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Abstract. We investigate some of the algebraic properties of the SAFER block cipher
when the message space is considered as aZ-module. In particular, we consider the
invariantZ-submodules of the PHT layer and show how these invariantZ-submodules
give potential cryptographic weaknesses.
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1. Introduction

SAFER K-64 is a block cipher that was introduced by Massey at the 1993 Cambridge
Security Workshop on Fast Software Encryption [7]. It operates on 64-bit blocks under
the control of a 64-bit key. It is a “byte-oriented” cipher in that all the basic encryption
operations are on bytes or pairs of bytes. At the 1994 Leuven Workshop on Cryptographic
Algorithms, Massey presented a paper [8] which surveyed the first year’s research on
SAFER K-64 and defined SAFER K-128, which is SAFER with a 128-bit key. In this
paper we investigate certain algebraic properties of the SAFER block cipher and show
how these properties are a potential source of cryptographic weaknesses.

Following the original submission of this paper and a related key attack by Knudsen [6]
in mid-1995, revised block ciphers SAFER SK-64 and SAFER SK-128 were proposed
[6]. These differ from the original SAFER K-64/128 block ciphers only by using the
new key schedule proposed by Knudsen [6]. There is also an analysis of SAFER based
on truncated differentials [1], and an analysis that considers a revised SAFER encryption
algorithm with a different nonlinear layer [11].

Each round of SAFER contains only one operation that mixes message bytes, the
PHT layer(which exists to provide diffusion [7]). This PHT layer is aZ-module homo-
morphism on the message space. Our analysis concentrates on theZ-submodules of the
message space that are preserved by the PHT layer, that is, the invariantZ-submodules.
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These invariantZ-submodules and their cosets are not diffused by the PHT layer, and so
provide a method for the cryptanalyst to cope with the diffusion in SAFER in a variety
of attacks, whatever the key schedule. This is the main result of this paper. However, the
original key schedule of SAFER K-64/128 did not mix key bytes. This allowed us to
find a projection onto a particular 4-byte invariantZ-submodule that does not depend on
a quarter of the key (under standard cryptographic assumptions).

We begin this paper by giving a description of SAFER and the original key schedule
of SAFER K-64/128. In Section 4 we give a description of the invariantZ-submodules
of the PHT layer, and in Section 5 we show how these invariantZ-submodules can be
used to construct a Markov chain on cosets. In Section 6 we show how the original key
schedule of SAFER K-64/128 gave rise to the property described above, and in Section
7 we give some other ways in which the invariantZ-submodules of the PHT could be
used for cryptanalysis. We finish with some conclusions.

2. Description of SAFER

SAFER is a block cipher that operates on 64-bit blocks considered as 8 bytes. It consists
of a round transformation iteratedr times followed by a final output transformation.
Recommended values ofr are 6 for SAFER K-64 and 10 for SAFER K-128. The key-

Fig. 1. Encryption round structure of SAFER.



An Analysis of SAFER 237

scheduling, described below, gives(2r + 1) 8-byte subkeysK1, . . . , K2r+1. Subkeys
K2i−1 andK2i are used in roundi , and the subkeyK2r+1 is used in the output transfor-
mation. A diagram of the round function is given in Fig. 1. Thei th round function is
built from four basic operations.

1. Mixed XOR/Addition Layer: Bytes 1,4,5,8 of the round input are XORed with
bytes 1,4,5,8 of subkeyK2i−1. Bytes 2,3,6,7 of the round input are added
bytewise (modulo 256) with bytes 2,3,6,7 of subkeyK2i−1.

2. Nonlinear Layer: For a bytex, 45(x) is defined to be 45x modulo 257, wherex is
regarded as a number 0≤ x ≤ 255, with the convention that 45(128) = 0. As 257
is prime and 45 is a primitive element modulo 257, this is an invertible function of
a byte, and log45(·) is defined to be its inverse. The 45(·) transformation is applied
to bytes 1,4,5,8 of the output of the mixed XOR/addition layer and the log45(·)
transformation to bytes 2,3,6,7.

3. Mixed Addition/XOR Layer: Bytes 1,4,5,8 of the output of the nonlinear layer are
added bytewise (modulo 256) with bytes 1,4,5,8 of subkeyK2i . Bytes 2,3,6,7
of the output of the nonlinear layer are XORed with bytes 2,3,6,7 of subkeyK2i .

4. Pseudo-Hadamard Transform(PHT) Layer: The transforms 2-PHT in Fig. 1 map
the byte pair(a1,a2) to the byte pair(2a1+a2,a1+a2), where addition is modulo
256. The effect of the three layers of 2-PHT transforms on the outputv of the mixed
addition/XOR layer is to map it tovM , where addition is modulo 256 and

M =



8 4 4 2 4 2 2 1
4 2 4 2 2 1 2 1
4 2 2 1 4 2 2 1
2 1 2 1 2 1 2 1
4 4 2 2 2 2 1 1
2 2 2 2 1 1 1 1
2 2 1 1 2 2 1 1
1 1 1 1 1 1 1 1


.

The output of the PHT layer is the output of the round function.

Thefinaloutput transformationafterr rounds isanapplicationof themixedXOR/addition
layer with the output of ther th round and the subkeyK2r+1.

Decryption using SAFER is carried out by reversing these operations and we do not
describe it in detail.

3. Key Scheduling

The key scheduling for SAFER is again byte-oriented. For SAFER K-64 with 8-byte
key K , let K j denote thej th byte ofK . The j th byte of subkeyKi , K j

i ( j = 1, . . . ,8),
is defined by

K j
i = ROL3(i−1)(K

j )+ B j
i (i = 1, . . . ,2r + 1),

whereROLn denotes a left rotation of the byte byn positions,B j
i are predefined “key

biases”, and addition is modulo 256. Note thatB j
1 = 0, soK1 = K .
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For SAFER K-128, the 16-byte keyK is split into two 8-byte halvesKa, Kb, so
K = (Ka, Kb). The j th byte of a subkey is defined by

K j
2i = ROL6(i−1)+3(K

j
a )+ B j

2i (i = 1, . . . , r ),
K j

2i−1 = ROL6(i−1)(K
j

b )+ B j
2i−1 (i = 1, . . . , r + 1),

where the key biasesB j
i are the same as for SAFER K-64. Encryption under keyK =

(K ′, K ′) for SAFER K-128 is identical to encryption under keyK ′ for SAFER K-64.
For SAFER K-64, all of the subkey bytes used in thej th byte position depend solely

on the j th byte of the key. For SAFER K-128, all of the even (K2i ) subkey bytes used
in the j th byte position depend solely on thej th byte of the left half of the key, and all
of the odd (K2i−1) subkey bytes used in thej th byte position depend solely on thej th
byte of the right half of the key. Thus for SAFER K-128, a byte of the 16-byte key gives
subkey bytes that are all used either in an XOR operation or an addition operation, but
never both. We term these two types of key bytes XOR and addition key bytes.

The new key schedules for SAFER SK-64 and SAFER SK-128 do mix key bytes [6].
We do not describe them here.

4. Algebraic Structure of the PHT Layer

Our comments on and our analysis of SAFER relate primarily to the algebraic properties
of the PHT layer. An introduction to the algebra required is given in [5]. The PHT layer
is a collection of transformations based onZ28, the ring of integers modulo 28 = 256.
Consider the 8-byte message spaceV = Z8

28 of SAFER. We can think ofV as a module
in three equivalent ways. We can regardV firstly as a freeZ28-module of rank 8, or
secondly as a torsionZ-module that is annihilated by 28Z, or finally as the quotient
Z-moduleZ8/28Z8. In each case the PHT layer is an invertible module homomorphism
α: V → V , whereα has matrixM with respect to the standard basis. Our analysis
of SAFER is based on theα-invariant submodules ofV . Recall that aZ-submoduleU
is anα-invariantZ-submodule ofV if Uα ≤ U . However, in this caseα is invertible,
so if U is anα-invariant submodule, thenUα = U . The α-invariantZ-submodules
can be thought of as thoseZ-submodules that are “preserved” by the PHT layer. For
example, the simplestα-invariant submodules areVn = 28−nV , the submodule obtained
by considering the least significantn bits of each byte. We therefore begin our analysis
of SAFER with a thorough investigation ofα-invariant submodules.

Consider the eight-dimensional rational vector spaceVQ = Q8 and the freeZ-module
VZ = Z8. Nowα can be regarded as the linear transformation onVQ and as theZ-module
homomorphism onVZ given by the matrixM . Considered as a set embedded inVQ, α
as a linear transformation onVQ fixes the subsetVZ. The characteristic polynomial ofα
on VQ, f (x) = Det(α − x I ) is given by

f (X) = 1− 18X + X2− 18X3+ 324X4− 18X5+ X6− 18X7+ X8,

which factorizes over the integers as

f (X) = (1− 18X + X2)(1− 3X + X2)(1+ 3X + 8X2+ 3X3+ X4).
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VQ therefore has the following three minimalα-invariant subspaces:PQ (of dimension
2), QQ (of dimension 2) andRQ (of dimension 4). Theseα-invariantVQ-subspaces are
defined by

PQ = ker(I − 18α + α2)

= 〈e1− e8+ d2 , e1+ e8+ d1〉,
QQ = ker(I − 3α + α2)

= 〈3e1− d1− d2 , d1− d2− 3e8〉,
RQ = ker(I + 3α + 8α2+ 3α3+ α4)

= 〈e2− e5,e3− e5,e6− e4,e7− e4〉,
whereei denotes thei th standard basis vector, andd1 = e2+e3+e5 andd2 = e4+e6+e7.
If we let BQ denote the basis forVQ given above in terms ofPQ, QQ andRQ, then

BQ =
{

e1− e8+ d2, e1+ e8+ d1, 3e1− d1− d2,

d1− d2− 3e8, e2− e5, e3− e5, e6− e4, e7− e4

}
,

and the change of basis transformation from the standard basis toBQ is given by the
matrix A (with determinant−225), where

A =



1 1 3 0 0 0 0 0
0 1 −1 1 1 0 0 0
0 1 −1 1 0 1 0 0
1 0 −1 −1 0 0 −1 −1
0 1 −1 1 −1 −1 0 0
1 0 −1 −1 0 0 1 0
1 0 −1 −1 0 0 0 1
−1 1 0 −3 0 0 0 0


.

VQ has a direct sum decomposition as

VQ = PQ ⊕ QQ ⊕ RQ (where⊕ here denotes direct sum).

The VQ subspacesPQ, QQ and RQ are in fact pairwise orthogonal with respect to the
standard inner product onQ. The matrix ofα with respect to the basisBQ of VQ is a
block diagonalM ′ defined by

M ′ =
MP 0 0

0 MQ 0
0 0 MR

 ,
where

MP =
(

5 8
8 13

)
, MQ =

(
2 1
1 1

)
and MR =


−2 2 −1 1
−2 0 0 1

1 0 0 −1
1 −1 1 −1

 .
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We thus have the following threeα-invariantZ-submodules ofVZ, asVZ is fixed by
α as a subset ofVQ:

PZ = PQ ∩ VZ = ker(I − 18α + α2)

= 〈e1− e8+ d2, e1+ e8+ d1〉,
QZ = QQ ∩ VZ = ker(I − 3α + α2)

= 〈3e1− d1− d2, d1− d2− 3e8〉,
RZ = RQ ∩ VZ = ker(I + 3α + 8α2+ 3α3+ α4)

= 〈e2− e5,e3− e5,e6− e4,e7− e4〉.

We can now defineTZ ≤ VZ as the direct sum of theseα-invariantZ-submodules, so

TZ = PZ ⊕ QZ ⊕ RZ (where⊕ here denotes direct sum).

We note thatTZ is a properZ-submodule ofVZ, as, for example,d1 /∈ TZ.
We can use thisα-invariant decomposition onTZ to give anα-invariant decomposition

on V by using the following lemma:

Lemma [5, Lemma 8.1]. Let L be a module over a ring(with 1), and suppose L is a
direct sum L= L1 ⊕ · · · ⊕ Lt of submodules Li ≤ L. For each i, let Ni ≤ Li , and let
N =∑t

i=1 Ni . If ν is the natural homomorphism L→ L/N, then

L

N
= Lν = L1ν ⊕ · · · ⊕ Ltν ∼= L1

N1
⊕ · · · ⊕ Lt

Nt
.

Suppose we letν∗ denote the naturalZ-module homomorphism

ν∗: VZ→ VZ
28Z8

= V,

thenν∗ gives the naturalZ-module homomorphism

ν: TZ→ TZ
TZ ∩ 28Z8

∼= T,

whereT = TZν∗ is aZ-submodule ofV . We apply the above lemma to the natural
Z-homomorphismν and the decompositionTZ = PZ ⊕ QZ ⊕ RZ. Noting that

TZ ∩ 28Z8 = (PZ ∩ 28Z8)+ (QZ ∩ 28Z8)+ (RZ ∩ 28Z8),

we obtain

T ∼= TZ
TZ ∩ 28Z8

∼= PZ
PZ ∩ 28Z8

⊕ QZ
QZ ∩ 28Z8

⊕ RZ
RZ ∩ 28Z8

.

As 28Z8 andTZ areα-invariantZ-submodules,α can be well defined as the induced
Z-module homomorphism on the quotientZ-moduleT . Similarly the three quotient
Z-submodules in this decomposition areα-invariant.
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We thus have following threeα-invariantZ-submodules ofT :

P = ker(I − 18α + α2)

= 〈e1− e8+ d2, e1+ e8+ d1〉,
Q = ker(I − 3α + α2)

= 〈3e1− d1− d2, d1− d2− 3e8〉,
R = ker(I + 3α + 8α2+ 3α3+ α4)

= 〈e2− e5,e3− e5,e6− e4,e7− e4〉,
and the following decomposition ofT as the direct sum ofα-invariantZ-submodules:

T = P ⊕ Q⊕ R (where⊕ here denotes direct sum).

Both T andV can be regarded as freeZ28-modules of rank 8 withT ≤ V . T is freely
generated by the basisB, where

B =
{

e1− e8+ d2, e1+ e8+ d1, 3e1− d1− d2,

d1− d2− 3e8, e2− e5, e3− e5, e6− e4, e7− e4

}
,

andV is freely generated by the standard basis. The change of basis transformation that
maps the standard basis toB is given by the matrixA defined above.A is invertible as
its determinant (−225) is a unit inZ28, so B is a basis forV as a freeZ28-module [5,
Lemmas 7.5 and 7.6]. Therefore as a freeZ28-module, and hence as aZ-module,T = V .

The decomposition ofT as the direct sum ofα-invariantZ-submodules is thus a
decomposition forV , and so we have

V = P ⊕ Q⊕ R (where⊕ here denotes direct sum).

Clearly,V , P, Q andR have sizes 264, 216, 216 and 232, respectively.
In order to find furtherα-invariantZ-submodules, we regardV as a (torsion)Z[X]-

module. In this module, scalar multiplication of a module elementv by an integer
polynomialg(X) (an element ofZ[X]) is defined by

v · g(X) = (v)(g(α)),
that is, the image ofv under the module homomorphismg(α). The role of thisZ[X]-
module in findingα-invariant submodules is given by the following theorem.

Theorem. U is anα-invariantZ-submodule of V if and only if U is aZ[X]-submodule
of V.

Proof. If U is anα-invariantZ-submodule ofV , thenUα ≤ U . Thus, for anyn and
λ0, . . . , λn,

U
n∑

i=0

λiα
i =

n∑
i=0

λi Uα
i ≤ U,

soU · g(X) ≤ U for any polynomialg(X). HenceU is aZ[X]-submodule.
Conversely, ifU is a Z[X]-submodule, thenUα ≤ U , so U is an α-invariant

submodule.
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We thus need to find theZ[X]-submodules of theZ[X]-moduleV . For anyZ[X]-
submoduleU , let

ann(U ) = {g(X) ∈ Z[X]|U · g(X) = 0}
denote the annihilator ofU in Z[X], an ideal inZ[X]. This function gives an inclusion-
reversing mapping from theZ[X]-submodules ofV to the ideals ofZ[X]. We can
also define an inclusion-reversing mapping from the set of ideals ofZ[X] to theZ[X]-
submodules ofV . Accordingly, for any idealI of Z[X], let

NV (I ) = {v ∈ V |v · I = 0} ≤ V

denote the “null”Z[X]-submodule ofV of the idealI . NP, NQ andNR can be similarly
defined as null submodules inP, Q andR. However, not everyZ[X]-submodule is the
null Z[X]-submodule of some ideal, for example,Z[X]-submodule{0,27(e3 + e7)},
which is fixed byα, but is a properZ[X]-submodule of fixed pointZ[X]-submodule
ker(α − I ). However, anyZ[X]-submoduleU is aZ[X]-submodule of the nullZ[X]-
submodule of its annihilator, soU ≤ NV (ann(U )). We termNV (ann(U )) the minimal
null Z[X]-submodule containingU . The following theorem shows that a nullZ[X]-
submodule can be decomposed as a direct sum of nullZ[X]-submodules ofP, Q andR.

Theorem. For any ideal I ofZ[X],

NV (I ) = NP(I )⊕ NQ(I )⊕ NR(I ),

with NP(I ) ≤ P, NQ(I ) ≤ Q and NR(I ) ≤ R.

Proof. Let n ∈ NP(I ) + NQ(I ) + NR(I ), thenn can be written asn = p+ q + r ,
where p · h(X) = q · h(X) = r · h(X) = 0 for all h(X) ∈ I . Thusn · h(X) =
p · h(X) + q · h(X) + r · h(X) = 0 for all h(X) ∈ I , so n ∈ NV (I ). Therefore
NP(I )+ NQ(I )+ NR(I ) ≤ NV (I ).

Conversely, supposen ∈ NV (I ). n can be written asn = p+ q+ r for somep ∈ P,
q ∈ Q andr ∈ R. For anyh(X) ∈ I ,

0= n · h(X) = (p+ q + r ) · h(X) = p · h(X)+ q · h(X)+ r · h(X) = p′ + q′ + r ′

for somep′ ∈ P, q′ ∈ Q andr ′ ∈ R, asP, Q andR areZ[X]-submodules. However,
P ⊕ Q⊕ R is a direct sum, hence

0= p′ = q′ = r ′ = p · h(X) = q · h(X) = r · h(X),
and sop ∈ NP(I ), q ∈ NQ(I ) and r ∈ NR(I ). As n = p + q + r , we have that
n ∈ NP(I )+ NQ(I )+ NR(I ). ThereforeNV (I ) ≤ NP(I )+ NQ(I )+ NR(I ).

Therefore we have equality, and we clearly have a direct sum, so

NV (I ) = NP(I )⊕ NQ(I )⊕ NR(I ).

This theorem enables us to findZ[X]-submodules ofV because anyZ[X]-submodule
is contained in its minimal nullZ[X]-submodule. This nullZ[X]-submodule can be
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decomposed into nullZ[X]-submodules ofP, Q and R. We thus consider theZ[X]-
submodules ofV , P, Q andR. Any Z[X]-submoduleU can be regarded in the natural
way as a (Z[X]/ann(U ))-module. We therefore calculate the following annihilators:

AV = ann(V), AP = ann(P), AQ = ann(Q), AR = ann(R).

We know that

〈28, p(X)〉 = 〈28,1− 18X + X2〉 ⊂ AP,

so any element ofAP can be reduced modulo〈28, p(X)〉 to a polynomial of the form
a0 + a1X, wherea0,a1 ∈ {0, . . . ,28 − 1}. By considering the effect of module homo-
morphismsa0 + a1α on the generators ofP (as aZ-module), we find the only other
generator forAP is 25(X + 3). Similar calculations giveAQ andAR, so we have

AP = ann(P) = 〈28,25(X + 3), p(X)〉
= 〈28,25(X + 3), (1− 18X + X2)〉

AQ = ann(Q) = 〈28,q(X)〉 = 〈28, (1− 3X + X2)〉
AR = ann(R) = 〈28,25(X3+ 3), r (X)〉
= 〈28,25(X3+ 3), (1+ 3X + 8X2+ 3X3+ X4)〉.

By considering the effect of elements ofAQ, AR on P, etc., we find

AV = ann(V) = 〈28,25(X + 3),2q(X)r (X), (X + 1)q(X)r (X)〉
= 〈28,25(X + 3),2(1− 3X + X2)(1+ 3X + 8X2+ 3X3+ X4),

(X + 1)(1− 3X + X2)(1+ 3X + 8X2+ 3X3+ X4)〉

If we define the following quotient rings,

ZV = Z[X]/AV , ZP = Z[X]/AP, ZQ = Z[X]/AQ, ZR = Z[X]/AR,

then the elements in these rings can be written as

ZP = {a0+ a1X|a0 = 0, . . . ,28− 1;a1 = 0, . . . ,25− 1},
ZQ = {a0+ a1X|a0,a1 = 0, . . . ,28− 1},
ZR = {a0+ a1X + a2X2+ a3X3|a0,a1,a2 = 0, . . . ,28− 1;

a3 = 0, . . . ,25− 1},
ZV = {a0+ · · · + a6X6|a0,a1,a2 = 0, . . . ,28− 1;

a3,a4,a5 = 0, . . . ,25− 1;a6 = 0,1}.

The ringsZP, ZQ, ZR andZV have sizes 213, 216, 229 and 240, respectively. Note that all
four of these rings can be regarded as cyclic modules over themselves.

We can thus regardV as aZV -module, andP, Q andRasZP-, ZQ- andZR-modules,
respectively. By considering the effect ofα on one of the generators (asZ-modules)p,
q andr of P, Q andR, respectively, we find thatP, Q andR contain cyclic submodules
(generated by one element) that are isomorphic toZP, ZQ and ZR (as modules over
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themselves), respectively. We denote these cyclic submodules〈p〉ZP
, 〈q〉ZQ

and〈r 〉ZR
,

respectively. These cyclic submodules can also be regarded asZ-submodules, and as
such we have the followingZ-module isomorphisms:

〈p〉ZP
∼= 〈p〉 + 23P (Z-module isomorphism),

〈q〉ZQ
∼= Q (Z-module isomorphism),

〈r 〉ZR
∼= 〈r 〉 + 23R (Z-module isomorphism).

Thus Q is a cyclic ZQ-module of size 216. The cyclic ZP- and ZR-submodules ofP
andR, 〈p〉ZP

and〈r 〉ZR
, are of size 213 and 229, respectively. These cyclic submodules

intersect non-trivially with any other submodule ofP and R, respectively.P and R
contain many such cyclic submodules of these sizes. They are each generated by a single
generator ofP andR (considered asZ-modules). The submodules of the cyclic modules
ZP, ZQ andZR (over themselves) are given by the ideals ofZP, ZQ andZR, respectively,
or equivalently by ideals inZ[X] containingAP, AQ andAR, respectively [5, Theorem
2.12]. Further analysis of the ideals of the rings can be conducted by using the theory of
Gröbner bases [3].

We have given a thorough analysis of theα-invariantZ-submodules ofV by con-
sidering the equivalentZ[X]-submodules ofV . We summarize here the results of the
Z[X]-module analysis in terms ofα-invariantZ-submodules. We have shown thatV can
be decomposed asV = P⊕Q⊕R, whereP, Q andRareα-invariantZ-submodules, and
that any otherα-invariantZ-module is contained in a minimal “null”Z-submodule which
decomposes as a sum ofα-invariantZ-submodules ofP, Q andR. TheZ-submodulesP
andRcontain certainα-invariantZ-submodules that intersect non-trivially with any other
α-invariantZ-submodule ofP and R, respectfully. Furtherα-invariantZ-submodules
of theseZ-submodules ofP and R, and of theZ-submoduleQ, can be calculated by
considering the ideals of the various polynomial quotient rings given above.

5. A Markov Chain on Quotient Modules

Let U be anα-invariantZ-submodule ofV . We consider the effect of thei th round
function on the cosets ofU in V , or equivalently on the quotientZ-module V/U .
Suppose now that an elementxi ∈ V is the round input,yi ∈ V is the input to the PHT
layer andzi ∈ V is the round output, andxi

U , yi
U andzi

U are the corresponding cosets
of U or elements ofV/U . For a given round subkey(K2i−1, K2i ), we can calculate
the transition probabilityP(K2i−1,K2i )(y

i
U |xi

U ) between a coset ofU before and a coset of
U after the combined mixed XOR/addition, nonlinear and mixed addition/XOR layers.
The effect of the PHT layer (orα) is to permute the cosets ofU asU isα-invariant. For this
round subkey(K2i−1, K2i ), we can calculate the transition probabilityP(K2i−1,K2i )(z

i
U |xi

U )

between the a coset ofU before and after the round function of SAFER. For this round
subkey(K2i−1, K2i ), the round function of SAFER gives a key-dependent probability
transition matrix on the cosets ofU . This transition matrixQ(K2i−1,K2i ) is defined by

Q(K2i−1,K2i ) = (Pk(z
i
U |xi

U )).

Consider now the SAFER encryption function withr rounds followed by a final output
transformation which we regard as the(r + 1)th round. Letxi ∈ V be the input to the
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i th round (i = 1, . . . , (r + 1)), with xr+2 as the output. Letxi
U (i = 1, . . . , (r + 2)) be

the corresponding cosets ofU or elements ofV/U . For a given keyK , the sequence
x1

U , . . . , xr+2
U forms a key-dependent random process with state space the cosets ofU .

The transition matrix for this random processQK is defined by

QK = (PK (x
r+2
U |x1

U )).

The standard cryptographic assumption, implicitly used in both linear [9] and differential
cryptanalysis [2] is that, for a given key, such a random process defined on a state space
of cosets forms a first-order Markov chain [4]. In linear cryptanalysis these are usually
cosets of a hyperplane of the message space (considered as a binary vector space). In
differential cryptanalysis these are usually cosets of

{(m,m)|m ∈ M} ≤ M × M (whereM is the message space),

and these give the “characteristics”. This assumption can be tested empirically. Under
this assumption we can write the transition matrixQK as a product of transition matrices
for each round. Thus if keyK gives round subkeysK1, . . . , K2r+1, the transition matrix
QK is given by

QK = Q(K1,K2)Q(K3,K4) · · · Q(K2r−1,K2r )QK2r+1.

6. A Potential Cryptographic Weakness

We have seen that theZ-module V can be written as the direct sum ofα-invariant
Z-submodules asV = P ⊕ Q⊕ R. We can define a submoduleSby

S= P ⊕ Q = 〈e1,d1,d2,e8〉.
S is anα-invariant submodule withV = R ⊕ S. We consider how the Markov chain
described in Section 5 applies to cosets of the submoduleS. We can defineϕ to be the
naturalZ-module homomorphism

ϕ: V → V

S
∼= R.

We can regard the random process on the cosets ofS as a random process on elements
of R. For an elementv ∈ V , we writevS for this coset ofS or equivalently element
of R. The value ofvS does not depend on the first and eighth bytes ofv ase1 ande8

are absent from the basis forR. Consider thei th round of a SAFER encryption under a
given i th round subkey(K2i−1, K2i ). Suppose now that an elementxi ∈ V is the round
input, yi ∈ V is the input to the PHT layer, andzi ∈ V is the round output, andxi

S,
yi

S andzi
S are the corresponding cosets ofS or elements ofR. For a given inputxi , the

central six bytes of the outputyi of the combined mixed XOR/addition, nonlinear and
mixed addition/XOR layers do not depend on the first and eighth bytes of the subkeys
K2i−1 andK2i . Thus the distribution ofyi

S conditional onxi
S is constant whenever the

central key bytes agree.zi
S depends only onyi

S asS is α-invariant. For the given subkey,
the distribution ofzi

S conditional onxi
S therefore does not depend on the first and eighth
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bytes of the subkeysK2i−1 andK2i . The key-dependent one-round transition matrix on
the cosets ofS is identical for all subkeys(K2i−1, K2i ) that agree on the central six bytes.
If we defineθ to be the restriction to these central six bytes, then the one-round transition
matrix can be written as

Q(K2i−1,K2i )θ = (P(K2i−1,K2i )θ (z
i
S|xi

S)).

Suppose now that we have anr -round plus final output transformation SAFER en-
cryption with messagem = x1 and ciphertextc = xr+2. For a given keyK , under
the standard cryptographic assumption that such a process forms a first-order Markov
process, the transition matrix between message cosets and ciphertext cosets ofS is the
product of the round transition matrices. Thus

QK = (PK (z
i
U |xi

U )) = Q(K1,K2)θ · · · Q(K2r−1,K2r )θQ(K2r+1)θ .

The transition matrixQK therefore depends only on the central six bytes of the subkeys
K1, . . . , K2r+1. For SAFER K-64/128, the key scheduling restricts bytes ofK to the
same bytes of any subkey, so we haveQK = QK θ . For SAFER K-64, this means that
the distribution ofcS conditional onmS does not depend on the first and eighth bytes
of the key, whereas for SAFER K-64 the distribution ofcS conditional onmS does not
depend on the first, eighth, ninth and sixteenth bytes of the key.

For either SAFER K-64 or SAFER K-128, we have found a half-rank algebraic struc-
ture (R) of the message/ciphertext space on which the output distributions do not depend
on a quarter of the key bytes. In [7] it is stated that “SAFER was designed in accordance
with Shannon’s principles of confusion and diffusion for obtaining security in secret-key
ciphers”. Shannon’s principle of confusion [10] is “to make the relation between sim-
ple statistics of ciphertext and simple statistics of the key a very complex and involved
one”. As there are simple statistics of the output (that is, its “projection” onR) that do
not depend on a quarter of the key bytes, it arguable that SAFER does not satisfy the
principle of confusion. Therefore if there are any collections of functions ofmS which
have non-negligible correlations with any collections of functions ofcS, then we have a
reduced key search.

For practical reasons, we may need to concentrate on the least significantn bits of
each byte, that is, the moduleVn. The above reasoning also applies to this module, so
just by considering the least significantn bits we may still get a reduced key search. We
note that when we considerα as a module homomorphism ofVn for smalln, it has even
more structure. For example, as a module homomorphism ofV3, every submodule ofP
isα-invariant andR has a submodule of rank 2 in which every submodule isα-invariant.

There are many similar attacks on SAFER using theα-invariantZ-submoduleSwith
different time/space complexity trade-offs. We do not investigate all these attacks to find
the best one. The key schedule has already been revised in the light of this paper and [6].
The attack below is given solely as an illustration of the type of attack it may be possible
to mount on SAFER using theα-invariantZ-submoduleS.

We can attempt to exploit the lack of dependence on certain key bytes by calculating
empirical transition probabilities on cosets ofS for plaintext/ciphertext data. Given
enough data we can see which key-dependent sets of transition probabilities best agree
with the empirical probabilities and thus find key information.
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In order to calculate these transition matrices, we need to calculate transition matri-
ces for one round. We now explain how the components of the round function affect
the transition matrix. We first note that we can writeR as the direct sum of twoZ-
submodules of rank 2, one involving linear combinations of bytes 2,3,5 and the other
linear combinations of bytes 4,6,7. Thus we have

R= 〈e2− e5,e3− e5〉 ⊕ 〈e6− e4,e7− e4〉.
In the mixed XOR/addition, nonlinear and mixed addition/XOR phases, SAFER acts
independently on these twoZ-submodules ofR. We call the set of cosets on either of
these two submodules half-cosets.

Adding a subkey byte corresponds to permuting the cosets ofS in V according to the
subkey byte. XORing a subkey byte corresponds to adding one of a small set of other bytes
according to a known distribution that depends on the subkey byte. Combining these two
operations into the mixed XOR/addition or the mixed addition/XOR phase, we see that
either of these phases gives a transition matrix on the cosets that depends on the subkey.
The 45(·), log45(·) transforms give transition matrices on each of the half-cosets. We give
some examples below. Thus the combined effect of the mixed XOR/addition, nonlinear
and mixed addition/XOR layers is to give key-dependent transition matrices on the
half-cosets. These transition matrices are effectively key-dependent weighted averages
of the permuted transition matrix on the half-cosets for the nonlinear layer. To obtain
the key-dependent transition matrix for all of the cosets, we combine the key-dependent
transition matrices for both of the component half-cosets using an element-by-element
product.

The effect of the PHT layer is to permute the cosets asS is anα-invariant subspace.
This permutation is given byMR, where

MR =


−2 2 −1 1
−2 0 0 1

1 0 0 −1
1 −1 1 −1


was given earlier as the block (corresponding toR) of the matrixM as a block matrix.
Thus we can find the key-dependent transition matrix for one round by permuting the
columns of the key-dependent matrix for the combined mixed XOR/addition, nonlinear
and mixed addition/XOR layers. The key-dependent transition matrix for a number of
rounds is just the product of the individual key-dependent one-round transition matrices.

Let PK ′(mS, cS) denote the probability of transition from message classmS to cipher-
text classcS under key classK ′, whereK ′ = K θ denotes the relevant 6 or 12 key bytes
(SAFER K-64 or K-128).PK ′(mS, cS) is just the relevant entry of the transition matrix
corresponding toK ′. Suppose we have a number of message/ciphertext pairs and let
N(mS, cS) be the number of times message classmS andcS occur. For a known plaintext
attack we can find the value ofK ′ that maximizes the log-likelihood function∑

(mS,cS)

N(mS, cS) log PK ′(mS, cS).

This is a maximization over at most 248 or 296 elements. For 2-round SAFER, an approx-
imate probability argument using random functions shows that, for a given key classK ′,
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about 37% (e−1) of class pairs(mS, cS) do not occur, that is,PK ′(mS, cS) = 0 for 37%
of class pairs(mS, cS). Thus for 2-round SAFER, we have a trivial attack in which we
can identify the true key class with a handful of message/ciphertext pairs.

The above analysis for SAFER with a realistic number of rounds requires the calcu-
lation of vast numbers of 232× 232 transition matrices. In order to make the calculations
more tractable, we can consider the least significantnbits of every byte, that is, the module
Vn. The general theory given above applies to this module and its relevant submodules.
Looking at the least significant bit gives no information as the transition probabilities
through the non-linear layer are uniform. Vaudenay [11] considered this situation in the
case when the 45(·) and log45(·) functions are replaced by functions that give non-uniform
transition probabilities. Thus we consider the least significant two bits of each byte. In
this case XORing by 00 or 10 is equivalent to adding 00 or 10, respectively, and XORing
by 01 or 11 is equivalent to adding 01 with probability one-half or 11 with probability
one-half. The transition matrix for a set of half-cosets ofS is 2−4J2+ 2−20T2, whereJ2

is the 16× 16 matrix with every entry 1 andT2 is given in Appendix 1. The matrixT2 is
calculated by considering all 224 values of the three bytes involved in the half-coset (as
areJ3 andJ4 below).

Whilst these transition probabilities are not uniform, they are not non-uniform enough
to launch an attack on SAFER with a realistic number of rounds.

When we consider the least significant three bits of each byte, we obtain the transition
matrix on the half-cosets of 2−6J3+ 2−18T3, whereJ3 is the 64× 64 matrix with every
entry 1. The first row ofT3 is given in Appendix 2. It can be seen that a typical entry of
T3 has absolute size about 28, so a typical entry of the transition matrix differs from the
uniform value of 2−6 by about 2−10. The least significant four bits in each byte give the
transition matrix on the half-cosets of 2−8J4+ 2−16T4 whereJ4 is the 256× 256 matrix
with every entry 1. The first row ofT4 is given in Appendix 3. A typical entry ofT4 has
size about 26, so a typical entry of the transition matrix differs from the uniform value of
2−8 by about 2−10. We have shown parts of these two matrices in the Appendix to show
that even when considering the least few significant bits of every byte, the transition
probabilities of the “half-cosets” are highly non-uniform. Even after allowing for the
averaging effect of XORing key bytes, the key-dependent transition matrices for the
half-cosets across the mixed XOR/addition, nonlinear and mixed addition/XOR layers
are still highly non-uniform. By taking the elementwise product of transition matrices
we obtain key-dependent transition matrices across the cosets. The PHT layer permutes
the columns of this matrix, so we can obtain one-round key-dependent round transition
matrices on the cosets which are highly non-uniform. By taking an appropriate product
of such matrices, we can calculate key-dependent transition matrices from the message
cosets to the ciphertext cosets.

Given sufficient computational power, we can pre-compute all such key-dependent
transition matrices. For a set of message/ciphertext pairs, we could use these matrices
to calculate the likelihoods as given above. In practice, the keys may naturally occur in
classes that give approximately equal transition matrices, which would reduce the key
search. In any case, the key search for the attack described above is at worst 48 or 96
bits (SAFER K-64 or K-128).
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7. Other Potential Algebraic Weaknesses

The invariantZ-submodules of Section 4 essentially give the cryptanalyst a method for
controlling the diffusion of SAFER in the PHT layer. There are several ways in which
this may be potentially exploited. We briefly list some of them.

1. In theZ-submoduleV4 or V8, there are many linear combinations of bytes that
are fixed byα. By analysing how the key and nonlinear layers affect these linear
combinations, either individually or jointly, it may be possible to find information
about the key.

2. α has many small cycles. In particular onV4, α has order 3, and onV8, α3 fixes
everyZ-submodule of rank 1. We can analyse theZ-submodules generated by such
small cycles. ThoseZ-submodules generated by cycles that involve elements of
low (module) weight may provide key information.

3. Constructing affine (Z-module) approximations to the 45(·), log45(·)and XOR func-
tions and relating these to the invariantZ-submodules may give key information.

4. Further investigation ofα-invariantZ-submodules ofV . In particular it may be
possible to relax the requirement of strict invariance and analyse probabilistically
invariantZ-submodules, for example, the central six bytes〈e2,e3,e4,e5,e6,e7〉.
There are many suchZ-submodules which could give key information.

5. Differential analysis based on theα-invariantZ-submodules.
6. In SAFER K-128 we saw above that the key bytes divide into two types, the addition

key bytes and the XOR key bytes. The effect of adding two key bytes sequentially
is the same as adding one key byte equal to their sum. It is therefore possible that,
because of the underlyingZ-module structure, the transition probabilities would
depend only on the value of the overall addition of certain addition key bytes. This
would give a greatly reduced key search.

8. Conclusions

In this paper we have given an analysis of the SAFER algorithm based on the algebraic
properties of the PHT layer, and, in particular, the invariantZ-submodules. In particular,
for a given key, we have found a “projection” (ϕ) of the 8-byte message/ciphertext space
onto a 4-byteZ-submodule so that the probability of any message projection giving
any ciphertext projection is independent of one-quarter of the key bytes. This gives the
real possibility of reducing a key search to 6 or 12 bytes (SAFER K-64 or K-128). We
have given an example of one way in which this may be exploitable given sufficient
computational resources.

The key scheduling for SAFER K-64 and SAFER K-128 has been changed to give
SAFER SK-64 and SK-128 since the original submission of this paper and [6]. This
(amongst other things) ensures that this projection depends on all the key bytes. However,
the main contribution of this paper is the use of the invariantZ-submodules of the PHT
layer to allow the cryptanalyst to control diffusion, and the algebraic analysis of these
invariantZ-submodules. Even with the new key schedule, there remains the possibility
of using the invariantZ-submodules of the PHT layer to analyse SAFER.
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Appendix 1. Matrix T2

2048 −512 512 −1024 −512 2048 −1024 512
512 −1024 1024 −1536 −1024 512 −1536 1024

−128 128 512 512 128 −128 512 512
−512 −512 128 −128 −512 −512 −128 128

−1536 1024 0 1536 1024 −1536 1536 0
−1024 512 −1536 1024 512 −1024 1024 −1536

640 384 0 0 384 640 0 0
0 0 −640 −384 0 0 −384 −640

−128 128 −512 −512 128 −128 −512 −512
512 512 128 −128 512 512 −128 128

1024 −1536 512 −1024 −1536 1024 −1024 512
512 −1024 2048 −512 −1024 512 −512 2048

−384 −640 0 0 −640 −384 0 0
0 0 384 640 0 0 640 384

−1536 1024 −1024 512 1024 −1536 512 −1024
0 1536 −1536 1024 1536 0 1024 −1536

−1536 1024 −1024 512 1024 −1536 512 −1024
0 1536 −1536 1024 1536 0 1024 −1536

−384 −640 0 0 −640 −384 0 0
0 0 384 640 0 0 640 384

1024 −1536 512 −1024 −1536 1024 −1024 512
512 −1024 2048 −512 −1024 512 −512 2048

−128 128 −512 −512 128 −128 −512 −512
512 512 128 −128 512 512 −128 128

640 384 0 0 384 640 0 0
0 0 −640 −384 0 0 −384 −640

−1536 1024 0 1536 1024 −1536 1536 0
−1024 512 −1536 1024 512 −1024 1024 −1536

−128 128 512 512 128 −128 512 512
−512 −512 128 −128 −512 −512 −128 128

2048 −512 512 −1024 −512 2048 −1024 512
512 −1024 1024 −1536 −1024 512 −1536 1024

Appendix 2. First Row of Matrix T3

1328 124 140 −100 96 164 20 276
124 720 −116 −140 −188 −48 −188 92
140 −116 608 −340 −172 −100 −224 −52
−100 −140 −340 416 −404 −196 −436 −80

96 −188 −172 −404 464 −196 −244 −124
164 −48 −100 −196 −196 656 −268 −12
20 −188 −224 −436 −244 −268 416 −100

276 92 −52 −80 −124 −12 −100 1024
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Appendix 3. First Row of Matrix T4

321 −13 18 7 10 −35 11 −21
−8 66 10 −33 46 48 6 31
−13 201 −53 −16 −45 −8 −43 −43
−25 −20 −31 −33 −49 −2 8 28

18 −53 181 −36 −33 −38 0 −78
−16 10 −44 −49 −32 −39 −23 −8

7 −16 −36 194 −72 −27 −19 −14
−49 −17 −36 −56 −7 −25 −49 30

10 −45 −33 −72 144 −56 −22 −65
−8 −43 −36 −52 −52 −2 −46 −38
−35 −8 −38 −27 −56 184 −41 −27
−30 8 −55 −25 −13 −32 −19 −10

11 −43 0 −19 −22 −41 220 −68
29 8 −3 −59 −12 −10 −24 33
−21 −43 −78 −14 −65 −27 −68 124
−35 −5 −24 −38 −56 −8 −38 −20
−8 −25 −16 −49 −8 −30 29 −35
237 7 1 −9 8 −17 −7 66
66 −20 10 −17 −43 8 8 −5
7 325 −17 27 39 50 −39 33

10 −31 −44 −36 −36 −55 −3 −24
1 −17 177 −46 10 2 2 −22

−33 −33 −49 −56 −52 −25 −59 −38
−9 27 −46 186 −6 20 −25 6
46 −49 −32 −7 −52 −13 −12 −56
8 39 10 −6 298 −28 23 23

48 −2 −39 −25 −2 −32 −10 −8
17 50 2 20 −28 234 −31 32
6 8 −23 −49 −46 −19 −24 −38
−7 −39 2 −25 23 −31 214 16
31 28 −8 30 −38 −10 33 −20
66 33 −22 6 23 32 16 344
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