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Abstract. We investigate some of the algebraic properties of the SAFER block cipher
when the message space is considered Asredule. In particular, we consider the
invariantZ-submodules of the PHT layer and show how these invaiasuibmodules
give potential cryptographic weaknesses.
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1. Introduction

SAFER K-64 is a block cipher that was introduced by Massey at the 1993 Cambridge
Security Workshop on Fast Software Encryption [7]. It operates on 64-bit blocks under
the control of a 64-bit key. It is a “byte-oriented” cipher in that all the basic encryption
operations are on bytes or pairs of bytes. Atthe 1994 Leuven Workshop on Cryptographic
Algorithms, Massey presented a paper [8] which surveyed the first year’s research on
SAFER K-64 and defined SAFER K-128, which is SAFER with a 128-bit key. In this
paper we investigate certain algebraic properties of the SAFER block cipher and show
how these properties are a potential source of cryptographic weaknesses.

Following the original submission of this paper and a related key attack by Knudsen [6]
in mid-1995, revised block ciphers SAFER SK-64 and SAFER SK-128 were proposed
[6]. These differ from the original SAFER K-6428 block ciphers only by using the
new key schedule proposed by Knudsen [6]. There is also an analysis of SAFER based
on truncated differentials [1], and an analysis that considers a revised SAFER encryption
algorithm with a different nonlinear layer [11].

Each round of SAFER contains only one operation that mixes message bytes, the
PHT layer(which exists to provide diffusion [7]). This PHT layer iZamodule homo-
morphism on the message space. Our analysis concentratesZxstivenodules of the
message space that are preserved by the PHT layer, that is, the inasialptnodules.

* The author acknowledges the support of the Nuffield Foundation.
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These invarianZ-submodules and their cosets are not diffused by the PHT layer, and so
provide a method for the cryptanalyst to cope with the diffusion in SAFER in a variety
of attacks, whatever the key schedule. This is the main result of this paper. However, the
original key schedule of SAFER K-8428 did not mix key bytes. This allowed us to
find a projection onto a particular 4-byte invari@gsubmodule that does not depend on
a quarter of the key (under standard cryptographic assumptions).

We begin this paper by giving a description of SAFER and the original key schedule
of SAFER K-64/128. In Section 4 we give a description of the invariZrdéubmodules
of the PHT layer, and in Section 5 we show how these invafZastibmodules can be
used to construct a Markov chain on cosets. In Section 6 we show how the original key
schedule of SAFER K-64128 gave rise to the property described above, and in Section
7 we give some other ways in which the invari@isubmodules of the PHT could be
used for cryptanalysis. We finish with some conclusions.

2. Description of SAFER
SAFER is a block cipher that operates on 64-bit blocks considered as 8 bytes. It consists

of a round transformation iteratadtimes followed by a final output transformation.
Recommended values ofare 6 for SAFER K-64 and 10 for SAFER K-128. The key-

S N N SR NN SR S

XOR ADD ADD XOR XOR ADD ADD XOR [ Kaia

1T 1T 1T 1T [ [ |

Fig. 1. Encryption round structure of SAFER.
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scheduling, described below, givéxr + 1) 8-byte subkey«Ky, ..., Kx11. Subkeys
Ksi_1 andKy are used in round, and the subke . is used in the output transfor-
mation. A diagram of the round function is given in Fig. 1. Tiltle round function is
built from four basic operations.

1. Mixed XORAddition Layer Bytes 1 4, 5, 8 of the round input are XORed with
bytes 14,5, 8 of subkeyK, _;. Bytes 23, 6,7 of the round input are added
bytewise (modulo 256) with bytes 3, 6, 7 of subkeyKy ;.

2. Nonlinear Layer For a bytex, 45% is defined to be 45modulo 257, where is
regarded as a number©x < 255, with the convention that 439 = 0. As 257
is prime and 45 is a primitive element modulo 257, this is an invertible function of
a byte, and log(-) is defined to be its inverse. The@43ransformation is applied
to bytes 14, 5, 8 of the output of the mixed XORddition layer and the lgg(-)
transformation to bytes, 3, 6, 7.

3. Mixed Additionf XOR LayerBytes 1 4, 5, 8 of the output of the nonlinear layer are
added bytewise (modulo 256) with bytesAl5, 8 of subkeyK,; . Bytes 23, 6, 7
of the output of the nonlinear layer are XORed with byte8,8, 7 of subkeyK; .

4. Pseudo-Hadamard Transfor(PHT) Layer. The transforms 2-PHT in Fig. 1 map
the byte paii(a;, ay) to the byte pai(2a; + az, a; + a2), where addition is modulo
256. The effect of the three layers of 2-PHT transforms on the outpithe mixed
additiory XOR layer is to map it tavM, where addition is modulo 256 and

8 4 42 42 21
42422121
42214221

v_| 21212121

"l 44222211
22221111
22112211
11111111

The output of the PHT layer is the output of the round function.

The final output transformation afterounds is an application of the mixed X@&ddition
layer with the output of theth round and the subkey, 1.

Decryption using SAFER is carried out by reversing these operations and we do not
describe it in detail.

3. Key Scheduling

The key scheduling for SAFER is again byte-oriented. For SAFER K-64 with 8-byte
key K, let KJ denote thg th byte ofK. The jth byte of subke;, K/ (j =1,...,8),
is defined by

K! =ROLgi-1 (K + B (i=1...2+D),

whereROL, denotes a left rotation of the byte Imypositions,Bij are predefined “key
biases”, and addition is modulo 256. Note t%t: 0, soK; = K.
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For SAFER K-128, the 16-byte kel is split into two 8-byte halveX,, Ky, so
K = (Ka, Kp). The jth byte of a subkey is defined by

Ky = ROLgi_143(Kd)+ B} (i=1....r),
Ky_; = ROLgi_1,(K) + By 4 (i=1....,r+1,

where the key biaseB/ are the same as for SAFER K-64. Encryption under Kes:
(K’, K”) for SAFER K-128 is identical to encryption under kigy for SAFER K-64.

For SAFER K-64, all of the subkey bytes used in ftle byte position depend solely
on the jth byte of the key. For SAFER K-128, all of the evefiy() subkey bytes used
in the jth byte position depend solely on th#h byte of the left half of the key, and all
of the odd K3 _1) subkey bytes used in thigh byte position depend solely on thth
byte of the right half of the key. Thus for SAFER K-128, a byte of the 16-byte key gives
subkey bytes that are all used either in an XOR operation or an addition operation, but
never both. We term these two types of key bytes XOR and addition key bytes.

The new key schedules for SAFER SK-64 and SAFER SK-128 do mix key bytes [6].
We do not describe them here.

4. Algebraic Structure of the PHT Layer

Our comments on and our analysis of SAFER relate primarily to the algebraic properties
of the PHT layer. An introduction to the algebra required is given in [5]. The PHT layer
is a collection of transformations based B, the ring of integers modulo®2= 256.
Consider the 8-byte message spsice: Zgg of SAFER. We can think o as a module
in three equivalent ways. We can regardfirstly as a freeZ,s-module of rank 8, or
secondly as a torsiofi-module that is annihilated by?2, or finally as the quotient
Z-moduleZ8/2878. In each case the PHT layer is an invertible module homomorphism
a: V — V, wherea has matrixM with respect to the standard basis. Our analysis
of SAFER is based on the-invariant submodules of . Recall that &-submoduldJ
is ana-invariantZ-submodule oV if Ua < U. However, in this case is invertible,
so if U is ana-invariant submodule, theb« = U. The a-invariantZ-submodules
can be thought of as thogesubmodules that are “preserved” by the PHT layer. For
example, the simplest-invariant submodules aké, = 28-"V, the submodule obtained
by considering the least significambits of each byte. We therefore begin our analysis
of SAFER with a thorough investigation afinvariant submodules.

Consider the eight-dimensional rational vector spage= Q® and the freéZ-module
Vz = 78 Nowa can be regarded as the linear transformation@and as th&-module
homomorphism o1V given by the matrixM. Considered as a set embedded/ij) o
as a linear transformation o fixes the subseé¥;,. The characteristic polynomial ef
on Vg, f(x) = Det(e — x1) is given by

f(X) =1— 18X + X? — 18X3 4+ 324X* — 18X5 + X® — 18X" + X&,
which factorizes over the integers as

f(X) = (1— 18X + X?)(1 — 3X + X?)(1+ 3X + 8X2 + 3X3 + X*%).
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Vj therefore has the following three minimalinvariant subspace$ (of dimension
2), Qg (of dimension 2) andry (of dimension 4). These-invariantVgy-subspaces are
defined by

Po = ker(l — 18« + a?)
= (&1 — &+, & + 65+ di),
Qo = ker(l — 3u +a?)
(3er —dy — dp, dy — dy — 3eg),
Ry = ker(l + 3« + 8a® + 30> + o)
= (& — 65,683 — 65,65 — €4, 67 — &),

whereg denotes théth standard basis vector, add= e, +e3+esandd, = e4+6e5+€7.
If we let By denote the basis forfgy given above in terms dPy, Qg and Ry, then

B. € — e+ dy, € + e+ di, 38 —d; —dy,
2= ld;—d,— 3 - - - —ef’
1 —th -3, &0—6, 83— 6, 65— €, 67— &

and the change of basis transformation from the standard baBig i® given by the
matrix A (with determinant-225), where

1 1 3 0 0O O 0 o

0 1 -1 1 1 0 0 O

0 1 -1 1 0 1 0 O

A 1 0-1 -1 O 0 -1 -1
- 0 1 -1 1 -1 -1 0 O

1 0 -1 -1 0 O 1 0

1 0-1 -1 0 O O 1

-1 1 0-3 0 O 0 O

Vg has a direct sum decomposition as
Vo=Pp®Qu® Ry (where@ here denotes direct sum)

The Vg subspace®y, Qg and Ry are in fact pairwise orthogonal with respect to the
standard inner product d@. The matrix ofa with respect to the basiBgy of Vg is a
block diagonalM’ defined by

Mp O 0
M/Z 0 MQ O 3
0 0 Mg
A 2 -1 1

5 8 2 1 2 0 0 1
MP:(S 13)’ MQ:(l 1) and Mr=| 3 ¢ o 1

1 -1 1 -1

where
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We thus have the following three-invariantZ-submodules 0¥/, asVy is fixed by
o as a subset ofy:

P, = PypN Vg =ker(l — 18x + a?)
= (e — e+ 0y, € +es+dy),
Qz = QuNVz =ker(l —3a+a?)
= (3e; —dy — dp, di — d> — 3es),
Rg N Vg = ker(l + 3« + 8a? + 3a° + %)
= (62— 65,63 — 65,65 — 4,6 — €).

Rz

We can now defind; < Vy as the direct sum of theseinvariantZ-submodules, so
Tz=P,®Qz® Rz (whered here denotes direct sum)

We note thafl; is a propeiZ-submodule oWz, as, for exampled; ¢ Tz.
We can use thig-invariant decomposition ofy;, to give arnx-invariant decomposition
onV by using the following lemma:

Lemmal|5, Lemma 8.1]. Let L be a module over a rinfyith 1), and suppose L is a
directsumL=L;® --- @ L; of submodulesL< L. Foreach i let N; < L;, and let
N = 3"'_, Ni. If v is the natural homomorphism & L /N, then

Lt

L L
N:Lv:le@u-@LtvE . N,

-1
N1
Suppose we let* denote the natural-module homomorphism

Vz

V*: VZ —> ﬁ = V,
thenv* gives the naturgZ-module homomorphism

Tz ~T,

T L ——
R TV

whereT = Tzv* is aZ-submodule ofV. We apply the above lemma to the natural
Z-homomorphism and the decompositiofy, = Pz & Qz @ Ry. Noting that

T, N 2878 = (P, N 2878) + (Qz N 287Z8) + (Ry, N 2878),

we obtain

Tz . P ® Qz ® Rz
T, N 2878 - P, N 2878 Qy N 2878 Ry, N 2878°

T=

As 2278 and T, area-invariantZ-submodulesy can be well defined as the induced
Z-module homomorphism on the quotiéAatmodule T. Similarly the three quotient
Z-submodules in this decomposition arénvariant.
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We thus have following three-invariantZ-submodules of :

P = ker(l — 18x + a?)
(1 —eg +d2, €1+ €g + dy),
Q = ker(l — 3« +a?)
= (3g, — d; — dy, d; — dy — 3ey),
R = ker(l + 3 + 8a? + 30 + %)
= (€ — 65,63 — 65,65 — €4, €7 — €y),

and the following decomposition df as the direct sum af-invariantZ-submodules:

T=P®Q&R (whered here denotes direct sum)

Both T andV can be regarded as fr@s-modules of rank 8 witll < V. T is freely
generated by the basig where

B:{ e —es+ 0y, € +es+di, 38 —di — b, }
d; —dy — 363, &0 — 65, €3 — 65, €5 — €1, €7 — &4’

andV is freely generated by the standard basis. The change of basis transformation that
maps the standard basisBois given by the matrixA defined aboveA is invertible as
its determinant-{225) is a unit inZ, so B is a basis folV as a freeZs-module [5,
Lemmas 7.5 and 7.6]. Therefore as a ffgemodule, and hence a¥amodule,T = V.

The decomposition off as the direct sum o&-invariant Z-submodules is thus a
decomposition fol, and so we have

V=P®Qa®R (whered here denotes direct sum)

Clearly,V, P, Q andR have sizes @, 2%, 216 and 22, respectively.

In order to find furthew-invariantZ-submodules, we regaM as a (torsion¥[ X]-
module. In this module, scalar multiplication of a module elemefity an integer
polynomialg(X) (an element oZ[ X]) is defined by

v - g(X) = (v)(g()),

that is, the image of under the module homomorphisgi«). The role of thisZ[ X]-
module in findingx-invariant submodules is given by the following theorem.

Theorem. U is ana-invariantZ-submodule of V if and only if U isA] X]-submodule
of V.

Proof. If U is ana-invariantZ-submodule o, thenUa < U. Thus, for anyn and
)\'07 st )"I"Iu

n n
U X{;kiai = X;Aani < U,
1= | =l

soU - g(X) < U for any polynomialg(X). HenceU is aZ[ X]-submodule.
Conversely, ifU is a Z[ X]-submodule, thetJa < U, so U is an a-invariant
submodule. O
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We thus need to find thg&[ X]-submodules of th&[X]-module V. For anyZ[ X]-
submoduldJ, let

annU) = {g(X) € Z[X]|U - g(X) = 0}

denote the annihilator & in Z[ X], an ideal inZ[ X]. This function gives an inclusion-
reversing mapping from th&[ X]-submodules ofV to the ideals ofZ[X]. We can
also define an inclusion-reversing mapping from the set of ided#§ Xf to the Z[ X]-
submodules o¥/. Accordingly, for any ideal of Z[X], let

Nv(h={veVp-1 =0 <V

denote the “null’Z[ X]-submodule ot of the ideall . Np, Ng andNg can be similarly
defined as null submodules i, Q andR. However, not every[ X]-submodule is the
null Z[ X]-submodule of some ideal, for examp&]X]-submodule{0, 27(es + €7)},
which is fixed bya, but is a prope#[ X]-submodule of fixed poinZ[ X]-submodule
ker(w — 1). However, anyZ[ X]-submoduleU is aZ[ X]-submodule of the nult[ X]-
submodule of its annihilator, 40 < Ny (annU)). We termNy (annU)) the minimal
null Z[ X]-submodule containing). The following theorem shows that a n[ X]-
submodule can be decomposed as a direct sum oZMl}submodules oP, Q andR.

Theorem. For any ideal | ofZ[X],

Nv (1) = Np(l) & No(1) & Nr(l),
with Np(1) < P, No(l) < Q and Ns(l) < R.
Proof. Letn € Np(l) 4+ Ng(l) + Ngr(l), thenn can be written as = p+q +r,
wherep - h(X) = g-h(X) =r -h(X) = 0 forall h(X) € I. Thusn - h(X) =
p-h(X)+qg-h(X)+r - -h(X) = 0forall h(X) € I, son € Ny(l). Therefore
Np (1) + Ng(l) + Nr(1) < Ny (I).

Conversely, supposee Ny (l). n can be written as = p+ q +r for somep € P,
g € Q andr € R. Foranyh(X) € I,

O=n-h(X)=(p+g+r)-h(X)y=p-h(X)+q-h(X)+r-h(X)y=p' +q +r’

forsomep’ € P,q € Q andr’ € R, asP, Q andR areZ[ X]-submodules. However,
P ® Q & Ris a direct sum, hence

O0=p'=q =r"=p-h(X)=q-h(X)=r-h(X),

and sop € Np(l), g € No(l) andr € Ng(l). Asn = p+q +r, we have that
n e Np(l) 4+ Ng(l) + Ngr(l). ThereforeNy (1) < Np(1) + Ng(l) + Ngr(l).
Therefore we have equality, and we clearly have a direct sum, so

Ny (1) = Np(l) @ No(l) & Nr(l). O

This theorem enables us to fi@fiX]-submodules o¥/ because an¥[ X]-submodule
is contained in its minimal nulZ[ X]-submodule. This nulfZ[ X]-submodule can be
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decomposed into nult[ X]-submodules ofP, Q and R. We thus consider thg[ X]-
submodules o¥/, P, Q andR. Any Z[ X]-submoduleJ can be regarded in the natural
way as aZ[ X]/annU))-module. We therefore calculate the following annihilators:

Ay =annV), Ap = annP), Ag = annQ), Ar = annR).
We know that
(28, p(X)) = (28,1 — 18X + X?) C Ap,

so any element oAp can be reduced modul@®, p(X)) to a polynomial of the form
ap + a1 X, whereag, a; € {0, ..., 2% — 1}. By considering the effect of module homo-
morphismsay + a; on the generators d? (as aZ-module), we find the only other
generator forAp is 22(X + 3). Similar calculations givéhg and Ag, so we have

Ap = ann(P) = (2%, 2°(X + 3), p(X))

= (28, 25(X +3), (1 — 18X + X?))
Aq = annQ) = (2°,q(X)) = (2%, (1 — 3X + X?)
Ar = annR) = (28, 25(X® + 3), r (X))

= (28, 25(X3 +3), (1+ 3X 4+ 8X2 + 3X3 + X%).

By considering the effect of elements A, Ag on P, etc., we find

Ay = annV) = (28, 25(X + 3), 2q(X)r (X), (X + 1)g(X)r (X))
= (28, 25(X +3),2(1 — 3X + X (1 + 3X + 8X? + 3X3 + X%,
(X +1)(1—3X + X?)(1+ 3X + 8X% 4+ 3X3 4+ X*)

If we define the following quotient rings,
Zy = Z[X]/Av, Zp = Z[X]/Ap, Zq = Z[X]/Aq, Zr = Z[X]/Ar,
then the elements in these rings can be written as

Zp = {@g+aXlag=0,....,2—-1a=0,...,2°— 1},

Zg = {ag+ayX|ag, a1 =0,...,28 1},

Zr = {ao+aiX + aX? + agX3lag, a1, =0,...,28 — 1;
ag=0,...,2°—1},

Zy = {ag+---+agX8ag, 1,2 =0,...,28 - 1;
ag,a4,85=0,...,2— 1,2, =0, 1}.

TheringsZp, Zg, Zr andZy have sizes®, 216, 229 and 20, respectively. Note that all
four of these rings can be regarded as cyclic modules over themselves.

We can thus regard as aZy-module, and®, Q andRasZp-, Zg- andZg-modules,
respectively. By considering the effect@fon one of the generators (dAsmodules)p,
g andr of P, Q andR, respectively, we find tha®, Q andR contain cyclic submodules
(generated by one element) that are isomorphiZ4o Zg and Zg (as modules over
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themselves), respectively. We denote these cyclic submodpjes, @)z, and(r)z,,
respectively. These cyclic submodules can also be regardéesabmodules, and as
such we have the following-module isomorphisms:

(P z, = (p)+2°P (Z-module isomorphism),
@z, =Q (Z-module isomorphism),
Nz, = +2°R (Z-module isomorphism).

Thus Q is a cyclic Zg-module of size #. The cyclic Zp- and Zgr-submodules oP
andR, (p)z, and(r),, are of size # and 29, respectively. These cyclic submodules
intersect non-trivially with any other submodule Bf and R, respectively.P and R
contain many such cyclic submodules of these sizes. They are each generated by a single
generator oP andR (considered a&-modules). The submodules of the cyclic modules
Zp, Zg andZr (over themselves) are given by the idealZef Zg andZg, respectively,
or equivalently by ideals ifZ[ X] containingAp, Ag and Ar, respectively [5, Theorem
2.12]. Further analysis of the ideals of the rings can be conducted by using the theory of
Grobner bases [3].

We have given a thorough analysis of #aénvariantZ-submodules o/ by con-
sidering the equivalerif[ X]-submodules of/. We summarize here the results of the
Z[ X]-module analysis in terms of-invariantZ-submodules. We have shown thatan
be decomposed &&= P®Q® R, whereP, Q andR area-invariantZ-submodules, and
that any othes-invariantZ-module is contained in a minimal “nulZ-submodule which
decomposes as a sumeafnvariantZ-submodules oP, Q andR. TheZ-submodule$
andR contain certai-invariantZ-submodules that intersect non-trivially with any other
a-invariantZ-submodule ofP and R, respectfully. Furthew-invariantZ-submodules
of theseZ-submodules oP and R, and of theZ-submoduleQ, can be calculated by
considering the ideals of the various polynomial quotient rings given above.

5. A Markov Chain on Quotient Modules

Let U be ana-invariantZ-submodule ofvV. We consider the effect of thi¢h round
function on the cosets dfl in V, or equivalently on the quotierf-moduleV/U.
Suppose now that an elemetite V is the round inputy' € V is the input to the PHT
layer andz' € V is the round output, anxi{J, y‘U andziU are the corresponding cosets
of U or elements ofV/U. For a given round subkegKy_1, Ky), we can calculate
the transition probabilityPk,_, k,) (Y, 1X!,) between a coset &f before and a coset of

U after the combined mixed XORddition, nonlinear and mixed additi®dOR layers.
The effect of the PHT layer (@) is to permute the cosetsdfasU isa-invariant. For this
round subkeyKyi 1, Kyi), we can calculate the transition probabilitbkmfl,,<2i)(z‘U |xl‘J)
between the a coset bf before and after the round function of SAFER. For this round
subkey(Kyi_1, K3), the round function of SAFER gives a key-dependent probability
transition matrix on the cosets of. This transition matrixQ«, , k) is defined by

Q(Kzi—lqKZi) = (Pk(zlu |X|IJ))

Consider now the SAFER encryption function witfounds followed by a final output
transformation which we regard as ttre+ 1)th round. Letx' € V be the input to the
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ithround { =1, ..., (r + 1)), with x*2 as the output. Let, (i = 1,..., (r +2)) be
the corresponding cosets Of or elements oV /U. For a given keyK, the sequence
X5, .o, x{ﬁz forms a key-dependent random process with state space the cokkts of
The transition matrix for this random proce@g is defined by

Qk = (P (x;™IxH)).

The standard cryptographic assumption, implicitly used in both linear [9] and differential
cryptanalysis [2] is that, for a given key, such a random process defined on a state space
of cosets forms a first-order Markov chain [4]. In linear cryptanalysis these are usually
cosets of a hyperplane of the message space (considered as a binary vector space). In
differential cryptanalysis these are usually cosets of

{mmme M} <Mx M (whereM is the message space)

and these give the “characteristics”. This assumption can be tested empirically. Under
this assumption we can write the transition mafix as a product of transition matrices

for each round. Thus if kel gives round subkeyK,, ..., Ky .1, the transition matrix

Qk is given by

Qk = Qky, Ky QKa,Ka) * Qe 1.Kar) Qir 41+

6. A Potential Cryptographic Weakness

We have seen that tH8-moduleV can be written as the direct sum efinvariant
Z-submodules a¥ = P & Q & R. We can define a submoduiby

S: P@ Q = <ela dla d25 eB)

Sis ana-invariant submodule with/ = R @& S. We consider how the Markov chain
described in Section 5 applies to cosets of the submd8Wee can defing to be the
naturalZ-module homomorphism

.

0.V —> s R.
We can regard the random process on the coseSsagfa random process on elements
of R. For an element € V, we write vs for this coset ofS or equivalently element
of R. The value ofvs does not depend on the first and eighth bytes abe; andeg
are absent from the basis fBr Consider théth round of a SAFER encryption under a
givenith round subkeyKi_1, K5). Suppose now that an elemetite V is the round
input, y' € V is the input to the PHT layer, ardl € V is the round output, ang,
yiS andziS are the corresponding cosets®br elements oR. For a given inpuk’, the
central six bytes of the outpyt of the combined mixed XORaddition, nonlinear and
mixed additionf XOR layers do not depend on the first and eighth bytes of the subkeys
Kaoi_1 andKyi. Thus the distribution of/is conditional onxiS is constant whenever the
central key bytes agretaiS depends only orgriS asSis a-invariant. For the given subkey,
the distribution oz conditional onxj therefore does not depend on the first and eighth
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bytes of the subkeyK,_; andKyi. The key-dependent one-round transition matrix on
the cosets o8is identical for all subkeyéK i 1, K»i) that agree on the central six bytes.

If we defined to be the restriction to these central six bytes, then the one-round transition
matrix can be written as

Q(Kzi—lqKZi 0 = (Pky_1,Ka)0 (lelxls))

Suppose now that we have asround plus final output transformation SAFER en-
cryption with messagen = x* and ciphertext = x"*2. For a given keyK, under
the standard cryptographic assumption that such a process forms a first-order Markov
process, the transition matrix between message cosets and ciphertext c&istshef
product of the round transition matrices. Thus

Qk = (P (zy 1)) = Qk1.K26  * * QKar 1. K218 QKor 110

The transition matriXQy therefore depends only on the central six bytes of the subkeys
Ky, ..., Kay1. For SAFER K-64128, the key scheduling restricts byteskofto the
same bytes of any subkey, so we h&r = Qg. For SAFER K-64, this means that
the distribution ofcs conditional onmgs does not depend on the first and eighth bytes
of the key, whereas for SAFER K-64 the distributioncgfconditional onms does not
depend on the first, eighth, ninth and sixteenth bytes of the key.

For either SAFER K-64 or SAFER K-128, we have found a half-rank algebraic struc-
ture (R) of the messageiphertext space on which the output distributions do not depend
on a quarter of the key bytes. In [7] it is stated that “"SAFER was designed in accordance
with Shannon’s principles of confusion and diffusion for obtaining security in secret-key
ciphers”. Shannon'’s principle of confusion [10] is “to make the relation between sim-
ple statistics of ciphertext and simple statistics of the key a very complex and involved
one”. As there are simple statistics of the output (that is, its “projectionRpthat do
not depend on a quarter of the key bytes, it arguable that SAFER does not satisfy the
principle of confusion. Therefore if there are any collections of functiomagtvhich
have non-negligible correlations with any collections of functionsspthen we have a
reduced key search.

For practical reasons, we may need to concentrate on the least signifibéatof
each byte, that is, the modulg. The above reasoning also applies to this module, so
just by considering the least significanbits we may still get a reduced key search. We
note that when we consideras a module homomorphism g, for smalln, it has even
more structure. For example, as a module homomorphiswy,avery submodule of
is a-invariant andR has a submodule of rank 2 in which every submodudeiisvariant.

There are many similar attacks on SAFER usingdakiavariantZ-submoduleS with
different time/space complexity trade-offs. We do not investigate all these attacks to find
the best one. The key schedule has already been revised in the light of this paper and [6].
The attack below is given solely as an illustration of the type of attack it may be possible
to mount on SAFER using the-invariantZ-submoduleS.

We can attempt to exploit the lack of dependence on certain key bytes by calculating
empirical transition probabilities on cosets 8ffor plaintext/ciphertext data. Given
enough data we can see which key-dependent sets of transition probabilities best agree
with the empirical probabilities and thus find key information.
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In order to calculate these transition matrices, we need to calculate transition matri-
ces for one round. We now explain how the components of the round function affect
the transition matrix. We first note that we can wrReas the direct sum of twé-
submodules of rank 2, one involving linear combinations of bytes 2 and the other
linear combinations of bytes 8, 7. Thus we have

R=(e;— 65,6 — €)@ (& — €1, — €).

In the mixed XORaddition, nonlinear and mixed additi®dOR phases, SAFER acts
independently on these tw-submodules oR. We call the set of cosets on either of
these two submodules half-cosets.

Adding a subkey byte corresponds to permuting the cose®sro¥/ according to the
subkey byte. XORing a subkey byte corresponds to adding one of a small set of other bytes
according to a known distribution that depends on the subkey byte. Combining these two
operations into the mixed XORddition or the mixed additigtKOR phase, we see that
either of these phases gives a transition matrix on the cosets that depends on the subkey.
The 487, log,s(+) transforms give transition matrices on each of the half-cosets. We give
some examples below. Thus the combined effect of the mixed Jé@&tion, nonlinear
and mixed additiofiXOR layers is to give key-dependent transition matrices on the
half-cosets. These transition matrices are effectively key-dependent weighted averages
of the permuted transition matrix on the half-cosets for the nonlinear layer. To obtain
the key-dependent transition matrix for all of the cosets, we combine the key-dependent
transition matrices for both of the component half-cosets using an element-by-element
product.

The effect of the PHT layer is to permute the cosetS &ana-invariant subspace.

This permutation is given biylg, where

-2 2 -1 1
-2 0 O 1
1 0 0 -1
1 -1 1 -1

Mg =

was given earlier as the block (correspondindR)cof the matrixM as a block matrix.
Thus we can find the key-dependent transition matrix for one round by permuting the
columns of the key-dependent matrix for the combined mixed X&Mition, nonlinear
and mixed additionXOR layers. The key-dependent transition matrix for a number of
rounds is just the product of the individual key-dependent one-round transition matrices.
Let Px-(ms, Cs) denote the probability of transition from message chag$o cipher-
text clasxs under key clas&’, whereK’ = K6 denotes the relevant 6 or 12 key bytes
(SAFER K-64 or K-128) Pk (msg, Cs) is just the relevant entry of the transition matrix
corresponding t&K’. Suppose we have a number of message/ciphertext pairs and let
N (ms, cs) be the number of times message classandcs occur. For a known plaintext
attack we can find the value &f that maximizes the log-likelihood function

Z N(ms, Cs) log Pk (ms, Cs).

(Ms,Cs)

This is a maximization over at most®r 2°6 elements. For 2-round SAFER, an approx-
imate probability argument using random functions shows that, for a given keyclass
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about 37% ¢ 1) of class pairgms, cs) do not occur, that isPx (ms, cs) = 0 for 37%
of class pairgdms, cs). Thus for 2-round SAFER, we have a trivial attack in which we
can identify the true key class with a handful of mesgag#hertext pairs.

The above analysis for SAFER with a realistic number of rounds requires the calcu-
lation of vast numbers of*2 x 232 transition matrices. In order to make the calculations
more tractable, we can consider the least significaits of every byte, thatis, the module
Vh. The general theory given above applies to this module and its relevant submodules.
Looking at the least significant bit gives no information as the transition probabilities
through the non-linear layer are uniform. Vaudenay [11] considered this situation in the
case when the 45and log,s(-) functions are replaced by functions that give non-uniform
transition probabilities. Thus we consider the least significant two bits of each byte. In
this case XORing by 00 or 10 is equivalent to adding 00 or 10, respectively, and XORing
by 01 or 11 is equivalent to adding 01 with probability one-half or 11 with probability
one-half. The transition matrix for a set of half-cosetSa§ 2-4J, 4+ 2-2°T,, whereJ,
is the 16x 16 matrix with every entry 1 an®; is given in Appendix 1. The matriX; is
calculated by considering alf2values of the three bytes involved in the half-coset (as
are J; and J; below).

Whilst these transition probabilities are not uniform, they are not non-uniform enough
to launch an attack on SAFER with a realistic number of rounds.

When we consider the least significant three bits of each byte, we obtain the transition
matrix on the half-cosets of £ J; 4+ 2-18T;, whereJ; is the 64x 64 matrix with every
entry 1. The first row off3 is given in Appendix 2. It can be seen that a typical entry of
T; has absolute size about, 20 a typical entry of the transition matrix differs from the
uniform value of 28 by about 21°. The least significant four bits in each byte give the
transition matrix on the half-cosets of®J, + 2-16T, whereJ, is the 256x 256 matrix
with every entry 1. The first row of, is given in Appendix 3. A typical entry of, has
size about 2, so a typical entry of the transition matrix differs from the uniform value of
278 by about 2°. We have shown parts of these two matrices in the Appendix to show
that even when considering the least few significant bits of every byte, the transition
probabilities of the “half-cosets” are highly non-uniform. Even after allowing for the
averaging effect of XORing key bytes, the key-dependent transition matrices for the
half-cosets across the mixed X@é&dition, nonlinear and mixed additiodOR layers
are still highly non-uniform. By taking the elementwise product of transition matrices
we obtain key-dependent transition matrices across the cosets. The PHT layer permutes
the columns of this matrix, so we can obtain one-round key-dependent round transition
matrices on the cosets which are highly non-uniform. By taking an appropriate product
of such matrices, we can calculate key-dependent transition matrices from the message
cosets to the ciphertext cosets.

Given sufficient computational power, we can pre-compute all such key-dependent
transition matrices. For a set of messagphertext pairs, we could use these matrices
to calculate the likelihoods as given above. In practice, the keys may naturally occur in
classes that give approximately equal transition matrices, which would reduce the key
search. In any case, the key search for the attack described above is at worst 48 or 96
bits (SAFER K-64 or K-128).
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7. Other Potential Algebraic Weaknesses

The invariantZ-submodules of Section 4 essentially give the cryptanalyst a method for
controlling the diffusion of SAFER in the PHT layer. There are several ways in which
this may be potentially exploited. We briefly list some of them.

1. In theZ-submoduleV, or Vg, there are many linear combinations of bytes that
are fixed byw. By analysing how the key and nonlinear layers affect these linear
combinations, either individually or jointly, it may be possible to find information
about the key.

2. « has many small cycles. In particular &, « has order 3, and oW, o fixes
everyZ-submodule of rank 1. We can analyse #isubmodules generated by such
small cycles. Thos&-submodules generated by cycles that involve elements of
low (module) weight may provide key information.

3. Constructing affine4-module) approximations to the #5log,s(-) and XOR func-
tions and relating these to the invarigysubmodules may give key information.

4. Further investigation ak-invariantZ-submodules o¥. In particular it may be
possible to relax the requirement of strict invariance and analyse probabilistically
invariantZ-submodules, for example, the central six byies e, €4, s, €, €7).
There are many suci-submodules which could give key information.

. Differential analysis based on theinvariantZ-submodules.

6. In SAFER K-128 we saw above thatthe key bytes divide into two types, the addition
key bytes and the XOR key bytes. The effect of adding two key bytes sequentially
is the same as adding one key byte equal to their sum. It is therefore possible that,
because of the underlyirg-module structure, the transition probabilities would
depend only on the value of the overall addition of certain addition key bytes. This
would give a greatly reduced key search.

ol

8. Conclusions

In this paper we have given an analysis of the SAFER algorithm based on the algebraic
properties of the PHT layer, and, in particular, the invari&stuibmodules. In particular,

for a given key, we have found a “projectiord)of the 8-byte message/ciphertext space
onto a 4-byteZ-submodule so that the probability of any message projection giving
any ciphertext projection is independent of one-quarter of the key bytes. This gives the
real possibility of reducing a key search to 6 or 12 bytes (SAFER K-64 or K-128). We
have given an example of one way in which this may be exploitable given sufficient
computational resources.

The key scheduling for SAFER K-64 and SAFER K-128 has been changed to give
SAFER SK-64 and SK-128 since the original submission of this paper and [6]. This
(amongst other things) ensures that this projection depends on all the key bytes. However,
the main contribution of this paper is the use of the invarZasubmodules of the PHT
layer to allow the cryptanalyst to control diffusion, and the algebraic analysis of these
invariantZ-submodules. Even with the new key schedule, there remains the possibility
of using the invarianZ-submodules of the PHT layer to analyse SAFER.
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Appendix 1. Matrix T,

2048 —512 512 -1024 —512 2048 -—-1024 512
512 -1024 1024 —-1536 —1024 512 -1536 1024
-128 128 512 512 128 -128 512 512
—-512 —512 128 —128 —512 —512 —128 128
—1536 1024 0 1536 1024 —1536 1536 0
-1024 512 -1536 1024 512 —1024 1024 —1536
640 384 0 0 384 640 0 0
0 0 —640 —384 0 0 —384 —640
-128 128 -512 -512 128 -128 -512 512
512 512 128 —128 512 512 -128 128
1024 —-1536 512 -1024 —-1536 1024 -1024 512
512 -1024 2048 512 -1024 512 —-512 2048
384  —640 0 0 -640 —384 0 0
0 0 384 640 0 0 640 384
—1536 1024 -1024 512 1024 -1536 512 -1024
0 1536 -1536 1024 1536 0 1024 —1536
—1536 1024 -1024 512 1024 -1536 512 -1024
0 1536 -1536 1024 1536 0 1024 —1536
—384  —640 0 0 -640 —384 0 0
0 0 384 640 0 0 640 384
1024 —1536 512 -1024 -1536 1024 -1024 512
512 -1024 2048 -512 —1024 512 -512 2048
—128 128 —512 —512 128 —128 —512 —512
512 512 128 128 512 512 -128 128
640 384 0 0 384 640 0 0
0 0 -640 —384 0 0 -384 —640
—1536 1024 0 1536 1024 —-1536 1536 0
—-1024 512 -1536 1024 512 -1024 1024 —-1536
—128 128 512 512 128 —128 512 512
—-512 —512 128 —128 —512 —512 —128 128
2048 —512 512 -1024 —512 2048 —-1024 512
512 -1024 1024 —-1536 -—1024 512 -1536 1024
Appendix 2. First Row of Matrix T3

1328 124 140 —100 9% 164 20 276

124 720 -116 -—-140 -188 —-48 188 92

140 -116 608 —-340 -—-172 -100 -224 -52

100 -—140 -340 416 -404 -196 -436 —80

96 —-188 —172 —-404 464 —-196 244 124

164 —-48 —-100 -—-196 —196 656 —268 —-12

20 -—-188 224 —-436 —244 268 416 -100

276 92 —-52 -80 -124 -12 -100 1024
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Appendix 3. First Row of Matrix T4

321 -13 18 7 10 -35 11 -21
-8 66 10 -33 46 48 6 31
-13 201 -53 -16 45 -8 —43 43
-25 -20 -31 -33 -49 -2 8 28
18 -53 181 -36 —-33 -38 0 -78
—16 10 —-44 -49 -32 -39 -23 -8
7 -16 -36 194 -72 -27 -19 -14
—49 17 -36 -56 -7 =25 49 30
10 -45 -33 -72 144 -56 -22 65
-8 —-43 -36 -—-52 52 -2 —-46 -38
-35 -8 -38 -27 -56 184 -41 -27
—-30 8 -5 -25 -13 -32 -19 -10
11 43 0 -19 -22 -41 220 -68
29 8 -3 -59 -12 -10 -24 33
-21 —-43 -78 -14 —-65 -27 -—-68 124
—-35 -5 -24 -38 -56 -8 -38 -20
-8 -25 -16 -49 -8 30 29 -35
237 7 1 -9 8 -17 -7 66
66 —-20 10 -17 -43 8 8 -5
7 325 -17 27 39 50 -39 33
10 -31 -44 -36 -36 -55 -3 =24
1 17 177 46 10 2 2 =22
-33 -33 49 -5 -52 -25 -59 -38
-9 27 -—-46 186 -6 20 -25 6
46 —-49 -32 -7 —-52 -13 -12 -56
8 39 10 -6 298 -28 23 23
48 -2 -39 -25 -2 =32 -10 -8
17 50 2 20 -28 234 -31 32
6 8 -23 -49 -46 -19 -24 -38
-7 -39 2 =25 23 -31 214 16
31 28 -8 30 -38 -10 33 -20
66 33 -22 6 23 32 16 344
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