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Abstract. In this short note we describe an elementary technique which leads to a
linear algorithm for solving the discrete logarithm problem on elliptic curves of trace
one. In practice the method described means that when choosing elliptic curves to use
in cryptography one has to eliminate all curves whose group orders are equal to the
order of the finite field.
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Recently attention in cryptography has focused on the use of elliptic curves in public key
cryptography, starting with the work of Koblitz [1] and Miller [3]. This is because there
is no known sub-exponential type algorithm to solve the discrete logarithm problem on
a general elliptic curve. The standard protocols in cryptography which make use of the
discrete logarithm problem in finite fields, such as Diffie–Hellman key exchange, El
Gamal and Massey–Omura, can all be made to work in the elliptic curve case.

Due to work of Menezes et al. [2], it is already known that one must avoid elliptic
curves which are supersingular, these are the curves which have trace of frobenius equal
to zero. Menezes et al. reduce the discrete logarithm problem on supersingular elliptic
curves to the discrete logarithm problem in a finite field. They hence reduce the problem
to one which is known to have sub-exponential complexity. In this paper we show that
one must also avoid the use of curves for which the group order is equal to the order of
the finite field, in other words curves for which the trace of Frobenius is equal to one.
Hence these are curves for which

#E(Fp) = p.

In addition our method for solving the discrete logarithm problem on this curve runs in

193



194 N. P. Smart

linear time when time is measured in terms of the number of basic group operations that
one must perform.

The method of attack has more than just academic interest as elliptic curves of trace
one have been proposed as curves to be used in practical systems [4]. At first sight this
seems a good idea as if a curve is defined over a prime base field ofp elements and the
curve has orderp, then clearly the standard square root attacks on the discrete logarithm
problem will not be effective, at least ifp is large enough. However, such curves have
an addition structure which renders the systems very weak, as we now show.

After announcing this attack on the Internet it came to my attention that two other
groups have also independently come up with roughly the same method at roughly the
same time, see [5] and [6].

We assume that our elliptic curve,E, is defined over a prime finite field,Fp, and that
the number of points onE is equal top. Hence the trace of Frobenius is equal to one.
Suppose we have two points on the curve,P andQ, and we want to solve the following
discrete logarithm problem onE(Fp),

Q = [m] P,

for some integerm. It would be nice to be able to apply a “logarithm” map to the above
equation and hence solve the discrete logarithm problem. Such a “logarithm” would be
a homomorphism from the groupE(Fp), into a group for which solving the logarithm
problem is easy, such asF+p . However, no such logarithm map is known which is defined
on curves overFp, however, such a map is known for curves overQp.

We first compute an arbitrary lift ofP andQ to points,P andQ, on an elliptic curve,
E, defined overQp whose reduction modulop gives E. This is trivial in practice as,
because neitherP nor Q are points of order two, we can writeP = (x, y) wherex is
thex-coordinate ofP andy is computed via Hensel’s lemma.

We then have

Q− [m] P = R ∈ E1(Qp),

where the groupsEn(Qp) are as defined in Chapter VII of [7]. We note

E0(Qp)/E1(Qp) ∼= E(Fp) and E1(Qp)/E2(Qp) ∼= F+p .
However, we still have no “logarithm” map, as the standard logarithm map for curves
defined overQp is only defined on the points ofE(Qp) which belong toE1(Qp). The
groupsE(Fp) = E(Fp) andF+p have the same order by assumption, namelyp, which
means that we have the equation

[ p]Q− [m]([ p] P) = [ p]R ∈ E2(Qp).

We can then apply thep-adic elliptic logarithm,ψp, to the terms [p]Q, [ p] P and [p]R
which are all points inE1(Qp). We obtain, asR ∈ E1(Qp) and [p]R ∈ E2(Qp),

ψp([ p]Q)−mψp([ p] P) = ψp([ p]R) ≡ 0 (mod p2).

Computing thep-adic elliptic logarithm is an easy matter, see for instance Chapter IV
of [7] or [8]. We only need that

ψp((x, y)) ≡ −x

y
(mod p2),
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if (x, y) ∈ E1(Qp). So hence

m≡ ψp([ p]Q)

ψp([ p] P)
(mod p).

Clearly, on the assumption that one knows the group order, the above observation will
solve the discrete logarithm problem in linear time. To see this, notice that the only
non-trivial computation which needs to be performed is to compute [p] P and [p]Q,
both of which take logp group operations onE. However, we notice that in the above
method we need only compute the numbers to an accuracy ofp2, so we need only work
on the elliptic curveE(Z/p2Z).

There is a case when the method will not work and that happens when the curve over
Qp that one lifts to is the canonical lift. This will happen with probability 1/p, which
in any real life application will be tiny. In such a situation we can easily detect that the
method does not work, and all we need then do is perform the method again with another
lift of the original curveE.

Example. To explain the method we use a curve over a small field, namelyF43. We
take the curve

E : Y2 = X3+ 39X2+ X + 41.

The groupE(F43) can be readily verified to have 43 elements. On this curve we would
like to solve the discrete logarithm problem given by

Q = [m] P,

whereP = (0,16) and Q = (10,36). We find the following “lifts” of these points to
elements ofE(Qp) using Hensel’s lemma:

P = (0,16+ 20.43+ O(432)),

Q = (10,36+ 40.43+ O(432)).

We then need to compute [43]P and [43]Q, which we find to be equal to

[43]P = (38.43−2+ O(43−1),41.43−3+ O(43−2)),

[43]Q = (24.43−2+ O(43−1),35.43−3+ O(43−2)).

We then find that

ψ43([43]P) = 19.43+ O(432),

ψ43([43]Q) = 3.43+ O(432).

Hence

m= ψ43([43]Q)

ψ43([43]P)
= 16+ O(43),

and we conclude thatm is equal to 16, which can be easily verified to be the correct
solution.
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