J. Cryptology (2000) 13: 31-60 Journal of

DOI: 10.10075001459910003 CRYPTOLOGY

© 2000 International Association for
Cryptologic Research

Player Simulation
and General Adversary Structures
in Perfect Multiparty Computation *

Martin Hirt and Ueli Maurer

Department of Computer Science, ETH Zurich,
CH-8092 Zurich, Switzerland
{hirt,mauref@inf.ethz.ch

Communicated by Oded Goldreich

Received 31 December 1997 and revised 26 February 1999

Abstract. The goal of secure multiparty computation is to transform a given protocol
involving a trusted party into a protocol without need for the trusted partsirbylating

the party among the players. Indeed, by the same means, one can simulate an arbitrary
player in any given protocol. We formally define what it means to simulate a player by

a multiparty protocol among a set of (new) players, and we derive the resilience of the
new protocol as a function of the resiliences of the original protocol and the protocol
used for the simulation.

In contrast to all previous protocols that specify the tolerable adversaries by the num-
ber of corruptible players (a threshold), we consider general adversaries characterized
by an adversary structure, a set of subsets of the player set, where the adversary may
corrupt the players of one set in the structure. Recursively applying the simulation
technique to standard threshold multiparty protocols results in protocols secure against
general adversaries.

The classical results in unconditional multiparty computation among as@layers
state that, in the passive model, any adversary that corrupts less/thptayers can be
tolerated, and in the active model, any adversary that corrupts less tBgtayers can
be tolerated. Strictly generalizing these results we prove that, in the passive model, every
function (more generally, every cooperation specified by involving a trusted party) can
be computed securely with respect to a given adversary structure if and onlywibno
sets in the adversary structure cover the full set of players, and, in the active model, if
and only if nothreesets cover the full set of players. The complexities of the protocols
are polynomial in the number of maximal adverse player sets in the adversary structure.

Key words. Multiparty computation, Information-theoretic security, Player simula-
tion, General adversaries, Adversary structures.

* Research supported by the Swiss National Science Foundation (SNF), SPP Project No. 5003-045293.
Some of the results in this paper have been published in [HM].

31



32 M. Hirt and U. Maurer
1. Introduction

1.1. Secure Multiparty Computation

Consider a set of players who wish to cooperate in a specified manner but do not trust
each other. Assume that the cooperation could be realized if a mutually trusted party was
available, but that no such trusted party exists. In other words, the specification of the
desired cooperation can be given in terms of a protocol among the players and a trusted
party, and the goal of the multiparty computation between the players is to perform the
same cooperation without the trusted party, where security is guaranteed if the subset
of players that cheat is not too large. This is achieved by a protocol that simulates the
trusted party.

One particular type of cooperation is the computation of an agreed function of the
players’ inputs in a secure way (secure function evaluation). Most papers in the literature
are restricted to this scenario, but their results often apply also to the general model
discussed above. Secure function evaluation is trivial when a trustedrpardyailable:
every player sends his input towho computes and announces the result.

An example of a general secure cooperation scenario is to simulate a fair stock market
among a set of participants (investors) without need for a trusted stock exchange system.
The major difference between secure function evaluation and general secure cooperation
is that in the latter, inputs may be given not only at the beginning but also during the
entire computation.

Security of a multiparty protocol is defined with respect to a central adversary that may
corrupt certain players (corresponding to the collaborating cheating players). For secure
function evaluation, security means that the output of the computation is guaranteed to
be correct (correctness) and that the players’ inputs remain private (privacy), even when
the corrupted players misbehave. For a general cooperation protocol, security means
that whatever the adversary can achieve in the cooperation protocol can also be achieved
directly in the specification involving the trusted party (without corrupting the trusted

party).

1.2. Classification

One generally distinguishes betwasassiveandactiveadversaries. A passive adversary
can read all information available to the corrupted players and tries to violate the privacy,
but not the correctness, of the computation. In contrast, an active adversary controls the
complete behavior of the corrupted players, trying to violate the privacyaarttie
correctness of the computation.

The communication models differ with respect to three criteria: whether or not pairwise
secure communication channelee available, whether or nbroadcastchannels are

1 A general secure cooperation could also be reduced to secure function evaluation by having each player
give his strategy as input to the function. However, this approach would require that every player is totally
aware of his strategy, and also that the environment of the computation can be modeled. As an example, each
time a player is required to give some input to a general secure cooperation, he could enter the number of hits
when searching some specific term with an internet search engine. Modeling this strategy would require to
model (at least) the behavior of all internet users.
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available, and whether the communication channelsynehronousr asynchronous$.
The models with secure communication channels are also referredec@® channels
models

Adversaries can be classified according to whether their computational resources
are polynomially boundedcfyptographicsecurity) or unboundeduficonditional or
information-theoretic security). Clearly, unconditional security can only be achieved
in a secure channels model. In the unconditional model one can distinguish between
protocols with exponentially small or with zero failure probability. We refer to the latter
asperfectmultiparty computation. Further, one distinguishes betvatgticandadaptive
(or dynamic) adversaries. In contrast to a static adversary that corrupts players at the
beginning of the protocol execution, an adaptive adversary is allowed to enlarge the set
of corrupted players during the protocol execution, as long as the total set of corrupted
players remains admissible. Recentlypbile adversaries were also considered (e.g.,
[OY] and [CH]). As an adaptive adversary, a mobile adversary can corrupt players at
any time, but he can also “release” corrupted players, regaining the capability to corrupt
further players. Security against a mobile adversary is referred to as “pro-active security.”

1.3. Previous Work

The problem of general-purpose multiparty computation was first stated by Yao [Yao].
As a first general solution to this problem, Goldreich, Micali, and Wigderson [GMW]
presented a passively secure protocol that alloplayers to compute any given function
securely even if a passive adversary corruptstagyn players, and an actively secure
protocol that tolerates an active adversary corruptingtaryn/2 of the players. The
security of the protocols is cryptographic, that is the adversary is assumed to be polynomi-
ally bound. Chaum, Danagd, and van de Graaf [CDG] improved the bound for the active
model in the sense that the input of one player can even be information-theoretically hid-
den. Galil, Haber, and Yung [GHY] considered efficiency and several corruption types
in the cryptographic model. Ben-Or, Goldwasser, and Wigderson [BGW] proved that
in the secure channels model without broadcast, perfect security gtayers can be
achieved even if the adversary can corrupt any set of lessriparplayers (passive
case) or, alternatively, any set of less thei3 players (active case). These bounds are
tight. The same results were obtained independently by Chawepe@u, and Danagd
[CCD] in an unconditional model with exponentially small error probability. The bound
for the active model was improved by Rabin and Ben-Or [RB] by assuming a broadcast
channel and tolerating a negligible error probability. They proposed protocols that pro-
vide unconditional security against an active adversary that may corrugt ang,/2
of the players. This result was also achieved by Beaver [Be3] with higher efficiency.
Combining the advantages of unconditional security (against an adversary that corrupts
a certain fraction of the players) and cryptographic security (against an adversary with
limited computing power), Chaum [Cha] presented a protocol which tolerates an active
adversary that either corrupts at most n/3 players, or is polynomially bounded.

The types of tolerable adversaries have recently been generalized in a number of
directions (adaptive adversaries, e.g., [CFGN], uncoercibility, e.g., [CG], combined ac-
tive, passive, and fail-adversaries, e.g., [FHM1]), and some authors have investigated

2 synchronous means that the delay of messages is bounded by a constant. See [Can1] for more details.
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multiparty computation for various minimality and complexity criteria, e.g., [Kus], [BB],
[Bel], [FY], [FKN], [Rab], [CGT], and [CKOR].

Another line of research is concerned with protocols that are tailored to a particular
function like voting (e.g., [CFSY]), auctioning (e.g., [FR]), sharing of encryption or
signature operations (e.g., [dDFY], [GJKR1], and [GIJKRZ2]), or private information
retrieval (e.g., [CGKS] and [KO]). The major reason for designing protocols for special
functions compared with applying a general-purpose protocol is the potential gain of
efficiency.

1.4. Contributions of this Paper

This paper is concerned with protocol generators, which for any given function (more
generally, for any given specification) generate a protocol for securely computing it.
The provided security is perfect (with zero error probability), i.e., we consider a passive
or an active adversary with unbounded computing power, in the classical model with
pairwise synchronous secure communication channels between players, but notassuming
abroadcast channel (like in [BGW] and [CCD]). Although the proofs only consider static
adversaries, the protocols actually provide security against adaptive adversaries as well.
Formal proofs for adaptive security are beyond the scope of this paper.

All previous results in the literature specify the sets of potentially corrupted players
by their cardinality, i.e., by a threshold. We define more generally the security of a
multiparty computation protocol with respect toagversary structurea monotone set
of subsets of the players, where the adversary may corrupt the playans st in this
adversary structure. An adversary structure is monotone in the sense of being closed
with respect to taking subsets, and corresponds to the notion of an access structure in the
area of secret sharing (or, more precisely, the complement of it), e.g., [ISN] and [BL].
Note that which particular subset is corrupted is not known in advance, and in fact may
even remain unknown after the protocol execution.

As an example of an adversary structure, consider tHe sfplayers and the adversary
structureZ, where

P = {plv P2, P3, p4}7
Z = {0.{p1}. {p2}. {Ps}. {Pa}. {P1. P2}. {P1. P3}. {P1. Pal}.

In this example, the adversary can choose either to corrupt no player, to corrupt a single
player, or to corrupp; and an additional player.

The contributions of this paper are twofold: First, we propose a framework for con-
structing new secure multiparty computation protocols by simulating players in known
protocols. In particular, we make explicit the concepts of a specification and a proto-
col generator which converts a specification into a protocol, in contrast to [GMW] and
[BGW] where tools for constructing protocols are described and these new concepts are
only implicit. Simulating a player by a set of players means to perform all operations of
the simulated player by a multiparty protocol among the simulating players. Of course,
any of the simulating players can again be simulated. The adversary structure tolerated
by the resulting protocol is derived and proven based on the tolerated adversary structures
of the basic protocol and the simulation protocol.

Second, we introduce the notion of general adversary structures into the field of
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multiparty computation, and we characterize exactly which adversary structures can be
tolerated in information-theoretically secure multiparty computation. For a givel set

of players and an adversary structiewe defineQ(Z)(P, Z) to be the predicate that

no two sets inZ cover the full setP of players, and we defin@(?’)(P, Z) to be the
predicate that no three setsinhcover the full sef of players. Formally,

QA(P,2) = VYZ1,Z,e Z:Z,UZ, # P,
QO(P,2) = V¥Z1.Z5Z5€ Z:Z,UZ,UZs # P.

The following tight bounds are proved:

1. Inthe passive model, as a strict generalization of the threshold-type result of [ BGW]
and [CCD], perfect multiparty computation for any function (specification) is pos-
sible if and only if no two sets in the adversary structure cover the full player set
(i.e., QA (P, 2) is satisfied).

2. Inthe active model, as a strict generalization of the threshold-type result of [ BGW]
and [CCD], perfect multiparty computation for any function (specification) is pos-
sible if and only if no three sets in the adversary structure cover the full player set
(i.e., QB)(P, 2) is satisfied).

In general, the threshold-type structures are not maximal and hence our protocols can tol-
erate strictly larger adversary structures. For example, inthe active model with six players,
the protocol of [BGW] tolerates only adversaries that corrupt at most one player (for-
mally, it tolerates the adversary structufe= {Q), {p1}, { P2}, {P3}, {Pa}, {Ps}, {Ps} }).

Our approach yields protocols that tolerate additional pairs and even triples of potentially
corrupted players. For example, the adversary structure

Z = {@3 {pl}’ {p2}7 {p3}’ {p4}7 {p5}’ {p6},
{pZa p4}’ {p2» p5}’ {pZa pG}’ {p3’ p5}’ {p3’ pG}’ {p47 p5}’ {p4’ pﬁ}’ {p57 pG}’
{P2. Ps. Ps}. {P4. Ps. Pe}}

satisfiesQ® and can hence be tolerated. It is clear that every adversary structure is
monotone, and hence it is sufficient to enumerate only the maximal sets. The set of
maximal sets of an adversary structiés called thebasisZ. In the above example,

Z = {{pa}. {P2. Pa}. {Ps. Ps}. {P3. Pe}, {P2. Ps. Pe}. {Pa. Ps. Pe}}.

When our results are applied to reliable broadcast (Byzantine agreement), they provide
the first nonthreshold broadcast protocol, as required for example in [CDM] (where later
solutions [FM3] are more efficient). Applying the results to verifiable secret-sharing,
they provide a nonthreshold verifiable secret-sharing scheme as first proposed in [Gen].

The primary emphasis of this paper is on the existence of protocols. Indeed, all pro-
posed protocols have time and communication complexities polynomial in the number of
maximal sets in the adversary structdiayt further efficiency considerations and tuning
are suggested as future work (however, efficiency polynomial in the number of players is

3 The constructions of polynomial protocols are based on joint work with Matthias Fitzi [Fit].
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impossible to achieve for all adversary structures, see Theorem 4). Also, concurrency is
not addressed in this paper, and our formalism does not support the analysis thed
optimization of the round complexity of the protocols. The constructions in this paper

are based owblivious protocols [BGW], i.e., on protocols in which the sequence of
executed statements is independent of the contents of the previous messages (as opposed
to protocols like, e.g., [FM1] and [BB], in which the flow depends on the contents of the
variables), and the proposed formalism is restricted to oblivious protocols.

1.5. Motivating Examples

As afirst example, consider a set of five players- { p1, P2, P3, P4, Ps} that participate
in a nine-party protocol of [BGW] (passive case), whegeand p4 each play for two
players,ps plays for three players, am andp, each play for one player of this protocol.
This protocol tolerates the adversary structure that contanspe, ps}, {P1, P2, Pa},
{p1, Ps}, { P2, P4}, {Ps3, Pa} (@and of course all subsets of these sets), because every set in
this structure plays for at most four players in the nine-party protocol.

More generally, consider a protocol for the §ebf players in which each playqs;
acts forw; players in a threshold-type protocol of [BGW] with= Zi:pigp wj players.
In the passive model, security is guaranteed with respect to the adversary structure

Z:{ZQP: > wi<n/2},

itpez

and in the active model, security is guaranteed with respect to

Z:{ZQP: > w <n/3}.

i:pez

These generalized threshold-type protocols are not sufficient for capturing general
scenarios of mutual trust and distrust, where players (e.g., people, companies, countries)
are often either in a trust relationship (related, married, mutually affiliated, allied) or in
a distrust relationship (animosities, competition, hostilities).

As an example of player simulation, consider theBet {ps, ..., ps} of players,
and the four-party protocol of [BGW] (for the active case) in whihand ps play for
one player each and the other two players are simulated by four-party protocols of the
same type, one among the playgss p2, ps, and ps, and the other among the players
P1, P2, Ps, and ps (see Fig. 1).

This protocol tolerates exactly the adversary structure that was discussed in the ex-
ample in Section 1.4, namely, the adversary strucfuwith the basis

Z = {{p1}, {P2. Pa}. {Ps. Ps}. {P3. Pe}. {P2. Ps. Pe}. { P4. Ps. Pe}} -

For each set irZ, one can easily verify that the set is tolerated: for example, the set
{p2, Ps, Ps} is tolerated because only one player is corrupted in the simulating protocol
amongpz, P2, Ps, and pys (thus this protocol simulates an honest player for the main
protocol), and hence three of the four players in the main protocol play honestly. The
fact that there are too many corrupted players in the subprotocol amomg, ps, and

ps does not matter.
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Pa—Pp3 Pe—Ds

X )= X
P1—Pp2 P1—p2

P —m p3

D1 P3

P1 P2 P3 Pa P P2 Ps Ps

Fig. 1. Example of a player simulation.

The tolerated sets can easily be derived by representing the simulation hierarchy as
a tree (see the right-hand side of Fig. 1). For a specific adversary, to every leaf the
value 1 is assigned if the corresponding player is noncorrupted, and 0 is assigned if the
corresponding player is corrupted. To every inner node, 1 is assigned if and only if more
than two-thirds of its children have 1 associated (more than half in the passive model).
The considered adversary is tolerated exactly if this procedure assigns 1 to the root node.
More formally, the tree corresponds to a circuit with threshold gates, and an adversary
is tolerated exactly if the corresponding input vector evaluates to 1.

In this example we have considered a particular simulation tree, and derived the
tolerated adversary structure. Deriving and proving the tolerated adversary structure of a
simulation is one major goal of this paper. Another goal will be to find such a simulation
tree for any given adversary structure.

1.6. Subsequent Work

Subsequently to [HM], several extensions and improvements for general adversaries
were suggested. In [BW] a more efficient protocol for the passive model is proposed,
and the results are formulated in terms of quorum systems. In [CDM] efficient and
modular protocols secure against general adversaries are given for the active and passive
model with unconditional and computational security. The efficiency of the protocols for
the active model with broadcast is improved in [SS]. Finally, in [FHMZ2], a new model
with general (nonthreshold) mix-type (active and passive at the same time) adversaries
is proposed and tight bounds on the existence of such protocols are given.

1.7. Outline of the Paper

The basic technique for constructing a protocol that tolerates a given adversary structure
is to begin with a protocol among a few players and to simulate successively some players
by subprotocols among appropriate sets of players. In Section 2 we formalize protocols
and adversaries and describe the passive and the active models. In Section 3 we show
what it means to simulate a player by a subprotocol and we derive the exact tolerated
adversary structures for protocols in which players are simulated by other multiparty
protocols. The exact characterization of tolerable adversary sets for both models are
presented in Section 4. This is achieved by deriving an appropriate sequence of player
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simulations from any given admissible adversary structure. In contrast to Section 3,
which is concerned with the security of protocols with simulated players, the arguments
of Section 4 are purely combinatorial. In Section 5 we show that for some adversary
structures, no secure protocols with polynomial efficiency (in the number of players) can
exist. Finally, some open problems are mentioned in Section 6.

2. Definitions and Models

Defining and proving the security of multiparty computation protocols is known to be
very delicate. In order to be on safe grounds, it is unavoidable to be rather formal in the
definitions and proofs. Our definitions are based on Canetti’s recent natural and general
definitions of security in multiparty computation [Can3].

2.1. Players Processorsand Communication

In the literature and also in the previous section, players are assumed to perform two
entirely different tasks: On one hand, they provide input and receive output, and on
the other hand, they are supposed to perform the operations of the actual protocol. It
is necessary to distinguish clearly between these two tasks. Therefore, in what follows,
we refer to aplayer only as the entity that provides input and receives output, and
to the associatedrocessoras the entity that performs the operations of the protocol.
This distinction is important for taking into account the fact that in a general multi-
party specification with several input stages, the players’ inputs can depend on infor-
mation obtained during the execution of, but outside of, the protocol (e.g., insider in-
formation in a stock-market protocol). The players’ computational resources need not
be restricted.

A processor can perform operations in a fixed finite fiekd +, %), can select el-
ements from this field at random, and can communicate with other processors over
perfectly authenticated and confidential synchronous channels. The processors are poly-
nomially bounded. In addition to processors associated with players, we also introduce
the abstract concept ofv@rtual processoywhich offers the same functionality as a pro-
cessor but only appears in the construction of a protocol. In particular, the trusted party
of a specification (or other simulated processors) are virtual processors. Processors are
denoted byp;, where positive indices refer to real processors and negative indices refer
to virtual processors.

Formally, a processor can be modeled as a probabilistic Turing Machine, with a (read-
only) input tape, a (write-only) output tape, and a (read—write) working tape. The player
associated with a processor can write its input tape and can read its output tape. The
input and output tapes of virtual processors are not used. Every pair of processors can
communicate via a pair of tapes, where one tape is read-only for the first and write-only
for the second processor, and the other tape is write-only for the first and read-only for
the second processor. All tapes (in particular the communication tapes) are private and
authentic, i.e., only the involved processors can read from (or obtain any information
about) or write to a tape.
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2.2. Variables and Views

We assume a glob&hriable spaceX. A variable x € X can take on a value from the
given finite field(F, +, x). Every quantity ever generated during a protocol execution,
including inputs, local data (e.g., shares), and outputs, is assigned to a variable. For
a particular protocol execution each variable takes on only one particular value, i.e.,
variables are not to be understood in the sense of an imperative programming language
but rather as labels for values or, more precisely, as a fixed binding between a name and
avalue.

The locality or confidentiality of the value assigned to a variable, i.e., the fact that
certain variables are seen only by certain processors or sets of processors, is modeled by
associating giewv(p) € X with every processap, capturing the set of variables known
to p. The viewv(B) of a setB of processors is the union of the views of the processors
in B. Note that a processor may have full or partial knowledge about a variable although
the variable is not in its view. A local variable of a processor is in the global variable
space but is only in the view of this processor. Transmitting the value of a variable from
one processor to another processor means to include the variable in the latter’s view.

2.3. Protocols Specificationsand Protocol Generators

A protocolr among a seP of processors that involves variables from a variable space
X is a sequencd, ..., d of statements. There are four typesstdtementsAn input
statement inp;, X) instructs the processqr € P to read a value from its input tape
(i.e., from its associated player) and to assign the value to the vaxiabl#. A transmit
statement transmip;, p2, X) instructs the processgrn, € P to send the value of the
variablex € X’ to the processap, € P.* An output statement outp(s, X) instructs the
processomp € P to output the value of the variableto its associated player. Finally,
computation statemendse of one of three forms: Bompp, +, X, X1, X2)-Statement (a
comp(p, *, X, X1, X2)-statement) instructs the procesgoto add (multiply) the values
of the variables¢; andx; and to assign the result to the variakleA compp, ran, x)-
statement instructs the procesguato select an element from the field at random and to
assign the value to the variabte

Assigning a value to a variable (in an input or computation statement) means to define
its (global) value and to include it in the processor’s view, and is only admissible if no
value has previously been assigned. A processor can only use (in a computation, transmit,
or output statement) the values of variables that are globally defined and are included in
the processor’s view.

A multiparty computation specificatiqr simply called specification) formally de-
scribes the cooperation to be performed and the processors that give input to, or receive
output from, the computation. Intuitively, a specification specifies the cooperation in an
ideal environment involving a trusted party. Formally, a specification is a(pgirr)
consisting of a protocakg among a seP, of processors, and the name of a virtual
processot € Py. The protocolrg of the specification is also called tiaeal protocol

4 In order to guarantee that every variable has a unique value in a protocol, one could more formally, but
equivalently, define a transmit statementt@nsmii p1, p2, X1, “X2"), which instructs the processqy to
send the value of the variablg, and p; to assign the received value to the variakle
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In the special case of secure function evaluation, the protocol of the specification first
instructs each processor to receive the input from the associated player and to send this
value tot. Then it instructsc to compute the agreed function and to send the output
to every processor. Finally, it instructs each processor to send the output value to its
associated player.

A multiparty protocol generator Gor the setPs of processors is a function that takes
as input a multiparty computation specificatioty, ) involving processors from a set
Po and returns a protocel for the processor@o\{r}) U Pg. A statement index function
for a specificatior(r, ) and protocolr is a strictly monotone functior,

fr(l,... w0l + 1) — {1, ..., |7 + 1}

wheref (1) =1andf(Jmg| + 1) = || + 1.

The intuition is that a protocol generatGrsimulates the virtual trusted processor
by a multiparty computation protocol among the processoPgirEach statement of the
ideal protocolrg is expanded into a sequence of statements, and all these sequences are
concatenated to the resulting protogolin order to keep track of which subsequence of
7 resulted from a given statemeahtof the ideal protocaky, the statementindex function
maps the index of each statemert; in g to the indexf (i) of the first statement in
the corresponding expansion in i.e., theith statement ofry “is computed” by the
sequencd (i) to f (i + 1) — 1 of statements of (sincei = |ng| is possible the domain
of f includes|mo| + 1).

A BGW multiparty protocol generator @ a multiparty protocol generator that is
constructed using the tools of [BGW] (see Section 2.7 for more details).

2.4. Structures

A structureZ for the setP of processors is a monotone set_of subseR,dfe., Z C 2P,
where all subsets of are inZ if Z € Z. For a structureZ, Z denotes théasisof the
structure, i.e., the set of the maximal setsZin

Z=|{zez: 37'eZ2:2C7}.

Torestricta structureZ to the sefP’ of processors means that all set&€iare intersected
with P/, i.e.,

Z|, ={zNnP: zez)

Note that a restricted monotone structure is still monotone but a restricted basis is not
necessarily a basis. (However, we ha¥g, < Z|,). We also use this operator to
restrict elements of a structure to a set of processors Zi|g, stands forZ N P’).

2.5. Adversaries and Definition of Security

Let = be a protocol for the seP of processors. A (statiqdassive adversary Aor
the protocobr that corrupts the processorsdy C P is a (probabilistic) program (or
strategy). After each statement of the protogolthe passive adversary may read the



Player Simulation and General Adversary Structures 41

variables in the views of the corrupted processors (i.e., the variable&Zig)), and
extend its current view by these valieShen it can perform an arbitrary computation

on the values in its view and extend its view by the computed v&liés.do not give

a more precise definition of the adversary’s view but it is understood that it consists of
random variables with a well-defined range. For instance, if the adversary is modeled
as a Turing machine, the view consists of the content of all tapes. The complexity of an
adversary is not assumed to be polynomial.

A (static)active adversary Aor the protocolr that corrupts the processorsdn C P
is a passive adversary which in addition may stop the corrupted processors and take
complete control over their communication tapes. This means that the adversary can
read the complete internal state of the corrupted processors and impersonate them in the
remaining protocol.

The following definitions of security apply to both passive and active adversaries. For
an adversanp, a protocolA-securely computesspecification if, whatevek does in the
protocol, the same effect could be achieved by an adversary (with a modified strategy,
but with similar costs) in the ideal protocol of the specification.

Formally, for an adversanj and a specificatiolirg, ) for the setP, of processors,
the protocolr A-securely computes the specification, ) if there exists a statement
index functionf, : {1,...,|mo| + 1} — {1,...,|7| + 1} and an adversanp, for
the ideal protocotrg with’ Z, = ZA’PO\{I} such that for all inputs and for every=
1, ..., |mo|+ 1thejoint distribution ofAy's view and the views; (p) of all noncorrupted
processory e (Po\{r}\ZAO) before theith statement of the ideal protocesf (with
the adversarydy present) is equal to the joint distribution éfs view and the views
vty (p) of all noncorrupted processopse (Po\{‘l,'}\ZAO) before thef (i)th statement
of the real protocofr (with the adversanA present). Moreover, the complexity éf
must be polynomial in the complexity & This corresponds to the definition of on-line
security of [Can3]. The adversafp can be seen as a kind of simulator and is called the
ideal adversarof A.

For the special case of secure function evaluation, the only effect that an adv&rsary
can achieve in a protocol th@t-securely computes this specification corresponds to a
modification of the inputs and outputs of the corrupted processors in the ideal protocol
(which of course cannot be prevented).

For a structureZ and a specificatioliro, 7), a protocolr Z-securely computethe
specification(rg, 7) if, for every adversanA with Z, € Z, the protocolr A-securely
computes the specificatidng, ). Whenever the specification is clear from the context,

51t may at first appear to be sufficient to assume that the adversary reads the variables of all corrupted
processors only at the end of the protocol. However, in our construction a protocol may consist of several
intertwined protocols and values appearing in one of them could be of use in selecting inputs corresponding
to another protocol; therefore it must be tolerated that the adversary reads the variables after every statement.
This corresponds to the notion of “on-line security” in [Can3].

6 The values in the adversary’s view need neither be elements of the finite field nor be assigned to variables
of the global variable space. However, such a restriction could be made without loss of generality.

7 Itis necessary to explicitly excludebecause it is possible thatoccurs inr, and even ifA may corrupt
t (which thus is a simulating processor), it cannot be toleratedApabrruptst (which is the trusted party
of the specification). At this point, this technicality appears to be pedantic, but in later recursive constructions
it will be necessary. Note that if does not occur ier, thenZA| Pov(r) = ZA| Po’



42 M. Hirt and U. Maurer

we also say that a protoctbleratesan adversanA (a structureZ) instead of saying
that the protocoA-securely £-securely) computes the specification.

A protocol generato6 for the setP of processors iA-secure(or tolerates A for
a given adversan if, for every specification, the protocol that results by applying the
generator to this specificatioA-securely computes the specification. For a structure
Z < 2P, a protocol generatdd for the setP of processors i€-secure(or toleratesz)
if, for every adversanA with Z,|, € Z, the protocol generator ia-secureé®

2.6. Models

We consider the same two models as in [BGW]. In plassive modelonly a passive
adversary may be present. In thetive modelonly an active adversary may be present.
In both models we assume reliable synchronous secure channels between every pair of
processors but we do not assume a broadcast channel. The basic protocols of [BGW] can
be realized without broadcast or, more precisely, by simulating it with a protocol among
the sender and the receivers of the broadcast (e.g., [LSP], [FM1], [BDDS], and [FM2]).

In both models we only consider a static adversary, but the protocols are also secure
against an adaptive adversary. For the sake of simplicity, the proofs are not extended to
capture the additional power of adaptive adversaries.

2.7. BGW Protocol Generators

We use a particular BGW protocol generator for each ma@8f denotes the three-
party BGW protocol generator of [BGW] for the S€p3 = {P1. P2, P3} of pro-
cessors for the passive model, tolerating all passive adversaries that may corrupt one
single processor, anG2* denotes the four-party BGW protocol generator for the set
Psaa = {P1, P2, P3, pa} Of processors of [BGW] in the active model, tolerating all
active adversaries that may corrupt one single processor.

The protocol generato3P3 andG24 are realized as follows: For a given specification
(o, T), they scanrg statement by statement and generate a new protocol in which each
statement involving is replaced by a statement sequence.

In the passive modeGP2 for the setP_p3 = {P1, P2, ps} of processors is defined as
follows: All statements ofrg that do not involver are left unchanged. Every statement
transmit p, 7, X) is replaced by a secret sharing protocol in whils the dealer who
shares the variabbeamong the processors, p», andps such that any two of them can
reconstruct the secret. Every statenteansmii(z, p, X) is replaced by the subprotocol
to reconstruct the secret, in which the procesgars,, and ps send their shares tp
who then interpolates the secret. Every statensenif(z, +, X, X1, X2) is replaced by
the three statements that instruct the procespgrg,, and ps to add their shares of
and ofx, and to assign the result to the variable of their sharg.dvery statement
comp(t, *, X, X1, X2) is replaced by the multiplication protocol of [BGW] (improved by
[GRRY]) that multiplies the shared variabbesandx, and assigns the resulting shares to
the variables of the shares xf

A statementomp(, ran, x) is first replaced by a short sequence of statements, still

8 The intuitive conditionZ 5 € Z is too restrictive, because this would not include adversaries that corrupt
processors of the specification.
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involving t, but not involving a statement of the forcomp(z, ran, .. .), and then this
sequence is replaced by a sequence without need for the trusted gartysing the
techniques described above. In the first step, each processps, and ps selects a
random number (i.ecompp;, ran, x;) fori = 1, 2, 3), then each one sends his number
to the trusted party (i.e., transmit p;, 7, X)), who then computes the random value
as the sum o%y, X0, andxs (i.e.,comgr, +, X/, X1, X2), COM{<, +, X, X', X3)). Itis clear
that if at least one of the playems, p», or ps is honest, thex is a uniformly selected
secure random number.

In the active modelG24is constructed similarly. Instead of the secret sharing proto-
col, the verifiable secret sharing protocol of [BGW] is used. Moreover, reconstruction
involves error correction. As multiplication protocol we use the protocol that robustly
multiplies two shared values, as described in [BGW] and [GRR]. The protocol to select
jointly a random field element (as described above) uses verifiable secret sharing.

The protocol generatof3P3 andG* are indeedZ-secure forZ = {{pl}, {p2}, {p3}}
(passive modelGP3) or Z = {{pl}, {p2}, {ps}, {p4}} (active modelG34), respectively.

The security is claimed in [BGW], but is not formally proven. It is outside the scope of
this paper to fill this gap, but such a proof is in preparation [Can2]. In what follows, we
assume thaBP3 andGa* are secure.

3. Processor Simulation

In this section we introduce the technigue of simulating (virtual) processors by other
processors.In a first step (Section 3.2), virtual processors are simghamedusing a
processor mappingie., one (virtual) processor plays for one or several virtual processors.
In a second step (Section 3.3), virtual processorssamellatedby a set of (virtual)
processors, i.e., the simulating processors perform all operations of the simulated virtual
processor by a multiparty computation.

3.1. Definitions

Let P and P’ be sets of processors.gkocessor mapping,
o P—> P,

is a surjective function fronP onto P’.1° The definition of a processor mappingis
extended to the following domains: For a protoaglthe mapped protocet () (or,
equivalentlyo ) is the same protocol, where in each statement all involved processors
are replaced by the corresponding mapped processors (if processors that ar@ not in
are involved in a statement, then these processors are not replaced). For a specification
(mo, T) With T ¢ P, the mapped specification is the specification with the mapped
protocol, i.e.o (0, T) = (070, 7). Note thato (o, 7) stands fow ((o, 7)).

9 The idea of simulating a single processor by a subprotocol was used in [Cha] for a different purpose.

101n the application of processor mappings, parentheses may be omitted whenever the precedence rules
allow it. As usual, function application (in particular a processor mapping) is right-associative and has higher
precedence than any two-adic operator. For any two processor mappiagdo,, for an arbitrary two-adic
operator, and for anyx; andx, we haveoio2X1 ¢ X2 = 01(02(X1)) © X2.
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Theinverse processor mapping* of a processor mapping is defined by

ot P27 p{pePio(p =p}.
If the processor mapping is bijective, then the function value of the inverse processor
mappings ~! is sometimes interpreted as a single processor (instead of a set that contains
asingle processot}.Also, we define the mapping of a set of processors to be the set of the
mapped processors, and the inverse mapping ofasftrocessors to be the union of the
sets of the inverse mappings applied to the process®g(i®., o (B) = UpeB{a(p)}
ando~4(B) = Upcg o7 (P)).

In the following we give definitions for applying processor mappings to adversary
structures and to protocol generators. These definitions are appropriate in the sense
that if a protocol (generator) tolerates an adversary structure, then the mapped protocol
(generator) will tolerate the mapped adversary structure. This will be proven in the next
section.

For a structurez for the setP of processors and a processor mappingP — P/,
the mapped structure is

o(2)={ZcP:0 %2 € 2},

i.e., a setZ is in o(2) if the set of all processors mapped to a processf iis in

Z. For a protocol generatdd for the setP of processors and a processor mapping
o : P — P’, the mapped protocol generato¢G) is a protocol generator that, applied

to a specificatiofiry, 7), simulates the trusted partyby the processors iR’ (instead of

P). In order to prevent syntactical collisions with the names of the processéraim

of those appearing ing, we first rename the processors appearinggno some new
processor namég then apply the original protocol genera@®ythen apply the processor
mappingo, and finally rename the previously renamed processors back to their original
names. More formally, when givaix,, ) whererng involves the seP; of processors,

o (G) first applies an arbitrary bijective processor mapping: (Po\t) — P, whereP

is a set of new processor names, to the specification, then applies the protocol g&herator
to this modified protocol specification, further applies the original processor mapping
and finally applies the inverse processor mappintto the resulting protocol. Formally,

cG=0(G) = ((no, r) > p’l(o(G(pno, r))))

for an appropriate bijective processor mappind\ote thato G does not depend on the
choice ofp.

Consider a multiparty protocal among the seP of processors and a protocol gener-
atorG for the setPg of processors. Teimulatea virtual processop € P in w applying

11 Generally, the inverse of a processor mapping is not a processor mapping. However, the inverse of a
bijectiveprocessor mapping can be considered (and will be considered) as a processor mapping.

12 That is, processor names that did not yet appear anywhere, neither in the protocol nor in the protocol
generator nor in the mapping.

13 This corresponds to alpha renaming in the context of lambda calculus and is a purely technical step. Note
that the name of the trusted party must not be mapped.
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the protocol generatdd means to consider this procesgoas a trusted party and to
have this party simulated by a subprotocol among the processBgs according taG.

More precisely, the specificatiam, p) is used as input for the protocol generaBrTo
simultaneously simulatie processorg;,, ..., pr, € P in 7 using the protocol gener-
atorsGy, ..., Gy for the processor sefy, ..., P, respectively, is defined as follows:
First considek arbitrary bijective processor mappings: P — P; (fori =1, ...,k),
wherePy, ..., Py are pairwise disjoint sets of new processor names. Then the resulting
protocol is

ot o7 (k8K (- (02G2) (G T, Pry). B) -+ ) )
and does not depend on the choicesdfgr. . ., ok.

3.2. Renaming Processors

Itis trivial that by renaming processors in a protocol, the tolerated adversary structure is
the same with the identically renamed processors. More precisely, security of a protocol

is defined with respect to a specification, and the security of the renamed protocol is with
respect to the renamed specification. Furthermore, when several processors are renamed
to the same processpfi.e., p “plays” the role of several processors), then a suBseit

the processors that contaipds tolerated in the renamed protocol if and only if the set

of all the renamed processors and all the processdts p} is tolerated in the original
protocol. A subseEZ with p ¢ Z is tolerated ifZ is tolerated in the original protocol.

This naturally extends the “partition lemma” of [CK].

Lemma l. Given a protocolr for the set P of processors th&-securely computes
the specificatioring, ), and some processor mappiagtheno () is a protocol for the
seto (P) of processors that (Z)-securely computes the specificatio(ro, 7).

Proof. We have to show that for every adversa\for the mapped protocel (i), with
Zn € 0(Z2),the protocob () A'-securely computes the mapped specificatiom, t).
Figure 2 illustrates the procedure for constructing an ideal adverggigr the mapped
specificatiorno (g, T) from a given adversanp’ for or. We begin with the adversary
A’ for the mapped protocat , construct an adversark for the original protocolr,
and show thatA is tolerated in the protoceat. Thus, by the definition of security of a
protocol, there exists an ideal adversag/for the protocolz of the specification. Then

ideal real
mapped A for omg A’ for o
[ea 0'_1

unmapped  Ag for mg A for m

Fig. 2. Construction of the ideal adversafy, for a given adversarp'.
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we useA, to construct an adversa#y, for the mapped specificatian(zo, ), and we
prove that this adversary is an ideal adversary of the original advefgary

Consider an arbitrary adversagy for o with Z, € o(Z). We defineA to be the
adversary forr with Zx = o~1(Zn) and with the same strategy #$, except that
wheneverA’ reads from, or writes to, the tape of a corrupted procepser Z 5, then
A accesses the tape of the correspontfipgocessomp € o~1(p’) in the same manner
as A'. By the definition of processor mappings for structurgg, € o(2) implies
that Z, € Z. Hence, by what it means for a protocol to Besecure, there exists a

statement index functiori, : {1, ..., |mo| + 1} — {1, ..., |7| + 1} and an adversary
Ag for o with Za, = ZA‘ Po\(r) (wherePy is the set of processors of the ideal protocol
7o) such that for every = 1, ..., |mo| + 1 the joint distribution of the view of the

adversaryAq and the viewsy; (p) of all noncorrupted processors € (Po\{‘l,'}\ZAO)
before theith statement of the ideal protocal (with the adversaryd, present) is
equal to the joint distribution of the view of the adversakyand the viewsy; (p) of
all noncorrupted processorse (Po\{r}\ZAO) before thef, (i )th statement of the real
protocolr (with the adversanA present). Let the statement index functityy for the
mapped protocol be equal to that of the unmapped protocolfi.e+ f., and letA; be
the adversary for the mapped ideal protagsb with Zy = o(Za,) = o(ZA| PO\{T}) =

o(ocHZn) ’ F,0\{1}) = ZN| pon (o) The strategy of\; is the same as the strategy of the
adversaryA,, except that whenevek, reads from, or writes to, the tape of a corrupted
processop € Za,, thenAj accesses the tape of the processq).

Clearly, foreach = 1, ..., |omwg|+1, the jointdistribution of the view of the adversary
A and the views; (p) of all noncorrupted processopse (G(Po)\{r}\Z%) before the
ith statement of the mapped ideal protoga, (with the adversaryy, present) is equal
to the joint distribution of the view of the adversa#y and the views;_(p) of all
noncorrupted processors € (O’(Po)\{f}\ZA;)) before thef,, (i)th statement of the
mapped real protocel (with the adversary\ present). |

If the structureZ is maximal for the protocak (i.e., for everyZ € P with Z ¢ Z
there exists a specificatiatrg, ) and an adversanm with Z, € Z, such thatr does
not A-securely computérg, 7)), theno (2) is also maximal fow ().

The corollary below follows immediately from Lemma 1 and from the definition of
processor mappings for protocol generators.

Corollary 1. Given aZ-secure protocol generator G for the set Bf processorsand
given some processor mappiagtheno (G) is a o (£)-secure protocol generator for
the setr (Pg) of processors

3.3. Simulating a Single Processor

Consider a protocat for the setP of processors, a processpre P, and a protocol
generatoG’ for the setP’ of processors, and assume thas Z-secure for an adversary
structureZ and G’ is Z’-secure for an appropriate adversary structdfelLet p be

14 If the mapping is not bijective, then for constructing the adversiagne must consult the unmapped
protocolr to determine which processor’s tape needs to be accessed.
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simulated inr by G’, and letz* denote the resulting protocol. A sétof processors is
tolerated int* if the setZ is tolerated inv (i.e., Z|, € Z)andZ is tolerated byG' (i.e.,
Z|, € Z'). EvenifZis nottolerated bys', but insteadr tolerates thap is corrupted in
addition to the processors ia(i.e., (Z| p U {p}) € Z), thenZ is nevertheless tolerated
in the resulting protocat*. This is formally stated and proved below.

Lemma 2. Consider a specificatiozg, t) for the set B of processorsa protocol

n for the set P of processors that-securely computeérg, v) for some adversary
structureZ < 2P, and a BGW protocol generator'Gor the set P of processorgwhere

P’ N P = ¢) that is Z’-secure for some adversary structugé < 2. Simulating a
processor pe (P\{r}\Po) in = by applying the protocol generator'Gesults in a
protocol =* for the set P of processors thag*-securely computes the specification
(o, T) Where

P*
Z*

(P\{p}) L P",
[zeP (@putp)ez)v(zlpeznz)pez)].

Proof. Consider an arbitrary adversaf for the protocolz* with Z,- € Z*, and
a statement index functiof : {1,...,|7| + 1} — {1,...,|7* + 1}. We construct
a statement index functiof* : {1, ..., |70l + 1} — {1,...,|7*| + 1} and an ideal
adversaryA, of the adversarA* whereZ,, = Za- Po\(r)” We distinguish between two

cases: in the first case we assume (k?ag: U {p}) € Z, and in the second case we
assume thala |, € Z A Zp|p € 2.

First, assume th@‘ZA* pU{ p}) € Z.We defineAto be the adversary for the protocol
7 with Za = Za+|, U {p} with the following strategy: Without loss of generality, let
P’ = {p1, ..., pm}. First,Alocally initializes| P’| virtual processorgy, . . ., Pm, one for
each processor iR’, and an additional virtual processps for simulating the behavior
of a noncorrupted sender or receiver in the protacbl Py is re-initialized after every
such use), and assigns an empty view to each of them. Forievedy ..., |7| + 1, A
performs the following steps for théh statement; of 7:

p

o If the statement}, does not involvep, A performs the same steps that would
perform.

o If d; is acompstatement forp, then A executes the sequendé(i), ..., (f’(i +
1)-— 1) of statements ot *, where each processpr € P’ is relabeled to the virtual
processoip;.1° After each statement of this sequenéeperforms the same steps
that A* would perform (modified such that it accesses the tap@sioktead ofp;).

e If di isatransmitp, p;j, X)-statement, theAexecutesthe sequentdi), ..., f'(i+
1) — 1 of statements ot *, where each processpr € P’ is relabeled to the virtual
processom;, and the receiving processgy is renamed tdd,. After each state-
ment of this sequencd performs the same steps that would perform (where
A accesses the tapesfafinstead ofp;, and offy instead ofp;). At the end of the
sequenceA reads the value of the variabten the view of oy and sends this value

15 More precisely, a processor mappinghat mapsp; — pi (1 <ic< m) is applied to the sequence of
statements.
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to p;. If the adversaryA* is passive (and hencg also is passive), then this value
corresponds to the value thatwould send top;.

e If d; is atransmil(p;, p, x)-statement, theA first reads the value of and puts this
value into the view ofiy, then executes the sequerféé ), ..., f/(i+1)—1 of state-
ments ofr*, where each processpr € P’ isfirst relabeled to the virtual processor
i, and the sending processpy is renamed tddo.16 After each statement of this
sequenceA performs the same steps thst would perform (modified as above).

The described adversadyis tolerated int becaus&, € Z. Thus there exists an ideal
adversaryAq of Awith Z, = ZA‘ Po\(r)” Clearly, this is also an ideal adversary st
Second, assume th@la: |, € Z A Za|,, € Z'. A* is tolerated by the protocol
generatorG’ (becauseZa:|,, € Z'); thus by consideringr, p) as the specification
of =¥, there exists an ideal adversatyof A* for the protocolr with Za = Za«|,.
BecauseZa € Z there exists an ideal adversafy of A for the ideal protocotrg with
Zp, = ZA| P\ (1) One can easily verify thadg is also an ideal adversary &f. O

3.4. General Simulation of Processors

In this section we consider the simultaneous simulation of several processors with com-
pletely general (possibly overlapping) sets of simulating processors. In a protocol result-
ing from such a simulation, an adversary is tolerated if every corrupted nonsimulated
processor is tolerated in the original protocol and, in addition, for every simulated proces-
sor, either the adversary is tolerated in the corresponding subprotocol (more precisely, by
the corresponding protocol generator), or this processor is tolerated to be (additionally)
corrupted in the original protocol. This is formally stated and proved below.

Theorem 1. Letx be a protocol among the set P of processors tHegecurely com-
pute a specificatiorirg, t), and let G, ..., Gk be Z;-,...,2Z¢-secure BGW protocol
generators for the processor sets, P. ., Py, respectively’ Assume that ir the k pro-
cessors @, ..., pr, € P are simultaneously simulated by subprotocols applying the
protocol generators @ . . ., G, respectivelyThen the resulting multiparty protocef*

is for the set P of processors ang*-securely computes the specificatiag, r), where

(P\R)U_LKJP.,

ZF = [Zg p*: (z,P\Ru{pﬁ eR Z|, ¢zi]) ez],

and R= {p,, ..., pr} is the set of replaced processors

P*

16 Here we assume that the statements in the sequiginge . ., f (i +1) —1of7* requirep; to know only
the value of the variable but of no other variables. This is the case for example for BGW protocol generators.
For most other protocol generators (e.g., [RB]), the proof can be adapted such that additional information (e.g.
check vectors) are associated with each variable. However, one can construct artificial protocol generators for
which this lemma does not hold. For example, consider the protocol generator that is almost identical to the
BGW protocol generators with the only exception thatasmi( pj, p, X) is translated into a secret sharing
protocol forall variables in the view (pj) of p; (and not only forx). This protocol generator is still secure,
but an untolerated adversafy learns the whole view op;, which cannot be simulated in the protoeal

17 Note thatGy, . . ., Gk are generally mapped versions@P3 or G244,
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Proof. According to the definition of simultaneous simulation,

=0t 'Ufl((Uka) (- (026G (016D (T, Pry)s Pry) -+ - prk))

for some bijective processor mappings : P, — Pi1,...,0x : P« — Py, where

P4, ..., Py are pairwise disjoint sets of new processor names. According to Corollary 1,
01Gy1,. . .,0kGk are BGW protocol generators for the se{®;, . .., ox P« of processors
that areo1 21, . . ., ok 2k Secure, respectively.

These protocol generators are applied subsequently, where after applyittggba-
erator the set of processors is denotedy and the tolerated adversary structure is
denoted byZ®. In the following, some technical transformations®f’ may at first
glance appear to be unmotivated.

Applying Lemma 2(01G1)(, pr,) is a protocol for the seP™® of processors toler-
ating Z®, where

PY = (P\{p,}) U o1Py,
((Z|P U{p,}) € Z)
V(Zlp € 21 2|,p, € 0121)

{z c pW: <Z|PU Hp,i e Pk Z), 5 gz/aiZi}) c z}. )

20 = 1z cpP®:

Furthermore (02G.) ((61G1) (7, pr,). Pr,) is a protocol for the seP® of processors
toleratingZ®, where

P@ = (PO\{p,}) U 02P> = (P\{pr, U pr,}) Uo1PL U 02P,,
((Z|Pm U{pr,}) € z<1>)

\/(zypm €ZOAZ| , € 0'222)

- { Z c p?: <Z|P(1) U Ipri i) Z|,, g’oiZi}) cz® }

T

2@ =17 cpP@;

We now replacez® in the above equation by using (1). LBbe the underbraced term.

2@ _ {z c p@: (Tlp u{pri e P T|,p gZoiZi}) ez}.

We have
Tlo = (Z[pw U{p e (pa): 2], 5 ¢z )) o
= (Z|ow)|p U {pr‘ e p) Z),p gZaiZiHP
= 7|, U ’pri elp) Z), 5 ¢aiZi}
and

Tloe = (Zlow Ulp e tp: 2|, ¢0i2])

oi R
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= (Zlpa)|on Y {Pielpa) 2], 5 ¢0i5]
Z|0'iP| U= Z|0\P.'

oi R

This gives
(zlo U Py e tpu): 2|, ¢z })
ulpn e (pu): 2|5 ¢ 2 ]

[z P2 (z],up € tpu pu)i 2|, #aiZi]) € 2].

2@ =172 cP@: €Z

Repeating this steb times yields the seP® of processors and the tolerated structure
Z® of the protocoloxGk)(: - - (02G2)((61G1) (7T, Pr,), Pr,) - - -+ Pr):

P® = (P\R)Uo1PLU---UoyPy,
29 = {zcpP¥: (z,ulp eR 2|, ¢aiz]) e 2}

Finally, we apply the inverse processor mappings, ..., o *. Letd = o -0, %

Becauses; L, ..., 0, " are bijective and have pairwise disjoint domains, all function
values off are sets with a single processor and are considered as those processors (rather
than as sets). Alsa} must be extended to be the identity function for the processors

in P\R, since it will be applied to the previously constructed protocol among the set
P® of processors. The resulting protoco! for the setP* of processors tolerates the
structureZ*, where

P* = yP®
- z?((P\R)UolPlu---UokPk)

= (P\R)Uol_lolplu-'-Uak_lokPk
= (P\R)UPLU---U PR

- (P\R)UOP.,

2t =9zZW
= {Z c9P¥: 97 (Z) e 2¥}
_ {z c p*: (ﬁ—l(Z)\P U [p,‘ eR 97D, 5 ¢aizi}) c z}.
Due to the definition of?, we have’ 1(2)|, = Z|p g Since the set®; are pairwise
disjoint we have9*1(2)|mpl = 0i(2)|,,» and, because, is bijective, alsa; (2)|, , =

o (Z\P.)- Again using thab; is bijective implies thab; (Z\p.) € o P, if and only if
Z G P,. This results in the claimed adversary structure

Z*:IZgP*: (Z‘P\RU[pﬁeR: Z‘Hg_rzi})ez]. m
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4. Complete Characterization of Tolerable Adversary Structures
4.1. Completeness Theorems

Theorem 2. Inthe passive modelaset P of processors can compute every fyisgpéan
cification(perfectly Z-securely if no two sets in the adversary structdreover P(i.e.,

if Q@ (P, 2) is satisfiedl. This bound is tightif two sets cover Pthen there exist func-
tions that cannot be computeftsecurely The computation is polynomial in the size of
the basig Z| of the adversary structure

Proof. We first prove the sufficiency of the conditi®(@ (P, Z) for the existence of
Z-secure protocols, and then prove its necessity. The proof that every function can be
computedZ-securely if Q@) (P, 2) is satisfied proceeds in three steps: We describe

a construction of a protocol generator, prove the suitability of the construction, and
demonstrate its efficiency.

CONSTRUCTION Consider a seP of processors and a structugefor this setP such
that Q@ (P, 2) is satisfied. We construct &-secure protocol generat@ for the set
P of processors, i.eG takes as input an arbitrary specificatiorn, t) for the setP, of
processors and outputs a protaedbr the se( Po\{r}) UP of processors thak-securely
computes the specificatiamo, 7) for every adversanA with Z,|, € Z.

If some processop € P does not occur in any set &f (i.e., Z‘{p} = {#}), thenG
simply replaces the trusted partyn the specification by this processor. More precisely,
let o be the processor mapping that mags p (and is the identity function for all other
processors), the® = ((g, 7) > p(70)).

Consider the case where every processoP inccurs in at least one set i. The
following construction is based on ideas in [AR, pp. 22—-24] and [Fit]. We select some
three-partition ofZ where the size of each set of the partition is at nj¢gt/3]. Let
Z1, Z», Z3 be the union of the first two, the first and the third, and the last two sets
of the partition, respectively, each completed such that it is monotone. Assume that
protocol generator§,, G,, andG3, each among the sét of processors, toleratings,

Z,, and Z3, respectively, have been constructed (by recursion). The protocol generator
G that toleratesZ can be constructed as follows: Remember B8¢ is the BGW
protocol generator of [BGW] for the passive model for the Bghs = {p1, p2, Ps}
of processors, tolerating the adversary strucmégg = {{p1}, {p2}, {ps}}. Leto be a

bijective processor mapping: P p3 — P, whereP is a set of new processor names.
First, the protocol generat@s applieSU(Gp3) to the specificatiorn(ng, 7). o(GP3) is

a protocol generator that toIerategZGpg) (Corollary 1), thus the resulting protocol
tolerates all adversarie’s with IZA‘E' < 1. ThenG simultaneously simulates all three

processors ifP by subprotocols, applying the protocol genera®isG,, andGs. This
results in a protocofkr* for the setP* of processors thag*-securely computes the
specification(zrg, T), where accordin§ to Theorem 1 the set of processors is

P = ((R\[th U P)\P) U P = (Po\{r}) UP

18 Note that in Theorem 1 the protocol generators for the simulation are assumed to be BGW protocol
generators. The protocol generat@s,. . . ,G3 of this proof are recursively constructed protocol generators,
which means that in fact only BGW protocol generators (alternated with processor mappings) are applied.
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and the tolerated adversary structure is

Z*

{z c P (z’((%\{muﬁ)\ﬁu {p,eP: Z|, ¢ Zi}> € oszg}

.

Every setZ € Z is in two of the structures;, Z,, Z3, thus every adversani with
Za|p € Zistolerated int*. As claimed, the constructed protocol gener&as for the
setP of processors and i§-secure.

{z c P ’(z‘%\{r}u{p, eP: 7|, ¢ 2}

{Z C P* ‘{p,l eP: 7|, ¢Zi}‘ < 1].

SUITABILITY . The suitability of this construction can be proved by induction. First,
consider an adversary structufesatisfyingQ(® with | Z| < 2. Since the (at most) two

sets inZ do not coverP, and all other sets i are subsets of one of the sets in the basis,
there is a processqy € P that does not occur in any set i (induction basis). Now
assume that we can construct a protocol generator for every adversary structure which
contains 2 of the sets inZ (induction hypothesis). Then the above construction yields

a protocol generator for an arbitrary adversary structure with upntof3he sets inZ
(induction step).

Let t; be defined as the basis size guaranteed to be achievable with recursion of
depthi. We havety = 2,t; = 3, andtj;1 = tj + [tj/2]. One can easily verify that
(3/2)' <t; < (3/2)'*2. Thus, in order to construct a protocol that tolerates the adversary
structureZ, the recursion depth is at mogbg; , 1Z]].

EFFICIENCY. The protocol generatadP3 applied to a specificatiotir, p) translates

every statement in that involvesp into a statement sequence of length at nogthere

b is a constant parameter 6&P3. Considering all simultaneous simulations at a given
leveli of the recursion, every statement is affected by the application of at most two BGW
protocol generators (because every statement involves at most two processors). Hence
the total blow-up due to a given level of the recursion is at bdsThe total length of

the constructed protocol toleratitgjis thus at mostro| - (b2)"°%2'1 = o] - |Z|0W,
which is polynomial in Z|.

In order to prove the necessity of the conditi@®) (P, Z) for the existence ofz-
secure protocols, suppose there is a protocol that tolerates an adversary structure not
satisfyingQ(@), i.e., there are two potential sefs and Z, with Z; U Z, = P. Without
loss of generality we assun® N Z, = #. Then we can construct a protocol with
two processorg; and pp, where p; simulates all processors i; and p, simulates
all processors iz, (i.e., we apply a mapping to the given protocol), and we obtain a
protocol for two processors that tolerates both sets with a single adverse processor. Such
a protocol for secure function evaluation does not exist for most functions (for example,
for the binary OR-function), as stated in [BGW], thus resulting in a contradiction. A
more careful analysis of the class of functions that are not securely comput&)f if
is not satisfied is given in [CK], [Kus], and [Bel]. O
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Theorem 3. Inthe active model a set P of processors can compute every fufspien
cification (perfectly Z-securely if no three sets in the adversary structdreover P
(i.e, if QO)(P, 2) is satisfiedl. This bound is tightif three sets cover the full set of
processorsthere are functions that cannot be compugdecurelyThe computation is
polynomial in the size of the bagig| of the adversary structure

Proof (Sketch). This proof for sufficiency o) (P, Z) is along the lines of the proof
of Theorem 2 and also proceeds in the same three steps. We describe only the major
differences.

CONSTRUCTION A four-partition of the adversary structufes selected where the size

of each set of the partition is at mggiZ|/4]. By recursion, a protocol is constructed

for each of the four unions of three set of the partition. First, the protocol generator
appliesG24 in order to substitute the trusted partyin the specification by a protocol
among four virtual processors, then simultaneously replaces the four virtual processors
by applying the recursively constructed protocol generators. Applying Theorem 1 shows
that the tolerated adversary structuregis

SUITABILITY.  The induction basis (there is a procespoe P that does not occur in
Z) holds for any structur& with | Z| < 3, and the induction step constructs a protocol
generator that toleratesrof the sets inZ by assuming protocol generators that tolerate
3m of the sets.

EFFICIENCY. Letb be the constant “blow-up factor” @24 and letu; be defined as

the minimal size of the basis of the adversary structures guaranteed to be achievable
with recursion of depth. The sequence; is hence given byiy = 3, u; = 4, and

Uit1 = U + [u;/3]. One can easily verify that/3)' < u; < (4/3)'*3. Thus, in order

to construct a protocol that tolerates the adversary stru¢tutlke recursion depth is at
mostflog,,; |Z]1, and the total length of the constructed protocol toleragirig at most

|70l - (b?) 108431211 _ | 701 - [Z1°@, which is polynomial inZ].

In order to prove the necessity of conditi@(®) (P, Z), suppose that there exists
a protocol generator for an adversary structure not satisf@it®, i.e., there are three
potential adversaries that cover the full set of processors. Then we can constructa protocol
among three processors, where each of them simulates the processors of one adversary,
and we obtain a protocol among three processors, perfectly tolerating active cheating
of one of them. Such a protocol for secure function evaluation does not exist for most
functions (for example, for the broadcast function, as proved in [PSL] and [LSP]), thus
resulting in a contradiction. O

4.2. Example

We apply Theorem 2 to construct a protocol gener@dor the passive model among
the setP = {p1, P2, P3, P4, Ps, Pe} Of processors that tolerates the adversary structure
Z with the basisZ = {{p1, pa, P}, { P2, P3, Pe}, {P1, P2, Pe}, {P1, P2, Ps}, { P2, Pa, Ps}
{P1, P3, Ps}, {P1. P2, P3, Pa}}. Itis easy to verify thaQ@ (P, 2) is satisfied.

As a short notation, we writegf, p;, p] for the (mapped) protocol generat&P3
with the three processors;, p;, and pg, and [pi, p;. [Pk, P, Pm]] for the protocol
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generator among the processgrs p; and a virtual processor simulated by a protocol
generated by the protocol genera@?® among the processog, pi, and pn (i.e., a
mapped protocol generator). As a special cagktdfers to the protocol generator that
simply replaces the name of the trusted party in the multiparty computation specification
by p. Whenever a structure is partitioned, this partition is not made explicit, but can
easily be derived from the three resulting structures.

Step 1: Divide Z into three partitions and set
Z1 = {{p1, Pa, Ps}, {P2, P3, Pe}, {P1, P2, Pe}, {P1. P2, Ps}, { P2, Pas Ps}},
Z2 ={{P1, Pa, Pe}, {P2, P3, Pe}, {P1, P2, Pe}, {P1. P3. Ps}, {P1, P2, P3, Pal},
23 = {{P1, P2, Ps}, (P2, P4, Ps}, {P1, P3, Psls {P1s P2; P3. Pa}}-
Step 2: ConstructG; toleratingZ;.
Step 2.1: Divide Z, into three partitions and set
Z11 = {{P1, P4, Pe}, { P2, P3. P}, {P1, P2, Pe}},
Z12 = {{P1, P4, Ps}, {P1, P2, Ps}, { P2, Pa, Ps}},
Z13 = {{P2, P3. Pe}, {P1, P2, Pe}, {P1, P2, Ps}, {P2. Pa. Ps}}.
Step 2.2: ConstructG;; toleratingZ,;. This is achieved bygs].
Step 2.3: ConstruciGs, toleratingZ,,. This is achieved bys].
Step 2.4: ConstructGi3 toleratingZ 3.
Step 2.4.1: Divide Z13into three partitions and set
Z131={{P2, P3. Pe}, {P1, P2. Pe}, {P1. P2, Ps}},
Za32={{P2, P3, Pe}, {P2, P4, Ps}},
2133 = {{P1, P2, Pe}, {P1, P2, Ps}, { P2, Pa, Ps}}.
Step 2.4.2: ConstructG 3; toleratingZ131. This is achieved byga].
Step 2.4.3: ConstructG3, toleratingZ13,. This is achieved by].
Step 2.4.4: ConstruciGas toleratingZ133. This is achieved bygs].
Step 2.4.5: G13 = [pa, p1, 3] is Z13-secure.
Step 2.5: G; = [ps, Ps, [p4,Bl, ps]] is Z1-secure.
Step 3: ConstructG; toleratingZ».
Step 3.1: Divide Z; into three partitions and set
Z21 = {{P1. Pa. Pe}, {P2. P3. P}, {P1. P2. Pe}},
Z22 ={{P1, P4, Pe}, {P1. P3, Ps}, {P1, P2, Ps, Pal},
223 = {{P2, P3; Pe}}, {P1, P2, Pels {P1: P3; Ps}s {P1, P2, P3, Pall-
Step 3.2: ConstructG,; toleratingZ,;. This is achieved bygs].
Step 3.3: ConstruciG, tolerating 2 »».
Step 3.3.1: Divide Z,, into three partitions and set
Z221={{P1, Pa, Pe}, {P1, P3, Ps}},
Z222=1{{P1, Pa, Pe}, {P1. P2, P3, Pa}},
2223 = {{P1, P3, P}, {P1, P2, P3, Pa}}-
Step 3.3.2: ConstructGy;; toleratingZ,,1. This is achieved by,].
Step 3.3.3: ConstruciGa,; tolerating Z,,,. This is achieved byfs].
Step 3.3.4: ConstrucitG 3 toleratingZ,,3. This is achieved bygs].
Step 3.3.5: G2y = [ P2, Ps, Ps] is Z22-Secure.
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Step 3.4 ConstructG,; tolerating Z .
Step 3.4.1: Divide Z,3 into three partitions and set

Z231={{P2, Ps. Ps}, {P1, P2, Pe}, {P1. P3. Ps}},
Z232={{P2, Ps, Pe}, {P1. P2, Ps}, {P1, P2. P3, Pal},
Z233 = {{P1. P3, Ps}, {P1, P2, P3, Pal}-
Step 3.4.2: ConstructGs; tolerating Z,3;. This is achieved byfa].

Step 3.4.3: ConstruciGs; toleratingZ»3,. This is achieved bygs].
Step 3.4.4: ConstruciGss tolerating Z,33. This is achieved bygg].
Step 3.4.5: Gyz = [pa, Ps, Ps] is Z23-secure.
Step 3.5: G2 = [ps. [P2. Ps. Pe]. [Pa. Ps. Pell is Z2-secure.
Step 4: ConstructG; toleratingZ3. This is achieved bygs].
Step 5: The protocol generator

G= [[ps, P3, [Pa, P1, P3]]. [ Ps. [P2. Ps. Pel. [Pa, Ps. pe]]. pe]
is Z-secure.

Figure 3 illustrates this protocol generator. Remember phdor i < 0O refers to a
virtual processor and does not explicitly appear in the above description.

S ——

\‘
.7)6

U

=%

Fig. 3. An example of recursive processor simulation.
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5. Adversary Structures without Efficient Protocols

The goal of this section is, informally, to prove that there exists a family of adversary
structures for which the length of every resilient protocol grows exponentially in the
number of processors.

For a specificatior{rg, 7), a setP of processors, and an adversary structéirdet
w((no, 7), P, Z) denote the length of the shortest protoeofor P that Z-securely
computegrg, 7). Furthermore, letr,, t) denote the specification for the processors
and p, that reads one input of both processors, computes the product, and harls it to
Finally, let P, denote the sdtp, ..., pn} Of processors.

Theorem 4. For both the passive and the active model there exists a faZpilZs, . . .
of adversary structures for the sets, P, . .. of processorsrespectivelysuch that the
Iengthgo((n*, 7), P, Zn) of the shortesg,-secure protocol fofr,, t) grows exponen-
tially in n.

In order to prove the theorem we need an additional definition: An admissible adversary
structureZ for the setP of processors isaximalif Q@ (P, Z) (in the passive model)

or QB)(P, 2) (in the active model) is satisfied, but any adversary structirevith

Z C Z' (andZ # Z') violatesQ@ (P, 2'), or Q®)(P, 2"), respectively.

Proof. The proofproceeds inthree steps: Firstwe prove thatin both models, the number
of maximal admissible adversary structures grows doubly exponentially in the number
n of processors. In the second step we show that for the given specifi¢ation), for

every maximal admissible adversary structure a different protocol is required. Finally,
we conclude that for some adversary structures the length of every secure protocol is
exponential in the number of processors.

1. First consider the passive model. Without loss of generality, assuma that
|P| is odd, and letm = (n + 1)/2. Fix a processolp € P, and consider
the setB that contains all subsets d?\{p} with exactly m processors, i.e.,
B ={Z C (P\{p}): |Z| = m}. For each subsé¥’ C B, we defineZy to be the
adversary structure that contains all set8inplus all set&Z < P with |Z] < n/2
and (P\Z) ¢ B. One can easily verify thafy is admissible and maximal, and
that for two different subsets’, B” C B, the structure€z andZg- are different.
The size ofB is |B| = ("-*) = 22", hence there are?2" different subsets’
of B, and thus doubly exponentially many different maximal admissible adversary
structures for the passive model.

For the active model, consider an arbitrary maximal admissible adversary struc-
ture Z for P for the passive model, i.eQ(z)(P, Z) is satisfied. Clearly, for an
additional processqu ¢ P, the structureZ U {{p}} for the setP U{p} is admissible
for the active model(i.e.Q(3)(P U {p}, Z U {{p}}), and there exists a maximal
adversary structur€ 2 (Z U {{p}}) for P U {p}. For two different adversary
structuresZ andZ’, alsoZ and Z’ are different (one can easily compufefor a
given Z). Hence, the number of maximal admissible adversary structures for the
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active model withn processors is at least as large as for the passive model with
n — 1 processors, thus doubly exponentiahin

2. LetZ be a maximal admissible adversary structure, and let a protocol thag-
securely computesr,, t). For the sake of contradiction, assume that for some other
maximal admissible adversary structie(wherezZ’ # Z), the same protocot
Z'-securely computegr,, t). Thensz would (2 U Z')-securely computér,, ).
However, since botl¥ andZ’ are maximal admissibléZ U Z’) is not admissible,
and hence no such protocol exists (see Theorems 2 and 3). Hence, for each maximal
admissible adversary structuge a different protocolr is required for securely
computing(m,, 7).

3. There are doubly exponentially many maximal admissible adversary structures,
and for each of them, a different protocol is required, hence there are doubly
exponentially many different protocols. This implies that some of these protocols
have exponential length. O

6. Conclusions and Open Problems

We have given a complete characterization of adversaries tolerable in unconditional
multiparty computation. Corresponding results for the case of cryptographic security are
given in [CDM] where also an alternative proof technique for the unconditional case
based on span-program secret-sharing schemes is presented. Our techniques also allow
us to prove the natural generalization of the threshold-type results in [RB] for a model
with a broadcast channel: unconditional multiparty computation is possible if and only if
no two sets in the adversary structure cover the full player set [HM], [SS]. More generally,
the simulation technique applies to most previously proposed unconditional multiparty
protocols. Furthermore, we believe that every reasonable protocol generator can be used
in our construction, but we have also given an example of an artificial protocol generator
which cannot (see footnote 16). Formulating the exact condition for when a protocol
generator can be applied in our construction is suggested as an open problem. The player
substitution techniques can also be applied in the cryptographic model of multiparty
computation, but the security of such composite protocols remains to be proven [Can3],
[Be2], [MR].

The efficiency of the proposed protocols is polynomial in the size of the basis of the
adversary structure to be tolerated. Itis an open problem to find other general descriptions
of structures for which polynomial (in the number of players) protocols can be found
(for a possible approach and some new results see [CDM]). A further open problem
is to give general conditions on adversary structures such that polynomial protocols
exist. However, the number of maximal bases of structures satisfyin@teor the
Q® condition are more than exponential in the number of processors, and therefore a
construction of polynomial protocols can be found at most for some particular classes
of structures.

The recursive construction of Section 4 has a large number of degrees of freedom in
the partitioning of the adversary structure. We did not investigated the problem of finding
recursive partitionings with high or optimal efficiency, nor the round complexity of our
protocols.
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