J. Cryptology (1998) 11: 187-208 Journal of

CRYPTOLOBY

© 1998 International Association for
Cryptologic Research

An Efficient Existentially Unforgeable Signature Scheme
and Its Applications*

Cynthia Dwork

IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, CA 95120, U.S.A.
dwork@almaden.ibm.com

Moni Naor

Incumbent of the Morris and Rose Goldman Career Development Chair,
Department of Applied Mathematics and Computer Science,
Weizmann Institute of Science,
Rehovot 76100, Israel
naor@wisdom.weizmann.ac.il

Communicated by Oded Goldreich

Received 2 May 1995 and revised 10 July 1997

Abstract. A signature scheme isxistentially unforgeabld, given any polynomial
(in the security parameter) number of pairs

(Mg, S(My)), (M2, S(M2)), ..., (Mk, S(M)),

whereS(m) denotes the signature on the messagi is computationally infeasible to
generate a paimg1, S(Mk+1)) for any messagei;1 ¢ {my, ..., mg}. We presentan
existentially unforgeable signature scheme that for a reasonable setting of parameters
requires at most six times the amount of time needed to generate a signature using
“plain” RSA (which isnot existentially unforgeable). We point out applications where

our scheme is desirable.

Key words. Cryptography, Digital signatures, Unforgeability, One-way hash
functions, Authentication.

1. Introduction

A digital signature, just like a handwritten one, is a method that allows one party to
“convince” another party that a third party indeed “approved” a given message. While
this intuition is appealing, in order for it to make sense we must specify what “convince”

* A preliminary version appeared in Crypto '94. The research of the first author was supported by BSF
Grant 32-00032-1. Some of the work of the second author was performed while at the IBM Almaden Research
Center. This author’s research was supported by a grant from the Israel Science Foundation administered by
the Israeli Academy of Sciences and by BSF Grant 32-00032-1.

187

188 C. Dwork and M. Naor

and “approved” mean. The notion we concentrate on in this paper is that of existential
unforgeability. A signature schemeésistentially unforgeabld, given a sequence of
pairs

(mg, S(my)), (M2, S(My)), ..., (Mg, S(M)),

where S(m) denotes the signature on the messageét is computationally infeasible
to generate a paimy.,1, S(mg,1)) for any messagew.1 ¢ {m, ..., mg}. While this
definition may seem excessively demanding of the signature scheme, since it does not
permit forgeries even on “nonsensical” messages, we are not aware of any other way to
obtain a robust notion of security. Furthermore, as the discussion below shows, there are
“real life” situations where this is precisely the security needed.
Consider the problem of providing a “receipt” for data stored mhoaument repos-
itory, where the data can be of arbitrary form, much as one is provided with a claim
check at a left luggage counter. In the most simple implementation, the receipt would
just be a pair, consisting of an identifier and a signature on this identifier. If the signa-
ture scheme is existentialfprgeable then any party can produce such a pair, without
knowing the secret signing key. Asxistentially unforgeablsignature scheme prevents
this. In such a scheme any signed document, nonsensical or otherwise, has necessar-
ily been signed by the claimed signer. Assume that both the document owner and the
repository employ existentially unforgeable digital signature schemes. The document
owner signs the document to be stored; the document repository issues a signed receipt
for the signed document. Existential unforgeability of the repository’s signature ensures
that any claimed receipt is indeed a valid receipt. Existential unforgeability of the doc-
ument owner’s signature ensures that the document repository cannot return a different
document than the one that was stored, not even a nonsensical, but different, document.
Ourowninterestin finding efficient existentially unforgeable signature schemes comes
from the problem of signing faxed documents. Since faxed documents have received legal
standing in court, itis essential to use a signature scheme appropriate to this environment.
Addressed in detail in Section 5, we briefly describe this environment and explain why
it requires existentially unforgeable signatures. We consider a scenario in which a fax
is being sent by a machine equipped with a storage device, but is being received by a
more ordinary fax machine. Both can perform on-line calculations, but only the sender
can store large quantities of data. Il@be a string representing a document that is to be
signed; for exampleD may be the result of scanning a paper document, or it could be
a PostScript file. Leh be a collision-intractable hash functidand letS be a signing
function. We assume the sender sends to the receiver the ¢bple(D), Sth(D))).
Even if the receiver can check that the document has been correctly hashed and that the
signature on the hash is valid, once the document representBdi®yrinted out on
the receiver’s fax machine, there is no way to recapiifeom the printed image. For
example, scanning the printed image optically will almost surely produce some string
D’ # D, since the scanned image may be slightly tilted, or dirty, etc. Since by assumption
the receiver cannot store the stribg without some additional machinery the signature
cannot provide irrefutability: the receiver cannot prove to a third partyDhaas received

1 A hash function is collision intractable if it is computationally infeasible to fingt y such thah(x) =
h(y); collision-intractable hash functions are discussed further in Section 5.

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 189

from the sender because, in order to do tlatnust be exhibited at the time of proof.
Since the receiver cannot stdpe the receiver cannot exhibid at a later time. Thus, if

the receiver has no means of storing the stilngself (not just printing the document),

such as a disk or tape drive, then some other party must store the data and issue a receipt
to the receiver. The natural, although somewhat improbable, party to do this is the not
necessarily trustworthy sender. Ideally, the receipt would be thelpel), S(h(D))),

the explicit understanding being that if the receiver produces such a receipt, then the
sender is obliged to produce a document hashing to this value. The problem with using an
existentiallyforgeablesignature scheme here is that, sih¢B) “looks random,” anyone

could generate what appears to be a valid receipt, just as in the claim check example.
Thus, it is essential that the signature scheme be existentially unforgeable. With such a
scheme, if the receiver producég D), S(h(D))), then necessarily a document hashing

to h(D) was signed by the sender.

In this paper we present an efficient existentially unforgeable signature scheme which
we believe is the first practical one. For a reasonable choice of parameters it is about 30
times more efficient than the best previous proposals [15], [21], [19]. The security of the
scheme relies only on the followirgSA assumption

Assumption 1. Let N be the product of two large primeghen without knowing the
factorization of N it is computationally infeasible to extractlprootsmod N, where p
is a random prime

A slightly stronger (and quite common) version of this assumption states that it is hard to
extractpth roots modN for smallprimesp. Such an assumption makes the verification
of signatures more efficient. A precise formulation of the assumptions is provided in
Section 4.

We compare the cost of our scheme with that of “plain” RSA, i.e., where the signature
onamessagaismYP mod N. For areasonable choice of parameters, the cost of signing
and verifying in our scheme is at most six times that of RSA. In factathertizedcost
of signing is only twice that of plain RSA; that is, over the lifetime of the system the
amount of work spent on signing is at most twice that which would have been spent
using plain RSA. Thus, in almost every scenario in which it is feasible to apply RSA it
should be feasible to use our scheme (particularly if the signhature generation is not the
computational bottleneck).

The remainder of this paper is organized as follows. In in the next section we summarize
the history of digital signatures, emphasizing work relevant to our scheme. In Section 3
we describe our scheme. The proof of security of our scheme appears in Section 4.
In Section 5 we describe how to use the proposed scheme (or any other existentially
unforgeable scheme) in the context of signing faxes.

2. Related Work and Its Influence

Since the introduction of the concept of digital signatures by Diffie and Hellman [12]
and the first proposals of candidates for implementation [24], [30], the subject has been
widely studied. In this section we briefly summarize the major developments (not nec-

190 C. Dwork and M. Naor

essarily in chronological order), especially those pertaining to the scheme proposed in
this paper.

Goldwasser et al. [21] formalized the notion of security of a signature scheme. They
separated the description of the types of attack that a system might suffer from the
definition of what it means to break the system. The strongest form of security they
defined isexistential unforgeability under an adaptive chosen plaintext attaclan
adaptive chosen plaintext attack, the adversary (or would-be forger), with the cooperation
ofthe signature algorithm, obtains signhatures on messages of the attacker’s choice, chosen
adaptively. The scheme existentially forgeabléf, after the attack, the forger is able
to produce a valid signature on even one previously unsigned messtigeut the
cooperation of the signature algorithm. (See exact definition in [21]; the definitions used
here are the same.) It &istentially unforgeabld the adversary cannot sign even one,
possibly nonsensical, new message.

Existential unforgeability under adaptive chosen message attack was considered too
stringent a requirement for practical purposes. Firstly, the chosen plaintext attack is very
generous to the forger. However, this attack captures the fact that there is no practical way
to restrict the types of messages a user might ever wish to sign. Moreover, many security
systems use the ability to sign random challenge messages as a proof of identity (see, e.g.,
[27]), creating a perfect environment for a chosen plaintext attack. Secondly, existential
unforgeability seemed an excessive requirement, with the following intuition. If, in an
application, the signature functionis to be applied to whole (rather than hashed) messages,
then, itwas argued, it should be enough to preclude the adversary from signing a message
of her choice; it should not matter if the adversary can produce signatures on nonsense
messages. If, instead, the signature function is to be applied to a collision-intractable
hash of the message, then the adversary that could produce a signature on some arbitrary
string s would not be able to find a message that hashes amd therefore would not
be able to commit any meaningful forgery. However, as seen from the claim check and
fax examples outlined in the Introduction, there are indeed real-world applications for
existential unforgeability. The RSA [30] and Rabin [29] schemes are kmm#to have
this desirable property. Note that common ways of applying these schemes, involving
signingh(m) whereh is some hash function with mysterious powers, are not known
to be existentially forgeable; however, no proof of existential unforgeability for such a
scheme is known (unless one resorts to such assumptions as the existence of a publicly
accessible (publicly computable) truly random function (see, e.g., [4])).

The implementation of an existentially unforgeable signature scheme suggested in
[21] was based on the hardness of factoring and various improvements were suggested
in [19]. Constructions based on more general assumptions (trapdoor permutations, one-
to-one one-way functions, and one-way functions) were given in [3], [26], and [32].
These schemes are all rather inefficient in that they employ a tree whose height is
proportional to the logarithm (to smallbase) of the total number of messages signed
by the system. Signing and verifying both involve tracing a path from the root to a leaf,
where moving from node to node is quite expensive. For instance, it is comparable to
two RSA computations in [21], as optimized in [19].

Ourscheme employs atree as well. However, itis fat and, consequently, very shallow—
a logarithm to darge base of the total number of messages signed by the system. This
means that in a lifetime of use the tree is very unlikely to need more than three levels.

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 191

There are several constructions of one-time or fixed-time signature schemes that are
existentially unforgeable. (One-time means that the public key is good for one signature
only; fixed-time means that there is an a priori upper bound on the number of messages
the scheme can sign. The size of the public key is usually related to this number.) The
first such scheme is due to Lamport (described in [12] and used in [15], [23], [26], and
[32]). This scheme requires as many invocations of a one-way function as there are
bits to be signed (some improvements are known). The scheme of Bos and Chaum [7]
can be viewed as a fixed-time signature scheme. In this scheme the size of the public
information needed grows at least as fast as the square root of the number of messages
the scheme should be able to sign.

Even et al. [15] tried to combat the computational cost of signature schemes by
distinguishing betweenn-lineandoff-linecomputation. Their scheme requires extensive
precomputation, “between” signing of different documents, but the on-line computation
required for signing is very efficient. The size of a signature is rather large.

The El Gamal signature scheme [14] relies on no cleanly specified function; moreover,
given a legitimately signed document in that scheme, it is possible to generate other
legitimate signatures and messages; that is, the scheme is not existentially unforgeable.
(For recent results concerning the security of the El Gamal scheme see [6] and [28].) The
Fiat—Shamir scheme [17] and its descendants [18], [25], [33] are very efficient, since,
unlike RSA and related schemes, they do not require modular exponentiation. However,
they do require that the “one-way hash” function actually be something stronger, more
like a black-box random function (no precise definition of the assumptions needed is
given). None of these schemes is known to be existentially unforgeable.

Most of the ingredients of our scheme have appeared before; the contribution of this
work is merely in finding the right mixture that makes the full scheme efficient. The
idea of using exponentiation to hide information appears in the original RSA signature
scheme [30]. Fiat and Shamir employ the subset product technique for signing [17].
Merkle [23] suggested the tree authentication scheme (also used in [26]), but in his
scheme the tree cannot be shallow. The scheme in [7] is similar in spirit to the one-time
version of our scheme used in every node. Bellare and Micali [3] suggested a tree-based
scheme where nodes are “revived” by choosing a new trapdoor permutation which, in
turn, is authenticated by the parent of the current node. Our scheme can be seen as an
efficient way of performing this, by replacing the trapdoors of [3] with “masks” from
the Fiat—Shamir scheme [17].

3. The Scheme

3.1. Outline

In rough outline, the scheme works as follows. Every signieas, as in any signhature
scheme, a pair of keys. Thaublic key is used to verify the signature on messages
reputedly signed bg. The private key contains information known only & and is
used bys to compute signatures on messages of the signer’s choice.

The signer maintains a short, very bushy tree. Each message (or message digest) signed
will be stored at its own leaf of the tree. There are two parametarsjk. The outdegree
of the tree isk. For concreteness, in this informal description, we take ¢ = 1000.

192 C. Dwork and M. Naor

In this case, if the tree is of height 3, then it has a billion leaves and can sign up to a
billion messages (it is possible to extend the scheme on the fly to sign any number of
messages). Assume also, for this discussion, that all messages have length at most 1000
bits (larger messages may be hashed down to this length or broken into pieces, with each
piece signed individually; we defer this discussion to Section 5).

Although the tree will be large, the scheme ensures that at any time the signer need
only maintain information stored in a single root-leaf path. The nodes of the tree are
accessed in a depth-first left-right manner. Thus, the leaves are accessed from left to
right: the first message to be signed is stored at the leftmost leaf, the second at the
next-to-leftmost leaf, and so on.

A signer’s public key is an integeM, which is the product of two large primes, and a
random 1000-bit stringoot. We remark thayoot can be the same for all signers, as long
as it is initially chosen as a randofrbit number.y,oo: is implicitly stored at the root of
the signer’s tree. We assume tldat- 0 messages have been signed and that the signer
wishes to sign théJ + 1)st message, sam. Let w be the(J + 1)st leftmost leaf and
letm = (vg = root, vy, ..., vq) be the path from the root to the leaf = w (d is the
depth ofw; we have taken = 3 for this discussion). For each step-1, ..., d in the
paths, if v; has not previously been accessed (that;igs not on the path from the root
to any of the leftmost leaves), then

(1) ifi < d,then the signer chooses a random 1000-bit lalfedis is the information
“stored” atv;) andauthenticateshis string using the label of the parentpf the
signer storeg and itsauthenticator(described below) af;;

(2) ifi =d (thatis, ifv; = vg = w), then the signer authenticatesusing the label
of the parent ofv and stores its authenticatorat

The signature om is the pathr together with the information stored at the nodes of

Intuitively, the scheme is practical because we “reuse” an internal node many times—
once for each leaf in the subtree rooted at this node.

The basic authentication step requires two lists, which are common to all signers (and
known to all verifiers):P, containing 1000 primes, and, containing 1000 random
1000-bit strings. Let be an internal node in the tree, kebe thejth child of u, and
let y, andy, be their respective labels. The goal obasic authentication stejs to
authenticatey, usingy, (which is assumed to have been authenticated already) and the
jth prime inthe listP. This is done as follows: the bits gf are used to select a subset of
the elements oK; then the product o, and the selected elements is computed. Finally,
the authenticator is thp; th root (moduloN) of this product. Note that since the labels
of the internal nodes are all random, there is virtually no chance that any two such labels
are identical. Thus, we never use the sdye p;) pair twice in a basic authentication
step. This is critical in obtaining existential unforgeability.

3.2. Detailed Description

The scheme is parametrized byandk and we considet to be the security parameter
of the scheme. The scheme works with numbers (labels) of lehdtus¢ should be
chosen so that it is infeasible to factGbit numbers (and so that the RSA assumption
is assumed to hold for moduli of length. The outdegree of the tree ks whereas (1)

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 193

Fig. 1. The signer's tree. Messageis signed using the pait2, 3, k).

the public-key modulus, (2) the labels of the internal nodes, and (3) the elemexXts of
are all¢ bits long. We also take the number of elementXiand size of the labels of

the leaves to bé, but, as we discuss in Section 3.4, these may be smaller. The size of a
signer’s public key depends only @dnAs mentioned in Section 3.1, a possible choice
for the parameters is takingandk to be about 1000, but there is no particular reason
that they should be equal.

Shared Information. There are two setsX = {X1,Xp, ..., %X} and P =

{p1, P2, - - ., Pk} of integers, and a randommbit integery;qot. Thex;'s are random inte-

gers of length at mogt The p;’s are primes; they can be either themallest primes or

k random primes of length, according to whether one relies on the general or stronger
version of the RSA assumption (see exact formulation in Section 4). These lists are fixed
and the same for all signers. They must be accessible to all signers and verifiers.

For ease of exposition we assume the deptifithe tree is fixed. However, this is not
essential, and the signer is free to chadgs any time.

The Public Key. The public key of each signeris an£-bit numberNg which is the
product of two primesps andgs. It is important to chose the primes at random (and
independent of the lisX) from all primes of length at mogt/2. The prime factorgs

194 C. Dwork and M. Naor

andgs should be chosen so that for alkli < k we havep; f(ps—1) andp; f(gs—1)
and hencep; is relatively prime top(Ns). If P consists of large primes, then this is
necessarily the case. I consists of the list of small primes, then it is still possible to
sample from the primes such that f(ps — 1) andp; f(gs— 1) foralll <i < k. So
the key generation procedure is efficient.

The Secret Key. The secret key of the signer is the factorization N, i.e., the
pair (ps, gs). Given the factorization it is easy to compug o, ..., gk Whereq =
1/pi modg(Ns).

The Basic Authentication Step. To authenticate the labg} of a nonroot vertex, let

z, be the label of the parent ofand letv be thejth child of its parent. We use the bits
of y, as selectors of the elementsXf Let y,; denote theth bit of y,, for 1 <i < ¢.
Then the basic authenticataunth(y,) is given by

i
<zv H xi> mod Ns.

Yoi=1

Verification of a Basic Authenticator. The authentication of, can be verified as fol-
lows. Given a stringe purported to beuth(y,), and given alsa,, v, j, and the public
lists P and X, compute

Z, 1_[x; mod N
yv\=1

and check that it is equal @ mod Ns.

Signature Generation. Messages are associated with leaves in a depth-first, left-right
manner; that is, when a new messayés to be signed, the message is assigned the
leftmost leaf that has not yet been usetserves as the label of the leaf. At all times the
signer maintains a labeled path from the root to the leaf most recently accessed, together
with the authenticators for the labels of the vertices on this path. All other previously used
labels and authenticators may be erased, since they will not be used again. Assuming
J > 0 messages have been signed so far, the algorithm for signing #h&) st message,
say,m, is:

1. Assign tomthe (J + 1)st leftmost leafw and labekw with m.

2. For each nodealong the path fromoot to w that has not yet been labeled, choose
a random labey, .

3. Foreach node along the path from the root to (excluding the root but including
w), if y, has not yet been authenticated, then assumiiggthe jth child of its
parent, compute the basic authenticadorth(y,) using p; and the label of the
parent ofv.

A signature of a message labeling a leafw is therefore of the form

M, (j1, J2, -« -, Ja)s (Y1, Y2, - - -, Yd-1), (o1, 2, .. ., g)),

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 195

where;

e (j1,J2,---, ja) is the description of the path from the rootuo that is, indices in
the range 1. .., k of the children.

e (Y1, Y¥2,..., Yq_1) are the labels of all the nodes along the path from the roat, to
excluding the root, whose value is part of the public information, andvhose
value ism.

e (a1, ...,aq) are the basic authenticators for all the nodes along the path, ex-

cluding the root but includingu, i.e.,«; = auth(y;), as computed in the basic
authentication step described above.

Signature Verification. Given a claimed signature of the form

M, (1. J2, -+ -5 Ja)s (Y1, Y2, - - -, Ya—1), (o1, a2, ..., ad))

it is verified by applying the basic authenticator verification procedure described above
for all the labels of the nodes on the path, i@®4, Vo, ..., Yq—1, M), and where the
purported authenticators at®@, oo, . . ., ag). There is sufficient information to perform
these verifications, since for eaghthe index of the node at its parent is givenjaand

the label of the parent is known as well—it is either in the (igt, ¥», ..., Yg_1) Or it

iS yI’OOt-

3.3. Computational Requirements

We now analyze the computational requirements of the various operations of the sig-
nature scheme. The computationally expensive operations that must be performed are
modular exponentiation and subset product. If we try to compare the two in terms of
the number of modular multiplications, then straightforward implementations require
3¢/2 and¢/2 modular multiplications respectively (thg2 figure is the expected one

for randomsubsets). There are possible speed-ups for both operations, which we discuss
in Section 3.4, however, it seems that the subset multiplication is easier. Therefore we
can (pessimistically) regard the complexity of the two operations as similar.

The Time Complexity of Signing. Signing a message involves

o d exponentiations modls (i.e., RSA computations);

e d subset multiplications, i.e., multiplying a random subset afumbers. (The
subsets are random for the internal nodes; for the leaves we can either assume that
the number of 1's in the block i6/2 on the average, or instead Xor the message
with a fixed and random string that is part of the public information.)

Assuming thatd = 3 and that subset multiplication is roughly equivalent to modular
exponentiation, we can say that the complexity of the scheme is at most six times that
of RSA. Taking the relative complexity of subset multiplication and exponentiation to
be 1: 3 (as the 32 and¢/2 figures indicates) we get a factor of only four.

196 C. Dwork and M. Naor

The Time Complexity of Verification. Verifying a purported signature on a message
involves

e d RSA verifications;
e d subset multiplications.

If the primes inP are large, then this corresponds t @mes the complexity of
plain RSA with a large public exponent. However, if we are using small primes, then
the complexity of the subset multiplications dominates and we get that verification is
significantly more expensive than verification in plain RSA with a small public exponent.

The Size of a Signature. A valid signature consists ofd— 1 numbers, each bits
long, plusd numbers of length log to describe the path from the root to the leaf.
Therefore under the assumption tkhlat 3 the size of a signature is roughly five times
that of RSA. (See Section 3.4 for improvements.)

Storage Requirements and the Size of the Public Key. A public key is ar¢-bit num-

ber (similar to RSA). Unlike RSA, the scheme requires the storage of thliatel P,

and ofyoo, a total ofé? 4+ (k + 1) - £ bits. Apart from the listsX and P, the memory
needed to run the signature scheme is not large: one need only maintain information
along a single path from the root to a leaf, dg/ + logk) bits.

3.4. Remarks on Implementation

For the case in whick and¢ are both about 1000, roughly 2 million bits (about 256K
bytes) of common information must be accessible to every user. This is feasible if both
signer and receiver are a “full” computer, but may be an obstacle in using the scheme
in a smart card environment, as current generation smart cards have a memory capacity
which is an order of magnitude smaller. However, as smart cards are becoming more
powerful, storing 128K bytes in ROM on a smart card may not be impossible. Moreover,
if, rather than choosing the prim@sat random, we instead use the smallest 1000 primes
(see Assumption 3), then 128K bytes should suffice.

A tempting possibility for cutting the memory requirements is to generate the shared
random information in some pseudorandom manner and provide only a short seed.
However, since the information is shared, all current techniques of cryptographic
pseudorandomness fail.

Assumek = ¢ = 1000 and consider a particular path in the tree. If the tree is of height
d = 3, then the path has three internal nodes: the root, and two others, sagw.

Let Voot Yo, @andy,,, respectively, be the labels of these internal nodes. The first time a
message associated with a childuwofs signed, the signer must perform the computation
needed to authenticayg usingy,; however, this information can be stored and used for
the remainind — 1 (about 1000) messages associated with children &imilarly, the
authentication o, usingy;oot can be reusekf times (about 1 million times). Therefore,

for this reasonable choice of parameters,gh®rtizedcost of signing a message in our
scheme is at most twice that of signing using plain RSA.

We have ignored the issue of when tgés (the inverses mod(N;) of the p;’'s)

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 197

should be computed. To speed the signing, the signer can precompute them. However,
this requires storing them in a secure memory. An alternative is to compute them on the
fly. This does not add significantly to the computational load, since computing inverses
is much easier than exponentiation. From the discussion above, if the signer stores the
g's corresponding to the current path-¢ 1 values), then it has to compute at most one

gi per signature.

As specified in Assumption 3 below, th®'s may be chosen to be small in order to
expedite verification of a signature. Furthermore, Fiat [16] suggested a way of amortizing
RSA computations. His method fits very well with our scheme, particularly since we
use different roots. Fiat's method may be used to decreassizbef the signature as
well: instead of storing for eack, along the path the valuauth(y,) separately, it is
sufficient to provide one value idy,_from which all theauth(y,)’s along a path are
extractable. Therefore the size of a signature is dnhumbers, each bits long, plus
the description of the path. The only additional restriction is that allgfeof a path
should be different. This does not reduce the total number of paths by much, instead of
kY paths we havé - (k — 1) - - - (k — d + 1). An alternate way of reducing the signature

size is to eliminatgy, ¥, ..., Yg_1). One can reconstruct their presumed values from
Vg = mand(ay, ay, ..., ag) and check it usingyoor: Starting fromh = d downtoh = 1
compute
Pi
O
Yh-1 = = mod Ns
I_IYhi=l Xi

and verify thatyg = Yroot.

We have fixed the size of to be¢ which is also the size of the labels of the nodes
in the tree and the number of bits in the public key. In principle we could use fewer
X's, which would imply a shorter public lisk and multiplication of smaller subsets.
However, this would require us in the basic authentication step toyyasid to use the
bits of h(y,) in the selection of the elements &f. It is sufficient to apply ainiversal
one-way hash functiof26] (see definition and discussion in Section 5), but in order to
obtain existential unforgeability usiranly the RSA assumption (of either type), rather
than relying on the properties of the hash functions, we did not present it as such.

Other known techniques for speeding up RSA and the Fiat—Shamir signature scheme
are applicable to our scheme as well. The signer can perform its calculations modulo
each of the factors dfls separately, and then combine them using Chinese remaindering.
This is true for both the exponentiation and the subset multiplication. Therefore, for this
choice of parameters, the performance comparison with plain RSA is valid even if one
assumes that the implementation of RSA does these (quite common) optimizations. To
expedite the subset product computations, one can preprocess edatitioning it
to small sets, say pairs or triples, and for every set computing all products of its subsets.
This decreases the time spent on subset multiplication at the cost of additional storage.
For instance, if one partitions into triples and preprocesses them, then storing the result
requires% times the space required to stofe The expected number of multiplications
to compute a random subset decreases #frd@multiplications (without preprocessing)
0 g -£/3 = 7¢/24 multiplications (with preprocessing).

198 C. Dwork and M. Naor
4. Security of the Scheme

In this section we prove that our signature scheme is existentially unforgeable under
adaptive plaintext attack [21] (see Section 2). Specifically, we show that the ability to
generate a singlan, S(m)) pair, for anym on which the signer was not explicitly asked

to sign—even for a nonsensiaal—violates the RSA assumption(s) specified below:

Assumption 2. For every polynomial ¢x) there exists ary such that for alle > ¢,
the following holdsLet N be a number of length at mdsbits which is chosen as the
product of two large random primes of equal lend#t p be a random prime of length
£ bits, and let m be a random-bit number For every probabilistic ¢¢) time bounded
algorithm F:

1
PrlF(N, p, mP modN) =m] < —,
NP)
where the probability is over the choices of Bl m, and the internal coin flips of.

Assumption 3. For every polynomial ¢x) there exists arfy such that for all¢ > ¢,

the following holdsLet p beanyprime Let N be a number of length at mddits which

is chosen as the product of two large random primes of equal length and such that p is
relatively prime top(N), and let m be a randor-bit number For every probabilistic

g(¢) time bounded algorithnF:

1
PrF(N, p,mP modN) =m] < —,
[F(N, p)]<q(£)

where the probability is over the choices of N and m and the internal coin fligs of

Intuitively, the security of the scheme rests on the important observations made in [35]
and [17], respectively:

e Having a black box that computes’P mod N for randomx does not help in
evaluatingx/P2 mod N, if p; and p; are relatively prime.

e For numbersg, x», ..., X, for arbitrary subses c {1, ..., ¢} and randony €
Z;,, the value of(y [T;.s)" mod N yields no information about any of the

%P modN.

Suppose that the scheme can be broken, i.e., there is an algotithat operates in
time T and has probability of breaking the scheme. We show that there is an algorithm
B that works in expected tim@(T) and that can extraqith roots with probability at
leastp/ (¢ - k) whereO hides factors that are polynomial irendk but independent of
T. (See a remark on refining the analysis following Theorem 4.1)

The input toB is the triple(x, N, p), wherex, N, andp are as in Assumption 2. (The
argument for Assumption 3 can be treated similarly.) The desired outptfisnod N.
Algorithm B consists of three phases, a preprocessing phase, in which the public key
and public information are generated, a simulation phase, in which the alga#tism
simulated on the public key generated in the previous phase, and, if the simdlaed

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 199

successful in breaking the signature scheme, then a third phase takes place, i which
extractsx'/P mod N from the illegitimate signature produced By

If atree-based scheme (i.e., a system where parents vouch for the authenticity of their
children) is broken, then there must be the first time an illegitimate value (i.e., a value
not authenticated by the signer) is authenticated by some wodfée can guess with
probability 1/k at which child, 1< j < k, of w this will occur (note that there is no
need to guesw itself). Furthermore, with probability at least/lwe can guess an index
1 < i < ¢ at which the legitimate value authenticated withand p; differs from the
forged value B attempts to simulatel and make the above guesses. If the simulated
is successful in breaking the signature scheme and if the guesses turn out to be correct,
then from this information it should possible to extraét® mod N.

4.1. Detailed Description of Algorithn#

The input toB is the triple (x, N, p) and the desired output is/? mod N. In the
preprocessing phadgcreates a labeled tree and the liXtend P. These are then used

in the simulation phase to enable the interaction with (i.e., signing at the request of) the
simulatedA. If the simulatedA is successful in breaking the signature scheme, then there
is another (short) phase, during whitextracts the desired valxé/? mod N from the
forged signature produced by the simulatéd_et [K] denote the seft, .. ., k}.

Algorithm B: Preprocessing Phase.

1. Choose uniformly at random randonxli < ¢and 1< j < k.

2. SetNg = N.

3. Choose randorg-bit primespy, po, ..., Pj—1, Pj+1, --., Px. Setp; = p and let
P={py P2 ..., P}

4. Togenerat&s, Xo, ..., Xi_1, Xi+1, - - - , X¢, S€lect uniformly at randor— 1 values
in Zy, and raise each one of them to the power p; - - - px moduloNs. Thus, for
all h e [KT\{j}, all the ppth roots of the elements K\{x; } are known and can be
computed efficiently. To generag, selects uniformly at random fronZg,, letr
besP mod Ng and setx; = (r - x)PrPi-Pi+1P mod Ng. Note that:

e For eachh € [K]\{j}, xil/ ™ mod Ns can be computed efficiently.

. Givenxil/pj mod Ng we can extractr - x)/P mod N, and henceP mod N,
efficiently as follows. Leaandb be such thad- pj+b-p1- - - pj_1-Pj41--- Pk =
1 (they exist and are easy to find by the GCD algorithm). Then

(r . X)l/pj — ((r . X)pl"'pjfl‘ijrl'“pk/pj)b . (r . X)a mOd Ns

)
1P — (Xil/pi)® 2. x%/s mod N.

5. RecallthaT isthe upper bound on the running time4tnd hence an upper bound
on the number of signatures requested by the simul4t&de now determing, for
allinternal nodes that are ancestors of the filfeieaves. The goal is to choose the
labels so as to be able to provide any signatures requested by the simdildteel
tree is constructed in a bottom up fashion. Recallitlzatd j are fixed by now, and

200 C. Dwork and M. Naor

that by the construction of we cannot efficiently compute P mod Ns. Thus,
we want to ensure that if is the jth child of its parent, then when authenticating
Yy, itis not necessary to compute tpgth root ofx;. We can ensure this as follows.
Letting y,; denote theth bit of y,,

e if y,i =1, thenz, (the label of the parent af) should be

BPPPe /% mod N

for randomg, € Z\,
o if y,i = 0, thenz, should beg* ™™ mod Ns for randomg, € Zj, .

This suggests a specific bottom-up method for choosingyitse However, for

technical reasons we prefer the following two-step description:

(a) For each node in the subtree containing the fir§tleaves, choose a random
bit b, and sety,; = b,, wherey,; denotes théth bit of y,. (For a leafv, b, is
necessarily a guess, and is correct with probabilit¥. However, all the other
b,’s will indeed be the values of,;.)

(b) Forallinternal vertices, letu be thejth child ofv and leto, = y,; andb, = yi;
be the values chosen in Step 5(a). Choose a rargloanZy, . If y,i = 1, then
compute the candidate value

Yo = BXP27P/x; mod Ns.
If yui = 0, then compute the candidate value
Yo = BPP2 P mod Ns.

Note that in both caseg is uniformly distributed inZy, . With probability 1/2
we have thaty,; = b, (i.e., theith bit of y, agrees W|th the value chosen for
it in Step 5(a)). If they are equal, then keep the candigiatind continue with
the preprocessing; otherwise, repeat this step, choosing new candidate values
fory, (by choosing new random, € Zg,) until successful.
Let oot denote the value assigned to the root by the above procedure.

Before we describe the simulation we should note that in the description above there
is one inaccuracy: we choose values Zj at random (where stands for either the
Xk's or they,’s), whereas in a regular execution 4fit should be that is a random
£-bit number. This can be corrected by replaciigy a randone’ of length¢ such that
z = 7 mod N. We should not worry about the numbers that are not relatively prime to
Ns, since they are rare. Howeverzif< (2¢ mod N), then there arg2® /N7 ¢-bit values
Z such thaz = Z modN and ifz > (2 mod N), then there ar¢2‘/N| ¢-bit values
Z such thatz = Z mod N. This gives a certain advantage to the latter. To correct this
bias, afterz is selected uniformly fronZy,_we reject az > (2° mod N) (and repeat
the process in which they were chosen) with probabjl#{y/ N | /[2¢/N7. This cannot
increase the expected work by more than a factor of 2.

Algorithm B: Simulation Phase.

1. InvokeA with (X, P, Ns, Yroot) @s determined in the preprocessing phase.

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 201

2. Start the simulation aofi; at every step, A queries the signer with a message

and requests a signature. The algoritdmeceives as requested a signaturemn

using the path to theth leftmost leaf of the tree chosen in the preprocessing. The

signature is generated according to the following:

e To handle a node which is not th¢h child of its parent is easy, since we can
extract allpyth roots wherh # j.

e To handle a node which is gth child but is aninternal node can also be done
easily, due to the way, was chosen in Step 5 in the preprocessing phase.

e When handling a leat that is thej th child of its parenv, then with probability
1/2 the incorrecb, was chosen, that is, for whidly does not equal thigh bit of
the message; for which .4 requests a signature. (Note thétloes not receive
the guessel, of the leaves and hence its choice of messages is independent of
them.) In this case

— Rewind A for j steps, back to the stage just before the parent ief
used for the first time.

— Choose at random a new value fiy.

— Choose a new valug,, wherev is the parent oli; the value ofy,
should satisfy the constraigt; = b, imposed in the preprocessing
step, thus preventing further propagation of the rollback. This is done
as in Step 5(b) of the preprocessing.

As discussed below, the rewinding may increaseekgectedrun-time by a
factor of at most 2.

Algorithm B: The Extraction Phase.
Suppose thatl is successful and produces a signature

(m, (1, J2, -5 Jd)> (Y1, Y2, - -+, Yd—1), (0, o, . . ., @),

where the sighature passes the verification testirbwis not signed in the simulation
phase. AmondYo = Yroot, Y1, Y2 - - - » Yd—1, Ya = M) there must be the first (smallest)
1 < a < d such that, letting be the node reached by following the pathj., ..., ja,

Ya is different from the label assigned in the preprocessing phase.\, dte the true
label ofv (assigned in the preprocessing phase) and let

Gia
o = auth(y,) = (yal l_[xh) mod N.

Yoh=1

By Step 5 of the preprocessing phase, i§ a leaf, therx can be computed b; if v is
an internal node, themwas computed bj3. The extraction is successful if the following
two conditions holdj, = j andy,; # Vai (thatis,y, andy, differ in theith bit). If this
is the case, then from the forged signature we have (y,_1]_[yah:l Xh)% mod Ng, and
from above we have = (y,_1]_[y“h=l xi)% mod Ns. We can now obtairxiqj mod Ns
as follows. Assume without loss of generality that = 1. LetS, = {h # i|Yanh =
1AYynr=0andS ={h#i|yan=0 A y,n = 1}. Then we have
o Tlhes X Oatllym1X)% Tlhes X _ g mod N
— . = - - = A S-
i Jlhes, X0 (Yao1 [Tyet X% Tlhes, X '

202 C. Dwork and M. Naor

As discussed in Step 4 of the preprocessing phase, for #lli it is easy to compute
x mod Ns and fromx.” mod Ns it is easy to extrack% = x¥/P mod N, the desired
output.

4.2. Analysis of Algorithni3

When .4 engages in an interaction with a signing process, there is a distribution on the
transmissions thad witnesses. The proof of security rests on the fact that this distribution
and the oned witnesses in the simulation are similar. l22t.A) be the distribution4
witnesses in a regular execution, conditioned on the event that rver¥ and all the
labels of the internal nodes are relatively primeé\ip(the probability that this is not the
case is bounded by - (N — ¢(N))/N < 3T/+/N, which we assume is negligible).
This distribution is simple to describe: it consists of a public Mydistributed as in
Assumption 2, a lisX of £ numbers uniformly distributed over.0- 2¢ — 1 and relatively
prime to Ns, a list of random primes of length and, for each internal node which is
an ancestor of one of the fir$tleaves, a random value which is uniformly distributed
over 0- - - 2¢ — 1 and relatively prime td\Ns. All the other values are determined by these
values and the messages on whithequests a signature.

Let D(B) denote the distribution that witnesses in the simulated interaction wigh

Claim 4.1. The distributionsD(A) and D(B) are identical Furthermore the distri-
bution D(B) is independent of the choice of i and j in Stepf the preprocessing
phase

Proof. The distributionD(B) consists of the listX and P, the public keyNs, and the
labels of the internal nodes that are ancestors of thelfishves. All other information is
determined by these and the messagesAh@abvides. The lisX consists o numbers
distributed uniformly and independently among thbit numbers relatively prime to
Ns. This follows from the way they are chosen in Step 4 of the preprocessing phase (note
that the choice of randomizes in Z§,). ThereforeX is also independent of the choice
ofi.

The list P is a list of k random primes of lengtld, given that the inpup = p;
was chosen at random (which is our assumption). Again, it is independgntTdfe
situation for the labels of the internal nodes may seem more delicate, since these values
are chosen by a more complex process. Consider the nottest are not parents of
leaves. Their labels are chosen at Step 5 of the preprocessing phase and never change
thereafter. Recall that this is done by first picking tkie bit as a randonb, € {0, 1}
and then choosing the rest of the label by either compusifig? ™ /x; mod Ns or
BPP P mod Ng (depending on théth bit of the label of thejth child of v) for a
randomg, € Zy, until theith bit of the result equals,. From the randomness of the bit
b, and of the values,, the labely, is uniformly distributed.

The labels of the nodesthat are parents of leaves may be rechosen at Step 2 of the
simulation phase. Note that for a nodeand its jth child u the values fory, andb,
chosen at Step 5 of the preprocessing are independent. Therefore the event of choosing a
new label for the node is independent of the value chosen fpr (It happens when the
guesdy, of theith bit of the message signed by thila child of v was wrong; recall that

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 203

A does not receive information regardibg) Therefore the new value fo, is again
uniformly distributed and independent of the nisyv O

Claim 4.2. The expected time to run the simulatiorQsT).

Proof. There are two possibilities that may force us to spend more @@n steps
(recall that theD hides factors that are polynomialérandk but independent oF): one

is Step 5 of the preprocessing phase, where we may fail to chgdbat satisfies the
requirementory,; . However, this happens with probabilityZ2and hence at most doubles

the expected amount of work. The second possibility is in Step 2 of the simulation, where
we may have to rewindl for j steps. However, as before, this happens with probability
1/2 and increases the expected work by a factotkof j)/k < 2 (since the firstj
children of a node which is a parent of leaves may be repeated with probalsRitgritl

the rest are developed once). O

Claim 4.3. The probability of success is at leggt— (3T/+/N))/(k - £).

Proof. The probability that4 breaks the system in a regular execution, given that all
thex;'s andy,’s are relatively prime td\, is at leasp — 3T /+/N. SinceD(A) andD(B)
are identical and the latter is is independernit afd j chosen by3, the probability.A in
the simulation breaks the scheme is at lgast3T /+/N.
Suppose thatl breaks the signature scheme and produces a forged signature,

(M, (j1, J2, -« -5 Ja)s (Y1, Y2, - - -, Ya—1), (o1, a2, .. ., d))

and suppose that, 1 < a < d, is the leash such thaty, is different from the true label
of the corresponding node Let y, be the true label assignedidn the preprocessing
phase oB3. Recall from the extraction phasel®the condition for a successful extraction
of xYP modN: j. = j andya; # Y.i. However,j andi are independent db(3) and
hence ofj,, Ya, andy,;. Therefore given such a forged signaturejPe j] = 1/k and
Prlyai # Vil = 1/¢. The two eventsji = j andya # V,i) are independent, since the
choice ofi andj is independent. Therefore with probability at leastkl- ¢) they both
occur and, as explained in the extraction phasB,afe can extrack'/P mod N. |

We can therefore conclude that any algorithm for breaking the provided signature
scheme can be used at a related cost and probability of success to extract modular roots:

Theorem 4.1. Any algorithm.A that breaks the scheme in time T with probability
can be turned into an algorithm for breaking Assumptiim time O(T) and success
probability (o0 — (3T/v/N))/(k - £).

We remark that it is possible to modify our scheme so that any algorithm for breaking
the scheme operating in tin@(T) and probability of succegscan be converted into an
algorithm for breaking the RSA assumption in tifi@nd probability of succe$2(p/ k)
(rather tharp/(k - £) as above). The modification is based on an idea of Even et al. [15].
Each value to be authenticated usighis first encoded with a code that has a large

204 C. Dwork and M. Naor

relative distance, i.e., the Hamming distance of any two codewords is a large fraction,
y, of their length. The length of the list should now be’, the length of codewords of

C, rather thart. For a good codé’/¢ should beO(1). The basic authentication step is
done by

]
(zv H xi) mod Ns.

C(yu)i =1

Now, at the beginning of the preprocessing phase, when we guess a £ ¢/, the
probability that the authenticated value and the forged value differ atthhlit is at
leasty, since they are encoded usifig Therefore the overall probability of success is
Y- p/K.

A finer analysis of the running time & can be done by separating the running time
of Ainto Ty, the number of (message, signature) pairs obtained,andT,, its internal
running time. The running time d§ is O(Ty) + O(Ty).

5. Application to Signing Faxed Documents

In this section we describe how to apply our signature scheme, or any existentially
unforgeable scheme, to signing faxed documents. This application can be seen as an in-
stance of adocument repository, mentioned in the Introduction. In particular, we describe
how to use such a scheme in order to obtain short receipts for long documents.

As pointed out in the Introduction, in designing a signature scheme appropriate for
fax documents it is important to distinguish between the printed document, denoted
P, and the bit stream image of the scanned document, derdtddat results in the
printing of P. In general, onceP is printed fromD, it is impossible to reproduc®
precisely: rescanning the printed documéhtvill likely yield a different bit stream
D’ # D. Therefore, for digital signatures of faxed documents to be useful, the semantics
and responsibilities of each of the sides (sender and receiver) should be determined
carefully.

If neither the sender nor the receiver has a long-term storage device, then providing
meaningful digital signatures, verifiable by a third party, seems to be an impossible task.
We therefore assume that at least one of the sender or the receiver is using a computer-
fax, or cfax system, i.e., a machine that can permanently store the scanned document.
The simple fax machine is not equipped with long-term storage, but it is equipped with
a processor that can perform any required computation on the stream of data passing
through the fax. There are three scenarios to consider:

e Cfax to cfax—straightforward, i.e., not different from any computer communica-
tion, the receiving cfax simply stores the bits representing the image of the signed
document together with the signature.

e Cfax to fax—interesting (see below).

e Faxto cfax—same as cfax to cfax.

Assume we have a cfax machine, deno&dsending a document to an ordinary
fax, denotedF. This scenario is applicable whenever we have a large organization
communicating with many independent agents or clients, e.g., a bank with its clients

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 205

or an insurance company with its agents. Although the recéivisrnot assumed to be
able to store the bit-stream imadke of the faxed document, it is this bit-stream, and
not the printed version of the document (which we can assume is available), that has
been digitally signed. Thus, the sendemust store the data. Since the receiver may
not trustC to produce the data on demar@,should issue to the receiver some type

of receipt. Therefore, in this scenario the receiver cannot alone convince a third party
that the document was signed by the claimed sender, but it can show to a third party a
signed statement promising cooperation in the judgment. As pointed out below, refusal
on the part of the sender to cooperate may actually permit the receiver to forge, so it is
definitely in the sender’s interest to cooperate. In the following, we do not assume that
the receiver has a long-term storage device.

Problem Formulation. The problem raised by the discussion above can be formulated
as follows: design a signature scheme that allows a signer to provide to a rdesivert
receiptsR(D) onlong documentd. Given R(D) and D it should be easy for a third
party to determine wheth&(D) is indeed a signature dd (this is the usual requirement
from a signature scheme). The cfax to fax scenario imposes two additional requirements:

e Given R(D) alone it should be easy to determine that it is legitimate—it should
be computationally infeasible for the receiveito produceanylegitimate looking
receiptR(D), except for those provided Iy.

e GivenR(D), the signelC should be able to produce only one corresponding

To apply a solution to this problem in the context of signing faxes, one should print
the documenD, as is customary with faxes, and also print either in hex or in some more
area-efficient method, such as a two-dimensional bar code, the r&@&pt

Cryptographic Tools. Since the requirement is that the scheme produce short signa-
tures on long documents, it is quite clear that some sort of one-way hashing should be
used. These come in (at least) two flavamsiversal one-way hash functiof26] and
collision intractable functionglL1]. A family H of universal one-way hash functiohas

the following propertyfix a string S Let h be chosen at random from the family H of
universal one-way hash functiankhen it is computationally infeasible to find a string

S such that §S) = h(S). This is weaker than collision-intractability, which allows
Sto be chosemafter his known, i.e., given a randotm it should be infeasible to find
differentSandS such thah(S) = h(S). However, it may be easier to construct, or at
least to prove secure, universal one-way hash functions, and constructions are known to
exist under general assumptions [26], [32] (for more reasons why it may be preferable to
assume only the existence of universal one-way hash functions, see [5]). In our context,
the stringsS are just documents. Thus for any fixed documnif h is chosen at ran-

dom from the familyH of universal one-way hash functions, then it is computationally
infeasible to find a documem’ such thah(D) = h(D’).

One concrete proposal for constructing universal one-way hash functions, due to
Impagliazzo and Naor [22], is based on the subset sum problem (they also propose some
less efficient schemes based on factoring). In particular, breaking the assumed universal
one-way hash property of this family is proved in [22] to be as hard as solving a random
subset sum problem. Recently Ajtai [2] showed that breaking such functions implies

206 C. Dwork and M. Naor

the ability to solve several worst-case lattice problems. On the other hand, Schnorr and
Horner [34] (and references therein) provide computational experience in solving such
problems, which implies bounds on the choice of parameters.

Collision-intractable hash functions can be constructed based on the discrete logarithm
problem [8], [9]. Alternatively, as was pointed out in [20], Ajtai’s results imply that the
Impagliazzo—Naor construction is actually collision-intractable (assuming the above-
mentioned worst-case lattice problems are hard).

There are also various proposals for fast one-way hash functions, like MD5 [31] and
SHAT[1], whose security is not treated formally. This does not mean that they are useless,
but the goal of this paper is to provide a solution that is efficard provably secure.

Note that collisions have been found in MD5 [13].

A nice property for the one-way hash function to have is that it is easy to compute
it on the fly, without storingD. All the above proposals enjoy this property, or can be
easily adapted to have it.

We should also assume the existence of an existentially unforgeable signature scheme
secure against chosen plaintext attack, such as the one described in Section 3.

Key Management. There are standard ways to avoid having to maintain and access a
directory of public keys. For example, there can be a central agency with which public
keys are registered. The central agency has its own pair of keyses L centes Where

all users knowK center (rather than having to know all public keys).

The Scheme. Inthe following,(a, b) denotes the concatenationaoéndb. The family

H of universal one-way hash functions should be chosen so that the number of bits in
the pair(h(D), h) for anyh € H and any documenD, can be signed with a single
application of the signature function. The cfax sen@erfirst forwards to the recipient

the statementC'’s public signature key i¢,” sighed with the center’s signature key.
The recipientF, knowsKcenterand can therefore be certain of using the correct public
key forC. Let & (m) denote a signature on messagwith C's key. The agents proceed

as follows:

1. F chooses at random dne H. F does notevealh to C.

2. C sends toF the documenD; F hashesD on-line, computingh(D) and tem-
porarily saving this; it also print® (on-line).

3. FsendshtoC.

4. C computedh(D) and sends t& S ((h(D), h)), that is,C’s the signature on the
concatenation dfi(D) andh.

5. Leta be the message receivedByThenF verifies thatr is indeeds: ((h(D), h))
using h and h(D) computed and stored aboveF then prints
(h(D), h), S ((h(D), h)) in hex or using a two-dimensional bar code (a more
compact and robust representation). This printout should be kept in a safe place,
since it is the recipient’s only proof of the authenticity of the document.

For particularly important transactiofRamay storeD on tape, or even printthe bit-stream
of D itself. This is discussed next.

Handling Disputes. The tuple({h(D), h), S ({(h(D), h))) constitutes a promise iy
to produce a documer®’ such thath(D’) = h(D). Whenever the need arises, say,

An Efficient Existentially Unforgeable Signature Scheme and Its Applications 207

that a third party wants to check the receiver’s claim that he received a specific printed
document from the sendéZ,must producd®’. (We assume that giveD' it is possible to
verify that it corresponds to the printed document.) We claim that in the above protocol
both parties are protected:

e Protection off: SinceD was fixed byC without knowledge oh, if D’ # D, then
this means that broke the universal one-way hash function, because it should be
intractable to find &’ such thah(D’) = h(D).

e Protection ofC: Since the signature scheme is existentially unforgedblegnnot
produce any tuplé(h(D), h), Sc({(h(D), h))) that was not originally produced
by C.

If the sendelC refuses to produce an appropridde then this can be treated as a
breach of contract (or “evidence” th@t indeed signed a document corresponding to
the printed one). Up to this point we have assumed Ehdtas no long-term storage
medium. Suppose instead thatrecords documents on tape, or some other low-cost
(but not easily searchable) medium. In this cas€, does not cooperate, théncould
produce the tape. Moreover, this last option may have a “nasty” surprisz finceF
is the one who chodle, C’s refusal to cooperate exposedo “forgery” of the receipt:
if F had been dishonest and cho$edependent o> (after Step 2, rather than before
Step 2), ther- may be able to produd®’ # D such thah(D’) = h(D).

Acknowledgments

We thank the two diligent and anonymous referees and Oded Goldreich, whose many
comments helped improve the paper.

Note Added in Proof Recently, Cramer and Damgard [10] have found a way to elimi-
nate the shared random striXg

References

[1] FIPS 180-1, Secure Hash Standard, NIST, US Dept. of Commerce, Washington DC, April 1995.

[2] M. Ajtai, Generating Hard Instances of Lattice ProblefAsyc. 28h ACM Annual Symposium on the
Theory of Computingl996, pp. 99-108.

[3] M. Bellare and S. Micali, How to Sign Given Any Trapdoor FunctidnAssoc Comput Mach, 39
(1992), 214-233.

[4] M. Bellare and P. Rogaway, The Exact Security of Digital Signatures: How to Sign with RSA and Rabin,
Advances in Cryptology—Eurocry®8, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag,
Berlin, 1996.

[5] M. Bellare and P. Rogaway, Collision-Resistant Hashing: Towards Making UOWHFs Pra&teahces
in Cryptology—Crypto97, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1997.

[6] D. Bleichenbacher, Generating EI Gamal Signatures Without Knowing the SecrefAKegnces in
Cryptology—Eurocrypt96, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag, Berlin,
1996.

[7] J. Bos and D. Chaum, Provably Unforgeable Signatukesances in Cryptology—Cryp&2, Lecture
Notes in Computer Science, vol. 740, Springer-Verlag, Berlin, 1993, pp. 1-14.

[8] S.Brands, An Efficient Off-Line Electronic Cash System Based on the Representation Problem, Technical
Report CS-R9323, CWI, Amsterdam, 1993.

208 C. Dwork and M. Naor

[9] D. Chaum, E. van Heijst, and B. Pfitzmann, Cryptographically Strong Undeniable Signatures, Uncondi-
tionally Secure for the Signekdvances in Cryptology—Crypt81, Lecture Notes in Computer Science,
vol. 576, Springer-Verlag, Berlin, 1992, pp. 470-484.

[10] R.Cramerand I. Damgard, New Generation of Secure and Practical RSA-Based SigAalvaeses in
Cryptology—Crypto96, Lecture Notes in Computer Science, vol. 1109, Springer-Verlag, Berlin, 1996,
pp. 173-185.

[11] I. B. Damgard, Collision Free Hash Functions and Public Key Signature Schekdeances in
Cryptology—Eurocrypt87, Lecture Notes in Computer Science, vol. 304, Springer-Verlag, Berlin, 1988,
pp. 203-216.

[12] W. Diffie and M. Hellman, New Directions in CryptographEE Trans Inform. Theory 22(6) (1976),
644—654.

[13] H. Dobbertin, Cryptanalysis of MD5 Compress, presented at Eurocrypt '96 rump session.

[14] T. El Gamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete LogdBBHsS,
Trans Inform. Theory 31(4) (1985), 469-472

[15] S. Even, O. Goldreich, and S. Micali, On-Lif@ff-Line Digital Signatures,. Cryptology 9 (1996),
35-67.

[16] A. Fiat, Batch RSAAdvances in Cryptology—Crypt89, Lecture Notes in Computer Science, vol. 435,
Springer-Verlag, Berlin, 1990, pp. 175-185.

[17] A. Fiat and A. Shamir, How to Prove YourseKdvances in Cryptology—Crypt86, Lecture Notes in
Computer Science, vol. 263, Springer-Verlag, Berlin, 1987, pp. 641-654.

[18] A. Fiat and A. Shamir, Method, Apparatus, and Article for Identification and Signature, United States
Patent 4,748,668 (5/31/88).

[19] O. Goldreich, Two Remarks Concerning the Goldwasser—Micali—Rivest Signature Sc¢kraaces in
Cryptology—Crypto86, Lecture Notes in Computer Science, vol. 263, Springer-Verlag, Berlin, 1987,
pp. 104-110.

[20] O. Goldreich, S. Goldwasser, and S. Halevi, TR96-042, Electronic Colloguium on Computational Com-
plexity, httpy /www.eccc.uni-trier.dgeccgindex.html.

[21] S. Goldwasser, S. Micali, and R. Rivest, A Digital Signature Scheme Secure Against Adaptive Chosen-
Message AttacksSIAM 1 Comput, 17(2) (1988), 281-301.

[22] R. Impagliazzo and M. Naor, Efficient Cryptographic Schemes Provably as Secure as Subset-Sum,
J. Cryptology 9 (1996), 199-216.

[23] R. Merkle, A Digital Signature Based on a Conventional Encryption Funcéidnances in Cryptology—
Crypto '87, Lecture Notes in Computer Science, vol. 293, Springer-Verlag, Berlin, 1988, pp. 369-378.

[24] R. C. Merkle and M. Hellman, Hiding Information and Signature in Trapdoor Knap$&&& Trans
Inform. Theory 24 (1978), 525-530.

[25] S. Micali and A. Shamir, An Improvement of the Fiat-Shamir Identification and Signature Scheme,
Advances in Cryptology—Crypt88, Lecture Notes in Computer Science, vol. 403, Springer-Verlag,
Berlin, 1990, pp. 244-247.

[26] M. Naor and M. Yung, Universal One Way Hash Functions and Their Cryptographic Applicefiars,
21st ACM Annual Symposium on the Theory of Computieg9, pp. 33-43.

[27] Lotus Notednternalsonline book.

[28] D. Pointcheval and J. Stern. Security Proofs for Signature Schédeances in Cryptology—Eurocrypt
'96, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag, Berlin, 1996, pp. 387-398.

[29] M. O. Rabin Digital Signatures and Public Key Functions as Intractable as Factoring, Technical Memo
TM-212, Lab. for Computer Science, MIT, Jan. 1979.

[30] R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signature and Public Key
CryptosystemsComm ACM, 21 (1978), 120-126.

[31] R. Rivest, The MD5 Message Digest Algorithm, RFC 1321, April 1991.

[32] J. Rompel, One-way Function Are Necessary and Sufficient for Signaferes,22nd ACM Annual
Symposium on the Theory of Computihg§90, pp. 387-394.

[33] C. P. Schnorr, Efficient Signature Generation by Smart Car@yptology 4 (1991), 161-174.

[34] C.P.SchnorrandH. H.éther, Attacking the Chor—Rivest Cryptosystem by Improved Lattice Reduction,
Advances in Cryptology—Eurocry@3, Lecture Notes in Computer Science, vol. 925, Springer-Verlag,
Berlin, 1995, pp. 1-12.

[35] A. Shamir, On the Generation of Cryptographically Strong Pseudo-Random Number Seqi€ides,
Trans Comput Systemgl (1983), 38—44.

