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Abstract. A visual cryptography scheme is a method to encode a secret iBlage
shadow images called shares such that certain qualified subsets of shares enable the
“visual” recovery of the secret image. The “visual” recovery consists of xeroxing the
shares onto transparencies, and then stacking them. The shares of a qualified set will
reveal the secret image without any cryptographic computation.

In this paper we analyze the contrast of the reconstructed imdgeunhofn visual
cryptography schemes. (In such a schemelastyares will reveal the image, but no set
of k—1 shares gives any information about the image.) In the case of 2 nthieshold
schemes we give a complete characterization of schemes having optimal contrast and
minimum pixel expansion in terms of certain balanced incomplete block designs. In the
case ok out of n threshold schemes with> 3 we obtain upper and lower bounds on
the optimal contrast.

Key words. Secret sharing scheme, Visual cryptography, Combinatorics designs.

1. Introduction

Avisual cryptography scheme (VCS) for a $edf n participants is a method to encode a
secretimagé&linton shadow images called shares, where each participd&htéceives
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one share. Certain qualified subsets of participants can “visually” recover the secret
image, but other, forbidden, sets of participants have no information (in an information-
theoretic sense) o8l. A “visual” recovery for a seX C P consists of xeroxing the
shares given to the participants¥onto transparencies, and then stacking them. The
participantsin a qualified satwill be able to see the secretimage without any knowledge

of cryptography and without performing any cryptographic computation.

This cryptographic paradigm was introduced by Naor and Shamir [15]. They analyzed
the case of & out of n threshold VCSs, in which the secret image is visible if and only if
anyk transparencies are stacked together. Further resukahof n threshold VCSs
can be found in [1], [2], [9], and [10].

The model by Naor and Shamir has been extended in [1] and [2] to general access
structures (an access structure is a specification of all qualified and forbidden subsets of
participants), where general technigues to construct VCSs for any access structure have
been proposed.

Some other generalizations of the basic model have been considered:

e In implementing VCSs it might be useful to conceal the existence of the secret
message, namely, the shares given to participants in the scheme should not look
like a random bunch of pixels, but they should be innocent looking images (a
house, a dog, a tree,.). This can be thought of as a form of information hiding
or steganography and it is referred to aseatended/CS. Naor and Shamir [15]
first considered this method of concealing the existence of the secret message for
the case ba 2 out of 2 threshold VCS. In [3] an efficient solution of the problem
for general access structures was given.

e Droste [9] considered the problem of sharing more than one secretimage among a
set of participants. For example, in the Appendix of [9], a 2 out of 3 threshold VCS
is presented in which each pair of transparencies reveals a different secret image.
A construction is given to obtain VCSs in which different subsets of transparencies
reveal different secretimages. This construction also provides a method of obtaining
extended VCSs; however, it is not as efficient as the method in [3].

e In[16] an alternative reconstruction method for VCSs s studied. This method yields
a higher contrast in the reconstructed image for 2 out tifreshold schemes, but
the technique is not applicable kaout of n threshold schemes with> 3.

e An alternative measure of contrast is considered in [18].

e VCSs to encrypt coloured images are given in [13], [17], and [18].

e Authentication methods using visual cryptography are studied in [14].

In this paper we analyze the contrast of the reconstructed imageofarofn VCSs.
(This contrast is measured by thedative differenceof the scheme, defined in the next
section.) In the case of 2 out ofthreshold schemes we obtain an exact formula for the
optimal relative difference. We also show how to realize this optimal relative difference
with the minimum possible pixel expansion. (A scheme pias| expansion nif each
pixel of the original image is encoded mssubpixels on each transparency.) In fact, we
give a complete characterization of the optimal schemes in terms of certain balanced
incomplete block designs.

In the case ok out of n threshold schemes with > 3, we obtain upper and lower
bounds on the optimal relative difference. The lower bounds are derived from explicit
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constructions. The upper bounds are obtained from a structural result which relates
the relative difference of & out of n threshold scheme to the relative difference of a

k — 1 out ofn — 1 threshold scheme. This structural result also gives lower bounds on
the pixel expansion ok out of n threshold schemes. Finally, we give necessary and
sufficient conditions for a pair af x m matrices to be the basis matrices df aut ofn
threshold VCS with pixel expansian. (Basis matrices are the most important method

of constructing VCSs; see Section 2.1 for the definition.)

2. The Model

Let? = {1,..., n} be a set of elements callgarticipants and let Z denote the set of
all subsets ofP. Let Tgual € 27 andTrer, € 27, wherelgual N Trory = ¥. We refer
to members of qua asqualified set&nd we call members dfgq, forbidden setsThe
pair (Tqual, I'rorb) is called theaccess structuref the scheme.

Definel’y to consist of all the minimal qualified sets:

To={A€Tqua: A ¢Tquaforall A < A A A}.

A participantP e P is anessentialparticipant if there exists a set C P such that
XU{P} € T'gua but X & Cgual. If a participantP is not essential, then we can construct
a VCS giving him nothing as his or her share. In fact, a nonessential participant does not
need to participate “actively” in the reconstruction of the image, since the information
he has is not needed by any set7min order to recover the shared image. In any
VCS having nonessential participants, these participants do not require any information
in their shares. Therefore, we assume throughout this paper that all participants are
essential.

In the case wher€qua is monotone increasind;ron is monotone decreasing, and
ICoual U Trory = 27, the access structure is said todteng andlg is termed éasis
(This situation is the usual setting for traditional secret sharing.) In a strong access
structure,

Ioual = {C € P: B < C for someB € Iy},

and we say thalqual is theclosureof I'g. On the other hand, ifg = I'gual, then the
access structur@ qual, I'rorp) IS said to baveak

For setsX andY and for elements andy, to avoid overburdening the notation, we
often writex for {x}, xy for {x, y}, XY for {x} UY, andXY for X U Y.

We assume that the secret image consists of a collection of black and white pix-
els. Each pixel appears im versions callecshares one for each transparency. Each
share is a collection of black and white subpixels. The resulting structure can be
described by am x m Boolean matrixS = [sj] wheresj = 1 iff the jth sub-
pixel in theith transparency is black. Therefore the gray level of the combined share,
obtained by stacking the transparencigs...,is, is proportional to the Hamming
weight w(V) of the m-vectorV = OR(;,,...,r;,), wherer;,...,r;, are the rows
of S associated with the transparencies we stack. This gray level is interpreted by
the visual system of the users as black or as white according to some rule of
contrast.
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Definition 2.1. Let (Foual, I'rorb) be an access structure on a sengparticipants.
Two collections (multisets) ofi x m boolean matricegy andC; constitute avisual
cryptography schem@ qual, I'rorb. M)-VCSif there exist values (M) and{tx}xerg,y

satisfying:

1. Any(qualified set X= {i1,i2,...,ip} € I'gua can recover the shared image by
stacking their transparencies
Formally, for anyM € Cp, the “or” V of rowsiy, iy, ..., i, satisfiesw(V) <
tx — a(m) - m; whereas, for anyl e C; it results thatw (V) > ty.

2. Any(forbidder) set X= {iy, i2, ..., ip} € I'roy has no information on the shared
image
Formally, the two collections op x m matricesD;, with t € {0, 1}, obtained by
restricting eachn x m matrix inC; to rowsiy, i, ..., ip, are indistinguishable in

the sense that they contain the same matrices with the same frequencies.

Each pixel of the original image will be encoded impixels, each of which consists
of m subpixels. To share a white (resp. black) pixel, the dealer randomly chooses one
of the matrices irCy (resp.C1), and distributes row to participant. Thus, the chosen
matrix defines then subpixels in each of thetransparencies. Notice that in the previous
definitionCp (resp.C1) is a multiset ofn x m boolean matrices. Therefore we allow a
matrix to appear more than onced@p (resp.C1). Finally, observe that the size of the
collectionsCy andC, does not need to be the same.

The first property is related to the contrast of the image. It states that when a qualified
set of users stack their transparencies they can correctly recover the image shared by the
dealer. The value(m) is calledrelative differencethe number:(m) - mis referred to
as thecontrastof the image, and the sfix } x<r, is called theset of thresholdsMe want
the contrast to be as large as possible and at least one, thanis> 1/m. The second
property is calledsecurity since it implies that, even by inspecting all their shares, a
forbidden set of participants cannot gain any information in deciding whether the shared
pixel was white or black.

Suppose'qual: I'rorb) IS @ strong access structure and supp@sandC; are the
collections of matrices in & qual, I'rorb, M)-VCS with relative difference:(m). Then
we can also viewgy andC; as a VCS for the related weak access structheeN'ror).

More preciselyCo andC; comprise a(I'g, I'rorh, M)-VCS with relative difference at
leasta(m).

There are few differences between the model of visual cryptography we propose and
the one presented by Naor and Shamir [15]. Our model is a generalization of the one
proposed in [15], since with each skt € I'gua We associate a (possibly) different
thresholdtx . Further, the access structure is not required to be strong in our model.

Notice that if a set of participants is a superset of a qualified s¥t, then they can
recover the shared image by considering only the shares of th€.sEhis does not in
itself rule out the possibility that stacking all the transparencies of the participakts in
does not reveal any information about the shared image.

We make a couple of observations about the structufg@f andI"ror, in light of the
above definition. First, it is clear that any subset of a forbidden subset is forbidden, so
[Crorb IS Necessarily monotone decreasing. Second, it is also easy to see that no superset
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of a qualified subset is forbidden. Hence, a strong access structure is simply one in which
Toual is monotone increasing afthya U ey = 2P.

Notice also that, given an (admissible) access stru¢itgu. I'ror), We can “embed”
it in a strong access structu(rEb I'forp) INWhichToua © Féua, andlrorm € iy
One way to so this is to také’, . I'r,pp) t0 be the strong access structure having as
basisI"g, wherel'y consists of the minimal sets Ifgya, as usual.

In view of the above observations, it suffices to construct a VCS for strong access
structures. However, we sometimes give constructions for arbitrary access structures as
well.

Let M be a matrix in the collectio@y U C; of a (I'quar, I'ror, M)-VCS on a set of
participantsP. For X C P, let My denote then-vector obtained by considering tbeof
the rows corresponding to participantsinwhereasM[ X] denotes théX| x m matrix
obtained fromM by considering only the rows corresponding to participant&.in

ual’

2.1. Basis Matrices

All the constructions in this paper are realized using twe m matrices,S” and S,
calledbasis matricesatisfying the following definition.

Definition 2.2. Let (I'gual, I'rorb) be an access structure on a sehgfarticipants. A
(T'quat, I'rorb, M)-VCS with relative differencer(m) and set of thresholc[sl;x}XEpQual is
realized using the x m basis matrices Sand St if the following two conditions hold:

L If X ={ig,i2,...,ip} € Foua (i-€., if X is a qualified set), then the “oN of rows
i1,i2,...,1p of L satisfiesw(V) < tx — a(m) - m; whereas forSt it results that
w((V) > tx.

2. If X = {ig, iz, ...,ip} € T'ron (i-€., if X is & forbidden set), then the twox m
matrices obtained by restrictir and S' to rowsiy, i, ..., i, are equal up to a
column permutation.

The collectiong’y andC; are obtained by permuting the columns of the corresponding
basis matrix & for Co, andS* for C;) in all possible ways. Note that, in this case, the size
of the collectiong’y and(; is the same and it is denoted byThis technique was first
introduced in [15]. The algorithm for the VCS based on the previous construction of the
collectionsCy andC; has small memory requirements (it keeps only the basis matrices
S? and S') and it is efficient (to choose a matrix @ (resp.Cy) it only generates a
permutation of the columns & (resp.Sh)).

3. Threshold Schemes
A (k, n)-threshold structure is any access structlit§ual, I'rorb) in which
I'o={BCP:|B =k}

and

Frob ={B S P: |B] <k —-1}.
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In any (k, n)-threshold VCS the image is visible (that is, Property 1 of Definition 2.1 is
satisfied) if anyk of n participants stack their transparencies, but totally invisible (that
is, Property 2 of Definition 2.1 is satisfied) if fewer thlrtransparencies are stacked
together or analyzed by any other method. In a strgn@)-threshold VCS the image
remains visible if more thak participants stack their transparencies.

Naor and Shamir showed (see Theorem 5.3 in [15]) that there @xis}j-threshold
VCSs withm = 20Kk . |ogn anda(m) = 2-2® . The construction presented in [1]
(see Theorem 6.2) yields schemes with= O(k(2e)¥logn). The value ofm is less
than the one in the Naor and Shamir construction, but this was achieved by relaxing the
condition that all valuesy are equal.

Droste [9] gave an algorithm to construct basis matricegKon)-threshold VCSs.

It can be shown that this algorithm always constructs schemesagith = 1/m and

m > n. For small values ok andn, the schemes obtained are quite efficient. However,
for n large with respect t&, the value oin is much larger than in the schemes obtained
in [1] and [15].

In this paper we present new techniques to realkze)-threshold VCSs achieving
a bigger value of the relative difference whien< n. In the case of2, n)-threshold
VCSs, we obtain the best possible value for the relative difference (see Theorem 4.2), as
well giving a complete characterization of schemes that achieve largest possible relative
difference and minimum possible pixel expansion.

Some results of a similar nature have been proved independently by Hofmeister et al.
[10]. Using a linear programming technique, they give constructions in [1Qkfar)-
threshold VCSs having large relative difference,Kar {3, 4, n}. Also, fork = 2, they
have independently derived some results similar to ours for certain valwes of

In [5] a canonical form for gk, n)-threshold VCS was presented and a complete
characterization of a contrast optim@al — 1, n)-threshold VCS in canonical form was
given. Moreover, fon > 4, a contrast optimal3, n)-threshold VCS in canonical form
has been provided. Finally, f&r= 4, 5 two schemes with contrast asymptotically equal
to 1/64 and Y256, respectively, are presented.

The construction of &k, k)-threshold VCS is obtained (see [15]) by means of the
construction of the basis matric&8 andT,! defined as followsT? is the matrix whose
columns are all the boole&avectors having an even number of 1's, dijds the matrix
whose columns are all the booleksvectors having an odd number of 1’s. In such a
scheme we have that the pixel expansiois equal to 2-1. In [15] it was proved that
the (k, k)-threshold VCS obtained from this construction is uniform, that is, for every
1 < p < k-1 the “or” of any p rows of T2 and T,! has weightf (p) for some
function f.

The next lemma was proved in [1]; we repeat its proof here for the reader’s
convenience.

Lemma 3.1. Let(Igua. I'rorb) be an access structure on a set of participaftd_et
X, Y C P be two nonempty subsets of participamstsch that XY = @, X € Trorp,
and XUY € I'gua. Then in anyT qual, I'rorb, M)-VCS for any matrix Me C; it holds
that

w(Mxy) — w(Myx) > a(m) - m.
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Proof. Let M be any matrix inC;. From Property 1 of Definition 2.1 we have that
w(Mxy) > txy. SinceX € Trom, then from Property 2 of Definition 2.1, there is at
least one matriM’ € Cp such thatM[X] = M’[ X]. Therefore, we have

w(Mx) = w(My)
< w(Mky)
< txy —a(m)-m
< w(Mxy) —a(m)-m,

where the second inequality of the above expression derives from Property 1 of Defini-
tion 2.1. Thus, the lemma is proved. O

One immediate consequence of this lemma is the existence, in the matrices belonging
to C;, of some predefined patterns referred touaavoidable patternsFor instance,
supposeX € Igual andX\{i} € T'rorp. Then, for anyM e Cq, the matrixM[ X] contains

at leaste(m) - m columns wih a 1 in theith row and 0’s in the other rows. This can be
seen by applying Lemma 3.1 witk = Y U {i}. In fact, we get

w(Myy(y) — w(My) > a(m) - m.

Therefore, there must be at leagm) - m columns inM[ X] with a 1 in rowi and 0’s in
the other rows.

Let (Tqual, Irorb) be an access structure on aBedf participants. Given a subset of
participantsP’ C P, we define the access structimduced byP’ to be the families of
sets defined as follows:

1—‘[7)/]Qual = {(XeTlgua: XC P}, and
[P Trob = {X € Tro: X S P'}.

The following lemma is immediate.

Lemma 3.2. Let (I'gual, I'rob) be an access structure on a setof participants

and let (T[P'lqual, T'[P']rorb) be the induced access structure on the subset of par-
ticipants P'. If there exists a(l"qual, I'rorb, M)-VCS then there exists &'[P']qual,
C[P'lForb, M)-VCS

4. (2, n)-Threshold VCSs with Optimal Contrast

In this section we describ@, n)-threshold VCSs achieving a greater relative difference
than the ones presented in [1], [2], [9], and [15]. (This construction was first mentioned
in [2] and a similar construction in the case wheres even was given in Section 5.2
of [10].)

The n x m basis matrixSt is realized by considering all the binansvectors of

weight [n/2]. Hencem = (m'/‘zj) and any row inS* has weight equal t()Ln’/‘z‘Jl_l). The

n x mbasis matrix3° is realized by consideringequal rows ofweigh(tm’/‘il_ 1) Clearly,
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Property 2 of Definition 2.2 is satisfied. We have to prove that these basis matrices satisfy
Property 1 of Definition 2.2 also. Consider any- 2 distinctindices, sa, ..., iq, and

letX = {iy, ..., iq}. We now compute the differenes(S}) —w(S}). Itis easy to see that

for anyq > 2 it results thatw(S%) = (Ln?gjal). Moreover, forq > n— [n/2] = [n/2],

we have thatw(S}) = m. For 2 < q < [n/2], it is immediate to see thab(S}) is

equal tom minus the number of columns having as entries all 0's in the rows indexed by
i1,...,iq. Hence one can compute

i _( "y _ (h—Q
w(sx)_<Ln/2J> (Ln/ZJ)'

Since, for any 1< k < n, it holds that
ny (n-— 1 n n—-1
k)] \k—-1 k )’

n—1 n—g : n
(Ln/2j> - (Ln ZJ) t2=q=|3].
n—1 . n
(Ln/2j> i (EW <a=n

The above quantity (S;) — w(Sy) does not depend on the actual ebut only on its
size. LetB(q) = w(S}<) — w(§}). The quantityB(q) is not decreasing and reaches its
minimum atq = 2. Definex(m) = 8(2)/m. Hence

(1) = (2s) = (=) = (s )
a(m)-m= - - = .
[n/2] Ln/2] [n/2] -1 n/2] -1

n
Ln/2]

we obtain that

w(Sy) — w(Sy) =

Sincem = (), ), we get that

(wara)  In/2Jm/2]

a(m) = = = .
(Ln/ZJ) nin—1)

)

For convenience we define*(n) = ({n/2|[n/2])/(n(n — 1)). Observe that we can
express*(n) in the following form:

n

if nis even
. 4n -4
A P
if nis odd.
4n

For any seiX of at least two participants, if we st = w(S)l() anda(m) = a*(n), then
Property 1 of Definition 2.2 is satisfied. Theorem 4.2 proves that the valu&(oj is
the best possible value for the relative difference @,a)-threshold VCS.

From the previous discussion we obtain that by stacking together more than two
transparencies of o2, n)-threshold VCS, the image we recover becomes more visible
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(i.e., the difference between a white and black pixel is larger when we stack together
more than two transparencies). When we statk?| < q < n transparencies we have

that
B 1, B n _ n—1 _ n—1
B@) = w(Sp) — w(S = (Ln/zj) (Ln/ZJ = 1) - (Ln/ﬂ)‘

Sincem = (Ln'/‘zj), we get that the “relative difference” in this case is equal to
p@ _, LnJ 1 : if nis even
m " L2l n" |14+L  ifnisodd.

We summarize the above discussion in the following theorem.

Theorem 4.1. For any n > 2, there exists a stron@2, n)-threshold VCS with pixel
expansion m= (Lnr/‘zj) anda(m) = o*(n).

In the next theorem, we prove an upper boundx@m) which shows that the schemes
constructed in Theorem 4.1 have optimal relative difference. Note that the bound holds
for a weak or strong threshold VCS. The proof is essentially the same as the proof
of the Plotkin bound from coding theory (see, for example, [11]). This result was first
mentioned in [2] and a similar result was also proved in Theorem 3.5 of [1@]dwen;

our bound is slightly stronger far odd.

Theorem 4.2. Letn> 2.Inany(2, n)-threshold VCS with pixel expansion itrholds
thata(m) < o*(n).

Proof. Let M € C;. By Lemma 3.1 for any distinat, j € {1, ..., n}, the matrix
M[{i, j}] contains the patterr{%] andm, each appearing at leastm) - mtimes. The
number of such unavoidable patterns |s@ -a(m)-m=n(n—1)-a(m)-m. Clearly,
any column ofM can “cover” more than one pattern. If a columnvbthasi entries equal
to 1, then it “covers’l (n — i) such patterns. The quantitgn — i) reaches its maximum
fori = |n/2] ori = [n/2]. Therefore, any column iM “covers” at mostin/2|[n/2]
unavoidable patterns. Thus, the number of columnigl dfas to be at least

nn—1 - -a(m)-m
B n/2j[n/21 °
which proves the theorem. O

2

Now we analyze the structure (& n)-threshold VCSs with optimal relative difference
a(m), that is, schemes for whick(m) = o*(n). Before we proceed, we need the
following definitions from coding theory. Atin, M, d) codeis a set ofM binary n-
tuples (calledcodeword¥with the property that the Hamming distance between any two
codewords is at least The integen is thelengthof the codeM is its size andd is its
distance A code isequidistanif the the Hamming distance between any two codewords
is exactlyd. A code hagonstant weigheéqual toc if the number of 1's in any codeword
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is exactlyx. Results and tables of the best constant weight codes of length less than 29
can be found in [12] and [6].

Lemma 4.3. Let (Co, C1) be any(2, n)-threshold VCS with pixel expansion m and
optimal relative difference(m) = «*(n). Let M € C;. The following properties hold

1. The weight of any column of M is eithgn/2| or [n/2].
2. Forany pair of distinct rows of M any unavoidable pattern appears exagtly) -m
times

3. Forany M € Cp U (s it holds thatw = w(M[1]) = w(M[2]) = --- = w(M[n)),
that is all the rows have the same weight Moreoverif n is eventhenw = m/2;
otherwise[n/2] (m/n) < w < [n/2] (m/n).

. Any M € Cp has M1] = M[2] = --- = M[n].

. Forany M € C; the sef{M[1], M[2], ..., M[n]} isan(m, n, 2 - «*(n) - M) equi-
distant code with constant weight

g b

Proof. From the proof of Theorem 4.2 one can see that the number of unavoidable
patternsinanyl € C; is exactly|n/2][n/21m, and that any column d¥l has to “cover”
Ln/2]n/2] unavoidable patterns. Hence, we have that the weight of any coluMriof
either|n/2] or [n/2]. Moreover, for any distingt, j € {1, ..., n}, the matrixM[{i, j}]
contains the patterns | and m each appearing exactly*(n) - m times. Hence, it

follows that for any distinct, j € {1,...,n} and for anyM € Cp U C; it holds that
wM[i]) = w(M[jD.

If nis even, then, since the total number of 1'sMhe C; is (nm)/2, we get that the
weight of any row is equal ton/2, which implies thain has to be even. If is odd,
then, since the weight of any column bf € C; is either|n/2] or [n/2], we have that
[n/2m < w - n < [n/2]m. Hence, it follows that

nim nqm
35 =e=[3]5

For anyM” € C; and for any distinct, j € {1,...,n} it holds thatw(M; ;,) =

w~+a*(n)-m. Since the contrast of the schemeaign) - mit has to be that foraniyl € C

it holds thatw (M, j,) = w. From Property 2 of Definition 2.1 for anyl € Cy it holds

thatw = w(M[1]) = --- = w(M][n]), hence we get thal[1] = M[2] = --- = M[n].
For anyM e C; the rows ofM have the same weight and any two rows oM differ

in exactly 2- «*(n) - m positions. Therefore, the rows & are the codewords of an

(m, n, 2. @*(n) - m) equidistant code. O

We now use a matri¥ e C; to construct a combinatorial design with certain proper-
ties. Again, we need a few definitions. ek, andx be positive integers with 2 k < v.
A (v, k, 1)-BIBD (balanced incomplete block des)ge a pair(X, B), whereX is a set
of v elements (callegointy andB is a collection of subsets of (calledblockg, such
that each block contains exaciypoints and each pair of points is a subset of exakctly
blocks. In a(v, k, A)-BIBD, each point occurs in exactty= A(v — 1)/(k — 1) blocks,
and the total number of blocks 5= vr/k = A(v? — v)/(k?® — k). The number is
called thereplication numbenof the BIBD.
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We record a fact concerning BIBDs that we will use later. Supp¥sé®) is a(v, k, A)-
BIBD. Define a new structureX, A), where

A= {X\B: BeB).

It is not difficult to see thatX, A) isa(v,v —k,b—2r + 1)-BIBD. (X, A) is called
thecomplemenbf (X, B).

Let v and A be positive integers, and lé& be a set of positive integers such that
2 < k < v for everyk € K. A (v, K, 1)-PBD (pairwise balanced desigris a pair
(X, B), whereX is a set ofv elements (callegointg andB is a collection of subsets of
X (calledblockg, such thatB| € K for everyB € 13, and each pair of points is a subset
of exactlyi blocks. As with BIBDs, we usb to denote the number of blocks. Note that
itis not necessarily the case in a PBD that there is a fixed integigch that every point
occurs in exactly blocks. Observe also that a PBD witki| = 1 is a BIBD.

Suppose thatX, 1) is a PBD (or a BIBD). Theoint-block incidence matrigf this
design is the x b matrix M, in which the rows are indexed by and the columns are
indexed by, where

{1 if xeB,
Myp =

0 otherwise.

We have the following results characterizing threshold VCSs with optimal pixel ex-
pansion in terms of BIBDs and PBDs.

Theorem 4.4. Suppose n is eveithen there exists &, n)-threshold VCS with pixel
expansion m an@optimal) relative differencex(m) = «*(n) if and only if there exists
an(n,n/2, m(n — 2)/(4n — 4))-BIBD.

Proof. Suppose that we have @, n)-threshold VCS with pixel expansiom and
optimal relative difference. Lé¥l € C1. We will show that theM is the incidence matrix
ofan(n, n/2, m(n — 2)/(4n — 4))-BIBD, (X, B). The verifications follow from Lemma
4.3 in a straightforward manner. Sinkehasn rows, we haveX| = n, and sinceM has

m columns, we havéB| = m. Since every column oM has weighin/2, every block

B € B has sizen/2. Since every row oM has weightm/2, the design has constant
replication number = m/2. Finally, since the Hamming distance between any two
rows of M is exactly 2. «(m) - m, we see that any two points X occur in exactly

m mn m(n — 2)
r—a(m -m=— — = =
2 4n-4 4n -4

blocks. Hence the desired BIBD is obtained.

Conversely, suppose we have @amn/2, m(n — 2)/(4n — 4))-BIBD. Let M be its
point-block incidence matrix. Then we can obtain a (strai2gh)-threshold VCS with
pixel expansiorm and optimal relative difference by taking basis matri&ésand S,
whereS'! = M and S is a matrix ofn identical rows, each consisting af/2 ones
followed bym/2 zeros. O

The following result is proved by the same method; we omit the proof.
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Theorem 4.5. Suppose n is odd’hen there exists &2, n)-threshold VCS with pixel
expansion m an@optimal) relative differencex(m) = «*(n) if and only if there exists
an(n,{(n—1)/2, (n+ 1)/2}, w — m(n + 1)/(4n))-PBD such that every point occurs
in exactlyw blocks wherew is an integer such that

(n—1)m “w< (n+1)m'

2n 2n

4.1. Achieving Optimal Contrast with Minimal Pixel Expansion

Inthis subsection we investigat€é n)-threshold VCS with (optimal) relative difference
in which the pixel expansion is as small as possible.

First, supposais even. By Theorem 4.4, there existgann/2, m(n — 2)/(4n — 4))-
BIBD. In this BIBD the number of blocké = m. The classical inequality known as
Fisher’s inequality states that> v in any BIBD. Hence it follows that > n. Further,
sinceA must be an integer, it must be the case that — 2) = 0 mod(4n — 4). Hence
m(n — 2) = 0 mod(n — 1), and sincem(n — 1) = 0 mod(n — 1), it follows that
m = 0 mod(n — 1). Combining this with the fact thah > n, we see thamn > 2n — 2.
Thus, wherm = 2n — 2, we have arin, n/2, n/2 — 1)-BIBD, and we have shown the
following.

Theorem 4.6. Suppose n is even and there exist&®an)-threshold VCS with pixel
expansion m angoptimal relative differencex(m) = «*(n). Then m> 2n — 2, and
m = 2n — 2 if and only if there exists atm, n/2, n/2 — 1)-BIBD.

We use Hadamard matrices to construct BIBDs with parameters required by Theo-
rem 4.6. Before proceeding further, we record some useful results from design theory.

A Hadamard matrixof ordern is ann x n matrix H in which every entry ist1 and
HHT = nl,, wherel, is then x n identity matrix. For results on Hadamard matrices,
see [4] and [8]. We summarize some basic results now. It is well known that a Hadamard
matrix of ordern exists only ifn = 1, n = 2, orn = 0 mod 4. TheHadamard Matrix
Conjectureconjectures that Hadamard matrices exist for all orders divisible by four.
Many constructions are known for Hadamard matrices. In particular, a Hadamard matrix
of order 4 exists if 4 — 1 is a prime power. Also, itis known that a BIBD with parameters
(4t — 1,2t —1,t — 1) exists if and only if a Hadamard matrix of orderexists.

A BIBD with b = v is calledsymmetri¢cand it is known that any two blocks of a
symmetric BIBD intersect in exactly points. Note that &v, k, A)-BIBD is symmetric
if and only if A(v — 1) = k(k — 1). From a symmetric BIBD, two further BIBDs can be
constructed as follows. Suppog¥, B) is a symmetriqv, k, 1)-BIBD, and letBy € B
be any block. Then is easy to see that

(Bo, {BN By: B € B, B# Bp})
isa(k, A, A — 1)-BIBD, called aderivedBIBD. Further,
(X\Bo, {B\Bo: B € B. B # Bo})
is seen to be & — k, k — A, 1)-BIBD, called aresidualBIBD.
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A (2n—-1n-—1n/2 - 1)-BIBD is a symmetric BIBD which is equivalent to a
Hadamard matrix of orden® by the remark above. From this BIBD, we can construct
the(n, n/2,n/2 — 1)-BIBD required in Theorem 4.6 as the residual design. Thus, if the
Hadamard matrix conjecture is true, then the desired threshold VCS can be constructed
for any evem.

Example 4.1. Suppose = 6. (Z11, B) is an(11, 5, 2)-BIBD, where
B=1{{0,2,3,4,8} +i mod 11:i € Z11}.

If we compute the residual design of this BIBD with respect to the bl{6cR, 3, 4, 8},
then we obtain &6, 3, 2)-BIBD, (X, A), whereX = {1, 5, 6, 7,9, 10} and.A consists
of the following ten blocks{1, 5, 9}, {5, 6, 10}, {5, 6, 7}, {1, 6, 7}, {5, 7, 9}, {6, 9, 10},
{7,9,10}, {1, 5, 10}, {1, 6, 9}, and{1, 7, 10}. If we form the point-block incidence matrix
of this BIBD, then we get the following:

100100011
111010010
011101001
001110100
100011101
010001110

This is the basis matrig' of a (2, 6)-threshold VCS with pixel expansian = 10 and
a= 1—30. The matrixS° can be taken to be thex610 matrix in which every row is equal

to (1111100009

We now turn to odah. Theorem 4.5 says we have @an {(n — 1)/2, (n+ 1)/2}, w —
m(n + 1)/(4n))-PBD such that every point occurs in exacilyblocks, where
(n—1)m cw< (n+1)m'

2n 2n ®

Let x be any point in the PBD, and suppose thatccurs ins blocks of size(n + 1)/2
and hence inv — s blocks of size(n — 1)/2. Sincex occurs with every other point in
exactlyw — m(n + 1)/(4n) blocks, we obtain

n—1 n—-3\ _ _(,y_Mn+DY
S( > >+(w—5)(T>—)L(U—1)—<w an )(n D,

from which it follows that

_(n+1 m(n — 1)
S—<T) (““T) @

Now, Fisher’s inequality (for BIBDs) that we used above can also be shown to hold
for PBDs (see, for example, p. 81 of [4]). So we again hawve n. We assume that
m = n. Then it follows from (3) thatv = (n — 1)/2 orw = (n+ 1)/2, so we have two
cases to consider.
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In the first case, (4) says that= 0. In other words, the PBD is a BIBD, namely,
an(n, (n—1)/2, (n — 3)/4)-BIBD. This implies thath = 3 mod 4, and the BIBD is
equivalent to a Hadamard matrix of ordes- 1.

In the second case, (4) yields= (n 4+ 1)/2 = w. Again, the PBD is a BIBD, this

time an(n, (n + 1)/2, (n + 1)/4)-BIBD. As before, this implies thah = 3 mod 4.
Now, the complement of this BIBD is afn, (n — 1)/2, (n — 3)/4)-BIBD (and vice
versa). So we get back to the parameter situation considered in the first case, and we
see that arin, (n + 1)/2, (n + 1)/4)-BIBD is also equivalent to a Hadamard matrix of
ordern + 1.

We have shown the following.

Theorem 4.7. Suppose = 3 mod 4and there exists &2, n)-threshold VCS with pixel
expansion m antbptimal) relative differencex(m) = «*(n). Thenm> n,and m= n if
and only if there exists afn, (n —1)/2, (n— 3)/4)-BIBD (or, equivalentlya Hadamard
matrix of order n+ 1).

Example 4.2. Supposen = 11. We use the&11l, 5, 2)-BIBD constructed in Exam-
ple 4.1. The point-block incidence matrix of this BIBD is as follows:

1 001000111
01 0010O0O0T11
1 010O010O0O01
1101001000
1110100100
0111010010
0011101001
0001110100
1000111010
01000111001
001 00O0O1110

This is the basis matri$® of a (2, 11)-threshold VCS with pixel expansion = 11 and
a= 1% The matrixS° can be taken to be the 3111 matrix in which every row is equal
t0 (11111000000

Alternatively, we could construct afill, 6, 3)-BIBD as the complement of the
(11, 5, 2)-BIBD given above. The resulting basis mat$ would be formed by in-
terchanging 0's and 1's in the matrix given above, &ldvould consist of 11 identical
rows equal tq11111100000

Finally, we need to investigate the case= 1 mod 4. In this case we have > n
sincem = n is not possible. Sincg is an integer, it must be the case thai + 1) =
0 mod(4n). From this it follows thatm = 0 modn, and sincem > n we see that
m > 2n.

We suppose thain = 2n. There are three values far permitted by (3), namely,
w = n—1n, orn+ 1. We consider each possibility in turn.df = n — 1, then (4)
yieldss = 0. Our PBD is an(n, (n — 1)/2, (n — 3)/2)-BIBD. If there is a Hadamard
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matrix of order & + 2, then there is a (symmetrié2n + 1, n, (n — 1)/2)-BIBD and our
desired BIBD can be constructed as the derived BIBD.

Next we considetw = n + 1. In this case we compute from (4) tat=n+ 1 = w.
Now our PBD is ann, (n+ 1)/2, (n + 1)/2)-BIBD. This BIBD is the complement of
the(n, (n — 1)/2, (n — 3)/2)-BIBD just considered.

Finally, there is the possibility that = n. In this case (4) tells us that= (n+ 1) /2.
So each point occurs ifn + 1)/2 blocks of sizgn + 1)/2 and in(n — 1)/2 blocks of
size(n — 1)/2. It can further be computed that there arelocks of size(n + 1) /2 and
n blocks of sizein — 1)/2, andx = (n — 1)/2.

Let the PBD that we have described be dengbeds3). Now suppose we create a new
pointoco ¢ X, and adjoin to every block inB of size(n — 1) /2. Then it is not difficult
to see thatwe obtainan+1, (n+1)/2, (n—1)/2)-BIBD. Conversely, from any BIBD
with these parameters, if we delete all occurrences of any one point, we obtain a PBD
with the parameters we started with.

Our final observationis thatan+1, (n+1)/2, (n—1)/2)-BIBD can be constructed
astheresidual BIBD of @n+1, n, (n—1)/2)-BIBD, which is equivalent to a Hadamard
matrix of order 2 4 2 (note that 2 + 2 = 0 mod 4).

Summarizing the three cases that arise when1 mod 4, we have the following.

Theorem 4.8. Suppose = 1 mod 4and there exists €, n)-threshold VCS with pixel
expansion m antbptimal relative differencer(m) = «*(n). Then m> 2n,and m= 2n
if and only if there exists atn, (n — 1)/2, (n — 3)/2)-BIBD oran(n+ 1, (n + 1)/2,
(n—1)/2)-BIBD.

Example 4.3. Supposea = 5. The derived design of th@1, 5, 2)-BIBD presented in
Example 4.1 with respect to the blo&¢ = {0, 2, 3, 4, 8} produces th&5, 2, 1)-BIBD
(Bog, A"), whereA’ consists of the following ten block&3, 4}, {2, 4}, {0, 3}, {4, 8}, {2, 8},
{3, 8}, {0, 4}, {0, 8}, {0, 2}, and{2, 3}. If we form the point-block incidence matrix of
this BIBD, then we get the following:

001000111
0100100001
1 010010O00O0
110100100
000111010

This is the matrixS' of a (2, 5)-threshold VCS with pixel expansiom = 10 and
a= 1%. The matrixS° can be taken to be thex510 matrix in which every row is equal
to (1111000009
We could have instead used the complement offh2, 1)-BIBD, whichis a(5, 3, 3)-
BIBD, to create the matris'. In this caseS® would be the matrix in which every row
is equal to(1111110009
Finally, we could have started with(&, 3, 2)-BIBD (one of which was constructed in
Example 4.1), and then deleted a point to form a PBD. If we deleted the point 10 from the
BIBD produced in Example 4.1, we would get the PBD having poin{&e5, 6, 7, 9}
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and the following ten blockdq4, 5, 93, {5, 6}, {5, 6, 7}, {1, 6, 7}, {5, 7, 9}, {6, 9}, {7, 9},
(1,5}, {1, 6,9}, and{1, 7}. This PBD would give rise to the following matrig*:

1 00100011
111010010
011101001
001110100
100011101

S° would be the matrix in which every row is equal(tl11100000

Finally, we summarize our lower boundsimnas a function of, for a VCS with opti-
mal relative difference. The following is animmediate consequence of Theorems 4.6—4.8.

Theorem 4.9. Suppose there existg2 n)-threshold VCS with pixel expansion m and
(optimal) relative differencex(m) = o*(n). Then

2n—2 if n is even
m>1{n if n=3mod 4,
2n if n=1mod 4.

Note that all the inequalities in Theorem 4.9 are in fact equalities if the Hadamard Matrix
Conjecture is true.

We note that in Lemma 3.6 of [10], for the particular cas@ e 2%, it was shown
using a Hadamard matrix of ordef that there exists &, n)-threshold VCS with pixel
expansiorm = 2n — 2 and (optimal) relative differenag(m) = a*(n).

In the next subsection we show how to construct schemes with pixel expansion
that is much smaller than in the constructions given so far, while achieving a value of
a(m) ~ % which is close to optimal.

4.2. Achieving High Contrast with Smaller Pixel Expansion

We previously studied threshold VCSs with optimal relative difference, and determined
the minimum pixel expansion of such schemes (modulo the Hadamard Matrix Conjec-
ture). We now prove a lower bound omfor any threshold VCS where(m) > ‘—11.

Theorem 4.10. Let n > 2.In any (2, n)-threshold VCS with pixel expansion m and
a(m) > %, it holds that m> n — 1.

Proof. Suppose we havea, n)-threshold VCS with pixel expansionando (m) > %1.
Sincea(m) - mis an integer, we have(m) > (m+ 1)/(4m). From (2) in the proof of
Theorem 4.2, we have the following:
nn—121) -a(m)-m
h Ln/2/[n/2]
4n—121) -a(m)-m
n
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- 4n—-1DH(mM+ 1)
- 4n

_ (n=D(m+1)
-

From this it follows tham > n — 1. O

We note that it was shown in Theorem 3.8 of [10] timet- [n/2] whenevet:(m) > ;11.

If we hope to construct a threshold VCS with< n—1, we must have < 211. We will
be able to construct such schemes from constant weight codes, in a similar fashion as
was done in Theorem 4.4. We begin by observing that any constant weight code provides

a threshold VCS.

Theorem 4.11. Suppos€ is an(m, n, d) code having constant weight Then there
exists a strong2, n)-threshold VCS with pixel expansion m angn) = d/(2m).

Proof. Then x m basis matrixS' has as its rows tha codewords inC. The basis
matrix S° consists oh identical rows each of weight. O

In the previous subsection we used constant weight codes derived from incidence
matrices of certain BIBDs and PBDs. We now use a class of explicitly constructed codes
due to Caragiu [7] to construct a threshold VCS.

Theorem 4.12. Suppose ¢ is an odd prime pow@&ihen there exists a strong,
(9? — q)/2)-threshold VCS with pixel expansionsnq and

1 3
U(Q)—Z—m~

Proof. In [7] Caragiu showed the existence of(a, (9> — 0)/2,d/2 — 3,/4/2)
code having constant weiglitg — 1)/2, for all odd prime powers]. Apply Theo-
rem4.11. O

So we obtaime(m) = %—e, wheres > 0 ands — 0 asg — oo. In this construction,

we havem = O(,/n), which is a significant improvement over = Q (n), which is the
best possible whem(m) > 3.
In[10] a stronger resultis obtained using a nonconstructive proof: Hofmeister et al. use
the Gilbert—Varshamov bound to show that there ef@sh)-threshold VCSs in which
mis O((logn)/(1 — 4a)?), for anye < 3.

5. Some Constructions for ak, n)-Threshold VCS

In this section we give some new constructions(fam)-threshold VCSs having high
relative differencex(m). To construct our schemes, we needratial matrix defined as
follows.
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Definition 5.1. Letn, ¢, k be integers such th&tn. An initial matrix IM (n, ¢, k) is an
n x ¢ matrix whose entries are elements of a groundset {ay, .. ., a}, in which the
set of columns is equal to the set of vectors in which each elemefatagfpears/k
times.

The number of columng,, of an initial matrixIM(n, ¢, k) is equal to the number of
“anagrams” of the word

- - Gy - VERRY - '8
N —’ — N— —
n/k times n/k times n/k times
that is,
n!
(=—"—.
((n/k)h)

Given an initial matridM (n, £, k) we can construct &, n)-threshold VCS as follows:
Then x (¢ - 2¢°1) basis matrice$§® and St are constructed by replacing the symbols
a, ..., a, respectively, with the 1st. ., kth rows of the corresponding basis matrices
T2 andT! of the (k, k)-threshold VCS described in Section 3. The scheme obtained by
applying the previous technique igla n)-threshold VCS as Theorem 5.2 shows.

Theorem 5.2. Letn and k be integers such that k < n and Kn. Then there exists
a strong(k, n)-threshold VCS with

(n/ky

K—
2 1 and (X(m) = W

n!
M= /onk

Proof. Let T2 and T.! be the basis matrices of th&, k)-threshold VCS previously
described. LetM be the initial matrixM (n, £, k) whose entries are elements of a set
A = {ay, ..., a). Finally, letS° and S* be twon x (¢ - 2<-1) matrices constructed by
replacing the symbols, .. ., a, with the 1st. . ., kth rows of the basis matric& and
T, respectively. In the previous construction, when we replace the syrahols , ax

of M with the rows ofT,? (resp.T,}) the columni of M is expanded into an x 2¢~1
matrix referred to as thieasic block B; (resp.By ;). We will show that the matriceS”
andSt are basis matrices of, n)-threshold VCS.

Consider anyy > k distinct indices, saya, ..., iq, and letX = {i1, ..., iq}. Notice
that the quantityn (S%) — w(Sy) does not depend on the actual Xetut only on its size.
Let 8(Q) = w(Sy) — w(Sy). Recall that thek, k)-threshold VCS with basis matrices
T and T} is uniform, that is, for every k p < k — 1 the “or” of any p rows of T2
andi1 has weightf (p) for some functionf . We show thap(q), withk < q <n,isa
nondecreasing function. First, notice that, for a&ayf cardinality at leask, the value
w(Sy) — w(SY) is equal to the numbery of columns inM[ X] having as entries all the
symbols from the ground sét. Clearly, if we consider a s& > X the numbeny of
columns inM[Y] having as entries all the symbols from the groundAseannot be less
thanyx. Therefore, forank < q < n,itresults thap(q+ 1) > B(q). Hence8(q) is a
nondecreasing function and it reaches its minimungfer k. Defininga(m) = Bg(k)/m
and settingx = w(Sk) we get that Property 1 of Definition 2.2 is satisfied.
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We now computex(m) = B(k)/m. Fix any k rows of the initial matrixM, say
O1, ..., Gk, the contraste(m) - m in this scheme is equal to the number of colurhns
of M having the symbolsy, ..., & in these rows, that igM[g1, h], M[gz, h], ...,
Mgk, h]} = A. Hence, we get that

am)-m= ROkl
(N =k)/K)H¥
Since
m=¢.2%1— sz_l
((n/kH
it results that
k
a(m) = (5;/7;21

We are left with proving that Property 2 of Definition 2.2 is satisfied. Therefore, we have
to show that, for any seX C {1, ..., n} of cardinality at mosk — 1, S°[X] is equal to
S'[X] up to a column permutation. This is true since, for any {1, ..., ¢}, it holds

that By i [ X] is equal toBy ;[ X] up to a column permutation. Thus the theorem hdldis.

The previous theorem provides a construction fik, an)-threshold VCS whek|n. To
realize ak, n)-threshold VCS for any values of the parameteasdn we can construct,
using the technique presented in Theorem 5@&, ap)-threshold VCS, whergy > n
is a multiple ofk, and then consider only the firstrows of the basis matrices of this
scheme. By Lemma 3.2 the scheme obtained in this way (is a)-threshold VCS
having the same parameters askeg)-threshold VCS. The following theorem states
the existence of &, n)-threshold VCS for any value ¢fandn.

Theorem 5.3. Let k and n be integers such tHat k < n. Then there exists a strong
(k, n)-threshold VCS with

no! 1 (no/ k)
m=——.2 and a(m) = ———,
((no/k)H* «m () - 2«1

where np = [n/K7 - k.

It is easy to see that a lower bound on the relative differenoe) achieved in the
previous theorem is

a(m) > )

(2e)%
We now present a construction that is a modification of Theorem 5.2. It achieves

(essentially) the samebut with a much smaller pixel expansion. It uses a combinatorial

structure called an orthogonal array. Arthogonal array OA(t, Kk, v) is arvt x k array,

say A, of elements from a seX of cardinality v, with the property that within any

columns ofA every possiblé-tuple of elements fronX occurs in exactly. rows.
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Theorem 5.4. Suppose there exists an R, n, k). Then there exists a strorg, n)-
threshold VCS with ra= 1k2¢~* and

Proof. The construction is the same as Theorem 5.2, except that the initial matrix is
replaced by the transpogd of anO A, (k, n, k), A. Note thatAT hasn rows and - k
columns.

We compute the contrast in the resultigkgn) threshold VCS. Fix ani rows of AT.
Similar to the proof of Theorem 5.2,(m) - m equals the number of columns &f in
whichk distinct symbols occur in thiegiven rows. Sincé is an orthogonal array, there
arei such columns for every permutation of thkeymbols. Hence,

a(m) -m= -kl

Since
m = A - kkok-1,
it follows that
(k — 1!
«M = Gt
as desired. O

We compare the values afobtained in Theorems 5.2 and 5.4. It is easy to see that

(/< (k=1 nk
@) 217 @<t nn-1)--(n—k+1)

Hence, the value af in Theorem 5.2 is slightly larger, but, for largethey are essentially
the same.

We need some constructions for orthogonal arrays. These are obtained easily from
codes. Letg be a prime power. Anri, £, d]q codeis an¢-dimensional subspace of
(GF(q))", sayC, such that any any two distinct vectorsdrhave Hamming distance at
leastd. The following construction of orthogonal arrays from codes is well known.

Lemma5.5. If there exists arin, £, d]q code then there exists an Q&d — 1, n, q),
wherex = g"—¢-d+1,

Proof. LetC be the hypothesized][¢, d], code, and le€* be the dual code 6 (i.e.,
the orthogonal complement 6fin (GF(q))"). If we construct they"—¢ x n array A
whose rows are the codewordgd, then it can be shown thdtis anO A, (d — 1, n, q)
(see, for example, p. 139 of [12]). |

Thus, we have the following corollary.
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Corollary 5.6. Ifthere exists aifin, £, q+ 1] code then there exists @, n)-threshold
VCS with m= q"~¢29-1 and

(q—1)!

(gt

a(m) =

We use BCH codes as our required ingredient in Corollary 5.6. The following is
standard theory of BCH codes; see [11] for more details. Suppesg' — 1, whereq
is a prime power antlis an integer. Lep € GF(q') be a primitive element, and define

g(x) = lem{m(B), m(B?), ..., m(BM},

wherem(y) denotes the minimal polynomial of (y € GF(q')). Theng(x) is the

generator polynomial for am[¢, q 4+ 1] BCH code, wher¢ = n — degg). Since

degm(y)) <t foranyy € GF(q') and sincan(y) = m(y%), it follows that degg) <

(g — Dt, and hencé > n — (q — Dt. Thus we have am[ n — (q — Dt, g + 1]4 code.
Now, applying Corollary 5.6, we obtain our main result.

Theorem 5.7. For any prime power g and any integerst 2, there exists a strong
(g, n)-threshold VCS with = ' — 1, m = (2n 4 2)9~1, and

RG]
C(2q)et’

a(m)

This theorem shows thatkfis a prime power, then we can constru¢kan)-threshold
VCS wherex(m) = Q(vk/(ek*2k-1) andm = O((2n)*1).
We now describe a generalization of Theorem 5.4.

Theorem 5.8. Suppose there existgstrong (k, ng)-threshold VCS with pixel expan-
sion ny and relative differenceg. Suppose there also exists an;Q4 n, ng). Then there
exists astrong (k, n)-threshold VCS with ra= 1 - ngk - mg and

o - Ng!
m=———.
A = ke — k!
Proof. The construction is the same as Theorem 5.4, except that each sgmbol
(1 <i =< np) is replaced by théth row of a basis matrix of the hypothesizéd no)-
threshold VCS. O

We observe that Theorem 5.2 can be generalized in the same way as Theorem 5.4.
Also, if we setng = k, oo = 1/2¢"1, andmgy = 2~ in Theorem 5.8, then we obtain
Theorem 5.4.

We give an example to illustrate the application of Theorem 5.8. Suppesg. From
Theorem 5.4 we get &, n)-threshold scheme witta(m) = 1—18. However, we can also
apply Theorem 5.8 witk = 3,ng = 4,mp = 6, andwg = :—é (see Example 6.1). Then we

obtain an infinite class df3, n)-threshold VCSs witlx(m) = 1—16, in whichmis O(n?).
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Finally, we note that it was shown in [5] that, for any> 4, there exists a contrast
optimal (3, n)-threshold schema(m) = (n — 2|(n + 1)/4)|(n + 1)/4])/2(n —
1)(n — 2)); whereas, in Section 5.3 of [10] it was shown that there exists a contrast
optimal (3, n)-threshold scheme with(m) = n?/(16(n — 1)(n — 2)) > 1—16 for all
n = 0 mod 4. However, both these schemes have a very large pixel expansion, namely,

m= 2(L(n':l)1/4j) andm = 3(,,), respectively.

6. On the Structure of a(k, n)-Threshold VCS

In this section we give necessary and sufficient conditions for the existence of a weak
(k, n)-threshold VCS realized using basis matrices. This allows us to prove a lower
bound on the pixel expansion and an upper bound on the relative difference. Both bounds
also apply to the case of &, n)-threshold VCS. Finally, we show how our results on

the relative difference can be extended to the general case of schemes realized using
collections ofn x m boolean matrice§y andCs.

Before we state our results we need to set up our notatiorMLe¢ ann x m matrix
andletX C {1,...,n}andZ C {1, ..., m}. Let M[X][ Z] denote thg X| x |Z| matrix
obtained fromM by considering its restriction to rows and columns indexebgnd
Z, respectively.

Letn > k > 2 and letS® and S! be then x m basis matrices of a wealk, n)-
threshold VCS with relative differenegm). Fori =1, ..., n,letN; = {1,...,n}\{i},

ZM = {j: STil[j] = 1}, and letR" = {1,...,n}\Z", that is, Z" denotes the set of
indices of columns 08" having a 1 asth entry; whereasR" denotes the set of indices
of columns ofS" having a 0 asth entry. Finally, fori = 1, ..., n, and forh =0, 1, let

AP = SINJRT and B"Y"=SN][ZM.

In other words, the pairs of matrices = (A"°, A'1) andB' = (B"?, B'1) are the

submatrices ofs® and S' obtained by removing all the columns hagia 1 and a 0,
respectively, asth entry and removing the row For instance, fixing the first row of
both basis matriceS® and St, then, up to a column permutation, the basis matriges
andSt are of the following form:

o...o|1...1 o...o|1...1
Sy P Sy I S I S—
Al,O ’ Bl’l Al,l ’ Bl,O
ForanyY C N;, let A% = w(ALY — w(A®) and letAB = w(BLY) — w(BLO).

We say that the pair of matricg§°, S') has thestructural property for row j if, for
anyY C N;, the following properties hold:

1. If |Y] < k—2, then, up to a column permutatiof;°[Y] = A-1[Y]andB'-°[Y] =
B [Y].

2. If Y| = k — 1, then, up to a column permutatioA,°[Y] o B"[Y] = A"1[Y] o
B"C[Y]. Moreover, Ay = A% > a(m) - m.

3. If|Y| =k, thenAd — AZ > a(m)-m.

The next theorem holds.
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Theorem 6.1. Let $ and S be two nx m boolean matrices'he matrices $and S

are basis matrices of a wedk, n)-threshold VCS with pixel expansion m and relative
differencea(m) if and only if fori = 1,...,n, the structural property for row i is
satisfied

Proof. Assume thaf® andS! are basis matrices of a wedk n)-threshold VCS with
pixel expansiorm and relative difference(m). Now we show that, for = 1,...,n,
the structural property for roivis satisfied.

Property 1 and the first part of Property 2 derive from Property 2 of Definition 2.2
which states that, for any < {1, ..., n} with |Y| < k — 1, the submatriceS'[Y] and
S°[Y] are equal up to a column permutation. Hence, for ¥ng N; with |Y| < k — 2
the submatriceS'[Y U {i}] and S’[Y U {i}] are equal up to a column permutation. In
particular, we have that, up to a column permutation,

STY U{iNIRT = STY ULHIRY and S'Y Uiz = STY Uiz,

which implies thatA-[Y] = A-[Y] and B'-O[Y] = B-1[Y].
It is immediate to see that, for anyC N; with |Y| = k — 1, we have

A[Y] o B Y] = AV[Y] 0 BYO[Y].
Notice that, for anyy € N; with |Y| = k — 1, it holds that
w(SH) = wAH) +w(BY) and w(S)) = w(AY) +w(BYh.

Therefore, forany < N; with |Y| = k—1, asw(S}) = w(S)), we getthany' = A%
Further,

A} = w(Syygy) — w(Sygy) = a(m) -m,

from Property 1 of Definition 2.2. Thereforaf = A8 > a(m) -m.
We also prove Property 3 from Property 1 of Definition 2.2. For ¥ngZ N; with
Y| = k, one has that

AL — A8 = (S — w() = a(m) -m.

Now we prove that i8° andS! satisfy the structural property for rawfori = 1, ..., n),
thenS® and St are basis matrices of a wedk n)-threshold VCS with pixel expansion
m and relative difference:(m). Indeed, forY C {1,...,n} with |Y| = k, setting

ty = w(S}) and using the second part of Property 2 along with Property 3, we get that
Property 1 of Definition 2.2 holds. On the other hand, Property 1 and the first part of
Property 2 imply that, for any < {1, ..., n} with |Y| < k — 1, the submatriceS'[Y]
andS’[Y] are equal up to a column permutation. Therefore, Property 2 of Definition 2.2
is satisfied. Thus, the theorem holds. O

Theorem 6.2. S°and S are basis matrices of a weak, n)-threshold VCS with pixel
expansion m and relative differenag€m) if and only if fori = 1, ..., n, the pairs of
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matrices A = (A%, A-lyand B = (B"?, B'1) are basis matrices of wedak—1, n—1)-
threshold VCSs with pixel expansionssm= m — w(SYi]) and mg = w(SYi]),
respectivelyand relative differences” (ma ) anda® (mgi), respectivelywhere

a® (Mu) -ma =a® (Mmg) - mg > a(m) - m.

Proof. The “only if” part is trivial as it is an immediate consequence of Theorem 6.1,
using the fact that Properties 1 and 2 hold for every row

Conversely, suppose for= 1,...,n that A and B' are basis matrices of a weak
(k — 1, n — 1)-threshold VCS satisfying the hypotheses of the theorem. We will prove
that Properties 1 and 2 of Definition 2.2 are satisfied¥Let {1, .. ., n}with |Y| = k. Let
i €Y and definery = Y\{i}. Itis immediate to see that(S¢) — w($) = w(A{(’Ol) —
w(A{(’OO) > a(m) - m. The last inequality is justified by the fact that, by hypothesis,
the pairs of matrice®\' = (A°, A1) are basis matrices of a wegk — 1, n — 1)-
threshold VCS with relative differeneeg® (ma) -ma > a(m) - m. Hence, Property 1 of
Definition 2.2 is satisfied. To prove that Property 2 of Definition 2.2 is satisfied consider

asetY C {1,...,n} with |Y| = k — 1 and, without loss of generality, assume that
Y ={1,...,k— 1}. We have that, up to a column permutation,
0...0|1...1 o...o|1...1
LY]=|——| and SfY]=|——|.
FO ‘ GO Fl ’ Gl

SettingY’ = {2,...,k — 1}, itis immediate to see th&°® = AMO[Y'], F! = ALY[Y],

G° = BY[Y'], andG® = BYO[Y’]. Since Al = (AL, ALYy andB! = (BYO, B1Y)

are basis matrices of wegk — 1, n — 1)-threshold VCSs, then we have thHat = F1
andG® = G!, up to a column permutation. Therefore, we get that, up to a column
permutation,S[Y] = S'[Y] and Property 2 of Definition 2.2 is satisfied. Thus, the
theorem holds. O

Example 6.1. We give basis matrices for@, 4)-threshold VCS presented in [1]:

000111 000111
o _ | 001011 o _ | 100110

= | oo1101|" = |o010110| -
001110 001110

This VCS hagn = 6 anda(m) = %3 From this scheme we obtain tw@, 3)-threshold
VCSs. For example, if = 1, then the basis matrices are as follows:

001 100
A0 — [ 001], ALl — [ 010
001 001

110 011
B0 = | 110], BLI—=|101].
110 110

Both of thesg2, 3)-threshold VCSs haven = 3 anda(m) = %

and
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Notice that since any strong VCS is also a weak one, we have that any lower bound
on the pixel expansion and any upper bound on the relative difference for a weak VCS
also applies to the corresponding strong one. We show now that any upper bound on the
relative difference for &k, n)-threshold VCS realized by using basis matrices also holds
for a (k, n)-threshold VCS realized using collectionsrok m boolean matrice§, and
C1. Indeed, lety andC, be the collections af x mboolean matrices of @, n)-threshold
VCS I. Without loss of generality we can assume that |Co| = |C;1| (See Section 2.1
of [1]). We can easily realize froify andC; a scheme having the same relative difference
asX. Suppose thaty = {M%1, ..., M%"} andC; = {M*1, ..., ML}, Itis immediate
to check thats® = M%1 6 ... 0 M%" andSt = MYt o ... 0 MY' constitute the basis
matrices of gk, n)-threshold VCS having the same relative differenc&a$herefore,
any upper bound on the relative difference fakan)-threshold VCS realized by using
basis matrices also holds for tie n)-threshold VCS realized by using the collections
Co andC; of n x m boolean matrices.

Leta(k, n) denote the maximum value of the relative difference for which there exists
aweak(k, n)-threshold VCS realized using basis matrices. The following theorem states
an upper bound on the relative difference of @kyn)-threshold VCS.

Theorem 6.3. Forany n> k > 2, it holds that
ak—-1,n-1)
—
Moreoverthe relative difference (m) satisfies

ak,n) <

a(m) < 2—];( + ¢,
where
1
2*n-k+1
1
2Xn—-k+2)

ifn — k is even
E =
if n — k is odd

Proof. Let X be a(k, n)-threshold VCS realized by using basis matri@sand St
and leta(m) be the relative difference at. Finally, let A" = (A9, A1) andB' =
(B"9, B'1) be the basis matrices of wegk — 1, n — 1)-threshold VCSs as given by
Theorem 6.2. From Theorem 6.2, we have that

(XB‘ (mBi) -Mgi = OlAi (mAi) -Ma = (X(m) -m,

wherema = m — w(Si]) andmg = w(SYi]). Therefore, recalling thah = my +
mgi, we get that

A . B'
a(m)gmax{a (Ma) @ (mB)}’

2 2

from which we easily derive that(k, n) < a(k — 1, n — 1)/2. Hence, it follows that
2,n—k+2

ak,n) < M_ O

ok—2
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As a consequence of the previous theorem we have the following results which solve
an open problem in [1]. The next result closes the gap on the pixel expansion for the
access structures #16 and #17 analyzed in Section 9 of [1].

Theorem 6.4. LetI'; andI'; be the access structures having b4d4i83 124, 134, 234}
and{123 124, 134}, respectivelyin any VCS fol"; or I',, the relative difference satisfies
a(m) < % which implies that the pixel expansion m satisfies r8.

Proof. The access structuig is a(3, 4)-threshold structure. Hence, by Theorem 6.3,
in any (3, 4)-threshold VCS with pixel expansianthe relative difference (m) satisfies
a(m) < %3. Since in any VCS it must be thatim) - m > 1 it has to be the case that
m > 6.
A similar argument also applies ity as the same structural property holds for row 1.
This is easily seen due to the fact that when participant 1 is removed from the scheme

the resulting access structure i§2a3)-threshold structure. O

The next theorem provides a lower bound for the pixel expansiaf any (k, n)-
threshold VCS realized by basis matrices. irgk, n) denote the minimum valum for
which a weak(k, n)-threshold VCS realized by basis matrices exists.

Theorem 6.5. In any (k, n)-threshold VCS realized by using basis matrjgeholds
that

mk,n)>2-mk-1,n-1).

Moreoverthe pixel expansion m satisfies
m>22. p,

wherep is the smallest integer such thatn (U[/‘ZJ) +k—2.

Proof. From Theorem 6.2 we get that(k, n) > 2- m(k — 1, n — 1) from which we
obtain tham(k, n) > 2-2.m(2, n —k + 2). Applying Theorem 7.3 of [1], which states
that in any(2, n)-threshold VCS the pixel expansiomsatisfieqn < (Lm”/‘zj), the theorem
holds. O

The next corollary is an immediate consequence of the previous theorem.

Corollary 6.6. In any(k, n)-threshold VCS realized by using basis matrjtbe pixel
expansion m satisfies

m> 22 .log(n — k + 2).
We do not know if the lower bound of Corollary 6.6 also holds flrn)-threshold

VCSs not constructed by using basis matrices. However, we can prove the following
weaker bound as animmediate corollary of Theorem 6.3, using the fant that/a (m).
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Corollary 6.7. In any (k, n)-threshold VCS the pixel expansion m satisfies

m>2¢. (1—e),
where
1 if n — k is even
_Jn—-k+2 ’
B 1 _ .
m if n — k is odd

7. On the Structure of Basis Matrices

In this section we analyze the structure of basis matr&%esnd St of (k, k)-threshold
VCSs. We say that a column & or St is even (odd) if it has an even (odd) number of
entries equal to 1.

Theorem 7.1. Let ¥ and S be two kx m boolean matrices such that the same column
does not appear in botfThen the matrices%and S are basis matrices of &, k)-
threshold VCS with pixel expansion m and relative differemga) < h/2<! if and
only if all the even columns appear irf @ith multiplicity h = m/2-1 and all the
odd columns appear in'Swith the same multiplicity hConsequentiyh > a(m) - m,
a(m) < 121 and m> 21,

Proof. We start by noticing that by Property 1 of Definition 2.2, the column with all
zeros has to belong @ (e.g., see Lemma 5.11 of [1]). Assume that this all zeros column
appears with multiplicityh (by Lemma 5.11 of [1] it holds thdt > «(m) - m).

Suppose that andd are boolean columns of lengkhthat differ only in one entry,
say theith entry. Suppose thatappears with multiplicityh in S (j = 0 or 1). We
have assumed that the same column does not appear in both basis matricgs=Let
{1,...,k}\{i}. Then, using the security conditic®[X;] = S'[X;] up to a column
permutation, we see thdtappears with multiplicityh in St=1.

From the statements proved above, it follows that all the even columns app®ar in
with multiplicity h and all the odd columns appear$h with the same multiplicityh.

Conversely, if all the even columns appearghwith multiplicity h and all the odd
columns appear i* with the same muiltiplicityh, then it is immediate to see that the
matricesS” and S* are basis matrices of &, k)-threshold VCS with pixel expansion
m = h - 2~ and with relative difference(m) = 1/2¢-1. Indeed,s° and S* can be
thought of as the concatenation lofcopies of the matrice3,? and T,, respectively,
described at the beginning of Section 3. O

The “if” part of Theorem 7.1 was first shown by Naor and Shamir [15]. Hofmeister
etal. proved, using a linear programming approach, that contrast ogkinkatthreshold
VCSs have the same structure as the one described in Theorem 7.1 (see Section 5.1 of
[10]) Also, Theorem 7.1 gives a more precise characterizatiorfkaflg-threshold VCS
than the one provided by Theorem 10 and Corollary 11 of [9] which can be easily derived
from our last result.
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Lemma 5.3 of [1] states that8® andS* are the two basis matrices ofla n)-threshold
VCS andD is anyn x p boolean matrix, the§® o D andSt o D are basis matrices of a
(k, n)-threshold VCS. From this observation and Theorem 7.1 we obtain the following
result.

Theorem 7.2. Let $ and S be two nx m boolean matrices'he matrices $and S
are basis matrices of a wedk, n)-threshold VCS with pixel expansion m if and only if
for all subsets X consisting of k rows there exist a boolean matgxaBd an integer
hx such that ¥ is a submatrix of both $X] and S[X], all the even columns appear
in S°[X]\Dx with multiplicity hy, and all the odd columns appear in[X]\ Dx with
multiplicity hy.

The nexttheorem provides a similar characterization for st¢kng)-threshold VCSs.

Theorem 7.3. Let & and S be two kx m boolean matricesThe matrices $and S
are basis matrices of a strong, n)-threshold VCS with pixel expansion m if and only
if the conditions of Theorem2are satisfiedand in addition 8[ X] contains more zero
columns than §X] does for all subsets X consisting of at leastk1 rows
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