1δ + s2δ

2 so that thesi (i = 0, 1, 2) are small. In fact, it is easy to findϕ so
thats1 = 1 ands2 = 0, i.e.,ϕ = s+ δ where 0< s< R and gcd(s, R) = 1:
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Lemma 4.5. For i = 0, 1, 2,setTi (p) = {x ∈ Z | 1≤ x ≤ p−1, [(x3+D)/π ] = ζ i }.
Then ∣∣∣∣|Ti (p)| − p− 1

3

∣∣∣∣ ≤ 4
3

√
p.

Proof. For i ∈ {0, 1, 2} andx ∈ {1, 2, . . . , p− 1}, set

hi (x) =
([

x3+ D

π

]
− ζ i+1

)([
x3+ D

π

]
− ζ i−1

)
,

thenhi (x) = 0 if and only if [(x3+ D)/π ] 6= ζ i , andhi (x) = (ζ i − ζ i+1)(ζ i − ζ i−1) =
3ζ 2i otherwise. So, sinceζ i+1+ ζ i−1 = −ζ i :

|Ti (p)| = 1

3ζ 2i

p−1∑
x=1

hi (x)

= 1

3ζ 2i

([
x3+ D

π

]2

+ ζ i

[
x3+ D

π

])
+ p− 1

3
.

By Theorem 5.41 on p. 225 of [9], we have for any nontrivial cubic characterχ

(modp): ∣∣∣∣∣p−1∑
x=1

χ(x3+ D)

∣∣∣∣∣ ≤ 2
√

p.

Since both the residuacity symbol and its square are cubic characters(modp), it follows
that ∣∣∣∣|Ti (p)| − p− 1

3

∣∣∣∣ ≤ 1

3

∣∣∣∣∣p−1∑
x=1

[
x3+ D

π

]2
∣∣∣∣∣+ 1

3

∣∣∣∣∣p−1∑
x=1

[
x3+ D

π

]∣∣∣∣∣
≤ 4

3

√
p.

Note that the bound of43
√

p can be improved to(2
√

p+ 7)/3 using results from [3],
but the proof is somewhat longer, and, for our purposes, the constant4

3 is more than
sufficient.

The above lemma implies that about two thirds of alls ∈ Z, 0< s< R, gcd(s, R) = 1,
satisfy [N(ϕ)/π ] 6= 1, whereϕ = s+ δ. We would hope to find a suitable value ofs
that is small.

We are now ready to present our scheme.

Key Generation:

1. Choose two distinct large rational primesp, q such thatp,q ≡ 1(mod 3). Set
R= pq and f = ((p2+ p+ 1)(q2+ q + 1))/9.

2. Find prime divisorsπ , ψ in Z[ζ ] of p andq, respectively. Computeρ = πψ =
r0+ r1ζ ; r0, r1 ∈ Z.



A Public-Key Cryptosystem Using Purely Cubic Fields 117

3. FindD ∈ Z such that 0< D < R, gcd(D, R) = 1, and [D/π ] = [D/ψ ]−1 6= 1.
4. Choosee∈ Z, 0< e< R and solve 3ed≡ 1(mod f ) for d, 0< d < f .
5. Findϕ = s+ δ ∈ Z[δ] such that 0< s< R, gcd(s, R) = 1, and [N(ϕ)/ρ] 6= 1.
6. Set the public key toKp = (D, s, r0, r1, e) and the secret key toKs = {d}. Discard

p, q, f , π , andψ .

Clearly, the factorization ofR enables a cryptanalyst to computem and solve the
congruence in Step 4, thereby retrieving the secret keyd.

Note thatR= r 2
0−r0r1+r 2

1 ≥ r 2
0−|r0r1|+r 2

1 = (|r0|−|r1|)2+|r0r1| ≥ |r0r1|. Hence,
if a user manages to find a small value ofs, the public key requires only marginally more
storage than a public RSA key. Sinced can be as large asf , the secret key may require
up to 2 logR bits of memory, i.e., twice as much as a secret RSA key.

Precomputation(need only be done once per key):

1. Computer ≡ r0r
−1
1 (modR), 0< r < R.

2. ComputeNϕ = N(ϕ) = s3+ D and [Nϕ/ρ] = ζ ε, ε = 1 or 2.
3. ComputeN∗ϕ ≡ N−1

ϕ (modR), 0< N∗ϕ < R.

Encryption: Encrypt a message(m0,m1), 0 < m0,m1 < R, gcd(m0m1, R) = 1 as
follows:

1. Setµ = m0+m1δ + δ2, Nµ = N(µ) = m3
0+m3

1D + D2− 3m0m1D.
2. Compute [Nµ/ρ] = ζm, m ∈ {0, 1, 2}, andN∗µ ≡ N−1

µ (modR), 0< N∗µ < R.
3. Setα ≡ µϕ2εm (modρ) and β = α/α′ ≡ (N∗ϕ )

2εmN∗µα
2α′′ ≡ b0 + b1δ +

b2δ
2 (modρ), 0≤ b0, b1, b2 < R.

4. For i = 0, 1, 2, compute r iβ (modρ). Sort the triples (r i b0, r i b1, r i b2)

(modR) in lexicographical order, obtaining a corresponding ordering of the values
r iβ, i = 0, 1, 2; say,β0 < β1 < β2. Identify n ∈ {0, 1, 2} such thatβ = βn.

5. Computeβe ≡ b(e)0 + b(e)1 δ + b(e)2 δ
2 (modρ), 0≤ b(e)i < R for i = 0, 1, 2.

6. Findl = min{i | b(e)i 6≡ 0(modR)} ∈ {0, 1, 2}.
Computeb∗ ≡ (b(e)l )−1 (modR), 0< b∗ < R.
SetE1 ≡ b∗b(e)(l+1) (mod 3) (modR), E2 ≡ b∗b(e)(l+2) (mod 3) (modR), 0≤ E1, E2 < R,
where all subscripts are taken to be between 0 and 2.

7. TransmitC = (E1, E2, l ,m, n).

Step 7 shows that ciphertexts in our scheme are pairs of integers between 0 andR, just
like plaintexts. Note that we will almost always havel = 0, soE1 ≡ (b(e)0 )

−1b(e)1 (modR),
E2 ≡ (b(e)0 )

−1b(e)2 (modR).
A rapid method for computing residuacity symbols [N/ρ] is given in Section 6. For

N ∈ Z, computing [N/ρ] and N−1 (modR) can be combined into a single algorithm.

Decryption: Upon receivingC = (E1, E2, l ,m, n):

1. If l = 0, then setξ = 1+ E1δ + E2δ
2.

If l = 1, then setξ = E2+ δ + E1δ
2.

If l = 2, then setξ = E1+ E2δ + δ2.
ComputeN(ξ).
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2. ComputeN∗ξ ≡ N(ξ)−1 (modR), 0 < N∗ξ < R. Then computeθ ≡ (N∗ξ ξ3)d ≡
t0+ t1δ + t2δ2 (modρ), 0≤ t0, t1, t2 < R.

3. For i = 0, 1, 2, computer i θ (modρ). Sort the triples(r i t0, r i t1, r i t2) (modR)
in lexicographical order, obtaining a corresponding ordering of the valuesr i θ

(i = 0, 1, 2); say,θ0 < θ1 < θ2. Identify θn.
4. Computeη = θn(ϕ

′/ϕ)2εm ≡ θn((ϕ
′)2ϕ′′N∗ϕ )

2εm ≡ e0 + e1δ + e2δ
2 (modR),

0≤ e0, e1, e2 < R.
5. Define the matrix

M =
e0− 1 e2D − r e1Dr 2

e1 e0r − 1 e2Dr 2

e2 e1r e0r 2− 1


and solve the system of linear congruences given by

M

 x
y
z

 ≡ 0 (modR)

for x, y, x. Setm̂0 ≡ xz−1 (modR), m̂1 ≡ yz−1 (modR), 0< m0,m1 < R.

Theorem 4.6. Encryption and decryption as given above are well-defined operations.
Furthermore, (m̂0, m̂1) = (m0,m1).

Proof. Consider first the encryption algorithm. We have [N(α)/ρ] = 1, so by Corol-
lary 2.2,β3ed ≡ ζ kβ (modρ) for somek ∈ {0, 1, 2}. It is easy to see that the triples
(r i b0, r i b1, r i b2) (modR) in Step 4 are all distinct, son is well defined. Furthermore,
one of theb(e)i in Step 6 must be nonzero, sol , b∗, E1, andE2 are also well defined.

Now consider the decryption algorithm. Step 1 yieldsξ ≡ b∗βe (modρ), hence
N(ξ) ≡ (b∗)3 (modR) and N∗ξ in Step 2 exists. Furthermore,(N∗ξ ξ

3)d ≡
(N∗ξ (b

∗)3β3e)d ≡ β3ed ≡ ζ kβ (modρ) for somek ∈ {0, 1, 2} by Corollary 2.2. So
the ordered sequence(θ0, θ1, θ2) is the same as the sequence(β0, β1, β2) in Step 4 of the
encryption routine. Therefore,θn = βn = β = α/α′ = µϕ2εm/µ′(ϕ′)2εm andη = µ/µ′.
By Corollary 4.2,m0 andm1 are uniquely determined and are computed as follows. The
congruencex + yδ + zδ2 ≡ (e0+ e1δ + e2δ

2)(x + yrδ + zr2δ2) (modρ) is equivalent
to the system of congruences given by

M

 x
y
z

 ≡ 0 (modR)

which is obtained by multiplying and comparing coefficients of 1,δ, andδ2 (note that
det(M) ≡ N(η) − 1 ≡ 0(modR)). Again by Corollary 4.2,x + yδ + zδ2 ≡ Fµ ≡
Fm0 + Fm1δ + Fδ2 (modρ) for someF ∈ Z. Hence,F ≡ z(modR) and m0 ≡
xz−1 ≡ m̂0 (modR), m1 ≡ m̂1 (modR). Since 0< m0,m1, m̂0, m̂1 < R, it follows that
m0 = m̂0 andm1 = m̂1.
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Clearly, this scheme can also be used for generating signatures, since Theorem 4.6
still holds if e andd are exchanged.

5. Security

For the security analysis of our scheme, we require a number of lemmas.

Lemma 5.1. Let α = a0 + a1δ + δ2, γ = c0 + c1δ + δ2, a0,a1, c0, c1 ∈ Z,
gcd(a0a1c0c1, R) = 1. If α3(γ ′)3 = γ 3(α′)3, then α = αi for some i ∈ {0, 1, 2}
whereαi = f −1

i γ δi and

fi =
1 if i = 0,

c1 if i = 1,
c0 if i = 2.

Hence, αi = ai,0+ ai,1δ + δ2 where

ai,0 =


c0 if i = 0,
Dc−1

1 if i = 1,
Dc1c−1

0 if i = 2,
ai,1 =


c1 if i = 0,
c0c−1

1 if i = 1,
Dc−1

0 if i = 2.

Proof. If (αγ ′)3 = (γ α′)3, then(αγ ′ − γα′)(αγ ′ − ζγ α′)(αγ ′ − ζ 2γα′) = 0, hence
αγ ′ = ζ i γα′ for somei ∈ {0, 1, 2}. Comparing coefficients of 1,δ, andδ2 yields

a0c0+ a1Dζ 2+ c1Dζ = a0c0ζ
i + a1Dζ i+1+ c1Dζ i+2,

a0c1ζ + a1c0+ Dζ 2 = a0c1ζ
i + a1c0ζ

i+1+ Dζ i+2,

a0ζ
2+ a1c1ζ + c0 = a0ζ

i + a1c1ζ
i+1+ c0ζ

i+2.

Solving fora0 anda1 for eachi ∈ {0, 1, 2} yields the result.

Corollary 5.2. Let α, γ be as in Lemma5.1. If α3(γ ′)3 ≡ γ 3(α′)3 (modρ), then
α ≡ αi ≡ f −1

i γ δi (modπ), α ≡ αj ≡ f −1
j γ δ j (modψ) for some i, j ∈ {0, 1, 2}.

Lemma 5.3. Let α, γ be as in Lemma5.1 and letα3(γ ′)3 ≡ γ 3(α′)3 (modρ). Then
there exists i∈ {0, 1, 2} such thatα ≡ αi ≡ f −1

i γ δi (modρ) if and only if[N(α)/ρ] =
[N(γ )/ρ].

Proof. By Corollary 5.2,α ≡ f −1
i γ δi (modπ), α ≡ f −1

j γ ζ j (modψ) for some

i, j ∈ {0, 1, 2}, so N(α) ≡ f −3
i N(γ )Di (modp) and N(α) ≡ f −3

j N(γ )D j

(modq). Therefore [N(α)/π ] = [N(γ )/π ][ D/π ] i and [N(α)/ψ ] = [N(γ )/ψ ][ D/ψ ] j .
Since [D/ψ ] = [D/π ]−1, it follows that [N(α)/ρ] = [N(γ )/ρ][ D/π ] i− j . Now
[D/π ] 6= 1, so [N(α)/ρ] = [N(γ )/ρ] if and only if i = j .

Lemma 5.4. Let γ = c0 + c1δ + δ2, c0, c1 ∈ Z, gcd(c0c1, R) = 1, [N(γ )/ρ] 6= 1.
Then there are exactly three solutionsα = a0 + a1δ + δ2 to the congruenceα3(γ ′)3 ≡
γ 3(α′)3 (modρ) such that a0,a1 ∈ Z, gcd(a0a1, R) = 1, and[N(α)/ρ] = 1.
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Proof. By Corollary 5.2,α ≡ αi ≡ f −1
i γ δi (modπ), α ≡ αi ≡ f −1

j γ δ j (modψ) for
somei, j ∈ {0, 1, 2}. From the proof of Lemma 5.3, [N(α)/ρ] = [N(γ )/ρ][ D/π ] i− j .
We must havei 6= j as otherwise [N(α)/ρ] = [N(γ )/ρ] 6= 1. Since [D/π ] 6= 1,
there are exactly three pairs(i, j ), 0≤ i, j ≤ 2 such thati 6= j and [N(γ )/ρ][ D/π ] i− j

= 1.

Corollary 5.5. Let α = a0 + a1δ + δ2, γ = c0 + c1δ + δ2 be as in Lemma5.4.For
k ∈ {0, 1, 2}, let γk = ck,0+ ck,1δ + δ2 where

ck,0 ≡


c0 (modR) if k = 0,
Dc−1

1 (modR) if k = 1,
Dc1c−1

0 (modR) if k = 2,

ck,1 ≡


c1 (modR) if k = 0,
c0c−1

1 (modR) if k = 1,
Dc−1

0 (modR) if k = 2.

Then p= gcd(a0− ci,0, R) or p = gcd(a1− ci,1, R) for some i∈ {0, 1, 2}.

Proof. γk ≡ f −1
k γ δk (modρ) where

fk ≡
1 (modR) if k = 0,

c1 (modR) if k = 1,
c0 (modR) if k = 2.

By Lemma 5.4,α ≡ γi (modπ), α ≡ γj (modψ) where i, j ∈ {0, 1, 2} satisfy
[N(γ )/ρ][ D/π ] i− j = 1. In particular,i 6= j . It follows that

a0 ≡ ci,0 (modp), a1 ≡ ci,1 (modp),
a0 ≡ cj,0 (modq), a1 ≡ cj,1 (modq).

If ci,0 6≡ cj,0 (modp), then p | a0 − ci,0, q - a0 − ci,0, so p = gcd(a0 − ci,0, R).
If ci,0 ≡ cj,0 (modp), then ci,1 6≡ cj,1 (modp) as otherwiseα ≡ γj (modρ),
i.e., i = j , contradicting Lemma 5.3. Hence by analogous reasoning,p =
gcd(a1− ci,1, R).

Corollary 5.5 shows that knowledge of two algebraic integersα, γ satisfying the
conditions of Lemma 5.4 yields the factorization of the modulusR.

Lemma 5.6. Letγ = c0+c1δ+ δ2, c0, c1 ∈ Z, gcd(c0c1, R) = 1,and[N(γ )/ρ] 6= 1.
Let E1, E2, l , n be the quantities defined by applying Steps4–6 of the encryption method
to θ = γ /γ ′ in place ofβ. Then there existsα = a0 + a1δ + δ2 such that a0,a1 ∈ Z,
gcd(a0a1, R) = 1, [N(α)/ρ] = 1, α3(γ ′)3 ≡ γ 3(α′)3 (modρ), and the ciphertext
corresponding to the message(a0,a1) is C = (E1, E2, l , 0, n).

Proof. It suffices to show that one of the three solutions given by Lemma 5.4 corre-
sponds to the desired ciphertext. Letα0 be any one of the solutions, then all three solutions
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are given byαi ≡ g−1
i α0δ

i (modρ) for suitablegi ∈ Z, i = 0, 1, 2. Note thatm = 0
in the ciphertexts corresponding to all threeαi . Let β = α0/α

′
0 and letβ0, β1, β2 be the

values obtained in Step 4 of the encryption process. Sinceαi /α
′
i ≡ (α0/α

′
0)ζ
−i (modρ)

for i = 0, 1, 2, we see that{(αi /α
′
i ) | i = 0, 1, 2} = {β0, β1, β2}. Identify αi such that

βn = αi /α
′
i and setα = αi . Thenα andγ have the same value ofn in their respective

ciphertext.
Now, by Corollary 5.2,α ≡ f −1

i γ δi (modπ), α ≡ f −1
j γ δ j (modψ) for somei, j ∈

{0, 1, 2} and suitablefi , f j ∈ Z, so βn ≡ θζ−i (modπ) and βn ≡ θζ− j (modψ).
Therefore, Step 6 of the encryption algorithm yields the same values ofl , E1, andE2

for bothβn andθ .

It is now possible to show that the problem of breaking our system is equivalent to the
difficulty of factoring the modulusR in the following sense.

Theorem 5.7. If A is an algorithm that decrypts any ciphertext C= (E1, E2, l , m, n),
thenA can be used to factor R.

Proof. Let γ = c0 + c1δ + δ2 be such thatc0, c1 ∈ Z, gcd(c0c1, R) = 1, and
[N(γ )/ρ] 6= 1 (note thatϕ as defined in Step 5 of the key generation is a possible
candidate forγ ). Set θ = γ /γ ′ and m = 0 (a false value form in the ciphertext
corresponding to the “message”(c0, c1)). Apply Steps 4–6 of the encryption routine
to θ , obtaining a ciphertextC = (E1, E2, l , 0, n). Applying A to C yields a “mes-
sage”(a0,a1) whereα = a0 + a1δ + δ2 satisfies [N(α)/ρ] = 1 by Lemma 5.6. For
k = 0, 1, 2, computeγk = ck,0+ ck,1δ+ δ2 where theγk are defined as in Corollary 5.5.
Then by the same corollary,p = gcd(a0 − ci,0, R) or p = gcd(a1 − ci,1, R) for some
i ∈ {0, 1, 2}.

If A decrypts a fraction 1/k of all ciphertexts, we expect to be able to factorR using
A afterk trials at a value ofγ .

Unfortunately, the method described in Theorem 5.7 can be used for a chosen cipher-
text attack, if an adversary is able to convince a decrypter to decipher the ciphertext
corresponding to an algebraic integerγ where [N(γ )/ρ] 6= 1 and reveal the correspond-
ing plaintext.

6. Algorithms

In this section we give two algorithms required for implementing our cryptosystem. The
first algorithm computes the residuacity character [κ/ω], κ, ω ∈ Z[ζ ], without making
use of the factorization ofω in Z[ζ ]. Both the method and the underlying tools are
analogous to those used for computing Jacobi symbols inZ (see [19], [18], and [14]).
The second algorithm finds for a rational primep ≡ 1(mod 3) a prime divisorπ in Z[ζ ]
(see [14]).

An algebraic integerκ = k0 + k1ζ , k0, k1 ∈ Z, is said to beprimary if k0 ≡
0(mod 3) andk1 ≡ 2(mod 3). It is easy to see that, for anyκ ∈ Z[ζ ], exactly one of
±κ, ±ζκ, and±ζ 2κ is primary. Primary integersκ, ω ∈ Z[ζ ] that are relatively prime
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satisfy thecubic law of reciprocity[κ/ω] = [ω/κ]. Thecomplementariesgive the values
of the residuacity character [κ/ω] for certain special values ofκ, namely [±1/ω] = 1,
[ζ/ω] = ζ (1/3)(N(ω)−1), and [(1− ζ )/ω] = ζ (2/3)(w0+1) whereω = w0+w1ζ is primary
(see pp. 113ff. of [6]). Note that 1− ζ is the only prime divisor inZ[ζ ] of 3.

Computing residuacity characters. For κ, ω ∈ Z[ζ ] relatively prime, we can now
compute [κ/ω] as follows. First, we find the unique primary integerω̃ = ±ζ iω, i ∈
{0, 1, 2}. Then we computeϕ, λ ∈ Z[ζ ] such thatκ = ϕω+λ andλλ < κκ. This process
is calledEuclidean divisionand is the analogue inZ[ζ ] to division with remainder in
Z. We describe below how to findϕ andλ. Next, we extract powers of 1− ζ from λ to
obtainλ̂ such thatλ = λ̂(1− ζ ) j for somej ≥ 0 and 1− ζ - λ̂ in Z[ζ ] (or equivalently,

3 - λ̂λ̂ in Z). Finally, we determine the unique primary integerλ̃ = ±ζ kλ̂, k ∈ {0, 1, 2},
and apply the cubic law of reciprocity to [λ̃/ω̃]. Then from the complementaries,[

κ

ω

]
=
[
κ

ω̃

]
=
[
λ

ω̃

]
=
[
λ̂

ω̃

][
1− ζ
ω̃

] j

=
[
λ̃

ω̃

] [
ζ

ω̃

]−k [1− ζ
ω̃

] j

=
 ω̃
λ̃

 ζ (1/3)(1−N(ω))k+(2/3)(w̃0+1) j ,

whereω̃ = w̃0 + w̃1ζ. We can now repeat the procedure with [ω̃/̃λ] in place of [κ/ω].
Sinceκκ is a positive rational integer which strictly decreases in each iteration, the
algorithm must eventually terminate with a primary value ofκ such thatκκ = 1, i.e.,κ =
−ζ , at which point [κ/ω] can be evaluated directly from the appropriate complementary.
It can be shown that the total number of iterations is essentially the same as the number
of division with remainder steps required to compute gcd(κκ, ωω), i.e., O(logωω).

Euclidean division inZ[ζ ]. Forκ,ω ∈ Z[k], integersϕ,λ ∈ Z[ζ ] such thatκ = ϕω+λ
andλλ < ωω can be found as follows. Definex0, x1 ∈ Q byκ/ω = κω/ωω = x0+x1ζ .
Set y0 = Ne(x0), y1 = Ne(x1), where forz ∈ Q, Ne(z) denotes the nearest rational
integer toz, i.e.,|z−Ne(z)| ≤ 1

2. Setϕ = y0+ y1ζ andλ = κ −ϕω. Thenϕ, λ ∈ Z[ζ ],
κ = ϕω + λ, and

λλ

ωω
=
(
κ

ω
− ϕ

)(
κ

ω
− ϕ

)
= (x0− y0)

2− (x0− y0)(x1− y1)+ (x1− y1)
2 ≤ 3

4,

soλλ ≤ 3
4ωω < ωω. We point out that a more general, but slightly more complicated

technique due to Lenstra [8] yieldsλλ ≤ 1
3ωω.

If we setM = max{κκ, ωω}, then Euclidean division requiresO((log M)2) bit op-
erations using standard arithmetic andO(log M log logM log log logM) bit operations
using fast arithmetic. Hence in the cryptosystem, the value of [N(α)/ρ] can be computed
in O((log R)3) standard bit operations and inO((log R)2 log logR log log logR)) fast
bit operations.

Computing greatest common divisors and prime divisors. The Euclidean division tech-
nique can be used to compute greatest common divisors inZ[ζ ] in the same fashion as
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division with remainder inZ generates rational gcd’s. Forκ, ω ∈ Z[ζ ], simply perform
Euclidean division repeatedly, until the curent remainder is zero, at which point the
previous remainder yields the greatest common divisor ofκ andω (unique up to sign
and factorsζ k, k ∈ {0, 1, 2}). The gcd is found afterO(log max{κκ, ωω}) Euclidean
division steps.

In this way, a prime divisorπ of a rational primep ≡ 1(mod 3) can be found by
computingπ = gcd(p, ζ − r ) wherer is defined as in Step 1 of the precomputation in
Section 4. This requiresO(log R) Euclidean divisions.

As is the case with the rational Euclidean algorithm, this gcd algorithm can be extended
to yield a pair of integersξ, η ∈ Z[ζ ] such thatκξ + ωη = gcd(κ, ω). If we compute
[N/ρ] for a rational integerN (modR), we can computeN−1 (modR) at the same time.
Simply keep track of the outputs of each Euclidean division and use them to compute
a representationNξ + ρη = gcd(N, ρ) = ±ζ k for somek ∈ {0, 1, 2}. Multiplying
this equation by its complex conjugate yieldsN2ξξ + Nξρη + Nξρη + Rηη = 1,
so the inverse ofN (modR) is the rational integerNξξ + ξρη + ξρη (modR). This
computation does not increase the overall asymptotic complexity of the residuacity
symbol computation.

The above results show that the overall asymptotic bit complexity of encryption is
O((log R)3) using standard arithmetic andO(log R log logR log log logR) using fast
arithmetic, regardless of the size of the encryption exponente. For large values ofe, this
is the same as RSA; however, if a small encryption exponent is used (as is commonly
done with RSA), then this is worse than RSA by a factor of logR. Since the decryption
exponent is usually of size 2 logR (rather than logR for an RSA exponent), decryption
of our system requires slightly more than twice the effort of RSA decryption, although
asymptotically their respective complexities are identical and equal to the bit complexity
of encryption.
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