
J. Cryptology (1999) 12: 161–184

© 1999 International Association for
Cryptologic Research

Cryptanalysis of Triple Modes of Operation∗

Eli Biham
Computer Science Department,

Technion – Israel Institute of Technology,
Haifa 32000, Israel

biham@cs.technion.ac.il
WWW: http://www.cs.technion.ac.il/∼biham/

Communicated by Don Coppersmith

Received 19 August 1996 and revised 29 September 1997

Abstract. Multiple modes of operation and, in particular, triple modes of operation
were proposed as a simple method to improve the strength of blockciphers, and in
particular of DES. Developments in the cryptanalysis of DES in recent years have
popularized the triple modes of DES, and such modes are now considered for ANSI
standards.

In a previous paper we analyzed multiple modes of operation and showed that the
security of many multiple modes is significantly smaller than expected. In this paper we
extend these results, with new cryptanalytic techniques, and show that all the (cascaded)
triple modes of operation are not much more secure than a single encryption—in the
case of DES they can be attacked with up to an order of 256–266 chosen plaintexts or
ciphertexts and complexity of analysis. We then propose several candidates for more
secure modes.

Key words. Triple modes of operation, Cryptanalysis, Multiple encryption, Block-
ciphers, DES.

1. Introduction

Since the introduction of DES [21], and its modes of operation [22], many methods to
improve its strength have been proposed including [3], [10], [18], and others. The most
popular of these methods is multiple modes of operation, and, in particular, triple modes
of operation. These modes were believed [17], [16] to be as strong as triple DES against
all kinds of attacks [8], [20], [7], [23], [4]. Such modes were recently discussed toward
acceptance as ANSI standards [1], [2].

In [5] we have shown that the strength of many multiple modes is comparable with
a single encryption. For the analysis we denoted the complexityt of an attack as the
maximal number of known/chosen plaintexts or ciphertexts, number of memory cells,

∗ This research was supported by the fund for the promotion of research at the Technion.

161

162 E. Biham

and number of steps of analysis. This measure assumes that the number of steps of
analysis, known/chosen plaintexts and ciphertexts, and memory cells are comparable.1

We considered only multiple modes, namely, cascaded (pipelined) modes in which the
plaintext is encrypted under a single mode at a time, whose output becomes the input to
the next single mode. For example, outer feedback modes of triple DES were viewed as
single modes whose underlying cipher is triple DES. Inner feedback modes were viewed
as multiple modes, thus as cascades of several modes whose underlying cipher is single
DES.2 Finally we conjectured that designers should prefer using outer feedback modes
over inner feedback modes (multiple modes).

In this paper we go one step further. We develop additional cryptanalytic techniques to
attack multiple (cascaded) modes, and show that all the double modes and all the triple
modes of DES, except the triple ECB mode, are not much more secure than a single
encryption against finding their keys. These techniques use known plaintext, chosen
plaintext, or chosen ciphertext attacks. Only a handful of these techniques require more
demanding attacks (such as adaptive attacks or known initial value attacks) to find the
complete key. If we also consider the dictionary attack against the triple ECB mode (in
which case the key remains unknown, but the attacker can encrypt and decrypt under the
unknown key using 264 known plaintexts), all the triple modes are considered not much
more secure than a single encryption.

All the attacks on all the modes we describe in this paper exhaustively search for the
key of one single-mode component at a time using information obtained by the various
techniques, and do not assume any special assumptions on the internals of the underlying
blockciphers. In particular (unlike in [5]), all these attacks do not use differential crypt-
analysis [8], linear cryptanalysis [20], nor other kinds of attacks based on the internals
of the ciphers [4], [7]. Therefore, all the attacks are applicable to any blockcipher, and
their complexity depends only on the block size and the key size.

Our results led us to develop new noncascaded modes of operation, which are more
secure than the cascaded triple modes, easily pipelinable, and do not require more appli-
cations of the underlying cipher than the triple modes. We also propose easily pipelinable
modes using four applications of single modes. Some of these proposed modes contra-
dict the advice given by our conjecture from [5], mentioned above, that outer feedback
modes are preferable to inner feedback modes.

This paper is organized as follows: In Section 2 we describe our novel techniques.
In Section 3 we elaborate some more information on some of the more complicated
attacks on specific modes. In Section 4 we propose new candidates for more secure
(pipelinable) modes of operation. Section 5 describes the modes considered by ANSI.
Section 6 summarizes the paper. Finally, we enclose an appendix in which we give brief

1 Note that in practice some implementors might prefer to implement attacks which have higher complexities
than the optimal attacks, in order to reduce the number of required plaintexts and ciphertexts and the memory
size for the price of increasing the complexity of analysis. For example, the attacks of differential cryptanalysis
[8] and linear cryptanalysis [20] of DES have complexities 247 and 243, respectively, but they require a large
number of chosen or known plaintexts. Attackers might prefer to attack DES by Wiener’s search machine [23]
whose attacking complexity is 256, but which can find a single-DES key in 3.5 hours in average, with only a
small memory and one plaintext/ciphertext pair.

2 Note that many other combined (noncascaded) modes cannot be denoted by our notations.

Cryptanalysis of Triple Modes of Operation 163

hints on the techniques of the attacks on each of the single, double, and triple (cascaded)
modes of DES, and their complexities.

2. Novel Techniques

In this section we describe very powerful novel techniques for analyzing multiple modes
of operation. They require an order of 265–267 chosen plaintexts. Note that although
265–267 chosen plaintexts are more than the number of possible one-block plaintexts, en-
cryption of multiple modes results with more than 264 distinct plaintext/ciphertext pairs,
since the internal feedbacks add memory to the encryption process, and the ciphertext is
a function of the plaintext and of the feedbacks.

2.1. Technique G

The techniques in [5] which do not use any information on the internals of the underlying
blockcipher, i.e., exhaustive search and the birthday techniques, can only attack modes
whose plaintexts or ciphertexts are the actual inputs or outputs of some encryption box.
This novel technique overcomes this difficulty, and enables us to attack modes whose
plaintext and ciphertext are mixed with some unknown feedback, or do not affect the
encryption box at all. This technique is later used as a building block by the techniques
described afterward.

We describe this technique on two examples: the double mode CBC|OFB and on the
triple mode ECB|ECB|OFB.

The attack on the ECB|ECB|OFB (see Fig. 1) is as follows: At the first stage of
the attack, we cannot hope to attack the ECB modes, since the OFB mode hides the
information required for the meet-in-the-middle attack [15, p. 83] on the double-ECB

Fig. 1. The triple mode: ECB|ECB|OFB.

164 E. Biham

mode. Thus, we attack the OFB mode. We choose some arbitrary (one-block) valueA,
and ask for the ciphertext of 264 consecutive plaintext blocksA, followed by a few blocks
with distinct values. The period of the OFB is at most 264, and thus the period can be
identified from the ciphertext.

Assume thatA′ = EK2(EK1(A)) and assume that the OFB stream isv0, v1, . . . , v264−1.
Then the received ciphertext isv0⊕ A′, v1⊕ A′, . . . , v264−1⊕ A′ followed by a few other
blocks. From the ciphertexts we can compute the differences of consecutive OFB blocks
v0⊕ v1, v1⊕ v2, . . . , v264−2⊕ v264−1.

We now guess an arbitrary valueu0 to appear as one of thevi ’s in the cycle of the OFB
stream. We exhaustively encryptu0 under all the possible keysK , and getu1 = EK (u0),
and u2 = EK (u1), and compute the differencesu0 ⊕ u1 and u1 ⊕ u2. If these two
values do not appear as two consecutive values in the differencesv0⊕ v1, v1⊕ v2, . . . ,
v264−2 ⊕ v264−1, then the keyK is not the key oru0 is not in the OFB cycle. If all the
keys do not pass this test for a particularu0, then certainlyu0 is not in the cycle, and we
should try another one. In average we need to try about 264/period(OFB) u0’s, which
is expected to be small, since the period of the OFB mode is expected to be about 264

(see [13]).
Once we found matchingu0 andK , such thatu0 ⊕ u1 = vi ⊕ vi+1 andu1 ⊕ u2 =

vi+1 ⊕ vi+2, we assume that we found the keyK3 = K , and conclude thatu0 = vi ,
u1 = vi+1, u2 = vi+2, and identifyA′ and all the OFB cycle, including the initial value.
After peeling up the OFB mode, we remain with a few distinct double-ECB encryptions,
which can be attacked by the meet-in-the-middle attack [15].

The attack on the CBC|OFB mode (see Fig. 2) is slightly more complex. We choose
two block valuesA and B, and choose the ciphertext as 264 blocks A followed by 264

blocksB. Since the periodp of the OFB mode is at most 264, it can be identified from
the plaintext. Thus, we obtainA⊕ v0, A⊕ v1, . . . , A⊕ v264−1, B⊕ v264, B⊕ v264+1, . . . ,
B ⊕ v265−1 as the output of the CBC mode, andP0 ⊕ IV1, P1 ⊕ A⊕ v0, P2 ⊕ A⊕ v1,
. . . , P264−1⊕ A⊕ v264−2, P264⊕ A⊕ v264−1, P264+1⊕ B⊕ v264, P264+2⊕ B⊕ v264+1, . . . ,
P265−1⊕B⊕v265−2 as the input of the encryption box of the CBC mode. Since the period

Fig. 2. The double mode: CBC|OFB.

Cryptanalysis of Triple Modes of Operation 165

p ≤ 264, we can eliminate the unknownvi ’s by computing differences between the cycle
in the first half of the data and the cycle in the second half of the data, and getA⊕B as the
difference of all the output pairs of corresponding blocks 0< i < 264 < j < 265 (where
p divides j − i andvj = vi), and(Pj ⊕ B⊕vj−1)⊕ (Pi ⊕ A⊕vi−1) = Pj ⊕ Pi ⊕ A⊕ B
as the difference of the inputs of the encryption box.

We receivedperiod(OFB) input differences, all of whose output differences are the
sameA⊕ B. We guess some valueu0 to be any one of the output block values of the
CBC mode, compute its counterpartu′0 = u0⊕ A⊕ B, and try exhaustively all possible
keysK . By the equation

DK (u0)⊕ DK (u
′
0) = Pj ⊕ Pi ⊕ A⊕ B, (1)

we get the value ofPi ⊕ Pj , wherei and j satisfy the above conditions, but are still
unknown. We identifyi and j using a hash table on the values ofPi ⊕ Pj . Then we verify
that theK , i , and j also satisfy the differences of the next block

EK (u0⊕ Pi+1)⊕ EK (u
′
0⊕ Pj+1) = A⊕ B (2)

(or, to improve performance, verify that it satisfies either (2) orEK (u′0⊕Pi+1)⊕EK (u0⊕
Pj+1) = A⊕ B, due to the symmetry of (1)). Again, only a small number of guesses for
u0 is required in order to find the key of the CBC mode and the initial value.

2.2. Technique H

This technique is the most sophisticated technique so far, and it allows us to attack most
of the modes that could not be attacked with simpler techniques. It is particularly suitable
to attack modes with both feedbackward and feedforward feedbacks, which hide both
the input of the first encryption box and the output of the last encryption box from the
attacker.

We describe the application of this technique to the CBC|ECB|CBC−1 mode, shown
in Fig. 3 (which was conjectured in [16] to be the strongest triple mode). In this mode,
we denote the intermediate values between the plaintext, the encryption boxes, and the
ciphertext bywi , xi , yi , andzi as is shown in the figure.

We choose some arbitrary (single-block) valueS, and request the ciphertext of 266

tuples of the form(Ri , S, S, S), where theRi ’s are chosen at random. We denote these
4 · 266 plaintext blocks byP1, P2, . . . , P268, and their values are given by

P4i−3 = Ri , P4i−2 = S, P4i−1 = S, P4i = S (1≤ i ≤ 266).

After encrypting the plaintext, the attacker gets the 268 ciphertext blocksC1, C2, . . . ,
C268.

We denote the equivalence set of all the (indices of the) tuples whose last three
ciphertext blocks are the same as those of a given tuple by

θ(i) = { j |(C4 j−2,C4 j−1,C4 j) = (C4i−2,C4i−1,C4i)}.

We further denotei ≡ j if j ∈ θ(i) (and necessarilyi ∈ θ(j) andθ(i) = θ(j)). It is
expected that the last three blocks of all the tuples inθ(i) (including i ∈ θ(i)) are the

166 E. Biham

Fig. 3. The triple mode: CBC|ECB|CBC−1.

same in the plaintext and the ciphertext. Also the intermediate values (w, x, y, z) have
the same property (i.e., ifi ≡ j , then(x4 j−2, x4 j−1, x4 j) = (x4i−2, x4i−1, x4i), etc.). The
probability that there are somei and j for which it does not hold is negligible.

We concentrate on somei ≡ j (i, j > 1). For suchi and j , x4i−3 = x4 j−3, and
thusw4i−3 = w4 j−3. However, for anyk, x4k−4⊕ P4k−3 = w4k−3, and therefore we get
differences between the unknown intermediate valuesx:

x4i−4⊕ x4 j−4 = P4i−3⊕ P4 j−3 = Ri ⊕ Rj .

Similarly, we get differences between the unknown intermediate valuesy:

y4i−4⊕ y4 j−4 = C4i−3⊕ C4 j−3.

Note that from this single equivalence set we got several differences, since for any
j, k ∈ θ(i) we found the differencex4 j−4⊕ x4k−4, and the tuples of the(4 j − 4)th and
the(4k − 4)th blocks belong to different equivalence sets. Each equivalence set in our
266 tuples contains on average four tuples, and thus from each equivalence set we get
on average differences between 16 elements of thex’s. By computing the equivalence
sets of all the tuples following those for which we know these differences (e.g.,θ(l)
where the difference ofx4l−4 with some other values is already known), and computing
the differences for the larger sets, we extend the set ofx’s for which the differences are
known by a factor of about(16− 4) · 3 · 4 = 144. After several iterations, the size of
this set grows to include all (or almost all) the tuples in the data.

Therefore, after completing the above analysis, we can computex4i⊕x4 j andy4i⊕y4 j

for any i and j . Alternatively, we can write

x4i = X ⊕ u4i ,

y4i = Y ⊕ v4i ,

Cryptanalysis of Triple Modes of Operation 167

whereu4i = x4i ⊕ x4 andv4i = y4i ⊕ y4 are known, and where onlyX = x4 andY = y4

are unknown.
Till now we did not use all the three plaintext blocksS in the tuples efficiently, since

if we would have only two such blocks in each tuple, the probabilities for mistakes in
the predictions of the equivalences would still be very low. The reason for the extra
block S is to find differences of two consecutive blocks, while till now we know only
the differences of blocks whose indices are multiples of four. Since we need only two
consecutive ciphertext blocks whose plaintexts areS in order to conclude equivalence
of two tuples, we can now do it not only on the full tuples, but also shifted by one block,
e.g., to compare the second and third blocks inside the tuples to the third and fourth in
another tuple, by searching for eachi , somej for which

(C4i−2,C4i−1) = (C4 j−1,C4 j),

and for each such equality concluding thatx4i−1 = x4 j andy4i−1 = y4 j , and thus also

u4i−1 = u4 j and v4i−1 = v4 j .

We got about 266 pairs of blocks(4i − 1,4i) for which we knowx4i−1 ⊕ x4i =
u4i−1⊕ u4i andy4i−1⊕ y4i = v4i−1⊕ v4i . The encryption equations

EK1(P4i ⊕ x4i−1) = x4i ,

EK3(y4i) = y4i−1⊕ C4i

can be written usingu andv as

EK1(S⊕ X ⊕ u4i−1) = X ⊕ u4i ,

EK3(Y ⊕ v4i) = Y ⊕ v4i−1⊕ C4i .

Since the blocksize is only 64 bits, we get only about 264 distinct instances of the
equations, each instance occurs on average four times, and (almost) all the possible
values of inputs to the encryption functionE are expected.

We now apply another variant of Technique G: we choose some arbitrary (one-block)
valuea. It is expected that in one of the above instances,EK1(a) is computed, but we do
not know in which. We compute

b = EK ′1(a)

under all the possible keysK ′1 in the keyspace ofK1, and for each find the value of
u4i−1⊕ u4i from the equation

a⊕ EK ′1(a) = (S⊕ X ⊕ u4i−1)⊕ (X ⊕ u4i) = S⊕ u4i−1⊕ u4i .

This equation must hold whenS⊕ X ⊕ u4i−1 = a. We use a hash table on the already
known values ofu4i−1⊕u4i to identifyi , and assume for a moment thatX = S⊕u4i−1⊕a.
With the candidate keyK ′1 andX, we can now encrypt the following blocks and verify
that there are no contradictions in the values ofx4i+3 andx4i+4. If their values do not fit,
we try another keyK ′1 till we find some value which fits. If the values do not fit for any
key, then it must be thatEK1(a) is not in the above equations; in this case we choose
another value fora, and try again. After a few trials, we find the keyK1 and the value
X = x4 with a high probability. From these values, we can complete the knowledge of all
thexi ’s, and in particular the initial valueIV1. Similarly, we can findK3, Y = y4, andIV3.
K2 can now be found by exhaustive search (or by differential or linear cryptanalysis).

168 E. Biham

2.3. Technique I: Double Stream Cipher Technique

This technique can analyze modes in which the ciphertext is an XOR of two streams. In
particular, it can analyze the double OFB mode (whose output is the XOR of the plaintext
and of two OFB streams), and many triple modes whose last (or first) mode is an OFB.

Assume we know that some stream{si } is the result of XORing two cyclic streams
{ai } and{bi }, by si = ai ⊕ bi . In a double OFB mode, we can find the streamsi with a
known plaintext attack, by XORing the plaintext with the ciphertext:si = Pi ⊕Ci . The
purpose of this technique is primarily to find the periods of{ai } and{bi }, and then this
information will be used to find the keys and the initial values.

We denote the period of{ai } by k and the period of{bi } by l , and assume without loss
of generality thatk < l .3 We also restrict the discussion to only evenk+ l ; oddk+ l can
be analyzed similarly with only small changes. Both periods are expected to be about
264, and thus the expected period of{si } is about 2128.

We write

si = ai ⊕ bi = ai modk ⊕ bi modl .

Givenk+ l +1 consecutive blocks of{si }: s0, s1, . . . , sk+l , the following equations hold:

s0 = a0⊕ b0,

sk = ak ⊕ bk = a0⊕ bk,

sl = al ⊕ bl = al ⊕ b0,

sk+l = ak+l ⊕ bk+l = al ⊕ bk,

from which we derive

s0⊕ sk ⊕ sl ⊕ sk+l = 0.

We later use this equation in the form

s0⊕ sk+l = sk ⊕ sl .

In order to use this equation, we need to knowk andl . Therefore, we rewrite the equations
(shifted in the stream byi − (k+ l)/2 blocks, for anyi) as

si−(k+l)/2 = ai−(k+l)/2⊕ bi−(k+l)/2,

si−(l−k)/2 = ai−(l−k)/2⊕ bi−(l−k)/2 = ai−(k+l)/2⊕ bi+(k+l)/2,

si+(l−k)/2 = ai+(l−k)/2⊕ bi+(l−k)/2 = ai+(k+l)/2⊕ bi−(k+l)/2,

si+(k+l)/2 = ai+(k+l)/2⊕ bi+(k+l)/2

(3)

and thus

si−(k+l)/2⊕ si+(k+l)/2 = si−(l−k)/2⊕ si+(l−k)/2.

3 We ignore the rare case wherek = l in which the period of{si } is itselfk = l .

Cryptanalysis of Triple Modes of Operation 169

We defineSi to be the concatenation ofsi andsi+1, in order to increase the blocksize
and to reduce random effects. Then

Si−(k+l)/2⊕ Si+(k+l)/2 = Si−(l−k)/2⊕ Si+(l−k)/2.

We define

1j = S264− j ⊕ S264+ j

(similarly, for oddk + l we should define1j = S264− j ⊕ S264+ j+1) and fori = 264 we
get the equation

1(k+l)/2 = 1(l−k)/2.

The attack we use is a start in the middle attack. Given 265 stream blocks, we compute
1j for each j = 1,2, . . . ,264 and search for two distinctj ’s (j1 > j2) for which

1j1 = 1j2

(by keeping the values in a hash tables, and waiting till some value is entered twice into
the table). Thesej1 and j2 satisfy

S264− j1 ⊕ S264− j2 ⊕ S264+ j2 ⊕ S264+ j1 = 0

from which we conclude that

k = j1− j2 and l = j1+ j2.

Given the candidate values fork and l , it is easy to verify that (3) holds for several
additionali ’s. If it does not, the choice ofk or l is wrong, and we should find another
pair of j1 and j2.

So far, we have found only the periods of the two streams, but we do not know anything
more than the periods. At this point we use the periods in order to find information on the
streams{ai } and{bi }. We assume thatk andl are coprimes (or at least that gcd(k, l) is
small, which can be analyzed with only a minor modification to the following algorithm).
We compute the following algorithm, which results withdi = ai ⊕ a0 for everyi :

d0 = 0
for i = 1 tok− 1 do

dil modk = d(i−1)l modk ⊕ (s(i−1)l modk ⊕ s((i−1)l modk)+l)

We get all thedi = ai ⊕ a0, i = 0, . . . , k − 1. Now, the stream{ai } is known up to
an XOR with one blocka0. The stream{bi } is known under the same condition, since
bi = si ⊕ ai = si ⊕ di ⊕ a0.

When one of the two streams is the output of an OFB mode (without loss of generality
we assume that the OFB stream is{bi }), we can use Technique G to solve the key and
the initial value. Then the{ai } stream can be computed byai = si ⊕ bi . If {ai } is also an
output of an OFB mode, we can now find the key easily by an exhaustive search for the
key K for which the equationEK (a1) = a2 is satisfied.

This attack is also applicable to many triple modes in which the first (or last) single
mode is an OFB, by feeding the other two modes by carefully chosen plaintexts or

170 E. Biham

Fig. 4. The triple mode: CBC|CBC−1|OFB.

ciphertexts. The CBC|CBC−1|OFB is an example (see Fig. 4). In this mode we fix 265

same plaintext blocks, and get a cycle in the output of the first CBC mode. The cycle
is not affected by the next CBC−1 mode. The result is the XOR of the cycle of the
CBC|CBC−1 mode and the OFB mode. The above technique can find the periods, and
analyze the OFB mode, resulting with the key and the initial value of the OFB mode,
and with the exact output of the CBC|CBC−1 mode. The CBC|CBC−1 mode can then
be analyzed with additional 266 chosen plaintexts using Technique H.

Note that this technique is also applicable to stream ciphers in which the output of two
nonlinear streams (such as the outputs of NLFSRs) are XORed. This technique can also
increase the efficiency of the Berlekamp–Massey algorithm [19] when the outputs of
two LFSRs are XORed, by dividing the original problem into two smaller problems in a
linear time, and using the Berlekamp–Massey algorithm on each of the smaller problems.
In the next technique we show that not only the complexity of the Berlekamp–Massey
algorithm can benefit from this attack, but attacks on multiple OFB modes can benefit
from the Berlekamp–Massey algorithm.

2.4. Technique J: Triple and Multiple Stream Cipher Technique

This technique extends Technique I for the case of an XOR of more than two streams.
This “miracle” is obtained using the Berlekamp–Massey algorithm [19] to retrieve the
shortest linear feedback shift register that generates the stream. This shortest LFSR is
expected to uncover (in most cases) the periods of all the combined streams.

For example, we show the case where three streams are combined (as in the triple
OFB mode):{ai }, {bi }, and{ci }, whose periods arek, l andm, respectively. The resulting
stream issi = ai ⊕ bi ⊕ ci . Then the following LFSR generatessi :

sk+l+m = s0⊕ sk ⊕ sl ⊕ sm⊕ sk+l ⊕ sk+m⊕ sl+m.

Cryptanalysis of Triple Modes of Operation 171

In polynomial form this LFSR is

Q(x) = xk+l+m + xl+m + xk+m + xk+l + xm + xl + xk + x0

= Qk(x)Ql (x)Qm(x) = 0,

where

Qk(x) = xk + 1=
(

k−1∑
j=0

x j

)
(x + 1),

Ql (x) = xl + 1=
(

l−1∑
j=0

x j

)
(x + 1),

Qm(x) = xm + 1=
(

m−1∑
j=0

x j

)
(x + 1).

The minimal polynomial ofsi is, however,

Q′(x) = lcm(Qk(x), Ql (x), Qm(x))

which, whenk, l , andm are coprimes is

Q′(x) = Q(x)/(x + 1)2

of degreek+ l +m− 2.
Note thatk andl are coprimes if and only ifQk(x)/(x + 1) andQl (x)/(x + 1) are

coprimes (similarly form andQm(x)/(x + 1)). Otherwise, if gcd(k, l) = d > 1, then
both Qk(x)/(x + 1) andQl (x)/(x + 1) are divisible by(xd + 1)/(x + 1) =∑d−1

j=0 x j ,
and all the terms of the quotients are exponents ofxd.

Given the 2(k+l+m) first blocks of{si }, the Berlekamp–Massey algorithm reproduces
the minimal LFSR generating the stream. From this polynomial the periodsk, l , andm
can be deduced (either by multiplying by(x+1)2 and taking the indices of the feedbacks
as the periods, ifk, l , andm are coprime, or else by factoring the minimal polynomial,
and using their special forms described above to reconstruct the periods).

The Berlekamp–Massey algorithm requires 2n blocks, and its complexity isO(n2),
wheren is the length of the shortest LFSR, i.e., in the examplen = k+l+m. However, this
complexity is too high for our purposes. Fortunately, there is a variant of the Berlekamp–
Massey algorithm, called the recursive Berlekamp–Massey algorithm [9, Section 11.7],
whose complexity is lower thanO(n logn log logn). This complexity is about 266 · 66 ·
log 66= 275 whenn ≤ 266, i.e., when up to four OFB streams are combined. These 275

steps are very simple, and are faster to apply than 266 DES encryptions.
Given the periods of the individual streams (k, l , andm), we decompose the individual

streams, up to an XOR with their first block (which remains unknown), with a similar
method to the one used by Technique I. In the case of three streams, as in the above

172 E. Biham

example, the decomposition algorithm is

e0 = 0
for i = 1 tok− 1 do

eim modk = e(i−1)mmodk ⊕ (s(i−1)mmodk ⊕ s((i−1)mmodk)+l

⊕ s((i−1)mmodk)+m⊕ s((i−1)mmodk)+l+m)

d0 = 0
for i = 1 tok− 1 do

d2i l modk = d2(i−1)l modk ⊕ (e2(i−1)l modk ⊕ e(2(i−1)l modk)+l)

whereei results withei = ai ⊕ ai+l ⊕ a0 ⊕ al , anddi results withdi = ai ⊕ a0.
From these values we can now computeai ⊕ ai+1 for any i (or at leastai ⊕ ai+2 for
evenk’s), and similarly we can compute the differences of consecutive blocks in all the
individual streams. Technique G is then used to solve the keys and the initial values of
the individual OFB streams. The total complexity of this attack is equivalent to less than
264 DES encryptions, and the attack requires about 267 blocks and 266 memory, when up
to four streams are combined.

3. The Strength of All the Triple Modes

In this section we elaborate some more information on some of the more complicated
attacks. Brief hints on the attacks on all the modes are given in the Appendix.

1. ECB|CBC|ECB: The attack requires five chosen ciphertext blocks of the form
(A, A, B, B, A), for any block valuesA andB (A 6= B). The intermediate values
after the first ECB component (under the real unknown key) must be of the form
(?, A′ ⊕ A′′, B′ ⊕ A′′, B′ ⊕ B′′, A′ ⊕ B′′), whereA′ and B′ are the intermediate
values entering the second encryption box (after mixing with the feedbacks), and
A′′ andB′′ are the intermediate values after the second component. These values
depend only on the values of the corresponding ciphertext blocks (A or B), since
no feedbacks are mixed during their encryption. Therefore, the XOR of the last
four (of the five) blocks after the first component is zero. We need only encrypt the
four corresponding plaintext blocks by all the possible keys of the first component,
and verify which key results with such zero XOR. The last ECB component can
then be analyzed with three blocks of the above five(A, B, B). Don Coppersmith
has also developed a similar attack on this mode [11].

2. ECB|CFB−1|CBC: We describe two attacks on this mode. In the first attack we
choose three same plaintext blocks(A, A, A). The intermediate data after the
second component is thus of the form(?, A′′, A′′). We now try to decrypt the
ciphertext under all possible keys of the last component, and see which key results
with two equal second and third blocks. To find the keys of the first and the second
components we need an additional plaintext block, so in total we need four blocks
(A, A, A, B) to find all three keys.

The second attack is a meet-in-the-middle attack. We choose tuples(A, A, B),
so we can conclude that the XOR of the intermediate value of the second and third
blocks after the second component equals the XOR of the same blocks after the first
component. Encrypt the two corresponding plaintext blocks under all possible keys,

Cryptanalysis of Triple Modes of Operation 173

XOR the results of the two blocks, and keep the result in a table. Now decrypt the
last component under all possible keys and check whether the XOR of the second
and third resultant blocks appears in the table. If, for two tuples, the same keys
succeed, we conclude that they are the keys of the first and last components. For
this attack, the plaintexts(A, A, B, B, A) suggest the required two tuples.

3. CBC−1|ECB|CBC: The attack on this mode is similar to the first attack on the
ECB|CFB−1|CBC mode, where the required chosen plaintext blocks (or symmet-
rically, chosen ciphertext blocks) are of the form(B, A, A, A).

4. CBC−1|OFB|CBC: We can identify the period of the OFB component by choosing
264 chosen plaintext (or ciphertext) blocksA followed by 264 tuples of the form
(Ri , A, A, A). It is expected that, for some tuplei , the feedback from the first
block Ri to the next will be the same as in some block in the first 264 blocks whose
distance is a multiple of the period. In this case, we can use this knowledge to
identify the period. Once the period is known, we can use the same data to predict
two equal values after the second component, and use them to find the key of the
last component. Then the other keys can be completed with the same data and
simpler analysis.

5. CBC|OFB|CBC: We choose 232 ciphertext blocksA, followed by 232 tuples of 232

ciphertext blocks of the form(A, A, A, A, Ri , Ri , Ri , Ri , . . .), followed by 264

ciphertext tuples of the form(Ri , Ri , Ri , Ri), whereRi are random (the same at
each tuple). From the first 264+ 232 blocks, we can identify the OFB period. Then
we can use all the tuples and search for collisions in the decryption of the last CBC
component in distances of multiples of the OFB period (the collisions are similar
to the collisions in the birthday attack, but in this case the birthday paradox is not
involved). We can identify such collisions since the corresponding plaintext blocks
are expected to be the same. When such a collision is found, we continue like in
the birthday attack, and find the key of the last component. We complete the rest
of the keys with Technique G.

6. ECB|CFB−1|CBC−1 and ECB|CBC−1|CFB−1: We choose 234 plaintext tuples of
the form(F, Ri , B1, F, Ri , B2) or (B1, Ri , F, B2, Ri , F), respectively, whereF ,
B1, andB2 are fixed in all the tuples, andRi varies at random (but the same in both
occurrences in each tuple). We expect a collision betweenEK1(B1)⊕EK2(EK1(Ri))

andEK1(B2)⊕EK2(EK1(Rj)), for somei and j . The same blocks will have another
match when the indicesi and j are exchanged (i.e., in the other halves of the tuples).

We identify the collision by computing the difference of the third and sixth
ciphertext blocks in each tuple, and searching for equality of the results in two
distinct tuples. When found, we can computeEK1(Ri)⊕ EK1(Rj) as the difference
of two ciphertext blocks, and can exhaustively search forK1 that satisfies this
equation.

7. CBC|CFB|OFB and CFB|CBC|OFB: We choose some arbitrary valuesA andB,
and choose the ciphertext to be 264 consecutive blocksA, followed by 264 tuples of
three blocks(B, A, A). After identifying the period of the OFB, we compute the
differences in the CBC and the CFB modes, in the same positions in the OFB cycle,
so the OFB values are canceled in the differences. Thus, we receive differences
A⊕ B in many blocks, and various input differences in the same blocks, and apply
Technique G to solve the keys.

174 E. Biham

8. CBC|CBC−1|CBC and similar modes: This is a birthday attack, in which we look
for collisions not only in the last CBC mode, but also in the CBC−1 stream. We
choose 264 random ciphertext tuples(Ri , Ri , Ri , Ri), and search for the pairsi , j
in which D(Ri)⊕Ri = D(Rj)⊕Rj (as in the regular birthday technique) together
with equal values in the first block of the tuple in the CBC−1 mode. Given 264 such
tuples, we expect such a collision. We can identify it easily, since, when it occurs,
the last three of the four plaintext blocks of one tuple equal the corresponding
blocks in the other tuple. Then we find the key of the last CBC mode just as we do
in the regular birthday technique.

The first two modes are then attacked by Technique H with the same data.
If the first two modes are CBC|CFB−1 or CFB|CBC−1, the data do not suffice.

In this case we choose additional tuples(R′i , A, A, A, A) to the original chosen
ciphertext, which after decryption of the last CBC becomes(R′′i , R′′′i , B, B, B), on
which we can apply Technique H.

9. CBC|CBC|CBC−1, CFB|CFB|CFB−1 and similar modes: The last CBC−1 (or
CFB−1) single mode is attacked by Technique H with chosen ciphertext tuples
(Ri , A, A, A, A).

If the first two modes are CBC|CFB or CFB|CBC, from a pair in which the
difference is of the form (known, 0, 0) or (0, 0, known) we can find the keys of
both modes.

If the first two modes are CBC|CBC or CFB|CFB, the problem is more compli-
cated. One way to find the rest of the keys is to mount an adaptive attack, which,
after identifying the last key, can attack the remaining double-mode with the data
required for such an attack. Another solution is described in the next subsection.

3.1. Modes Which Require More Demanding Attacks

In this subsection we elaborate the attacks on modes which we do not know to attack
under known plaintext, chosen plaintext, or chosen ciphertext attacks which require only
one stream to be encrypted. In some sense these modes are the strongest triple modes:
the attacks we use against these modes demand extra information: either to know the
initial values or to encrypt two streams with the same keys and the same known initial
values. However, we believe that there are other attacks on these modes that do not need
the extra requirements.

1. CBC|CBC|CBC−1, CFB|CFB|CFB−1, and similar modes, whose first two compo-
nents are the same: The last CBC−1 (or CFB−1) mode is attacked by Technique H
as is explained above in item 9.

As we mentioned there, one way to find the rest of the keys is to mount an
adaptive attack, which, after identifying the last key, can attack the remaining
double-mode with the data required for such an attack.

A nonadaptive attack can be mounted if we know the initial valuesIV1 andIV2

of these two modes. In this case, we can use the meet-in-the-middle attack to solve
both keys.

2. CBC|OFB|CBC−1 (and similarly CFB|OFB|CFB−1): If the attacker can receive
two (known) streams encrypted under the same keys and the same known initial
values, he can findK1 andK3 by a meet-in-the-middle attack, in which he keeps

Cryptanalysis of Triple Modes of Operation 175

(EK1(IV1, P)⊕ EK1(IV1, P∗), K1) for every possibleK1 in a table and searches
for a K3 such thatDK3(IV3,C) ⊕ DK3(IV3,C∗) appears in the first field in the
table (whereEK1(IV1, P) denotes CBC encryption of the first component, and
DK3(IV3,C) denotes CBC−1 decryption of the last component). Only two cipher-
text blocks are required in each stream for the attack to succeed.

3. CBC|CBC|OFB (and similarly CFB|CFB|OFB): If the attacker can receive two
chosen streams encrypted under the same keys and the same known initial values,
he can findK1 by choosing the ciphertext streams(A, A) and(B, A) and get the
plaintextsP andP∗. He tries all the keysK1 till the second block of the difference
EK1(IV1, P)⊕ EK1(IV1, P∗) equalsA⊕ B.

Another attack requires only one stream with knownIV: the attacker chooses a
ciphertext stream of oneB followed by 264 A’s. From the plaintext, he can identify
the period of the OFB component, and find the firstA in the second period. The
feedbacks entering the block of thisA equal the initial values, and thus the above
attack can be applied.

4. More Secure Modes

So far we have shown that all the triple modes (except possibly the triple ECB mode) are
not much more secure than a single encryption. In this section we propose more secure
noncascaded modes whose complexity of attack is expected to be about 2112–2128. We
start with secure noncascaded modes which combine three applications of single modes
(whose encryption speed is the same as that of triple modes, and which can be efficiently
pipelined in hardware), and then propose similar more secure modes which combine
four applications of single modes.

4.1. Definitions of Noncascaded Combinations of Modes

In all the discussions above, we only considered multiple modes combined as cascade
modes, in which the output of one mode becomes the input to the next mode, and we
denoted this cascade by the “|” operator.

We now consider additional (noncascading) operators to combine modes. We denote
the first of them by the operator “→,” which takes two modes M1 and M2, where M2
is any mode, and M1 is any stream mode (such as the OFB mode) generating a stream
independent of the plaintext, and XORs the stream to the plaintext to form the ciphertext.4

Then, M1→ M2 is the mode which computes the stream generated by M1, and encrypts
the result under M2, resulting in a new stream, to be XORed to the plaintext.

For example, the OFB→ CBC mode applies the CBC mode on the stream generated
by the OFB mode, and XORs the result to the plaintext. We can combine more than one
mode in this way; for example, the OFB→ CBC→ CFB mode applies the CFB mode
on the output of OFB→ CBC mode.

4 An extension of this definition allows M1 to be any mode, where a fixed plaintext block is fed to the mode
M1, and the result becomes the output stream. This extension is not very useful when applied to standard DES
modes, since the CBC and the CFB modes generate an OFB stream when fed by the zero plaintext blocks.

176 E. Biham

Another operator, which we denote by “M1[M2],” where M1 is any stream mode,
applies the stream mode M1 on the plaintext (i.e., XORs the plaintext and the stream
of M1), applies the mode M2 on the result, and applies thesameM1 on the result
(i.e., XORs with the same stream of M1, without computing it again). An extension of
this operator applies M1 more than twice, in given positions. We denote this extended
operator by “M1[M2,M3]” (or more generally “M1[M2,M3, . . . ,Mn]”). It applies M1
on the plaintext, then applies M2, then applies M1 again, then applies M3, and then M1
again, etc. This mode actually applies 2n−1 modes (five in the case of M1[M2,M3]) but
takes the time for computing onlyn (three) modes. Our aim in defining such modes is to
get modes which are more secure than cascadedn-modes, but have the same encryption
speed asn-modes. However, we expect that these modes are less secure than (2n− 1)-
modes.

4.2. Secure Modes with Three Applications of Single Modes

We conjecture that the OFB→ CBC→ CBC and OFB→ CFB→ CFB modes are
secure modes, useful for applications which require a security-extended stream (OFB-
like) modes. The complexity of attacking these modes is conjectured to be at least 2112.
(Note however that their theoretical strength, as defined in [6], i.e., the complexity to
find one out of many keys, is only 284; this complexity holds for any cipher with 168-bit
keys.)

4.3. Secure Modes with Four Applications of Single Modes

We conjecture that the CBC|CBC|CBC−1|CBC−1, the CFB|CFB|CFB−1|CFB−1, and
the OFB[CBC, CBC, CBC−1] modes are more secure than any triple mode. We also
believe that the OFB[CBC, CBC, CBC] and the OFB[CFB, CFB, CFB] modes are
secure, and their complexities of attack are at least 2128. The latter two modes have a
limited error propagation.

5. Modes Described by ANSI

Recently ANSI was considering standardization of triple modes of operation. The latest
ANSI draft [2] described the following modes:

1. The TECB, TCBC, (1-bit, 8-bit, and 64-bit) TCFB, and TOFB modes are defined as
the ECB, CBC, CFB, and OFB modes where the underlying cipher is (two-key or
three-key) triple DES. These modes are single modes, and their strength (as modes,
and from the point of view of this paper) is the same as that of the underlying cipher.
In particular, in all these modes a dictionary attack with all 264 known plaintexts
is applicable.

2. The TCBC-I, TCFB-P, and TOFB-P modes are interleaved/pipelined variants
of the TCBC, TCFB, and TOFB modes, in which encryption is computed to
three independent streams in parallel. The TCBC-I mode is described as encrypt-
ing three independent interleaved messages. The TOFB-P computes three inter-
leaved TOFB streams and use them to encrypt one message. The 64-bit TCFB-P

Cryptanalysis of Triple Modes of Operation 177

views the message as three interleaved messages, and encrypts them as such.
The 1-bit and 8-bit TCFB-P have dependencies between the three interleaved en-
cryptions. All these modes are intended to be efficiently implemented in pipelin-
able hardware. They do not have, however, cryptographic advantages over their
noninterleaved/nonpipelined variants (and the dictionary attack is still applicable
in the same way as in the noninterleaved/nonpipelined variants).

3. The CBCM mode [12], [2] is very similar to the ECB|OFB[ECB]|ECB mode,
with the same keys in the first and last ECB components, and with the addition of
a (CBC-like) outer-feedback mixing the ciphertext block with the next plaintext
block. Due to this structure, this mode cannot be simulated as a combination of
other modes. An advantage of this mode is that the intermediate feedbacks are
not under the control of the attacker, and, unlike some other modes with cascaded
OFB components (such as many of those mentioned earlier in this paper), it seems
that the attacker cannot use the various OFB components to factor them, since the
same OFB stream is used in both OFB components. The main drawback of this
mode is the application of four encryptions per encrypted block. Thus, this mode
is moderately slower than triple modes. Moreover, this mode cannot be pipelined,
and thus cannot be applied efficiently in (pipelinable) hardware.

4. The CBCM mode has an interleaved variant, CBCM-I, which efficiently encrypts
three interleaved messages in parallel. The CBCM-I is cryptographically equivalent
to the CBCM mode.

5. An earlier ANSI draft [1] described a different collection of modes. These modes
included (under different names) the TECB, TCBC, TCFB, TOFB, TCFB-P, and
TOFB-P modes mentioned in the later draft, together with the inner-feedback CBC
mode CBC|CBC−1|CBC studied earlier in this paper.

In the previous section we described several secure modes with only three applications
of single modes. These modes are faster than CBCM. We also described modes with four
applications of single modes, which have the same speed as CBCM. All the modes we
described are pipelinable, and thus can be efficiently applied in (pipelinable) hardware,
without the interleaving trick described in the ANSI drafts. We conjecture that all the
modes we described are more secure than the CBCM mode.

6. Summary

In this paper we have shown that all the (cascaded) double modes and all the (cascaded)
triple modes of DES (possibly except the triple ECB mode, if dictionary attacks which
cannot find the keys are not considered) are much less secure than might be expected,
and their strength is comparable with a single encryption. Almost all the modes are
vulnerable to known plaintext, chosen plaintext, or chosen ciphertext attacks, with only
one stream of encryption. Only a few of the modes require to know the initial values or
to get two streams with the same keys and the same initial values. We also suggested
several candidates for more secure modes.

178 E. Biham

Acknowledgments

We are grateful to Jim Massey, Ross Anderson, Kenneth Paterson, Ronny Roth, and Adi
Shamir for many helpful discussions and suggestions, as well as to Don Coppersmith
and the anonymous referee for their fruitful comments. Some of this work was done
while the author was visiting the computer laboratory at the university of Cambridge.

Appendix

In this appendix we list all the single, double, and triple modes, together with their
attacking techniques and complexity of cryptanalysis.

In the Attack field we describe the type of attack and hints about the techniques used.
For some of the modes, we describe more than one technique for the attack. In such a
case, the first technique finds the key of one single mode, while later, the other technique
is used to find the key of the other mode(s). In this field we use the following notations:

KPA Known plaintext attack.
CPA Chosen plaintext attack.
CCA Chosen ciphertext attack.

Ad Adaptive attacks.
KIV Attacks in which the initial values are known (see Section 3.1).

2SKIV Attacks in which the attacker chooses two streams that are both encrypted
under the same key and thesame knowninitial value (see Section 3.1).

Ex Exhaustive search for the key of a single mode (Technique E in [5]).
Bi Birthday technique (Technique F in [5]).

Col Like “Bi,” however, the collection of pairs is exhaustive rather than using
the birthday paradox.

G Technique G.
H Technique H.
I Technique I.

MM Meet in the middle, using large tables (similar to the attack on double DES
[15, p. 83]).

(number) Some more details on the attack are elaborated in item (number) in Section 3.
(*) Some more details on the attack are elaborated in Section 3.1.

The complexity field describes three complexity parameters: the number of plaintexts
required; the number of steps of the attack; the required memory size. These complexities
are measured for DES as the underlying blockcipher. In these complexities, all the (up
to three) keys and all the (up to three) initial values are found. Note that the memory
size is given only when the amount of memory required for tables is nonnegligible. The
required memory for keeping the plaintexts and the ciphertexts is not counted.

Note that in this appendix we only give hints for one (or sometimes two) attacks on
each mode. It is not the purpose of this appendix to give the best attacks on these modes,
nor the most efficient or the easiest to implement attacks. In particular, some modes
which are attacked with a chosen ciphertext attacks in this appendix can also be attacked
with a chosen plaintext attack, and sometimes even with a known plaintext attack.

Cryptanalysis of Triple Modes of Operation 179

Single Modes

No. Mode Attack Complexity Data Inverse

1 ECB KPA/Ex 1/256/− 1
2 CBC KPA/Ex 2/256/− 3
3 CBC−1 KPA/Ex 2/256/− 2
4 OFB KPA/Ex 2/256/− 4
5 CFB KPA/Ex 2/256/− 6
6 CFB−1 KPA/Ex 2/256/− 5

Double Modes

No. Mode Attack Complexity Data Inverse

7 ECB|ECB KPA/MM 2/257/256 7
8 ECB|CBC KPA/MM (or CCA) 3/257/256 (or 3/258/−) (BAA) 19
9 ECB|CBC−1 CPA/Ex 3/258/− BAA 13

10 ECB|OFB CPA/Ex 264/258/− 25
11 ECB|CFB KPA/MM (or CCA) 3/257/256 (or 3/258/−) (AAB) 37
12 ECB|CFB−1 CPA/Ex 3/258/− AAB 31
13 CBC|ECB∗ CCA/Ex (or CPA/Ex) 3/258/− (or 264/258/−) BAA 9
14 CBC|CBC CCA/Bi 234/259/233 21
15 CBC|CBC−1 CPA/H or CCA/H 268/266/266 15
16 CBC|OFB CPA/I or CCA/G 265/265/265 or 266/266/− 27
17 CBC|CFB CCA/Ex 4/258/− BAAA 39
18 CBC|CFB−1 CPA/H or CCA/H 268/266/− 33
19 CBC−1|ECB KPA/MM (or CPA) 3/257/256 (or 3/258/−) (BAA) 8
20 CBC−1|CBC KPA/MM (or CPA) 3/257/256 (or 3/258/−) (AAA) 20
21 CBC−1|CBC−1 CPA/Bi 234/259/233 14
22 CBC−1|OFB CPA/Ex 264/258/− 26
23 CBC−1|CFB KPA/MM (or CPA) 3/257/256 or 3/258/− (AAA) 38
24 CBC−1|CFB−1 CPA/Ex 4/258/− AAAB 32
25 OFB|ECB CPA/Ex or CCA/Ex 264/258/− 10
26 OFB|CBC CCA/Ex 264/258/− 22
27 OFB|CBC−1 CPA/G or CCA/I 265/266/− or 265/265/265 16
28 OFB|OFB KPA/I 265/265/264 28
29 OFB|CFB CCA/Ex 264/258/− BAA · · · A 40
30 OFB|CFB−1 CPA/G or CCA/I 266/266/− or 265/265/265 34
31 CFB|ECB CCA/Ex 3/258/− AAB 12
32 CFB|CBC CCA/Ex 4/258/− AAAB 24
33 CFB|CBC−1 CPA/H or CCA/H 268/266/− 18
34 CFB|OFB CPA/I or CCA/G 265/265/265 or 266/266/− 30
35 CFB|CFB CCA/Bi 234/259/233 42
36 CFB|CFB−1 CPA/H or CCA/H 268/266/266 36
37 CFB−1|ECB KPA/MM (or CPA) 3/257/256 (or 3/258/−) (AAB) 11
38 CFB−1|CBC KPA/MM (or CPA) 3/257/256 (or 3/258/−) (AAA) 23
39 CFB−1|CBC−1 CPA/Ex 4/258/− BAAA 17
40 CFB−1|OFB CPA/Ex 264/258/− BAA . . .A 29
41 CFB−1|CFB KPA/MM (or CPA) 3/257/256 (or 3/258/−) (AAA) 41
42 CFB−1|CFB−1 CPA/Bi 234/259/233 35

∗Davies and Price suggest this mode in [14].

180 E. Biham

Triple Modes

No. Mode Attack Complexity Data Inverse

43 ECB|ECB|ECB The best known attack is KPA/MM whose complexity is 3/2113/256. 43
Dictionary attacks (which cannot recover the keys) require only 264

known plaintexts.
44 ECB|ECB|CBC CCA/Bi/MM 233/258/256 115
45 ECB|ECB|CBC−1 CPA/G/MM 264/258/256 79
46 ECB|ECB|OFB CPA/G/MM 264/258/256 151
47 ECB|ECB|CFB CCA/Bi/MM 233/258/256 223
48 ECB|ECB|CFB−1 CPA/G/MM 264/258/256 187
49 ECB|CBC|ECB CCA/Ex/Ex/Ex(1) 5/259/− AABBA 55
50 ECB|CBC|CBC CCA/Bi/Bi/Ex 233/259/233 127
51 ECB|CBC|CBC−1 CPA/H or CCA/H 268/266/− 91
52 ECB|CBC|OFB CPA/I/Ex or CCA/Ex/G 265/265/265 or 264/258/− 163
53 ECB|CBC|CFB CCA/Bi 234/259/233 235
54 ECB|CBC|CFB−1 CPA/H or CCA/H 268/266/− 199
55 ECB|CBC−1|ECB CPA/Ex/Ex/Ex(1) 5/259/− AABBA 49
56 ECB|CBC−1|CBC CPA/Ex/Ex 5/259/− AABBA 121
57 ECB|CBC−1|CBC−1 CPA/Ex/Bi 234/259/233 85
58 ECB|CBC−1|OFB CPA/Ex/Ex 264/258/− 157
59 ECB|CBC−1|CFB CPA/Ex/Ex 5/259/− AABBA 229
60 ECB|CBC−1|CFB−1 CPA/Bi(6) 236/259/233 193
61 ECB|OFB|ECB CPA/MM or CCA/MM 264/258/256 61
62 ECB|OFB|CBC CCA/MM 264/258/256 133
63 ECB|OFB|CBC−1 CPA/Ex/G 265/265/− 97
64 ECB|OFB|OFB CPA/I 265/265/265 169
65 ECB|OFB|CFB CCA/MM 264/258/256 241
66 ECB|OFB|CFB−1 CPA/Ex/G 265/265/− 205
67 ECB|CFB|ECB CCA/Ex/Ex/Ex 5/259/− AABBA 73
68 ECB|CFB|CBC CCA/Bi 234/259/233 145
69 ECB|CFB|CBC−1 CPA/H or CCA/H 268/266/− 109
70 ECB|CFB|OFB CPA/I or CCA/Ex/H 265/265/265 or 265/265/− 181
71 ECB|CFB|CFB CCA/Bi 234/259/233 253
72 ECB|CFB|CFB−1 CPA/Ex/H or CCA/Ex/H 266/266/266 217
73 ECB|CFB−1|ECB CPA/Ex/Ex/Ex 5/259/− AABBA 67
74 ECB|CFB−1|CBC CPA/Ex/Ex/Ex(2) 4/258/− AAAB 139
75 ECB|CFB−1|CBC−1 CPA/Bi(6) 236/259/233 103
76 ECB|CFB−1|OFB CPA/Ex 264/258/− 175
77 ECB|CFB−1|CFB CPA/Ex/Ex/Ex 4/258/− 247
78 ECB|CFB−1|CFB−1 CPA/Ex/Bi 234/259/233 211
79 CBC|ECB|ECB CCA/G/MM 264/258/256 45
80 CBC|ECB|CBC CCA/Bi 234/259/233 117
81 CBC|ECB|CBC−1 CPA/H or CCA/H 268/266/− 81
82 CBC|ECB|OFB CPA/I 265/265/265 153
83 CBC|ECB|CFB CCA/Bi/Ex 234/259/233 225
84 CBC|ECB|CFB−1 CPA/H or CCA/H 268/266/− 189
85 CBC|CBC|ECB CCA/Ex/Bi 234/259/233 57
86 CBC|CBC|CBC CCA/Bi 234/260/233 129
87 CBC|CBC|CBC−1 CCA/H(9) [Ad or KIV or K3 only] 268/266/− 93
88 CBC|CBC|OFB KIV-CCA(*) 264/259/− 165
89 CBC|CBC|CFB CCA/Bi 234/260/233 237
90 CBC|CBC|CFB−1 CCA/H(9) [Ad or KIV or K3 only] 268/266/− 201
91 CBC|CBC−1|ECB CPA/H or CCA/H 268/266/− 51
92 CBC|CBC−1|CBC CCA/Bi(8) 266/258/233 123
93 CBC|CBC−1|CBC−1 CPA/H(9) [Ad or KIV or K1 only] 268/266/− 87
94 CBC|CBC−1|OFB CPA/I/H 266/266/266 159
95 CBC|CBC−1|CFB CCA/Bi(8) 266/258/233 231

continued

Cryptanalysis of Triple Modes of Operation 181

No. Mode Attack Complexity Data Inverse

96 CBC|CBC−1|CFB−1 CPA/H(9) 268/258/− 195
97 CBC|OFB|ECB CCA/Ex/G 265/265/− 63
98 CBC|OFB|CBC CCA/Col/G(5) 266/266/− 135
99 CBC|OFB|CBC−1 2SKIV-KPA/MM(*) 4/258/256 99

100 CBC|OFB|OFB CPA/J 267/275/266 171
101 CBC|OFB|CFB CCA/Col/G 266/266/− 243
102 CBC|OFB|CFB−1 2SKIV-KPA/MM(*) 4/258/256 207
103 CBC|CFB|ECB CCA/Bi(6) 236/259/233 75
104 CBC|CFB|CBC CCA/Bi 234/260/233 147
105 CBC|CFB|CBC−1 CCA/H(9) 268/258/− 111
106 CBC|CFB|OFB CCA/G(7) 265/260/− 183
107 CBC|CFB|CFB CCA/Bi 234/260/233 255
108 CBC|CFB|CFB−1 CCA/H(9) 268/258/− 219
109 CBC|CFB−1|ECB CPA/H or CCA/H 268/266/− 69
110 CBC|CFB−1|CBC CCA/Bi(8) 268/258/233 141
111 CBC|CFB−1|CBC−1 CPA/H(9) 268/258/− 105
112 CBC|CFB−1|OFB CPA/I/H 268/266/266 177
113 CBC|CFB−1|CFB CCA/Bi(8) 268/258/233 249
114 CBC|CFB−1|CFB−1 CPA/H(9) [Ad or KIV or K1 only] 268/266/− 213
115 CBC−1|ECB|ECB CPA/Bi/MM 233/258/256 44
116 CBC−1|ECB|CBC CPA/Ex/Ex(3) or CCA/Ex/Ex(3) 4/258/− BAAA 116
117 CBC−1|ECB|CBC−1 CPA/Bi 234/259/233 80
118 CBC−1|ECB|OFB CPA/G/Ex 264/258/− 152
119 CBC−1|ECB|CFB CPA/Ex or CCA/Ex 4/258/− BAAA or AAAB 224
120 CBC−1|ECB|CFB−1 CPA/Bi/Ex 234/259/233 188
121 CBC−1|CBC|ECB CCA/Ex/Ex 5/259/− AABBA 56
122 CBC−1|CBC|CBC CCA/Ex/Bi 234/259/233 AAAA+ · · · 128
123 CBC−1|CBC|CBC−1 CPA/Bi(8) 266/258/233 92
124 CBC−1|CBC|OFB CPA/I/Ex 265/265/265 164
125 CBC−1|CBC|CFB CCA/Ex/Ex 5/258/− BAAAA 236
126 CBC−1|CBC|CFB−1 CPA/Bi(8) 268/258/233 200
127 CBC−1|CBC−1|ECB CPA/Bi/Bi/Ex 233/259/233 50
128 CBC−1|CBC−1|CBC CPA/Ex/Bi 234/259/233 AAAA+ · · · 122
129 CBC−1|CBC−1|CBC−1 CPA/Bi 234/260/233 86
130 CBC−1|CBC−1|OFB CPA/Col 266/259/− 158
131 CBC−1|CBC−1|CFB CPA/Ex/Bi 234/259/233 AAAA+ · · · 230
132 CBC−1|CBC−1|CFB−1 CPA/Bi 234/260/233 194
133 CBC−1|OFB|ECB CPA/MM 264/258/256 62
134 CBC−1|OFB|CBC CPA/(4) or CCA/(4) 266/258/− 134
135 CBC−1|OFB|CBC−1 CPA/Col/G(5) 266/266/− 98
136 CBC−1|OFB|OFB CPA/I 265/265/265 170
137 CBC−1|OFB|CFB CPA/(4) or CCA/(4) 266/258/− 242
138 CBC−1|OFB|CFB−1 CPA/Col/G 266/266/− 206
139 CBC−1|CFB|ECB CCA/Ex/Ex/Ex(2) 4/258/− AAAB 74
140 CBC−1|CFB|CBC CCA/Ex/Ex 5/258/− AAAAB 146
141 CBC−1|CFB|CBC−1 CPA/Bi(8) 268/258/233 110
142 CBC−1|CFB|OFB CPA/I/Ex 265/265/265 182
143 CBC−1|CFB|CFB CCA/Ex/Bi 234/259/233 AAAA+ · · · 254
144 CBC−1|CFB|CFB−1 CPA/Bi(8) 266/258/233 218
145 CBC−1|CFB−1|ECB CPA/Bi 234/259/233 68
146 CBC−1|CFB−1|CBC CPA/Ex/Ex 5/258/− AAAAB 140
147 CBC−1|CFB−1|CBC−1 CPA/Bi 234/260/233 104
148 CBC−1|CFB−1|OFB CPA/Col 266/259/− 176
149 CBC−1|CFB−1|CFB CPA/Ex/Ex 5/258/− AAAAB 248
150 CBC−1|CFB−1|CFB−1 CPA/Bi 234/260/233 212
151 OFB|ECB|ECB CCA/G/MM 264/258/256 46
152 OFB|ECB|CBC CCA/G/Ex 264/258/− 118

continued

182 E. Biham

No. Mode Attack Complexity Data Inverse

153 OFB|ECB|CBC−1 CCA/I 265/265/265 82
154 OFB|ECB|OFB CPA/I or CCA/I 265/265/264 154
155 OFB|ECB|CFB CCA/G/Ex 264/258/− 226
156 OFB|ECB|CFB−1 CCA/I 265/265/265 190
157 OFB|CBC|ECB CCA/Ex/Ex 264/258/− 58
158 OFB|CBC|CBC CCA/Col 266/259/− 130
159 OFB|CBC|CBC−1 CCA/I/H 266/266/266 94
160 OFB|CBC|OFB CCA/I/G 266/266/266 166
161 OFB|CBC|CFB CCA/Col 266/259/− 238
162 OFB|CBC|CFB−1 CCA/I/H 266/266/266 202
163 OFB|CBC−1|ECB CPA/Ex/G or CCA/I/Ex 265/258/− or 265/265/265 52
164 OFB|CBC−1|CBC CCA/I/Ex 265/265/265 124
165 OFB|CBC−1|CBC−1 KIV-CPA(*) 264/259/− 88
166 OFB|CBC−1|OFB CPA/I/G 266/266/266 160
167 OFB|CBC−1|CFB CCA/I/Ex 265/265/265 232
168 OFB|CBC−1|CFB−1 CPA/G(7) 265/260/− 196
169 OFB|OFB|ECB CCA/I 265/265/265 64
170 OFB|OFB|CBC CCA/I 265/265/265 136
171 OFB|OFB|CBC−1 CCA/J 267/275/266 100
172 OFB|OFB|OFB KPA/J 267/275/266 172
173 OFB|OFB|CFB CCA/I 265/265/265 244
174 OFB|OFB|CFB−1 CCA/J 267/275/266 208
175 OFB|CFB|ECB CCA/Ex 264/258/− 76
176 OFB|CFB|CBC CCA/Col 266/259/− 148
177 OFB|CFB|CBC−1 CCA/I/H 266/266/266 112
178 OFB|CFB|OFB CCA/I/G 266/266/266 184
179 OFB|CFB|CFB CCA/Col 266/259/− 256
180 OFB|CFB|CFB−1 CCA/I/H 266/266/266 220
181 OFB|CFB−1|ECB CPA/Ex/H or CCA/I 265/265/− or 265/265/265 70
182 OFB|CFB−1|CBC CCA/I/Ex 265/265/265 142
183 OFB|CFB−1|CBC−1 CPA/G(7) 265/260/− 106
184 OFB|CFB−1|OFB CPA/I/G 266/266/266 178
185 OFB|CFB−1|CFB CCA/I/Ex 265/265/265 250
186 OFB|CFB−1|CFB−1 KIV-CPA(*) 264/259/− 214
187 CFB|ECB|ECB CCA/G/MM 264/258/256 48
188 CFB|ECB|CBC CCA/Bi/Ex 234/258/233 120
189 CFB|ECB|CBC−1 CPA/H or CCA/H 268/266/− 84
190 CFB|ECB|OFB CPA/I 265/265/265 156
191 CFB|ECB|CFB CCA/Bi/Ex 234/259/233 228
192 CFB|ECB|CFB−1 CPA/H or CCA/H 268/266/− 192
193 CFB|CBC|ECB CCA/Bi(6) 236/259/233 60
194 CFB|CBC|CBC CCA/Bi 234/260/233 132
195 CFB|CBC|CBC−1 CCA/H(9) 268/258/− 96
196 CFB|CBC|OFB CCA/G(7) 265/260/− 168
197 CFB|CBC|CFB CCA/Bi 234/260/233 240
198 CFB|CBC|CFB−1 CCA/H(9) 268/258/− 204
199 CFB|CBC−1|ECB CPA/H or CCA/H 268/266/− 54
200 CFB|CBC−1|CBC CCA/Bi(8) 268/258/233 126
201 CFB|CBC−1|CBC−1 CPA/H(9) [Ad or KIV or K1 only] 268/266/− 90
202 CFB|CBC−1|OFB CPA/I/H 266/266/266 162
203 CFB|CBC−1|CFB CCA/Bi(8) 268/258/233 234
204 CFB|CBC−1|CFB−1 CPA/H(9) 268/258/− 198
205 CFB|OFB|ECB CCA/Ex/G 265/265/− 66
206 CFB|OFB|CBC CCA/Col/G 266/266/− 138
207 CFB|OFB|CBC−1 2SKIV-KPA/MM(*) 2/258/256 102
208 CFB|OFB|OFB CPA/J 267/275/266 174
209 CFB|OFB|CFB CCA/Col/G 266/266/− 246
210 CFB|OFB|CFB−1 2SKIV-KPA/MM(*) 2/258/256 210

continued

Cryptanalysis of Triple Modes of Operation 183

No. Mode Attack Complexity Data Inverse

211 CFB|CFB|ECB CCA/Ex/Bi 234/259/233 78
212 CFB|CFB|CBC CCA/Bi 234/260/233 150
213 CFB|CFB|CBC−1 CCA/H(9) [Ad or KIV or K3 only] 268/266/− 114
214 CFB|CFB|OFB KIV-CCA(*) 264/259/− 186
215 CFB|CFB|CFB CCA/Bi 234/260/233 258
216 CFB|CFB|CFB−1 CCA/H(9) [Ad or KIV or K3 only] 268/266/− 222
217 CFB|CFB−1|ECB CPA/Ex/H or CCA/Ex/H 266/266/266 72
218 CFB|CFB−1|CBC CCA/Bi(8) 266/258/233 144
219 CFB|CFB−1|CBC−1 CPA/H(9) 268/258/− 108
220 CFB|CFB−1|OFB CPA/I/H 268/266/266 180
221 CFB|CFB−1|CFB CCA/Bi(8) 266/258/233 252
222 CFB|CFB−1|CFB−1 CPA/H(9) [Ad or KIV or K1 only] 268/266/− 216
223 CFB−1|ECB|ECB CPA/Bi/MM 233/258/256 47
224 CFB−1|ECB|CBC CPA/Ex/Ex or CCA/Ex/Ex 4/258/− BAAA or AAAB 119
225 CFB−1|ECB|CBC−1 CPA/Bi/Ex 234/259/233 83
226 CFB−1|ECB|OFB CPA/G/Ex 264/258/− 155
227 CFB−1|ECB|CFB CPA/Ex/Ex or CCA/Ex/Ex 4/258/− AAAB 227
228 CFB−1|ECB|CFB−1 CPA/Bi/Ex 234/259/233 191
229 CFB−1|CBC|ECB CCA/Ex/Ex 5/259/− AABBA 59
230 CFB−1|CBC|CBC CCA/Ex/Bi 234/259/233 AAAA+ · · · 131
231 CFB−1|CBC|CBC−1 CPA/Bi(8) 266/258/233 95
232 CFB−1|CBC|OFB CPA/I/Ex 265/265/265 167
233 CFB−1|CBC|CFB CCA/Ex/Ex 5/258/− BAAAA 239
234 CFB−1|CBC|CFB−1 CPA/Bi(8) 268/258/233 203
235 CFB−1|CBC−1|ECB CPA/Bi 234/259/233 53
236 CFB−1|CBC−1|CBC CPA/Ex/Ex 5/258/− BAAAA 125
237 CFB−1|CBC−1|CBC−1 CPA/Bi 234/260/233 89
238 CFB−1|CBC−1|OFB CPA/Col 266/259/− 161
239 CFB−1|CBC−1|CFB CPA/Ex/Ex 5/258/− BAAAA 233
240 CFB−1|CBC−1|CFB−1 CPA/Bi 234/260/233 197
241 CFB−1|OFB|ECB CPA/MM 264/258/256 65
242 CFB−1|OFB|CBC CPA/(4) or CCA/(4) 266/258/− 137
243 CFB−1|OFB|CBC−1 CPA/Col/G 266/266/− 101
244 CFB−1|OFB|OFB CPA/I 265/265/265 173
245 CFB−1|OFB|CFB CPA/(4) or CCA/(4) 266/258/− 245
246 CFB−1|OFB|CFB−1 CPA/Col/G 266/266/− 209
247 CFB−1|CFB|ECB CCA/Ex/Ex/Ex 4/258/− AAAB 77
248 CFB−1|CFB|CBC CCA/Ex/Ex 5/258/− AAAAB 149
249 CFB−1|CFB|CBC−1 CPA/Bi(8) 268/258/233 113
250 CFB−1|CFB|OFB CPA/I/Ex 265/265/265 185
251 CFB−1|CFB|CFB CCA/Ex/Bi 234/259/233 AAAA+ · · · 257
252 CFB−1|CFB|CFB−1 CPA/Bi(8) 266/258/233 221
253 CFB−1|CFB−1|ECB CPA/Bi 234/259/233 71
254 CFB−1|CFB−1|CBC CPA/Ex/Bi 234/259/233 AAAA+ · · · 143
255 CFB−1|CFB−1|CBC−1 CPA/Bi 234/260/233 107
256 CFB−1|CFB−1|OFB CPA/Col 266/259/− 179
257 CFB−1|CFB−1|CFB CPA/Ex/Bi 234/259/233 AAAA+ · · · 251
258 CFB−1|CFB−1|CFB−1 CPA/Bi 234/260/233 215

References

[1] ANSI draft X9.52,Triple Data Encryption Algorithm, Revision 2.1, 1995.
[2] ANSI draft X9.52,Triple Data Encryption Algorithm Modes of Operation, Revision 6.0, May 1996.
[3] T. A. Berson, Long Key Variants of DES,Advances in Cryptology, Proceedings of CRYPTO ’82, pp. 311–

313, 1982.

184 E. Biham

[4] E. Biham, New Types of Cryptanalytic Attacks Using Related Keys,Journal of Cryptology, Vol. 7, No. 4,
pp. 229–246, 1994.

[5] E. Biham, Cryptanalysis of Multiple Modes of Operation,Advances in Cryptology, Proceedings of
ASIACRYPT ’94, pp. 278–292, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1994.

[6] E. Biham, How to Forge DES-Encrypted Messages in 228 Steps, Technical Report CS884, Technion,
August 1996.

[7] E. Biham and A. Biryukov, An Improvement of Davies’ Attack on DES,Journal of Cryptology, Vol. 10,
No. 3, pp. 195–206, 1997.

[8] E. Biham and A. Shamir,Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag,
New York, 1993.

[9] R. E. Blahut,Theory and Practice of Error Control Codes, Addison-Wesley, Reading, MA, 1983.
[10] L. Brown and J. Seberry, Key Scheduling in DES Type Cryptosystems,Advances in Cryptology, Pro-

ceedings of AUSCRYPT’90, pp. 221–228, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1990.

[11] D. Coppersmith, Private communications.
[12] D. Coppersmith, D. B. Johnson, and S. M. Matyas, A Proposed Mode for Triple-DES Encryption,IBM

Journal of Research and Development, Vol. 40, No. 2, pp. 253–262, March 1996.
[13] D. W. Davies and G. I. P. Parkin, The Average Cycle Size of the Key Stream in Output Feedback

Encipherment,Advances in Cryptology, Proceedings of CRYPTO’82, pp. 97–98, 1982.
[14] D. W. Davies and W. L. Price,Security for Computer Networks, second edition, Wiley, New York, 1989.
[15] W. Diffie and M. E. Hellman, Exhaustive Cryptanalysis of the NBS Data Encryption Standard,Computer,

Vol. 10, No. 6, pp. 74–84, June 1977.
[16] C. Ellison, Two Symmetric DES modes, presented at the Rump session of CRYPTO ’95, 1995.
[17] B. Kaliski, Triple-DES: A Brief Report, Private communication, RSA laboratories, October 29, 1993.
[18] K. Kim, S. Park, and S. Lee, Reconstruction ofs2DES S-boxes and Their Immunity to Differential

Cryptanalysis,Proceedings of JW-ISC93 – Korea–Japan Joint Workshop on Information Security and
Cryptology, Seoul, October 24–26, 1993.

[19] J. L. Massey, Shift-Register Synthesis and BCH Decoding,IEEE Transactions on Information Theory,
Vol. 15, No. 1, pp. 122–127, January 1969.

[20] M. Matsui, Linear Cryptanalysis Method for DES Cipher,Advances in Cryptology, Proceedings of
EUROCRYPT ’93, pp. 386–397, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1993.

[21] National Bureau of Standards,Data Encryption Standard, U.S. Department of Commerce, FIPS pub. 46,
January 1977.

[22] National Bureau of Standards,DES Modes of Operation, U.S. Department of Commerce, FIPS pub. 81,
December 1980.

[23] M. J. Wiener, Efficient DES Key Search, Technical Report TR-244, School of Computer Science, Carleton
University, Ottawa, May 1994. Presented at the Rump session of CRYPTO ’93, August 1993.

