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Abstract. Multiple modes of operation and, in particular, triple modes of operation
were proposed as a simple method to improve the strength of blockciphers, and in
particular of DES. Developments in the cryptanalysis of DES in recent years have
popularized the triple modes of DES, and such modes are now considered for ANSI
standards.

In a previous paper we analyzed multiple modes of operation and showed that the
security of many multiple modes is significantly smaller than expected. In this paper we
extend these results, with new cryptanalytic techniques, and show that all the (cascaded)
triple modes of operation are not much more secure than a single encryption—in the
case of DES they can be attacked with up to an ordeP®f2% chosen plaintexts or
ciphertexts and complexity of analysis. We then propose several candidates for more
secure modes.

Key words. Triple modes of operation, Cryptanalysis, Multiple encryption, Block-
ciphers, DES.

1. Introduction

Since the introduction of DES [21], and its modes of operation [22], many methods to
improve its strength have been proposed including [3], [10], [18], and others. The most
popular of these methods is multiple modes of operation, and, in particular, triple modes
of operation. These modes were believed [17], [16] to be as strong as triple DES against
all kinds of attacks [8], [20], [7], [23], [4]. Such modes were recently discussed toward
acceptance as ANSI standards [1], [2].

In [5] we have shown that the strength of many multiple modes is comparable with
a single encryption. For the analysis we denoted the compléxfyan attack as the
maximal number of knowfthosen plaintexts or ciphertexts, number of memory cells,

* This research was supported by the fund for the promotion of research at the Technion.
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and number of steps of analysis. This measure assumes that the number of steps of
analysis, knowpchosen plaintexts and ciphertexts, and memory cells are comparable.
We considered only multiple modes, namely, cascaded (pipelined) modes in which the
plaintext is encrypted under a single mode at a time, whose output becomes the input to
the next single mode. For example, outer feedback modes of triple DES were viewed as
single modes whose underlying cipher is triple DES. Inner feedback modes were viewed
as multiple modes, thus as cascades of several modes whose underlying cipher is single
DES? Finally we conjectured that designers should prefer using outer feedback modes
over inner feedback modes (multiple modes).

In this paper we go one step further. We develop additional cryptanalytic techniques to
attack multiple (cascaded) modes, and show that all the double modes and all the triple
modes of DES, except the triple ECB mode, are not much more secure than a single
encryption against finding their keys. These technigues use known plaintext, chosen
plaintext, or chosen ciphertext attacks. Only a handful of these techniques require more
demanding attacks (such as adaptive attacks or known initial value attacks) to find the
complete key. If we also consider the dictionary attack against the triple ECB mode (in
which case the key remains unknown, but the attacker can encrypt and decrypt under the
unknown key using® known plaintexts), all the triple modes are considered not much
more secure than a single encryption.

All the attacks on all the modes we describe in this paper exhaustively search for the
key of one single-mode component at a time using information obtained by the various
techniques, and do not assume any special assumptions on the internals of the underlying
blockciphers. In particular (unlike in [5]), all these attacks do not use differential crypt-
analysis [8], linear cryptanalysis [20], nor other kinds of attacks based on the internals
of the ciphers [4], [7]. Therefore, all the attacks are applicable to any blockcipher, and
their complexity depends only on the block size and the key size.

Our results led us to develop new noncascaded modes of operation, which are more
secure than the cascaded triple modes, easily pipelinable, and do not require more appli-
cations of the underlying cipher than the triple modes. We also propose easily pipelinable
modes using four applications of single modes. Some of these proposed modes contra-
dict the advice given by our conjecture from [5], mentioned above, that outer feedback
modes are preferable to inner feedback modes.

This paper is organized as follows: In Section 2 we describe our novel techniques.
In Section 3 we elaborate some more information on some of the more complicated
attacks on specific modes. In Section 4 we propose new candidates for more secure
(pipelinable) modes of operation. Section 5 describes the modes considered by ANSI.
Section 6 summarizes the paper. Finally, we enclose an appendix in which we give brief

1 Note thatin practice some implementors might prefer to implement attacks which have higher complexities
than the optimal attacks, in order to reduce the number of required plaintexts and ciphertexts and the memory
size for the price of increasing the complexity of analysis. For example, the attacks of differential cryptanalysis
[8] and linear cryptanalysis [20] of DES have complexitiés @nd 23, respectively, but they require a large
number of chosen or known plaintexts. Attackers might prefer to attack DES by Wiener’s search machine [23]
whose attacking complexity i, but which can find a single-DES key in 3.5 hours in average, with only a
small memory and one plaintexiphertext pair.

2 Note that many other combined (noncascaded) modes cannot be denoted by our notations.
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hints on the techniques of the attacks on each of the single, double, and triple (cascaded)
modes of DES, and their complexities.

2. Novel Techniques

In this section we describe very powerful novel techniques for analyzing multiple modes
of operation. They require an order o227 chosen plaintexts. Note that although
285267 chosen plaintexts are more than the number of possible one-block plaintexts, en-
cryption of multiple modes results with more thdft @istinct plaintextciphertext pairs,

since the internal feedbacks add memory to the encryption process, and the ciphertext is
a function of the plaintext and of the feedbacks.

2.1. Technique G

The techniques in [5] which do not use any information on the internals of the underlying
blockcipher, i.e., exhaustive search and the birthday techniques, can only attack modes
whose plaintexts or ciphertexts are the actual inputs or outputs of some encryption box.
This novel technique overcomes this difficulty, and enables us to attack modes whose
plaintext and ciphertext are mixed with some unknown feedback, or do not affect the
encryption box at all. This technique is later used as a building block by the techniques
described afterward.

We describe this technique on two examples: the double modd¢@HB&and on the
triple mode ECBECB|OFB.

The attack on the ECBECB|OFB (see Fig. 1) is as follows: At the first stage of
the attack, we cannot hope to attack the ECB modes, since the OFB mode hides the
information required for the meet-in-the-middle attack [15, p. 83] on the double-ECB
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Fig. 1. The triple mode: ECHEECB|OFB.
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mode. Thus, we attack the OFB mode. We choose some arbitrary (one-block)alue
and ask for the ciphertext of2consecutive plaintext blocks, followed by a few blocks
with distinct values. The period of the OFB is at mo&t, 2nd thus the period can be
identified from the ciphertext.

Assume that\’ = Eg,(Ek, (A)) and assume that the OFB streamgsvy, . . ., vasa_g.

Then the received ciphertextis® A, v1 ® A, ..., vx_, A followed by a few other
blocks. From the ciphertexts we can compute the differences of consecutive OFB blocks
Vo P V1, V1 P Uy, ..., Ugss_o D Upsa_1.

We now guess an arbitrary valugto appear as one of thg's in the cycle of the OFB
stream. We exhaustively encryygf under all the possible key§, and geti; = Ek (up),
andu, = Eg(uy), and compute the differences @ u; andu; @ u,. If these two
values do not appear as two consecutive values in the differepees1, v1 ® vy, .. .,
vasi_p D vose_1, then the keyK is not the key omg is not in the OFB cycle. If all the
keys do not pass this test for a particulgr then certainlyug is not in the cycle, and we
should try another one. In average we need to try ab®ifp2riod OFB) ug’s, which
is expected to be small, since the period of the OFB mode is expected to be &bout 2
(see [13)).

Once we found matchingy and K, such thatg @ u; = vj ® vi;1 andu; @ U, =
vit1 @ vjy2, We assume that we found the k¢ = K, and conclude thaty = v,

Ui = vj41, U2 = vj42, and identify A’ and all the OFB cycle, including the initial value.
After peeling up the OFB mode, we remain with a few distinct double-ECB encryptions,
which can be attacked by the meet-in-the-middle attack [15].

The attack on the CBOFB mode (see Fig. 2) is slightly more complex. We choose
two block valuesA and B, and choose the ciphertext a& Blocks A followed by 54
blocks B. Since the periog of the OFB mode is at mosf? it can be identified from
the plaintext. Thus, we obtail® vg, A® v1, ..., AD vxs_1, BB ves, BO vgeayq, ...,

B @ vass_q as the output of the CBC mode, aRd® IV, PL® AP vy, P, ® AP vy,
ceey Posa_1 D AP vosa_o, Poss & AP vpsa_1, P264+l @ B D vy, P264+2 DB U26diq, .y
Pass_1 @ B @ ves_, as the input of the encryption box of the CBC mode. Since the period

box 1

box 2

S ¢

Fig. 2. The double mode: CBOFB.
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p < 264 we can eliminate the unknows's by computing differences between the cycle
in the first half of the data and the cycle in the second half of the data, ardfgBtas the
difference of all the output pairs of corresponding blocks D < 254 < j < 2% (where
pdividesj —i andv; = v;), and(P, @ B®vj_1) @ (P @ AGvi_1) =P &P ®A®B

as the difference of the inputs of the encryption box.

We receivedperiod OFB) input differences, all of whose output differences are the
sameA & B. We guess some valug to be any one of the output block values of the
CBC mode, compute its counterpaft= ug @ A @ B, and try exhaustively all possible
keysK. By the equation

Dk (Up) ® Dk (up) =P, @ P & A® B, D

we get the value o, @ Pj, wherei and j satisfy the above conditions, but are still
unknown. We identify andj using a hash table on the valuesR® P;. Then we verify
that theK, i, and| also satisfy the differences of the next block

Exk(Uo® P1) ® Ex(uy® Pj11) =A®B 2

(or, to improve performance, verify that it satisfies either (Zr(u,® P+1) ® Ek (Ug®
P,+1) = A® B, due to the symmetry of (1)). Again, only a small number of guesses for
Ug is required in order to find the key of the CBC mode and the initial value.

2.2. Technique H

This technique is the most sophisticated technique so far, and it allows us to attack most
of the modes that could not be attacked with simpler techniques. Itis particularly suitable
to attack modes with both feedbackward and feedforward feedbacks, which hide both
the input of the first encryption box and the output of the last encryption box from the
attacker.

We describe the application of this technique to the (BTB|/CBC* mode, shown
in Fig. 3 (which was conjectured in [16] to be the strongest triple mode). In this mode,
we denote the intermediate values between the plaintext, the encryption boxes, and the
ciphertext bywj, X, yi, andz as is shown in the figure.

We choose some arbitrary (single-block) valBieand request the ciphertext of®2
tuples of the form(R;, S, S, S), where theR;’s are chosen at random. We denote these
4 . 2% plaintext blocks byPy, Ps, . .., Pxs, and their values are given by

Pi_3=R, Pi_o»=S, Psi_1=S, Pi=S (1<i<2%).

After encrypting the plaintext, the attacker gets tl§& @phertext blockC,, C, .. .,
Coes.

We denote the equivalence set of all the (indices of the) tuples whose last three
ciphertext blocks are the same as those of a given tuple by

6(i) = {j[(Caj—2, C4j—1, C4j) = (Csi—2, Csi_1, Cs)}.

We further denoté = j if | € 6(i) (and necessarily € 8(j) ando(i) = 0(j)). Itis
expected that the last three blocks of all the tupleg(in (includingi € 6(i)) are the



166 E. Biham

Py ”|2 Py Py Ps
X . D B b, .
E E E E E 0X
T (x;) () )] | (x|
X] Xz ,K3 X4 X5
— — N
E E E E E box 2

Fig. 3. The triple mode: CBECB|CBC 1.

same in the plaintext and the ciphertext. Also the intermediate values, §, z) have
the same property (i.e.,iif= j, then(xsj_2, Xaj—1, X4j) = (X4i—2, Xai—1, X4 ), €tc.). The
probability that there are somend | for which it does not hold is negligible.

We concentrate on sonmie= | (i, ] > 1). For suchi and j, xs4_3 = Xsj—3, and
thusws _3 = wsj_3. However, for any, Xa-—s @ Px—3 = wak—3, and therefore we get
differences between the unknown intermediate values

X4i—4 D Xaj—a = Psi_3® Psj_.3=R ®R,.
Similarly, we get differences between the unknown intermediate vagtues
Yai—4 @ Yaj—a = Csi—3 ® Cyj_s.

Note that from this single equivalence set we got several differences, since for any
j, k € 6(i) we found the differencesj_4 @& Xa—_4, and the tuples of thetj — 4)th and
the (4k — 4)th blocks belong to different equivalence sets. Each equivalence set in our
2% tuples contains on average four tuples, and thus from each equivalence set we get
on average differences between 16 elements ok¥heBy computing the equivalence
sets of all the tuples following those for which we know these differences &1g.,
where the difference ofy_4 with some other values is already known), and computing
the differences for the larger sets, we extend the sgisdbr which the differences are
known by a factor of aboutl6 — 4) - 3 - 4 = 144. After several iterations, the size of
this set grows to include all (or almost all) the tuples in the data.

Therefore, after completing the above analysis, we can compuexs; andys @ Ya;
for anyi andj. Alternatively, we can write

Xsi = X @ Uy,
Yo =Y @ vg,
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whereus = X4 ® X4 andvg; = Y @D Y4 are known, and where onlg = x4 andY =y,
are unknown.

Till now we did not use all the three plaintext blocgsn the tuples efficiently, since
if we would have only two such blocks in each tuple, the probabilities for mistakes in
the predictions of the equivalences would still be very low. The reason for the extra
block Sis to find differences of two consecutive blocks, while till now we know only
the differences of blocks whose indices are multiples of four. Since we need only two
consecutive ciphertext blocks whose plaintexts @il order to conclude equivalence
of two tuples, we can now do it not only on the full tuples, but also shifted by one block,
e.g., to compare the second and third blocks inside the tuples to the third and fourth in
another tuple, by searching for eagtsomej for which

(Cai—2, Cai—1) = (Caj-1, C4j),
and for each such equality concluding that 1 = X4j andys_1 = yaj, and thus also
Usi—1=Us; and vg_1 = vsj.

We got about % pairs of blocks(4i — 1, 4i) for which we knowxs_1 ® X4 =
Ugi—1 @ Ug andysi_1 @ Yai = vai—1 D vgi. The encryption equations

Ek,(Psi @© X4-1) = X4,
Ek,(Y4i) = Yai—1 D Cyi
can be written using andv as

Ek,(S® X P usi_1) = XD ug,
Exk,(Y @B v4) = Y D g1 @ Cy.

Since the blocksize is only 64 bits, we get only abofft @istinct instances of the
equations, each instance occurs on average four times, and (almost) all the possible
values of inputs to the encryption functi@are expected.

We now apply another variant of Technique G: we choose some arbitrary (one-block)
valuea. It is expected that in one of the above instanégg(a) is computed, but we do
not know in which. We compute

b= Ek;(a)
under all the possible keys; in the keyspace oKj, and for each find the value of
Ugi_1 @ U4 from the equation

a® Ex;(@) =(S® X @ Usi—1) & (XD Us) =SS Usi—1 ® Ug.

This equation must hold wheB @ X & ug -1 = a. We use a hash table on the already
known values ofi4 _; ®uy; toidentifyi, and assume foramomenttht= Shu, _1Pa.

With the candidate kek; and X, we can now encrypt the following blocks and verify
that there are no contradictions in the valueg©fs andx,; 4. If their values do not fit,

we try another keyK/ till we find some value which fits. If the values do not fit for any
key, then it must be theEg, (a) is not in the above equations; in this case we choose
another value fom, and try again. After a few trials, we find the k& and the value

X = x4 with a high probability. From these values, we can complete the knowledge of all
thex;’s, and in particular the initial valu&/ ;. Similarly, we can findKs, Y = y,, andlV 3.

K> can now be found by exhaustive search (or by differential or linear cryptanalysis).
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2.3. Technique:Double Stream Cipher Technique

This technigue can analyze modes in which the ciphertext is an XOR of two streams. In
particular, it can analyze the double OFB mode (whose output is the XOR of the plaintext
and of two OFB streams), and many triple modes whose last (or first) mode is an OFB.
Assume we know that some stredgy} is the result of XORing two cyclic streams
{ai} and{b}, bys = a @ b;. In a double OFB mode, we can find the stregqrwith a
known plaintext attack, by XORing the plaintext with the ciphertext= P, @ C;. The
purpose of this technique is primarily to find the periodgaf and{b; }, and then this
information will be used to find the keys and the initial values.
We denote the period ¢& } by k and the period ofb; } by, and assume without loss
of generality thak < 1.2 We also restrict the discussion to only ekes |; oddk +1 can
be analyzed similarly with only small changes. Both periods are expected to be about
264 and thus the expected period{sf} is about 228,
We write

S = 8 @b =& modk D bimod-

Givenk +1 + 1 consecutive blocks 4§ }: s, S1, - . . » 41, the following equations hold:

S = ag @ by,
S = a @b =ag® by,
S =adb=aah,

Sl = Al Dby =a @by,
from which we derive
PP DK = 0.
We later use this equation in the form
SOD S = DS

In order to use this equation, we need to knoandl . Therefore, we rewrite the equations
(shifted in the stream by— (k 4+ 1)/2 blocks, for any') as

S—(k+1)/2 = @ —(k+1)/2 B Bi—kt1)/2,

S_(—ky/2 =8 —(—ky/2 D Bi_1—ky/2 = &_k1)/2 D bipk1)/2, 3
S+d-ky/2 = &i+1-k/2 D bi+(|—k)/2 = Qi k+h2 D bi—(k+|)/2,

St k+)/2 = @i+kt1)72 D D) 2

and thus

S—kt1)/2 D S+k+)2 = S—(-k/2D S+d-k)/2-

3 We ignore the rare case whete= | in which the period ofs } is itselfk = |.
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We defineS to be the concatenation sf ands ., in order to increase the blocksize
and to reduce random effects. Then

S—k+)2 ® Stz = S—1-k2 ® Sta—ky2-
We define
AJ' S 5264,]- (&) SZGAJrj

(similarly, for oddk + | we should define\; = Sea_j ® Seayj 1) and fori = 254 we
get the equation

Aksy2 = Ag—ky/2-

The attack we use is a start in the middle attack. Gii@s®eam blocks, we compute
Aj foreachj = 1,2, ..., 25 and search for two distingts (j1 > j2) for which

Aj, = Aj,

(by keeping the values in a hash tables, and waiting till some value is entered twice into
the table). Thesg, and j, satisfy

&64_]‘1 D 5264_]‘2 D 8264+j2 D 8264+j1 =0
from which we conclude that
k=ji—j2 and I =ji+ |2

Given the candidate values farandl, it is easy to verify that (3) holds for several
additionali’s. If it does not, the choice df or | is wrong, and we should find another
pair of j; and j,.

So far, we have found only the periods of the two streams, but we do not know anything
more than the periods. At this point we use the periods in order to find information on the
streamgg; } and{b;}. We assume that andl are coprimes (or at least that gkdl) is
small, which can be analyzed with only a minor modification to the following algorithm).
We compute the following algorithm, which results with= a; & ag for everyi:

do=0
fori =1tok —1do
dit modk = di— 1)1 modk @ (S 1)l modk D S(Gi —1)1 modk)-+1)

We get all thed;, = & ® ap,i = 0, ...,k — 1. Now, the streanfa;} is known up to
an XOR with one bloclay. The streanib;} is known under the same condition, since
b=s®a=sod o a.

When one of the two streams is the output of an OFB mode (without loss of generality
we assume that the OFB streanlis}), we can use Technique G to solve the key and
the initial value. Then thég; } stream can be computed by=s @ by;. If {g} is also an
output of an OFB mode, we can now find the key easily by an exhaustive search for the
key K for which the equatiorE (a;) = ay is satisfied.

This attack is also applicable to many triple modes in which the first (or last) single
mode is an OFB, by feeding the other two modes by carefully chosen plaintexts or
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Fig. 4. The triple mode: CBECBC 1|OFB.

ciphertexts. The CB{CBC}|OFB is an example (see Fig. 4). In this mode we fiX 2
same plaintext blocks, and get a cycle in the output of the first CBC mode. The cycle
is not affected by the next CBG mode. The result is the XOR of the cycle of the
CBC|CBC ! mode and the OFB mode. The above technique can find the periods, and
analyze the OFB mode, resulting with the key and the initial value of the OFB mode,
and with the exact output of the CBCBC ! mode. The CBG@CBC* mode can then

be analyzed with additionaf2chosen plaintexts using Technique H.

Note that this technique is also applicable to stream ciphers in which the output of two
nonlinear streams (such as the outputs of NLFSRs) are XORed. This technique can also
increase the efficiency of the Berlekamp—Massey algorithm [19] when the outputs of
two LFSRs are XORed, by dividing the original problem into two smaller problems in a
linear time, and using the Berlekamp—Massey algorithm on each of the smaller problems.
In the next technigue we show that not only the complexity of the Berlekamp—Massey
algorithm can benefit from this attack, but attacks on multiple OFB modes can benefit
from the Berlekamp—Massey algorithm.

2.4. Technique JTriple and Multiple Stream Cipher Technique

This technique extends Technique I for the case of an XOR of more than two streams.
This “miracle” is obtained using the Berlekamp—Massey algorithm [19] to retrieve the
shortest linear feedback shift register that generates the stream. This shortest LFSR is
expected to uncover (in most cases) the periods of all the combined streams.

For example, we show the case where three streams are combined (as in the triple
OFB mode){a}, {b }, and{c; }, whose periods alle | andm, respectively. The resulting
streamiss = g ® by @ ¢;. Then the following LFSR generatgs

Sctl+m = S0 D S DS D S D@ St D Si+m D S4m.
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In polynomial form this LFSR is

Q(X) — Xk+l+m+xl+m+xk+m+xk+l —I—Xm—l—XI +Xk+XO

= Q(X)QI(X)Qm(x) =0,

where

k—1
Qu(X) = X"+1=( xj)(X+1),

1-1
Q) =X +1= (le) (X +1),

=0
m—1
Qm(x) = xm+1=( xj)(x+1).

The minimal polynomial of is, however,

Q'(x) = lem(Q(x), Qi(X), Qm(X))

which, whenrk, I, andm are coprimes is

Q'(X) = Q(X)/(x + 1)?

of degree&k +1 + m— 2.

Note thatk andl are coprimes if and only iQy(x)/(X + 1) and Q| (X)/(X + 1) are
coprimes (similarly form and Qm(x)/(x + 1)). Otherwise, if gcgk, 1) = d > 1, then
both Q(x)/(x + 1) and Q; (x)/(x + 1) are divisible by(x? + 1)/(x + 1) = Z?:‘gxi,
and all the terms of the quotients are exponente’of

Giventhe 2k+I+m) first blocks of{s }, the Berlekamp—Massey algorithm reproduces
the minimal LFSR generating the stream. From this polynomial the pekiddandm
can be deduced (either by multiplying by+ 1)? and taking the indices of the feedbacks
as the periods, i, |, andm are coprime, or else by factoring the minimal polynomial,
and using their special forms described above to reconstruct the periods).

The Berlekamp—Massey algorithm requiresiffocks, and its complexity i©(n?),
wherenisthe length ofthe shortest LFSR, i.e., inthe exampiek+l+m. However, this
complexity is too high for our purposes. Fortunately, there is a variant of the Berlekamp—
Massey algorithm, called the recursive Berlekamp—Massey algorithm [9, Section 11.7],
whose complexity is lower tha® (nlognlog logn). This complexity is about® - 66-
log 66 = 2" whenn < 2%, i.e., when up to four OFB streams are combined. Thé%e 2
steps are very simple, and are faster to apply tf&DES encryptions.

Given the periods of the individual streanksl(, andm), we decompose the individual
streams, up to an XOR with their first block (which remains unknown), with a similar
method to the one used by Technique I. In the case of three streams, as in the above
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example, the decomposition algorithm is

=0
fori =1tok—1do
€mmodk = e(ifl)mmodk @ (S(i—l)m modk & s((ifl)m modk)-+|
® S((i —1)ymmodk)+m ® S((i —1)m modk)+l+m)
do=0
fori =1tok—1do
dail modk = 026 — 1)1 modk D (€2 — 1) modk D €2 —1)l modk)+1)

whereg results withe = a ® ay ® ag ® a, andd; results withd, = a & ag.

From these values we can now compateb g, for anyi (or at leastsy & a;» for
evenk’s), and similarly we can compute the differences of consecutive blocks in all the
individual streams. Technique G is then used to solve the keys and the initial values of
the individual OFB streams. The total complexity of this attack is equivalent to less than
254 DES encryptions, and the attack requires ab8Ubcks and 2 memory, when up

to four streams are combined.

3. The Strength of All the Triple Modes

In this section we elaborate some more information on some of the more complicated
attacks. Brief hints on the attacks on all the modes are given in the Appendix.

1. ECBCBCI|ECB: The attack requires five chosen ciphertext blocks of the form
(A, A, B, B, A), for any block valueA andB (A £ B). The intermediate values
after the first ECB component (under the real unknown key) must be of the form
?ADA, B A, B @®B’", Ad B”), whereA' andB’ are the intermediate
values entering the second encryption box (after mixing with the feedbacks), and
A” andB” are the intermediate values after the second component. These values
depend only on the values of the corresponding ciphertext blotks B), since
no feedbacks are mixed during their encryption. Therefore, the XOR of the last
four (of the five) blocks after the first component is zero. We need only encrypt the
four corresponding plaintext blocks by all the possible keys of the first component,
and verify which key results with such zero XOR. The last ECB component can
then be analyzed with three blocks of the above {i%eB, B). Don Coppersmith
has also developed a similar attack on this mode [11].

2. ECBCFB!|CBC: We describe two attacks on this mode. In the first attack we
choose three same plaintext block&, A, A). The intermediate data after the
second component is thus of the forfpy A”, A”). We now try to decrypt the
ciphertext under all possible keys of the last component, and see which key results
with two equal second and third blocks. To find the keys of the first and the second
components we need an additional plaintext block, so in total we need four blocks
(A, A, A, B) to find all three keys.

The second attack is a meet-in-the-middle attack. We choose tuUplds B),
so we can conclude that the XOR of the intermediate value of the second and third
blocks after the second component equals the XOR of the same blocks after the first
component. Encryptthe two corresponding plaintext blocks under all possible keys,
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XOR the results of the two blocks, and keep the result in a table. Now decrypt the
last component under all possible keys and check whether the XOR of the second
and third resultant blocks appears in the table. If, for two tuples, the same keys
succeed, we conclude that they are the keys of the first and last components. For
this attack, the plaintextsA, A, B, B, A) suggest the required two tuples.

3. CBCY|ECB|CBC: The attack on this mode is similar to the first attack on the
ECB|CFB1|CBC mode, where the required chosen plaintext blocks (or symmet-
rically, chosen ciphertext blocks) are of the fo(®, A, A, A).

4. CBC!|OFB|CBC: We can identify the period of the OFB component by choosing
2% chosen plaintext (or ciphertext) blocksfollowed by 2* tuples of the form
(R, A, A A). It is expected that, for some tupie the feedback from the first
block R to the next will be the same as in some block in the fifétiocks whose
distance is a multiple of the period. In this case, we can use this knowledge to
identify the period. Once the period is known, we can use the same data to predict
two equal values after the second component, and use them to find the key of the
last component. Then the other keys can be completed with the same data and
simpler analysis.

5. CBQOFB|CBC: We choose¥ ciphertext blocksA, followed by 22 tuples of 22
ciphertext blocks of the forniA, A, A, A, R, R, R, R;,...), followed by #*
ciphertext tuples of the formiR, R, R, R), whereR, are random (the same at
each tuple). From the firsf2+ 232 blocks, we can identify the OFB period. Then
we can use all the tuples and search for collisions in the decryption of the last CBC
component in distances of multiples of the OFB period (the collisions are similar
to the collisions in the birthday attack, but in this case the birthday paradox is not
involved). We can identify such collisions since the corresponding plaintext blocks
are expected to be the same. When such a collision is found, we continue like in
the birthday attack, and find the key of the last component. We complete the rest
of the keys with Technique G.

6. ECBCFB|CBC ! and ECBCBC !|CFB!: We choose & plaintext tuples of
the form(F, R, By, F, R, By) or (B, R, F, By, R, F), respectively, wheré-,

B,, andB; are fixed in all the tuples, and varies at random (but the same in both
occurrences in each tuple). We expect a collision betviigeB1) ® Ex, (Ex, (R))
andE, (B2) ® Ek,(Ek, (R))), forsome andj. The same blocks will have another
match when the indicésandj are exchanged (i.e., inthe other halves of the tuples).
We identify the collision by computing the difference of the third and sixth
ciphertext blocks in each tuple, and searching for equality of the results in two
distinct tuples. When found, we can compég, (R)) @ Ek, (R;) as the difference
of two ciphertext blocks, and can exhaustively searchKerthat satisfies this
equation.

7. CBCOCFB|OFB and CFBCBC|OFB: We choose some arbitrary valuasand B,
and choose the ciphertext to b 2onsecutive block#, followed by #* tuples of
three blockg B, A, A). After identifying the period of the OFB, we compute the
differences in the CBC and the CFB modes, in the same positions in the OFB cycle,
so the OFB values are canceled in the differences. Thus, we receive differences
A @ B in many blocks, and various input differences in the same blocks, and apply
Technique G to solve the keys.
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8. CBQCBC!|CBC and similar modes: This is a birthday attack, in which we look
for collisions not only in the last CBC mode, but also in the CBGtream. We
choose 2 random ciphertext tuplesR , R/, R, R), and search for the pairs j
inwhichD(R)@ R = D(R;) @ R; (as in the regular birthday technique) together
with equal values in the first block of the tuple in the CB@node. Given 2 such
tuples, we expect such a collision. We can identify it easily, since, when it occurs,
the last three of the four plaintext blocks of one tuple equal the corresponding
blocks in the other tuple. Then we find the key of the last CBC mode just as we do
in the regular birthday technique.

The first two modes are then attacked by Technique H with the same data.

If the first two modes are CBICFB~! or CFBICBC 1, the data do not suffice.

In this case we choose additional tupld¥, A, A, A, A) to the original chosen
ciphertext, which after decryption of the last CBC becoiti®§ R”, B, B, B), on
which we can apply Technique H.

9. CBQCBC|CBC?, CFB|CFB|CFB™! and similar modes: The last CBE& (or
CFB™1) single mode is attacked by Technique H with chosen ciphertext tuples
(R, A A AA.

If the first two modes are CBCFB or CFBCBC, from a pair in which the
difference is of the form (known, 0, 0) or (0, 0, known) we can find the keys of
both modes.

If the first two modes are CBICBC or CFBCFB, the problem is more compli-
cated. One way to find the rest of the keys is to mount an adaptive attack, which,
after identifying the last key, can attack the remaining double-mode with the data
required for such an attack. Another solution is described in the next subsection.

3.1. Modes Which Require More Demanding Attacks

In this subsection we elaborate the attacks on modes which we do not know to attack
under known plaintext, chosen plaintext, or chosen ciphertext attacks which require only
one stream to be encrypted. In some sense these modes are the strongest triple modes:
the attacks we use against these modes demand extra information: either to know the
initial values or to encrypt two streams with the same keys and the same known initial
values. However, we believe that there are other attacks on these modes that do not need
the extra requirements.

1. CBCCBC|CBC !, CFB|CFB|CFB1, and similar modes, whose first two compo-
nents are the same: The last CBGor CFB1) mode is attacked by Technique H
as is explained above in item 9.

As we mentioned there, one way to find the rest of the keys is to mount an
adaptive attack, which, after identifying the last key, can attack the remaining
double-mode with the data required for such an attack.

A nonadaptive attack can be mounted if we know the initial valMgsandIV
of these two modes. In this case, we can use the meet-in-the-middle attack to solve
both keys.

2. CBQOFB|CBC™ (and similarly CFBOFB|CFB™1): If the attacker can receive
two (known) streams encrypted under the same keys and the same known initial
values, he can fin&k; and K3 by a meet-in-the-middle attack, in which he keeps



Cryptanalysis of Triple Modes of Operation 175

(Ex,(IV1, P) @ Ek,(IV1, P¥), K1) for every possiblé<; in a table and searches
for a K3 such thatDg,(IV3, C) @ Dk, (IV3, C*) appears in the first field in the
table (whereEg, (IV1, P) denotes CBC encryption of the first component, and
Dk,(1V3, C) denotes CBC! decryption of the last component). Only two cipher-
text blocks are required in each stream for the attack to succeed.

3. CBQCBC|OFB (and similarly CFBCFB|OFB): If the attacker can receive two
chosen streams encrypted under the same keys and the same known initial values,
he can findK; by choosing the ciphertext strear, A) and(B, A) and get the
plaintextsP and P*. He tries all the key¥ till the second block of the difference
Ek,(IV1, P) ® Ek,(IV1, P*) equalsA & B.

Another attack requires only one stream with kndWnthe attacker chooses a
ciphertext stream of onB followed by £* A’'s. From the plaintext, he can identify
the period of the OFB component, and find the fifsin the second period. The
feedbacks entering the block of thhsequal the initial values, and thus the above
attack can be applied.

4. More Secure Modes

So far we have shown that all the triple modes (except possibly the triple ECB mode) are
not much more secure than a single encryption. In this section we propose more secure
noncascaded modes whose complexity of attack is expected to be abe@2. We

start with secure noncascaded modes which combine three applications of single modes
(whose encryption speed is the same as that of triple modes, and which can be efficiently
pipelined in hardware), and then propose similar more secure modes which combine
four applications of single modes.

4.1. Definitions of Noncascaded Combinations of Modes

In all the discussions above, we only considered multiple modes combined as cascade
modes, in which the output of one mode becomes the input to the next mode, and we
denoted this cascade by thg tperator.

We now consider additional (noncascading) operators to combine modes. We denote
the first of them by the operator$,” which takes two modes M1 and M2, where M2
is any mode, and M1 is any stream mode (such as the OFB mode) generating a stream
independent of the plaintext, and XORs the stream to the plaintext to form the cipHertext.
Then, M1— M2 is the mode which computes the stream generated by M1, and encrypts
the result under M2, resulting in a new stream, to be XORed to the plaintext.

For example, the OFB> CBC mode applies the CBC mode on the stream generated
by the OFB mode, and XORs the result to the plaintext. We can combine more than one
mode in this way; for example, the OFB CBC — CFB mode applies the CFB mode
on the output of OFB—~ CBC mode.

4 An extension of this definition allows M1 to be any mode, where a fixed plaintext block is fed to the mode
M1, and the result becomes the output stream. This extension is not very useful when applied to standard DES
modes, since the CBC and the CFB modes generate an OFB stream when fed by the zero plaintext blocks.
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Another operator, which we denote by “M1[M2],” where M1 is any stream mode,
applies the stream mode M1 on the plaintext (i.e., XORs the plaintext and the stream
of M1), applies the mode M2 on the result, and appliessameM1 on the result
(i.e., XORs with the same stream of M1, without computing it again). An extension of
this operator applies M1 more than twice, in given positions. We denote this extended
operator by “M1[M2 M3]” (or more generally “M1[M2 M3, ..., Mn]"). It applies M1
on the plaintext, then applies M2, then applies M1 again, then applies M3, and then M1
again, etc. This mode actually applies21 modes (five in the case of M1[M213]) but
takes the time for computing onfy(three) modes. Our aim in defining such modes is to
get modes which are more secure than cascadrddes, but have the same encryption
speed as-modes. However, we expect that these modes are less securernhani)2
modes.

4.2. Secure Modes with Three Applications of Single Modes

We conjecture that the OFB> CBC — CBC and OFB— CFB — CFB modes are
secure modes, useful for applications which require a security-extended stream (OFB-
like) modes. The complexity of attacking these modes is conjectured to be ati®ast 2
(Note however that their theoretical strength, as defined in [6], i.e., the complexity to
find one out of many keys, is only% this complexity holds for any cipher with 168-bit
keys.)

4.3. Secure Modes with Four Applications of Single Modes

We conjecture that the CBCBC|CBC !|CBC !, the CFBCFB|CFB|CFB, and

the OFB[CBC, CBC, CBC!] modes are more secure than any triple mode. We also
believe that the OFB[CBC, CBC, CBC] and the OFB[CFB, CFB, CFB] modes are
secure, and their complexities of attack are at le&&t The latter two modes have a
limited error propagation.

5. Modes Described by ANSI

Recently ANSI was considering standardization of triple modes of operation. The latest
ANSI draft [2] described the following modes:

1. The TECB, TCBC, (1-bit, 8-bit, and 64-bit) TCFB, and TOFB modes are defined as
the ECB, CBC, CFB, and OFB modes where the underlying cipher is (two-key or
three-key) triple DES. These modes are single modes, and their strength (as modes,
and from the point of view of this paper) is the same as that of the underlying cipher.
In particular, in all these modes a dictionary attack with &fllZhown plaintexts
is applicable.

2. The TCBC-l, TCFB-P, and TOFB-P modes are interledpgzblined variants
of the TCBC, TCFB, and TOFB modes, in which encryption is computed to
three independent streams in parallel. The TCBC-I mode is described as encrypt-
ing three independent interleaved messages. The TOFB-P computes three inter-
leaved TOFB streams and use them to encrypt one message. The 64-bit TCFB-P
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views the message as three interleaved messages, and encrypts them as such.
The 1-bit and 8-bit TCFB-P have dependencies between the three interleaved en-
cryptions. All these modes are intended to be efficiently implemented in pipelin-
able hardware. They do not have, however, cryptographic advantages over their
noninterleaveghonpipelined variants (and the dictionary attack is still applicable

in the same way as in the noninterleayednpipelined variants).

3. The CBCM mode [12], [2] is very similar to the EQBFB[ECB]ECB mode,
with the same keys in the first and last ECB components, and with the addition of
a (CBC-like) outer-feedback mixing the ciphertext block with the next plaintext
block. Due to this structure, this mode cannot be simulated as a combination of
other modes. An advantage of this mode is that the intermediate feedbacks are
not under the control of the attacker, and, unlike some other modes with cascaded
OFB components (such as many of those mentioned earlier in this paper), it seems
that the attacker cannot use the various OFB components to factor them, since the
same OFB stream is used in both OFB components. The main drawback of this
mode is the application of four encryptions per encrypted block. Thus, this mode
is moderately slower than triple modes. Moreover, this mode cannot be pipelined,
and thus cannot be applied efficiently in (pipelinable) hardware.

4. The CBCM mode has an interleaved variant, CBCM-I, which efficiently encrypts
three interleaved messages in parallel. The CBCM-lis cryptographically equivalent
to the CBCM mode.

5. An earlier ANSI draft [1] described a different collection of modes. These modes
included (under different names) the TECB, TCBC, TCFB, TOFB, TCFB-P, and
TOFB-P modes mentioned in the later draft, together with the inner-feedback CBC
mode CBQCBC*|CBC studied earlier in this paper.

In the previous section we described several secure modes with only three applications
of single modes. These modes are faster than CBCM. We also described modes with four
applications of single modes, which have the same speed as CBCM. All the modes we
described are pipelinable, and thus can be efficiently applied in (pipelinable) hardware,
without the interleaving trick described in the ANSI drafts. We conjecture that all the
modes we described are more secure than the CBCM mode.

6. Summary

In this paper we have shown that all the (cascaded) double modes and all the (cascaded)
triple modes of DES (possibly except the triple ECB mode, if dictionary attacks which
cannot find the keys are not considered) are much less secure than might be expected,
and their strength is comparable with a single encryption. Almost all the modes are
vulnerable to known plaintext, chosen plaintext, or chosen ciphertext attacks, with only
one stream of encryption. Only a few of the modes require to know the initial values or

to get two streams with the same keys and the same initial values. We also suggested
several candidates for more secure modes.
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Appendix

In this appendix we list all the single, double, and triple modes, together with their
attacking techniques and complexity of cryptanalysis.

In the Attack field we describe the type of attack and hints about the techniques used.
For some of the modes, we describe more than one technique for the attack. In such a
case, the first technique finds the key of one single mode, while later, the other technique
is used to find the key of the other mode(s). In this field we use the following notations:

KPA Known plaintext attack.
CPA Chosen plaintext attack.
CCA Chosen ciphertext attack.
Ad Adaptive attacks.
KIV Attacks in which the initial values are known (see Section 3.1).
2SKIV Attacks in which the attacker chooses two streams that are both encrypted
under the same key and tkame knowinitial value (see Section 3.1).
Ex Exhaustive search for the key of a single mode (Technique E in [5]).
Bi Birthday technique (Technique F in [5]).
Col Like “Bi,” however, the collection of pairs is exhaustive rather than using
the birthday paradox.
G Technique G.
H Technique H.
| Technique I.
MM Meet in the middle, using large tables (similar to the attack on double DES
[15, p. 83)).
(number) Some more details onthe attack are elaborated initem (humber) in Section 3.
(*) Some more details on the attack are elaborated in Section 3.1.

The complexity field describes three complexity parameters: the number of plaintexts
required; the number of steps of the attack; the required memory size. These complexities
are measured for DES as the underlying blockcipher. In these complexities, all the (up
to three) keys and all the (up to three) initial values are found. Note that the memory
size is given only when the amount of memory required for tables is nonnegligible. The
required memory for keeping the plaintexts and the ciphertexts is not counted.

Note that in this appendix we only give hints for one (or sometimes two) attacks on
each mode. Itis not the purpose of this appendix to give the best attacks on these modes,
nor the most efficient or the easiest to implement attacks. In particular, some modes
which are attacked with a chosen ciphertext attacks in this appendix can also be attacked
with a chosen plaintext attack, and sometimes even with a known plaintext attack.
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Single Modes
No. Mode Attack Complexity Data Inverse
1 ECB KPA/Ex 1/56/— 1
2 CBC KPA/Ex 2/28/— 3
3 cBct KPA/Ex 21258/ 2
4 OFB KPA/EX 2/56/— 4
5 CFB KPA/Ex 2/25/— 6
6 CFB1 KPA/Ex 2158/ 5
Double Modes
No. Mode Attack Complexity Data Inverse
7 ECBECB KPA/MM 2/257/256 7
8 ECBCBC KPA/MM (or CCA) 3/571256 (or 3/28/-) (BAA) 19
9 EcBcCBC! CPA/EX 3158/ BAA 13
10 ECBOFB CPA/Ex 541258/ 25
11 ECBCFB KPA/MM (or CCA) 3/571256 (or 3/28/-) (AAB) 37
12 ECBCFB! CPA/EX 3158/ AAB 31
13  CBQECB* CCA/Ex (or CPA/EX) 3/58/— (or 254/258/—) BAA 9
14 CBQCBC CCA/Bi 2341259233 21
15 cBgcBc! CPA/H or CCA/H $8/266/266 15
16 CBQOFB CPA/I or CCA/G 551265265 or 266/266/_ 27
17 CBQCFB CCA/Ex 4/28/— BAAA 39
18 CBQCFB! CPA/H or CCA/H 587266/ 33
19 cBClECB KPA/MM (or CPA) 3/27/256 (or 3/28/-) (BAA) 8
20 cBclicBc KPA/MM (or CPA) 3/27/256 (or 3/258-) (AAA) 20
21 cBclicect CPA/BI 2347259233 14
22 cBClioFB CPA/Ex 541258/ 26
23 CcBClicFB KPA/MM (or CPA) 3/27/256 or 3/58/— (AAA) 38
24 cBClicFB! CPA/EX 4158/ AAAB 32
25 OFBECB CPAJEx or CCA/Ex §4/258)_ 10
26 OFBCBC CCA/Ex $4/258) 22
27 OFgcBc! CPA/G or CCA/I $5/266/_ or 265/265/265 16
28 OFBOFB KPA/I 265/265/264 28
29 OFBCFB CCA/Ex $4/258) BAA- - - 40
30 OFBCFB! CPA/G or CCA/l $6/266/_ or 265/265/265 34
31 CFBECB CCA/Ex 3/28/— AAB 12
32 CFBCBC CCA/Ex 4/28/— AAAB 24
33 cCcrBcBct! CPA/H or CCA/H $8266/_ 18
34 CFBOFB CPA/l or CCAIG 55/265/265 or 266/266/_ 30
35 CFBCFB CCA/Bi 2341259233 42
36 CFBCFB! CPA/H or CCA/H $8/66266 36
37 CFBlIECB KPA/MM (or CPA) 3/27/256 (or 3/58/—) (AAB) 11
38 CFBliCcBC KPA/MM (or CPA) 3/27/256 (or 3/28/—) (AAA) 23
39 cFBlicBc! CPA/EX 4158/ BAAA 17
40 CFBliOFB CPA/EX $4/258) BAA... 29
41 CrBliCFB KPA/MM (or CPA) 3/27/256 (or 3/58/—) (AAA) 41
42 crBlicrB? CPA/Bi 234125933 35

*Davies and Price suggest this mode in [14].
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Triple Modes
No. Mode Attack Complexity Data Inverse
43 ECBECBIECB The best known attack is KPA/MM whose complexity is%3#1256, 43
Dictionary attacks (which cannot recover the keys) require o?ffy 2
known plaintexts.

44  ECBECB|CBC CCA/BI/MM 233258956 115
45 ECBECB|CBC! CPA/G/MM 26412581256 79
46 ECBECB|OFB CPA/G/MM 5412581256 151
47 ECBECB|CFB CCA/Bi/MM 233/258/256 223
48 ECBECB|CFB! CPA/G/MM 2641258/256 187
49 ECBCBCIECB CCA/EX/EX/EX(1) 5/89/— AABBA 55
50 ECBCBC|CBC CCA/BI/BI/Ex 2337259233 127
51 ECBCBC|CBC! CPA/H or CCA/H $8/266/_ 91
52 ECBCBC|OFB CPA/I/Ex or CCA/EXIG §5/265/265 o 264/258) 163
53 ECBCBC|CFB CCA/Bi 2341259233 235
54 ECBCBC|CFB-! CPA/H or CCAH $8/266/_ 199
55 ECBCBClIECB CPA/EX/EX/EX(1) 5/99/— AABBA 49
56 ECBCBC1|CBC CPA/EX/EX 5/59— AABBA 121
57 ECBCcBClicBc! CPA/EX/Bi 2341259233 85
58 ECBCBCllOFB CPA/EX/EX 541258/ 157
59 ECBCBCliCFB CPA/EX/EX 5/59— AABBA 229
60 ECBCBClicFB1 CPA/BI(6) 2361259733 193
61 ECBOFBECB CPA/MM or CCA/MM 41258256 61
62 ECBOFB|CBC CCA/MM 26495856 133
63 ECBOFB|CBC! CPA/EX/G $5/265/ 97
64 ECBOFB|OFB CPA/I $5/265/265 169
65 ECBOFB|CFB CCA/MM 2641258/256 241
66 ECBOFB|CFB-! CPA/EXIG $5/265/— 205
67 ECBCFBIECB CCA/EX/EX/Ex 5/59— AABBA 73
68 ECBCFB|CBC CCA/Bi 2341259233 145
69 ECBCFBICBC! CPA/H or CCA/H $8/266/_ 109
70 ECBCFB|OFB CPA/I or CCA/EX/H $5/265/265 or 265/265/ 181
71 ECBCFB|CFB CCA/Bi 2341259933 253
72  ECBCFB|CFB! CPAJEX/H or CCA/Ex/H 56/266/266 217
73  ECBCFBllECB CPA/EX/EX/EX 5/89/— AABBA 67
74 ECBCFBl|CBC CPA/EX/EX/EX(2) 4/98/— AAAB 139
75 ECBCFB-licBC! CPA/BI(6) 236/259933 103
76 ECBCFBl|OFB CPA/EX 541258/ 175
77 ECBCFB-l|CFB CPA/EX/EX/EX 4/98/— 247
78 ECBCFBlicFB! CPA/EX/Bi 2341259233 211
79 CBQECB|ECB CCA/GIMM 2$4258/256 45
80 CBQECB|CBC CCA/Bi 2341259233 117
81 CBQECB|CBC! CPA/H or CCA/H $8/266/_ 81
82 CBQECB|OFB CPA/I $5/265/265 153
83 CBQECB|CFB CCA/BI/Ex 541259233 225
84 CBQECB|CFB! CPA/H or CCA/H $8/266/_ 189
85 CBQCBCIECB CCA/EX/Bi B4259/233 57
86 CBQCBC|CBC CCA/Bi 2341260733 129
87 CBQcCBC|cBC! CCA/H(9) [Ad or KIV or Kz only] ~ 268/266/ 93
88 CBQCBC|OFB KIV-CCA(*) 2647259/ 165
89 CBQCBCI|CFB CCA/Bi 2341260233 237
90 CBQCBC|CFB! CCA/H(9) [Ad or KIV or Kz only] ~ 268/266/ 201
91 cBQgcBCliECB CPA/H or CCA/H 58266/ 51
92 cBgcBclicBC CCA/Bi(8) $6/258/233 123
93 cBQcCBClicBCl  CPA/H(9)[Ad orKIVorKqonly] — 268/266/_ 87
94 CBQCBClioFB CPA/IH $6/266/66 159
95 CBQCBCl|CFB CCA/BI(8) $6/258/233 231

continued



Cryptanalysis of Triple Modes of Operation 181
No.  Mode Attack Complexity Data Inverse
96 CBQCBCliICFB-l!  CPA/H(9) $8258_ 195
97 CBQOFB|ECB CCA/EX/G 551265/ 63
98 CBQOFB|CBC CCA/Col/G(5) 56266/ 135
99 CBQOFB|CBC! 2SKIV-KPA/MM(*) 47258256 99
100 CBQOFB|OFB CPAIJ 572751266 171
101 CBQOFBICFB CCA/Col/G 561266/ 243
102 CBQOFB|CFB-! 2SKIV-KPA/MM(*) 47258256 207
103 CBQCFBIECB CCA/Bi(6) 236/259/233 75
104 CBQCFB|CBC CCA/Bi 2341260933 147
105 CBQCFBICBC! CCA/H(9) 581258/ 111
106 CBQCFB|OFB CCAIG(7) $5/260/ 183
107 CBQCFBICFB CCA/Bi 234/260/33 255
108 CBQCFB|CFB! CCA/H(9) 258258 219
109 CBQCFB-liECB CPA/H or CCA/H 58266/ 69
110 CBQCFB-licBC CCA/BI(8) $8/258/233 141
111 cBgcFB-licBCc! CPA/H(9) $8/258_ 105
112 CBQCFB-l|OFB CPA/IH $8/66/66 177
113 CBQCFB-l|CFB CCA/BI(8) $8/258/233 249
114 CBQCFB-l|cFB! CPA/H(9) [Ad or KIV or K1 only] ~ 268/266/_ 213
115 CBCl|ECBIECB CPA/BI/MM 2331258256 44
116  CBClIECBICBC CPA/EX/EX(3) or CCA/EX/EX(3) 4P BAAA 116
117 cBcliEcBicBC ! CPA/Bi 23412597233 80
118 CBCl|ECB/OFB CPA/G/EX 541258/ 152
119 CBCl|ECB|ICFB CPA/Ex or CCA/Ex 4/98/— BAAAOrAAAB 224
120 cBCliECBICFB1 CPA/BI/Ex 2341259233 188
121  cBClicBCIECB CCA/EX/EX 5/59/— AABBA 56
122 cBClicBcCBC CCA/EX/Bi B41259/233 AAAA + - - 128
123 cBCclicBcicBCl  CPA/BI(8) 26258733 92
124 CBCl|CBC/OFB CPA/I/Ex $5/265/265 164
125 cBClicBC/CFB CCA/EX/Ex 5/58/— BAAAA 236
126 cBclicBCCFB! CPA/BI(8) 2$8/258/33 200
127 CBClicBClIECB  CPA/BI/BI/Ex 537259233 50
128 cBClicBCliIcBC  CPA/EX/BI B4y2591233 AAAA + - - 122
129 cBclicBclicBcl CPA/BI 23412607233 86
130 cBclicBclioFB CPA/Col $6/259/_ 158
131 CcBClicBClICFB  CPA/EX/Bi B41259/233 AAAA + - - 230
132 cBclicBclicFBl CPA/BI 23412607233 194
133 cBCliOFBECB CPA/MM 541258256 62
134  CBCl|OFBICBC CPA/(4) or CCA/(4) §6/258)_ 134
135 CBCliOFBICBCl  CPA/COI/G(5) 561266/ 98
136 CBCl|OFB/OFB CPA/I $5/265/265 170
137 CBCl|OFBICFB CPA/(4) or CCA/(4) §6/258/_ 242
138 cBClioFBCcFB! CPA/Col/G 567266/ 206
139 CBCl|CFBECB CCA/EX/EX/EX(2) 4/88)— AAAB 74
140 cBClicFBCBC CCA/EX/Ex 5/58/— AAAAB 146
141 cBclicrBcBc! CPA/BI(8) 825833 110
142  CcBCl|CFBIOFB CPA/I/Ex $5/265/265 182
143  CBCl|CFBICFB CCA/EX/Bi B41259/233 AAAA + - - 254
144 cBClicFBCFB! CPA/BI(8) $6/258/233 218
145 cBClicFB-l|ECB CPA/BI B41259/233 68
146  cBClicFBliCBC CPA/EX/Ex 5/58/— AAAAB 140
147 cBclicFB-licBCl CPA/BI 23412607233 104
148 cBClicFB-l|OFB CPA/Col 561259/ 176
149 cBClicFB-l|CFB CPA/EX/EX 5/58/— AAAAB 248
150 cBClicFBlicFB-1 CPA/BI 2341260/33 212
151 OFBECBIECB CCAI/G/MM 41258256 46
152 OFBECBI|CBC CCAIG/Ex 541258/ 118
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153 OFBECB|CBC! CCAJI 265/265/265 82
154  OFBECB|OFB CPA/I or CCA/I $5/265/264 154
155 OFBECB|CFB CCA/G/Ex 541258/ 226
156 OFBECB|CFB-! CCAJI 265/265/265 190
157 OFBCBCIECB CCA/EX/Ex 541258/ 58
158 OFBCBCICBC CCA/Col $6/259/ 130
159  OFBCBC|cBC! CCA/IH 266/266/766 94
160 OFBCBC|OFB CCAIlIG $6/266/266 166
161 OFBCBC|CFB CCA/Col $6/259/— 238
162 OFBCBC|CFB! CCA/IH 266/266/266 202
163 OFBCBCl|ECB CPA/EX/G or CCA/I/Ex §5/258_ or 265/265/265 52
164 OFBCBClicBC CCAII/Ex $5/265/265 124
165 OFBCBClicBC! KIV-CPA(*) 2647259, 88
166 OFBCBCl|OFB CPAIIIG $6/266/266 160
167 OFBCBCl|CFB CCA/I/Ex $5/265/265 232
168 OFBCBClicFB-! CPA/G(7) $5/260/_ 196
169 OFBOFB|ECB CCAIl 51265265 64
170  OFBOFB|CBC CCA/l 252651265 136
171  OFBOFB|CBC! CcCA/ B7175/266 100
172  OFBOFB|OFB KPA/J 5712751266 172
173  OFBOFB|CFB CCAIl 51265265 244
174  OFBOFB|CFB! CCA $71275/266 208
175 OFBCFB|ECB CCA/Ex $4/258) 76
176  OFBCFB|CBC CCA/Col $6/259/— 148
177 OFBCFB|CBC! CCA/IH 266/266/266 112
178  OFBCFB|OFB CCAIlIG $6/266/266 184
179 OFBCFB|CFB CCA/Col $6/259/— 256
180 OFBCFB|CFB! CCA/IH 266/266/266 220
181 OFBCFBl|ECB CPA/Ex/H or CCA/I 551265/ or 265/265/265 70
182 OFBCFBl|CBC CCA/I/Ex $5/265/265 142
183 OFBCFB-licBC? CPA/G(7) $5/260/_ 106
184 OFBCFB-l|OFB CPAIIG $6/266/266 178
185 OFBCFB-l|CFB CCAII/Ex $5/265/265 250
186 OFBCFBl|cFB1 KIV-CPA(*) 2647259/ 214
187 CFBECB|ECB CCAIG/MM 41258256 48
188 CFBECB|CBC CCA/BI/Ex B4258/233 120
189 CFBECB|CBC! CPA/H or CCAH $8/266/_ 84
190 CFBECB|OFB CPA/I $5/265/265 156
191 CFBECB|CFB CCA/BI/Ex B41259/233 228
192 CFBECB|CFB-! CPA/H or CCAH $8/266/_ 192
193 CFBCBC|ECB CCAI/BI(6) 367259233 60
194  CFBCBC|CBC CCA/Bi 2341260933 132
195 CFBCBC|CBC! CCA/H(9) 581258/ 96
196 CFBCBC|OFB CCAIG(7) $5/260/ 168
197 CFBCBC|CFB CCA/Bi 2341260733 240
198  CFBCBC|CFB! CCA/H(9) 258258 204
199 CFBCBCl|ECB CPA/H or CCA/H 58266/ 54
200 CFBCBC-l|CcBC CCA/Bi(8) $8/258/233 126
201 CFBCBClicBC!  CPA/H(9)[Ad orKIV orKq only]  268/266/— 90
202 CFBCBCl|OFB CPA/IH $6/266/266 162
203 CFBCBCl|CFB CCA/Bi(8) $8/258/233 234
204 CFBCBCl|cFB-! CPA/H(9) 58258 _ 198
205 CFBOFB|ECB CCA/EX/G $5/265/— 66
206 CFBOFB|CBC CCA/ColiG $6/266/_ 138
207 CFBOFB|CBC! 2SKIV-KPA/MM(*) 2/258/256 102
208 CFBOFB|OFB CPA/J 5712751266 174
209 CFBOFB|CFB CCA/Col/G 567266/ 246
210 CFBOFB|CFB! 2SKIV-KPA/MM(*) 2/258/256 210
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211 CFBCFBECB CCA/EX/Bi B41259/233 78
212 CFBCFB|CBC CCA/Bi 2341260233 150
213  CFBCFBICBC! CCA/H(9) [Ad or KIV or Kz only] ~ 268/266/ 114
214  CFBCFB|OFB KIV-CCA(*) 2647259/ 186
215 CFBCFB|CFB CCA/Bi 23412607233 258
216 CFBCFB|CFB! CCA/H(9) [Ad or KIV or Kz only] ~ 268/266/_ 222
217 CFBCFBl|ECB CPA/Ex/H or CCA/Ex/H §6/066/266 72
218 CFBCFB1|CBC CCA/BI(8) $6/258/33 144
219 CFBCFB-lcBC! CPA/H(9) 58258 _ 108
220 CFBCFBl|OFB CPA/IH $8/266/266 180
221 CFBCFB-l|CFB CCAI/BI(8) $6/258/33 252
222 CFBCFBlicFB! CPA/H(9) [Ad or KIV or K1 only] ~ 268/266/_ 216
223 CFBl|ECBIECB CPA/BI/MM 233258256 47
224  CFBl|ECB|ICBC CPA/EX/Ex or CCA/EX/Ex 48— BAAAOrAAAB 119
225 CFBliECBICBC! CPA/BI/Ex 2341259233 83
226 CFBl|ECB|OFB CPA/G/EX 541258/ 155
227 CFBl|ECB|CFB CPA/EX/Ex or CCA/EX/EX 488y AAAB 227
228 CFBllECBCFB1 CPA/BI/Ex 2341259733 191
229 CFBl|CBCECB CCA/EX/Ex 5/59— AABBA 59
230 CFBlicBC|CBC CCA/EX/Bi B41259/233 AAAA + - - 131
231 CcFBlicBcicBct CPA/BI(8) $6/258/233 95
232 CFBlicBClOFB CPA/I/Ex $5/265/265 167
233 CFBliCBC|CFB CCA/EX/Ex 5/58/— BAAAA 239
234 CcFBlicBccFB! CPA/BI(8) $8/258/233 203
235 CFBlicBClIECB CPA/BI B41259/233 53
236 CFBlicBCl|CBC CPA/EX/Ex 5/58/— BAAAA 125
237 CcFBlicBCclicBCl CPA/BI 23412607233 89
238 CFBlicBCl|OFB CPA/Col 561259/ 161
239 CFBlicBClicFB CPA/EX/EX 5/58/— BAAAA 233
240 CFBlicBCliCFB-1 CPA/BI 2341260/33 197
241 CFBl|OFBIECB CPA/MM 41258256 65
242 CFBliOFBCBC CPA/(4) or CCA/(4) §6/258/_ 137
243 CFBlioFB/CBC! CPA/Col/G $6/266/_ 101
244  CFBl|OFB/OFB CPA/I $5/265/265 173
245  CFBl|OFBCFB CPA/(4) or CCA/(4) §6/258)_ 245
246 CFBliOFB/CFB! CPA/Col/G $6/266/_ 209
247 CFBl|CFBECB CCA/EX/EX/ExX 4158/ AAAB 77
248  CFBl|CFBICBC CCA/EX/Ex 5/58/— AAAAB 149
249 CcFBlicFBicBC! CPA/BI(8) $8/258/233 113
250 CFBl|CFBIOFB CPA/I/EX $5/265/265 185
251 CFBliCFBICFB CCA/EX/Bi B41259/233 AAAA + - - - 257
252 CFBlicFBICFB-! CPA/BI(8) 26958733 221
253 CFBlicFB-l|ECB CPA/BI B41259/233 71
254 CFBlicFB-licBC CPA/EX/Bi BA4y259233 AAAA + - - - 143
255 CFBlicFB-licBC! CPA/BI 2341260/233 107
256 CFBlicFB-llOFB CPA/Col 561259 179
257 CFBlicFB-l|CFB CPA/EX/Bi B4y2591233 AAAA + - - 251
258 CFBliCFB-licCFB-l CPA/BI 23412607233 215
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