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Abstract. In this paper we consider multiple encryption schemes built from conven-
tional cryptosystems such as DES. The existing schemes are either vulnerable to variants
of meet-in-the-middle attacks, i.e., they do not provide security corresponding to the
full key length used or there is no proof that the schemes are as secure as the underlying
cipher. We propose a variant of two-key triple encryption with a new method of gen-
erating three keys from two. Our scheme is not vulnerable to the meet-in-the-middle
attack and, under an appropriate assumption, we can show that our scheme is at least
about as hard to break as the underlying block cipher.
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1. Introduction

Since its introduction in the late seventies, the American Data Encryption Standard
(DES) has been the subject of intense debate and cryptanalysis. Like any other practical
cryptosystem, DES can be broken by searching exhaustively for the key.

One natural direction of research is therefore to find attacks that will be faster than
exhaustive search, measured in the number of necessary encryption operations. The most
successful attack on DES known of this kind is the linear attack by Matsui [7], [8]. This
attack requires about 243 known plaintext blocks. Although this is less than the expected
255 encryptions required for exhaustive key search, the attack is by no means more
practical than exhaustive search. There are two reasons for this: first, in practice the time
needed to obtain the information about the plaintext cannot be neglected; secondly, when
doing exhaustive key search the enemy is free to invest as much in technology as he is
capable of to make the search more efficient, in a known-plaintext attack he is basically
restricted to the technology of the legitimate owner of the key, and to the frequency with
which the key is used. In virtually any practical application, a single DES key will be
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applied to a lot less than 243 blocks, even in its entire lifetime. The difference between
the two kinds of attacks is illustrated in a dramatic way by the results of Wiener [14]
who shows by concrete design of a key search machine that if the enemy is willing to
make a $1 million investment, exhaustive key search for DES is certainly not infeasible
and can be done in a few hours.

As a result, we have a situation where DES has proved very resistant over a long period
to cryptanalysis and therefore seems to be as secure as it can be in the sense that by far
the most practical attack is a simple brute-force search for the key. The only problem
is that the key is too short given today’s technology, and that therefore, depending on
the value of the data being protecting, plain DES may not be considered secure enough
anyway.

What can be done about this problem? One obvious solution is to try to design a
completely new algorithm. This can only be a long term solution: a new algorithm has to
be analyzed over a long period before it can be considered secure; also the vast number
of people who have invested in DES technology will not like the idea of their investments
becoming worthless overnight. An alternative is to devise a new system with a longer
key using DES as a building block. This way existing DES implementations can still be
used.

Thus we are in the situation where we have a block cipher that has proved to be
very strong, the only problem being that the keys are too small and a simple brute-force
attack has become possible. We therefore ask the following general question: Given
cryptosystemX , which cannot in practice be broken faster than exhaustive key search,
how can we build a new systemY, such that

1. keys inY are significantly longer than keys inX (e.g., twice as long),
2. given an appropriate assumption about the security ofX , Y is provably almost as

hard to break asX under any natural attack (e.g., ciphertext-only, known-plaintext,
etc.),

3. it can be convincingly argued thatY cannot be broken faster than by an exhaustive
key search, and is therefore in fact much stronger thanX?

Possible answers to this question have already appeared in the literature. The most
well-known example is known as two-key triple encryption, where we encipher under
one key, decipher under a second key, and finally encipher under the first key. Van
Oorschot and Wiener [12] have shown, refining an attack of Merkle and Hellman [10],
that this construction is not optimal: under a known-plaintext attack, it can be broken
significantly faster than by an exhaustive key search. We propose a new variant of two-
key triple encryption, which we conjecture has all the properties we require above. As
indicated in our second demand we will not be able to prove that our new scheme is as
secure as the underlying block cipher without an appropriate assumption about the latter,
explicitly stated later in Hypothesis 1.

Note that, in general, a block cipherX may have the property that successive encryp-
tions under several keys is equivalent to encryption under one key (i.e.,X is a group
[5]). In [2] it was shown that the DES is not a group. Although the result we are about
to show in fact holds in general, it is clear that the basic idea of multiple encryption is
not useful ifX is a group. We therefore assume in the following thatX is not a group.

For the remainder of this paper we use as measurement of the time and memory needed
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by an attack on a block cipher, the number of encryptions it requires and the number of
plaintext or ciphertext blocks which need to be stored, respectively. Also, if not stated
otherwise we mean by “breaking a cipher” that the secret key is found.

2. Multiple Encryption

In this section we look at methods for enhancing cryptosystems based on the idea of
encrypting plaintext blocks more than once. Following the notation of the Introduction,
we letX be the original system, and we letEK andDK denote encryption and decryption,
respectively, inX under keyK . We assume that the key space ofX consists of allk-bit
strings and that the block length ofX is m. In a cascade of ciphersit is assumed that
the keys of the component ciphers are independent. The following result was proved by
Even and Goldreich.

Theorem 1[3]. A cascade of ciphers is at least as hard to break as any of the component
ciphers in attacks where an attacker cannot make use of plaintext statistics.

As seen, the result establishes a connection between the security of a cascade of ciphers
and of the underlying ciphers. The following result covering all attacks was proved by
Maurer and Massey.

Theorem 2[9]. Under any attack, a cascade of ciphers is at least as hard to break as
the first cipher.

The two results hold for any reasonable definition of breaking a cipher [3], [9], e.g., they
hold for key-recovery attacks as well as for attacks that find a plaintext given a ciphertext.

A special case of a cascade of ciphers is when the component ciphers are equal, also
called multiple encryption. In the following we consider different forms of multiple
encryption.

2.1. Double Encryption

The simplest idea one could think of would be to encrypt twice using two keysK1, K2,
i.e., let the ciphertext corresponding toP be C = EK2(EK1(P)). It is clear (and well
known), however, that no matter howK1, K2 are generated, there is a simple meet-in-the-
middle attack that breaks this system with a few known plaintexts using 2k encryptions
and 2k blocks of memory, i.e., the same time complexity as key search in the original
system. Also, in [13] van Oorschot and Wiener present a time/memory tradeoff of the
meet-in-the-middle attack on double encryption. With 2w words of memory the expected
time complexity of the attack is 7× 2(3k−w)/2. Using DES as an example, an attack with
w = 30, that uses 16 Gbytes of memory, will have an expected running time of 272.

Note that our goal is to build, based onX , something on the same security level as
a secure cipher designed from scratch to have key length 2k. Attacks such as the above
should certainly not be possible against such a cipher, and it is therefore clear that double
encryption is not sufficient for us.
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2.2. Triple Encryption

Triple encryption with three independent keysK1, K2, and K3, where the ciphertext
corresponding toP is C = EK3(EK2(EK1(P))), is also not a satisfactory solution for a
similar reason as for double encryption. A simple meet-in-the-middle attack will break
this in time about 22k encryptions and 2k blocks of memory with a few known plaintexts.
Thus we do not get full return for our effort in tripling the key length—as stated in demand
3 in the Introduction, we would like attacks to take time close to 23k if the key length
is 3k. In addition to this, ifX = DES, then a simple triple encryption would preserve
the complementation property and preserve the existence of weak keys. Recently, it was
shown that if an attacker can mount a so-calledrelated keyattack, triple encryption can be
broken in time about 2k [6]. The attack requires that the attacker can get the encryptions
of a small number of known plaintexts under two sets of keys. The two triples of keys
must differ only in the third keys with a difference known to the attacker.

It is clear, that no matter how the three keys in triple encryption are generated, the
meet-in-the-middle attack mentioned is still possible, and so the time complexity of the
best attack againstany triple encryption variant is no larger than 22k. Such a security
level should be obtainable with a key length of only 2k. It therefore seems reasonable to
try to generate the three keys from two independentX -keysK1, K2.

2.3. Two-key Triple Encryption

One variant of this idea is well known as two-key triple encryption, proposed by Tuch-
mann [11].TheciphertextC corresponding to theplaintextP isC = EK1(DK2(EK1(P))).
Compatibility with a single encryption can be obtained by settingK1 = K2. As can be
seen, this uses a particular very simple way of generating the three keys fromK1, K2.

The proof of the following result can be derived from that of Theorem 1 [3].

Theorem 3. In attacks where an attacker cannot make use of plaintext statistics two-
key triple encryption is at least as hard to break as it is to break a cryptosystem that uses
a single decryption function of the underlying block cipher for encryption.

Even though this result establishes some connection between the security of two-key
triple encryption and single encryption, it does not hold for all attacks and still does not
meet our second demand.

It is interesting to note that the related-key attack on a triple encryption scheme is not
applicable to two-key triple encryption [6].

However, for the two-key triple encryption scheme, each ofK1 andK2 only influences
particular parts of the encryption process. Because of this, variants of the meet-in-the-
middle attack are possible that are even faster than exhaustive search forK1, K2. In [10]
Merkle and Hellman describe an attack on two-key triple DES encryption requiring 256

chosen plaintext–ciphertext pairs and a running time of 256 encryptions using 256 words
of memory. This attack was refined in [12] into a known-plaintext attack on the DES,
which on inputn plaintext–ciphertext pairs finds the secret key in time 2120/n usingn
words of memory. The attacks can be applied to any block cipher. Therefore two-key
triple encryption does not meet our third demand.

We therefore propose what we believe to be stronger methods for generating the keys.
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Our main idea is to generate thempseudorandomlyfrom twoX -keys, using a generator
based on the security ofX . In this way, an enemy trying to breakY either has to treat
the three keys as if they were really random which means he has to breakX , according
to Theorem 2; or he has to use the dependency between the keys—this mean breaking
the generator which was also based onX ! Thus, even though we have thwarted attacks
like Merkle–Hellman and van Oorschot–Wiener by having a strong interdependency
between the keys, we can still, ifX is secure enough, get a connection between the
security ofX andY. In the following we concentrate on triple encryption schemes, but
our results generalize to anyn-fold schemes.

3. Multiple Encryption with Minimum Key

3.1. General Description ofY
Let a block cipherX be given, as described above. The key length ofX is denoted
by k. By EK (P), we denoteX -encryption underK of block P, while DK (C) denotes
decryption ofC. We then define a new block cipherY using a functionG:

G(K1, K2) = (X1, X2, X3)

which maps twoX -keys to threeX -keys. We display later a concrete example of a
possibleG-function. This is constructed from a fewX -encryptions. Keys inY will
consist of pairs(K1, K2) of X -keys. Encryption inY is defined by

EK1,K2(P) = EX3(EX2(EX1(P))),

where(X1, X2, X3) = G(K1, K2). Decryption is clearly possible by decrypting using
the Xi ’s in reverse order.

3.2. Relation to the Security ofX
We would like to be reasonably sure that we have taken real advantage of the strength
of X when designingY. One way of stating this is to say thatY is at least as hard to
break asX . By Theorem 2, this would be trivially true if the three keys used inY were
statistically independent. This is of course not the case, since theXi ’s are generated from
only two keys. However, if the generating functionG has a pseudorandom property as
stated below, then theXi ’s are “as good as random” and we can still prove a strong
enough result.

Definition 1. Consider the following experiment: an enemyB is presented with three
k-bit blocksX1, X2, X3. He then tries to guess which of two cases has occurred:

1. TheXi ’s are chosen independently at random.
2. TheXi ’s are equal toG(K1, K2), for randomly chosenK1, K2.

Let p1 be the probability thatB guesses 1 given that case 1 occurs, and letp2 be the
probability thatB guesses 1 given that case 2 occurs. The generator functionG is said to
bepseudorandom, if, for any strategy followed byB spending time equal toT encryption
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operations,

|p1− p2| ≤ T

V
,

whereV is the total number of keys inX .

The intuition we want to express with this definition is that the generator functionG
should be at least as hard to break as it is to do exhaustive search for a key in systemX .
Clearly, if the total number of keys isV , and resources for testingT randomly chosen
keys are available, then the probability of finding the correct one isT/V . We therefore
say that this also should be the maximum amount of success that can be achieved against
G using timeT . Definition 1 is inspired by the complexity-theoretic definition of a
strong pseudorandom generator introduced by Blum and Micali [1]. An example of a
conjectured pseudorandom generator is given in Section 3.3.

In the rest of this subsection we consider attacks againstX andY in a fixed scenario
with a given plaintext distribution and a given form of attack, which can be ciphertext-
only, known-plaintext, or chosen-plaintext. The attacks considered have a specific goal
which can be either to find the key used, or to decrypt a given ciphertext. Each time
an attack is executed, it has a certain probability of success, taken over the plaintext
distribution, the choice of keys, and its own random choices. We do not specify the
scenario further here because the reasoning below will work for any scenario of the form
we have described. As usual, the time unit will be the number of encryption operations
in systemX .

The next theorem shows the promised connection between security ofX andY, i.e., in
a given amount of time, an attack cannot do much better againstY than what is possible
againstX .

Theorem 4. Let p be the largest success probability that can be achieved by an attack
againstX running in time T. Assume now that an attack A against our new systemY
runs in time T and has success probability p+ ε. If the function G used to constructY
is pseudorandom, as defined in Definition1, then

ε ≤ T

V
,

where V is the total number of keys inX .

Proof. Let Y0 be the same system asY, but with independent keysXi . It follows
directly from Theorem 2 and by the definition ofp, that any attack againstY0 running
in time T will have a success probability of at mostp. Therefore,A’s probability of
success againstY0 is at mostp. We can useA as a subroutine in an algorithmB to
decide whether some givenX1, X2, X3 were chosen independently at random or were
the output of a pseudorandom generator, see Definition 1, whose inputsK1 and K2

were chosen independently at random. GivenX1, X2, X3, B uses these as keys in the
triple encryption system and simulatesA’s attack. If A does not succeed, i.e., in the
fixed scenario as discussed above,B will guess that theXi ’s are independent, and if
A succeeds,B will guess that they were generated fromK1, K2. Since if case 1 of the
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experiment in Definition 1 occurred,A will be attackingY0, when X1, X2, X3 were
chosen independently at random, and if case 2 occurred,A will be attackingY, when
X1, X2, X3 were output fromG, it is clear that for thisB, the probabilitiesp1 andp2 of
Definition 1 satisfy

p1 ≤ p, (1)

p2 = p+ ε, (2)

where (1) was argued above, and (2) follows from the assumption onA. SinceG is
pseudorandom by assumption, it follows from Definition 1 that

ε ≤ |p1− p2| ≤ T

V
.

To see more clearly what the statement of the theorem means, consider an ideal case,
where the best an attack againstX can do is to spend its time choosing random keys and
test whether they fit with the information available. The success probability for timeT
would then beT/2k assuming a key can be tested in one encryption. This is one particular
case, where the success probability is directly proportional to the running time of the
attack. In general we get:

Corollary 1. If the generator G used to constructY is pseudorandom, see Definition1,
and if any attack againstX running in time T has success probability at mostδT ,δ ≥ 2−k,
then any attack againstY running in time T has success probability at most2δT .

Proof. By Theorem 4 it follows that an attack againstY running in timeT has a success
probability of

p+ ε ≤ δT + T

2k
≤ 2δT.

For the case of attacks that breakY with probability 1, we get:

Corollary 2. If the generator G used to constructY is pseudorandom, see Definition1,
and if any attack againstX running in time T has success probability at most T/2k, then
any algorithm breakingY with certainty requires time at least2k−1.

3.3. A Concrete Two-Key Triple Encryption Construction

We propose here a new construction for triple encryption, called3-PEK for triple encryp-
tion with pseudorandomly expanded keys. As before, the key length ofX is k and the
block length ism.

The keysX1, X2, X3 are all used as keys for encryption. Withk = m we define this
construction ofG(K1, K2) = (X1, X2, X3) by

X1 = EK1(EK2(I V1)),

X2 = EK1(EK2(I V2)),

X3 = EK1(EK2(I V3)),
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where I Vi are three different initial values, e.g.,I Vi = C + i , whereC is a constant.
The above construction is easily extended to the case, wherek 6= m for X . Simply
generated3k/me ciphertexts usingd3k/me different initial values. The threeX keys are
constructed by selecting the 3k bits from these ciphertexts.

In the following we argue that our construction meets our three demands from the
Introduction. So we assume that the underlying block cipherX cannot in practice be
broken faster than an exhaustive search. Our first demand is met since the keys in
our scheme are twice as long as in the underlying block cipher. It is seen that double
encryption is used to generate the three keys. Therefore, based on Theorem 2, we make
the following hypothesis.

Hypothesis 1. Let X be a block cipher with key size k and block size m. If block
cipherX cannot be broken faster than exhaustive key search under a known-plaintext
attack using at mostd3k/me known plaintexts, then the generator G defined above is
pseudorandom according to Definition1.

The reason for believing this hypothesis is that givenX1, X2, X3 andI V1, I V2, I V3, it
seems that an enemy would have to do a known-plaintext attack against double encryption
with X in order to decide if theXi ’s are random. By Theorem 2 and the assumption on
X , this requires at least as much time as an exhaustive key search inX .

For the case ofX = DES, we note that even though DES can in theory be broken
faster than exhaustive key search, this requires an enormous number of known plaintexts
(currently 243), and since in this case the enemy is given only three known plaintexts
double encrypted with DES, we believe that the hypothesis is true for DES as well.

Under the hypothesis, Theorem 4 shows that our second demand is satisfied.
Note that although the hypothesis implies thatY is at least on the same security level

asX , this of course does not mean that it is not more secure. In fact, we conjecture that
if the most efficient attack againstX is a brute-force key search, then the most efficient
attack against 3-PEK encryption is a brute-force search for the key of time complexity
22k. Attacks like the ones from [10] and [12] are applicable to ciphers for which the first
and the third keys are equal. Since in our case every one of the three keys defined above
are dependent on both master keysK1 andK2 in a complicated way (and are certainly
different!) we conclude that these attacks are not applicable. Thus, it can be argued (but
not proved) that our new scheme is much harder to break than the underlying block
cipher and all our three demands from the Introduction are met.

In Table 1 a schematic overview is given of the time complexities of attacks against
our new scheme and existing ones. The table contains time complexities for attacks that
break the cipher in question with probability 1. For two-key triple encryption, we know
of no lower bound on the complexities of any attack and the upper bound results from the
meet-in-the-middle attacks described earlier in this paper. For three-key triple encryption
the lower bound is by the result of Maurer and Massey and the upper bound is a simple
meet-in-the-middle attack believed to be the best possible. For 3-PEK encryption the
lower bound follows if the generatorG is pseudorandom, see Definition 1 and Corollary 2,
and the upper bound is our conjecture of the best attack. We challenge the reader to come
up with attacks violating this upper bound.

We note, for the case ofX = DES, it is unlikely that 3-PEK has any weak keys, and
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Table 1. Bounds on the time complexities of attacks on the proposed scheme
and the existing ones.

Lower bound Upper bound
Scheme∗ Key size (all attacks) (best known attack)

(1) Block cipherX k 2k 2k

(2) Two-key tripleX 2k Unknown 2k

(3) Three-key tripleX 3k 2k 22k

(4) 3-PEKX 2k 2k−1 22k

∗(1) By assumption onX . (2) and (3) Upper bound requires storage of 2k words.
(4) Lower bound holds, assumingG is pseudorandom, see Definition 1.

the complementation property [4] does not hold. Finally, we note that the related-key
attack on triple-DES, described in [6], is not applicable to our scheme.

4. Conclusion

We considered multiple encryption schemes built from conventional cryptosystems. We
showed how to build triple encryption schemes with a security strongly connected to the
security of the underlying block cipher and not vulnerable to the special meet-in-the-
middle attacks on existing schemes. We focused on triple encryption schemes, but it is
clear that our ideas can be extended ton-fold schemes.
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