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Abstract. The linear sequential circuit approximation method for combiners with
memory is used to find mutually correlated linear transforms of the input and output
sequences in the well-known summation generator with any number of inputs. It is
shown that the determined correlation coefficient is large enough for applying a fast
correlation attack to the output sequence to reconstruct the initial states of the input linear
feedback shift registers. The proposed attack is based on iterative probabilistic decoding
and appropriately generated low-weight parity-checks. The required output sequence
length and the computational complexity are both derived. Successful experimental
results for the summation generators with three and five inputs are obtained.

Key words. Summation generator, Correlation attacks, Linear approximations, Cor-
relation coefficients, Parity-checks.

1. Introduction

A well-known type of keystream generators for stream cipher applications consists of a
number of linear feedback shift registers (LFSRs) combined by a memoryless nonlinear
function. It is shown in [15] and [14] that such structures may be vulnerable to divide-
and-conquer correlation attacks based on the termwise correlation between the keystream
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sequence and a subset of the LFSR sequences. More importantly, fast correlation attacks
based on iterative probabilistic decoding are introduced in [9] (see also [1], [11], [12],
and [3]). These attacks are successful if the correlation coefficient is large enough and
if the involved feedback polynomials have sufficiently many low-weight polynomial
multiples of moderately large degrees.

The use of combiners with memory to overcome the tradeoff [14] between the linear
complexity and correlation immunity is suggested in [13]. It is shown that one can
achieve the maximume-order correlation immunity, regardless of the linear complexity,
with just one bit of memory. Theummation generatgsroposed in [13] and [8] is such
a nonlinear combiner with memory. For two inputs, it has only one bit of memory, and
for n inputs it haam = [log, n1 bits of memory.

The correlation properties of combiners with one bit of memory are investigated
in [10]. For the summation generator with any number of inputs, the corresponding
asymptotic correlation coefficient (both unconditional and conditioned on the output
sequence) is determined in [16]. For a general binary combinermwithemory bits,
the correlation properties are analyzed in [4]. It is shown that in such a combiner there
exists a nonzero linear function (transform) of at nmastl successive output bits that is
correlated to a linear function of at mast-1 successive input bits. The linear sequential
circuit approximation (LSCA) method [4] provides a feasible procedure for finding such
pairs of linear functions with comparatively large correlation coefficients. The LSCA
method consists in determining and solving a linear sequential circuit that approximates
a binary combiner with memory.

It is shown in [4] that every combiner with memory can be rendered zero-order cor-
relation immune by applying an appropriate linear transform to the output sequence.
In this case the resulting correlation coefficient is reduced depending on the number of
nonzero terms in the linear transform applied, but may still be large enough to perform
a basic correlation attack [15] or even the fast correlation attack [9].

A divide-and-conquer attack on the summation generator is proposed in [2]. The
required keystream sequence length is slightly larger than the sum of the input LFSR
lengths, but the attack consists in a search over all possible initial states of all the
LFSRs except for the longest one. Another attack, based on a specific, 2-adic complexity
measure is introduced in [6]. The required keystream sequence length to predict the
whole sequence is on average proportional to the sum of the LFSR periods and the
computational complexity is roughly quadratic in this length.

The first objective of this paper is to apply the LSCA method to the summation
generator with an arbitrary number of inputs and obtain all pairs of mutually correlated
input and output linear functiopigansforms with the maximum possible absolute value
of the correlation coefficient. The second objective is to exploit this correlation weakness
to mount a fast correlation attack [3] on the input LFSRs. For the attack to be successful,
sufficiently many low-weight polynomial multiples of the least common multiple of
the LFSR feedback polynomials have to be generated. For this purpose, a polynomial
residue method (initiated in [9]) based on the birthday paradox is used. For the summation
generators with three and five inputs, systematic successful experiments are conducted
for the LFSR lengths chosen according to the computational power available.

Fast correlation attack techniques and the polynomial residue method are reviewed in
Section 2 and the summation generator is defined in Section 3. Linear appoximations
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for the summation generator with any number of input LFSRs and the corresponding
fast correlation attacks are theoretically investigated in Sections 4 and 5, respectively.
The complexities of the proposed and known attacks are compared in Section 5. The
experimental fast correlation attacks on the summation generators with three and five
input LFSRs are presented in Section 6. Conclusions are given in Section 7.

2. Fast Correlation Attacks

The probabilistic model, a method for generating low-weight parity-checks, and an
iterative error-correction algorithm used in fast correlation attacks are outlined in this
section.

2.1. Probabilistic Model

The observed keystream sequence {z }iNzgl is modeled as the output sequence of a
memoryless binary symmetric channel (BSC) with error probabgifgorresponding
to the known correlation coefficiemt= 1 — 2p) when the unknown LFSR sequence
a={gy }isz)l is applied to its input. The LFSR feedback polynomidk) of degree is
assumed to be known. The set of sequeaggsnerated from all possible initial states is
then alineaKN, r) code. The optimal decoding algorithm consists in finding the LFSR
initial state giving rise to a codewoedying at the minimum Hamming distance from the
received codeword. This is essentially the basic correlation attack, with computational
complexityO(2"), proposed in [15]. The decoding error probability will be close to zero
if r/N < C whereC = 1 — Hy(p) is the capacity of the BSC. if is small, then this
condition reduces t&l > rO(1/c?).

The objective of fast correlation attacks is to recover the original LFSR sequence with-
out searching over all 2nitial states. This can be achieved by using iterative probabilistic
decoding procedures based on low-weight parity-checks.

2.2. Parity-Checks

A parity-check is any linear relationship satisfied by an LFSR sequence. It is known that
the parity-checks correspond to polynomial multigi€s), h(0) = 1, of f (x) (see [1]).
Our objective is to obtain sufficiently many parity-check polynomtis) of low weight
(number of nonzero terms) and of as small degree as possible, because the maximum
degree used determines the required keystream sequence length. Repeated squaring [9]
of f(x) is a simple weight-preserving technique that can be used if the weightxof
is low.

To generate alh(x) of weight at most R + 1 and of degree at mo&f, M > r, we
use the polynomial residue method [5] which is based on the birthday paradox method
from [9]. First, in O(M) time compute and store the residues of all the monomials
x™ mod f(x), 1 < m < M. Second, by bitwise summation, ®(M¥) time compute
and store the residuas + - - - 4+ x'* mod f (x) for all ('}f) combinations < iy < --- <
ik < M. Third, by a fast sorting algorithm i®(Mk log, M¥) time sort these residues
(as integers) and find all the matches of 0 (equal residues) and matches of 1 (binary sum
of residues equal to 1). A match of 0 gives a polynomial multiple of even weight at most
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equal to X, whereas a match of 1 gives a polynomial multiple of odd weight at most
equalto X + 1.

Forarandonf (x), itis argued in [5] that the expected number of polynomial multiples
of any given weighw, w > 2, is for largeM /(w — 1) given as

. M N wal
2 <w—1)w(u)—l)!2r' @

This implies that in order for a polynomial multiple of weight 2 1 and degree at most
M to exist, it is on average necessary and sufficient khat (2k)!Y/@02/@ (which
is related to the birthday paradox). As a consequektes O(2/)) yields that the
required precomputation storage and time for finding all the parity-check polynomials
of weight at most R + 1 areO(2'/2) andO(r 2'/?), respectively.

Each polynomial multiple of weighi found can be used to form parity-checks
from the corresponding phase shifts. All the parity-checks obtained can then be tested
for orthogonality (see [11] and [3]), so that some phases of some of the polynomials may
be discarded.

2.3. Iterative Error-Correction Algorithm

We employ an iterative probabilistic parity-check-based decoding algorithm [11] with
a modification given in [3]. The algorithm consists of several rounds, each composed
of a number of iterations. For each Bf observed keystream bits, a set of preferably
orthogonal parity-checks is first determined. The algorithm starts with the observed
keystream sequenc{ezi}i'\‘:])l and with p < 0.5 as the error probability for each bit.
The keystream sequence is then iteratively modified to yield the reconstructed LFSR
sequence.

In each iteration recalculate the parity-check values and compute the current error
probabilities as the posterior probabilities of error given the previous error probabilities
as the prior probabilities of error. Then complement all the bits with an error probability
larger than one-half. Ip is not too close to 0.5, then most of the error probabilities typi-
cally quickly converge to zero. The number of errors is thus reduced, but not necessarily
to zero. In order to correct all the errors, the algorithm is repeated for several rounds by
resetting all the error probabilities o At the end use a simple information set decoding
technique which consists in searching for an error-free sliding windowsoiccessive
bits. In fact, we applied an improved algorithm with the so-called fast resetting and with
the sliding window technique incorporated in rounds (see [3]).

3. Description of the Summation Generator

The summation generator [13], [8] is a binary nonlinear combiner with memory whose
internal state variable, the carry, takes integer values from the set{d], wheren is
the number of inputs. The memory size in bits is thus- [log, n].

Let X; = (X1.t, ..., Xnt) @ndy; denote then input bits and the output bit at time
t, respectively, and leg denote the carry at time For simplicity, we keep the same
notation for the carng = Z?‘:’Ol Q,IZJ' and for the binary representation of the carry

S = (Sots .. S 11). We also use the notatio§” = 5,,0< j <m—1,5°
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being the least significant bit &. Then the output and the next-state functions of the
summation generator are for= 0 respectively defined by

n
Yo = @Xi,t 257, @)
i=1

Sii = Kgxiﬁs) /zJ e

with the modulo 2 summation in (2) and integer summation in (3). In other words, at
timet, the input bits and the carry are summed as integers, the least significant bit of the
sum is taken as the output bit, and the remaining part of the sum defines the next carry.

The input sequences;, = {x;(}[2,, 1 < i < n, are defined as the LFSR sequences
typically generated from distinct primitive feedback polynomials, which are assumed to
be known to the cryptanalyst. The LFSR initial states are controlled by the secret key,
whereas the initial carng, is either fixed or is also controlled by the secret key.

The next-state function (3) is not balanced, that is, its output is not balanced (uniformly
distributed) if its input is balanced. However, in the probabilistic model where the input
sequences are regarded as purely random (that is, as mutually independent sequences of
independent and uniformly distributed binary random variables), it is shown in [16] that
(3) defines an ergodic Markov chain. Its stationary (asymptotic) probability distribution
is given by (see [16] and [7])

RS | a(n+1
= cve-r (") @

Here ps denotes the probability that the carry isequadte 1,1 < s < n.

The correlation coefficient between any two binary random varigtdeslb is defined
asc(a, b) = Pr{fa = b} — Pr{a # b}, and the correlation coefficient of a single binary
variablea is defined ax(a) = c(a, 0). Assume that the random carry varial8das
the probability distribution (4). Then the (asymptotic) correlation coefficient of the least
significant bitS® depends om and is given as

(S =) (- ps. (5)
s=1

It is shown in [16] that,(S?) = 0 for evenn and that for odd, ¢,(S?) is different
from zero and exponentially converges to zero witht turns out that for odah, if n is

not too big (e.g.n < 9), the correlation coefficient is large enough to apply successful
fast correlation attacks.

For evenn, however, it is shown in [16] that the asymptotic conditional correlation
coefficientc,(S?), conditioned on a sufficiently long series of successive ones/zeros
in the output sequence convergestg — c,_1(S?), respectively, where, 1(S©)
is the unconditional correlation coefficient defined by (5). Roe 2, the asymptotic
conditional correlation coefficient is thus equal4d., which is sufficient to mount
successfully a (fast) conditional correlation attack [10].
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Due to the binary summation in (2), the summation generator is maximum-order
correlation immune [13]. That is, for any given initial carry, the output sequence is (sta-
tistically) independent of any proper subset of the input sequences assumed to be purely
random. Consequently, any linear transform of the input sequences that is correlated to
a linear transform of the output sequence must involve all the input sequences.

4. Linear Approximations and Correlation Coefficients

In this section the best linear approximations for the summation generator with an ar-
bitrary number of inputs and the corresponding maximum correlation coefficients are
determined.
It is shown in [16] that the asymptotic probability distribution (4) is symmetric, that
is,
Prit-s=Ps, l<s<n (6)

As a consequence, the correlation coefficient (5) of the least significant car®fbit
vanishes for even. It is also established in [16] that (5) can be put into the form

1=0 I=1

[(n—-1)/2] /2]
(89 =27 (aodd<n+1) > D' pasatoeerdn+ 1) Y (D' p2|>,(7)

where, for any positive integer,

Lv=1)/2] | v
oogdv) = Y (=1 <2| +1>, 8

=0

Lv/2] (v
Tever(V) = ;(—1) (2|). ©9)

By using the identityrever(v) + ooda(v)i = (1+1)" = 2"/2€"7/4 wherei = /—1in
the field of complex numbers, it is shown in [16] that for ewvem = 2k,

2k 0 if k=0 (mod4,
0, 2% if k=1 (mod4,
e 20, 700a@0 = {05 0 Y (=5 (modd (10

0, —2k if k=3 (mod4.
Analogously, for odd, v = 2k — 1, we get

k=1 _ k-1 if k=0 (mod4,
k=1 k=1 if k=1 (mod4,
Oever(2K — 1), 0oqd(2k — 1) = _2k71’ k-1 if k=2 Emod 27 (11)

—2k-1 _ok-1  jf k=3 (mod4.
For oddn, n = 2k — 1, in view of (10), the correlation coefficient (7) reduces to
YD) py if k=0 (mod4.

k—1 | i =
O oDy ZI:O(_]') P2 +1 if k=1 (m0d4)v
SN =2 G Tt k=2 mods. @2

—Z::ol(—l)' P2+1 if k=3 (modj.
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It then follows [16] that|c,(S?)| < 2-™-D/2 and direct computation reveals that
ch(S©) is different from zero (see [16] for odu < 11).

For oddn, our main objectives here are to obtain all the linear functions of the input bits
that are correlated to the output bit with the correlation coefficiantS®) and also to
examine whether this correlation coefficient has the maximum possible absolute value.
For evenn, we want to find all the linear functions of the input bits that are correlated
to a linear function of the output bits with the correlation coefficient of the maximum
possible absolute value which has to be determined too.

The LSCA method [4] can help us find such mutually correlated input and output
linear functions for both even and odd The essence of this method is to find good
linear approximations to the output boolean function and to the boolean components
of the next-state function of a binary combiner with memory and to solve the resulting
linear sequential circuit. Since the output function (2) is already linear, we have to find
linear approximations t&" with nonzero correlation coefficients. For odgdwe can
approximates‘c” as zero or one, but this does not exhaust all possibilities. Forreven
we have to find other linear approximations?q@) as a boolean function of;_; and

S-1 (see (3)).
, ©
| (Trrrer) f2] o @)
i=1

It follows that
where, as beforeg = Z;“:_Ol S“)Zi ,m = [log, n]. Itis assumed that the car§._, (and
hence§ too) has the asymptotic probability distribution given by (4). In a simplified
notation, we have to analyze the following boolean function:

z= L(gxi +SO> /ZJ(O) @ S1. (14)

Here X = (Xg, ..., Xn) is uniformly distributed and independent @&, s;), with the
probability distribution ps, s, derived from (4) aspoo = Y% /%

L(n—2)/4] [(n=3)/4] L(n—4)/4]
> =0 Pa+2, Po1 = D o Pa+3, andpyy =D - Pai+4

Pa+1, Pro =

Lemmal. Let L(X) be any linear function of X and let(X) & x;, ® x;, be a lin-
ear function such that;xand x, are distinct variables not appearing in(X). If the
correlation coefficient between z andX) is equal to ¢then the correlation coefficient
between z and (X) & X, @ X, iS equal to—c.

Proof. Letc,, denotethe correlation coefficient betweemdL (X) when conditioned
on any particular valuéa, b) of (x,, x,). Then

c(z, L(X)) = £(Coo + Co1 + C10+ Cp1). (15)

SinceL (X) is degenerate in both, andx;, and since (14) is symmetric with respecip
we have thaty 1 = €1,0. Asforcg,o andcs 1, if, forany X and(sp, s1) such thatx;,, xi,) =
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(0, 0), only the value ofx;,, x;,) is changed int@1, 1), then the corresponding value of
zis complemented. As a consequence, sin¢¥) is degenerate in botk, andx;,, we
get thatcy o = —Cy.1. Then (15) reduces to(z, L (X)) = Cg.1/2.

On the other hand, let, ,, denote the correlation coefficient betweeand L (X) &
X, @ %, when conditioned on any particular valga, b) of (xi,, xi,). Then, analo-
gously,

¢z, L(X) @ X, ® %i,) = 7(Co0+Co1 +Co+Cp o), (16)

wherec ; = Co0, Cp 1 = C11, Cp 3 = —Co.1, aNAC] g = —Cp0. HeNcec(z, L(X) @ xi, ®
Xi,) = —Co,1/2. O

Lemma 2. Letoogg(n — 1) andoever(n — 1) be defined by8) and (9), respectively
Then the correlation coefficient between z apdsxgiven as

L(n-1)/2] n/2]
Ca(z, X)) =27 (aoddm—l) Y (=D'pajitoeein—1) Z(—1)|+lp2|>- an
=1

=0 =

Proof. Letcg, s,:x, denote the correlation coefficient betweramdx; when conditioned
on any particular value&, s1) andxg, that is,

Co.si:x = PHZ = X1|S0, S1; X1} — Pr{z # X1|0, S1; X1} (18)

Let ¢, 5, denote the correlation coefficient betweeandx; when conditioned on any
particular valugsy, $1), that is,

Cos = 3(C.50:0 + Cepsi1)- (19)
Then
Cn(Z, X)) = Z Pso,51Cs0,5: - (20)
S0,S1

We first computes o. From (14) we directly get

| (55) /2] )

Pr{in =0or 1(mod4)}

i=2

_ (D) 2 <<”A; 1) + (; :Lll>> , (21)

Pr{z = 0|0, 0; 0}
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where as usua(llj) = 0if u > v. Similarly, we have

ol (54) /2 )

Pr{in = 20r3(mod4)}

i=2

=2 DZ((m +2> (Z;é)) (22)

In view of (18), (21) and (22) imply

o () (D)D) e

On the other hand, we similarly obtain

Pz=10,0:1) = 22" <<4| + 1) + (:l 112>> , (24)

1=0

Priz=0]0,0;1} = 2= i ((na 1) + <:| 12)) . (25)

Pr{z = 1]0, O; 0}

Hence
> -1 n-—1 n—1 n-—1
L=y (N — e,
Coo1 ,;( < 4 >+(44+1>+<4|+2> <4|+3)> (26)
Finally, (23) and (26) combined by (19) yield

_ o—(n-1 n—1\\ . mo B
23 (300~ (373) =2 - )

The remaining three cases are treated in an analogous way and as a result we get

> -1 n-1
Cio= 2—(n—1) ((n ) - < )) = 2_(n_l)aever(n - 1)7 (28)
2(Ua7) a2

co1 = —2 " Pogga(n — 1), (29)

cr1=—2"""Pogedn — 1). (30)

According to (20), (27)—(30) finally yield
Cn(z. 1) = 27" Pooga(n — D (Poo — Por) + 2 " Poeverdn — (Pro — Pr1). (31)
which is equivalent to (17). O
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Lemma 3. Foroddn c,(z, x1) = 0, and for even nn = 2Kk,

=D pays + 2 (D) py if k=0 (mod4),

g2 Z.k;&(—l)' Pat1 + 2, (-D)'py if k=1 (mod4,
2. ‘0( D' pass — Y (D' py if k=2 (mod4),

Z| 0( D' pasa —Z:(zl(—l)l+l pz if k=3 (mod4.

Cn(Z, %) =2

(32)

Proof. For evemn, n = 2k, (32) is a direct consequence of (17) and (11). Forodd
n=2k+ 1, (17) and (10) result in,(z, X;) being given by the right-hand side of (12)
with a difference thah = 2k + 1 instead oh = 2k — 1. The following concise form of

(12),

vz [EX L (=D*py  if k=0 (mod2,
Dz =2 {i2| Lo(=D)! p2|+1 if k=1 (mod2, (33)

shows that this difference is essential. Namely, for both even andt,atié symmetry
equation (6) forces (33) to be equal to zero. O

Let c(n) be defined as,(S?), by (12), ifn is odd and as,(z, x1), by (32), ifn is
even. Letals@nax(n) = |c(n)|. Then, in view of (2), Lemmas 1-3 result in the following
theorem, which completely specifies the correlation between the current output bit and
linear functions of the current and preceding input bits.

Theorem 1. For any time t> 1, assume that the current and the preceding inputs to
the summation generator are mutually independent and uniformly distributed and that
the preceding carry has the asymptotic probability distributign

If the number n of binary inputs is odthen the correlation coefficient between the
current output bit and the binary sum of the current input bits and any number
0 < 1 < n, of the preceding input bits is equal t@r) if © = 0 (mod 4, to —c(n) if
u = 2 (mod 4, and to zero ifu is odd

If the number n of binary inputs is evethen the correlation coefficient between
the current output bit and the binary sum of the current input bits and any number
0 < u < n, of the preceding input bits is equal t@r) if © = 1 (mod 4, to —c(n) if
u = 3 (mod 4, and to zero ifu is even

For each 1< n < 10, the computed value of the maximum correlation coefficient
Cmax(N), @ representative input linear function with the minimum number of terms, and
the output affine function to be used in fast correlation attacks are displayed in Table 1.

We conjecture that Theorem 1 identifies all input linear functions that are correlated
to the current output bit with the correlation coefficient having the maximum absolute
value. This is supported by the experimental fast correlation attacks on the summation
generators with three and five inputs which always converged to a linear (or affine)
transform of the input sequences determined by Theorem 1.

Another argument for this conjecture is provided by the LSCA method itself. Namely,
to obtain nonzero correlation coefficients between the current output bit and linear func-
tions of more than two successive inputs, we should consider more than just a single
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Table 1. Maximum correlation and best linear approximation.

n Cmax(N) Best linear approximation Output
1 1.00000 X1t z
2 ! = 050000 D7, %t + X111 z
3 1 ~033333 B %t 2
4 5~ 020833 B X + X1 2
5 2 ~013333 D, % 2
6 81 ~ 008472 B, X + Xai1 7
7 22 ~00539 D/ i 7
8 13 ~ 003435 B Xt +Xai1 z
9 I 5002186 D, i z
10 59528 ~ 001392 D21 xit + X1 z

round of the next-state function (3). Due to multiple linear approximation to the internal
state bits required, the overall correlation coefficient is expected to decrease.

The conjecture is also confirmed by computing the correlation coefficients between all
the linear functions of at most three successive outputs and inpuis£f@ andn = 5.
In both cases, the maximum correlation coefficient fouraghis(n). For three successive
inputs and the current output, the correlation coefficient takes intermediate values and
the largest ones computed af% and:tll28 for n = 3 andn = 5, respectively. More
precisely, the number of such input linear functions with the correlation coefficient equal
to 1, -2, 15 and—15 is 9, 3, 30, and 30, respectively. In addition, foe= 3, we also
computed the correlation coefficients between the current output bit and linear functions
of four successive inputs (effectively) and the largest one obtairmq%is

From (12) and (32) it follows thatmay(n) < 2-"=Y/2 for oddn andcmax(n) < 2-"/?
for evenn, respectively. It turns out that the valuescgf(n) are not much smaller than
what can be obtained by a random memoryless combinemwitputs.

5. Fast Correlation Attacks on Summation Generator

In this section a theoretical analysis of fast correlation attacks on the summation gen-
erator is presented. The general case of an arbitrary number of inputs and parity-check
polynomials of an arbitrary weight is considered.

According to Section 4, the fast correlation attack based on iterative error-correction
decoding uses the output sequence or the binary complement of the output sequence.
The LFSR sequence to be reconstructed is a linear transform of the input sequences
corresponding to one of the input linear functions with the maximum absolute value of
the correlation coefficientmax(n). Let L™ andL~ denote the numbers of input linear
functions with the correlation coefficientx(n) and—cmax(n) to the current output bit,
respectively. To minimize the number of possible input linear transforms, the attack is
run on the output sequencelif- < L~ and on its binary complementlift > L.
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The error probability for the associated BSC chann@l s (1 — cax(n))/2. In view
of maximume-order correlation immunity, the corresponding LFSR feedback polynomial
(f (x) of degree) is the least common multiple of the individual input LFSR feedback
polynomials. If these polynomials are distinct and primitive, tti€r) is their product.

The parity-checks to be used in the attack can be obtained by the polynomial residue
method described in Section 2.2.

If odd-weight parity-checks are predominant, then the iterative error-correction al-
gorithm, if successful, is expected to converge randomly to a linear transform of the
input sequences with the correlation coefficiepix(n). If even-weight parity-checks
are predominant, then the algorithm may also converge to the binary complement of a
linear transform of the input sequences with the correlation coeffieienix(n). This is
because every even-weight parity-check polynomial for the feedback polynéiixial
contains 1+ x as a factor and is thus also a parity-check polynomial for the feedback
polynomial (1 + x) f (x), which corresponds to the bitwise binary complement of any
LFSR sequence satisfyinfy(x). The experiments reported in the next section confirm
this behavior.

A unique solution for the unknown LFSR initial states consistent with the keystream
sequence is obtained as follows. For any assumed input fizifiae transform, all the
LFSR initial states are recovered by solving the corresponding linear equations and are
then tested for consistency with the given keystream sequence. If the initial carry is secret
key controlled, then its correct value has to be guessed aupos$sible values.

The computational complexity of the iterative error-correction algorithm is propor-
tional to the keystream sequence length and to the number of parity-checks per bit used
in the attack. The required keystream sequence length is proportional to the maximum
degree of the parity-check polynomials used whiclDi'/®—9) for average LFSR
feedback polynomials, provided that the parity-check weighs fixed. Since the re-
quired number of the parity-checks depends onlyamd on the correlation coefficient
(see (36) below), both the keystream sequence length and the computational complexity
increase a®© 2"/ if w is fixed.

Our objective now is to examine the case whésilarge andv is varied. Let) (w) and
Jmax(w) respectively denote the average and the maximum numbers of the parity-checks
per bit needed for a successful fast correlation attack on a given summation generator and
let M be the maximum degree of the associated parity-check polynomials. The required
keystream sequence length is typicaly= vM, wherev is a relatively small constant
(e.g., 1< v < 10). The average required computational complexity per one round of
the iterative error-correction algorithm is abdbit= N(w — 1)J(w) (in appropriate
units), and the number of rounds is roughly independent.ofccording to (1), since
the required number of the parity-check polynomiald;is«w)/w, one may on average
expect that

w

_ P 1/(w—-1)
M ~ ((w ) ) (W) M@= 2/ =D (34)

where the orthogonality condition is for simplicity disregarded: i§ not close to one



Fast Correlation Attacks on the Summation Generator 257

(e.g.,v ~ 10), thenJnax(w) ~ J(w), so that
_ oy V-1
C~vw—1) (M) J(w)?/ =D /=1 (35)
w

It remains to asses$(w). Let ¢ = Cnax(N). Under the assumption that the parity-
checks are orthogonal and thit.«(w) ~ J(w), the convergence condition [12] indi-
cates that the iterative error-correction algorithm will on average be successful if

1-— Cw—l = ’ (36)

14+c 1\  14¢
1—¢

which for smallc can be well approximated as

J(w) > (37)

cw—2"

Note that the number of the parity-checks needed for a successful fast correlation attack is
in practice larger than the value predicted by (36), because in the experiments the parity-
checks are not necessarily orthogonal, the errors are not independent as in the BSC
model, the constant is close to one, and the best linear approximation is not unique.
However, apart from a multiplicative constant, (37) seems to be a good approximation
as far as the dependencewris concerned.

Consequently, (35) can be reduced to

1/(w-1)
C~vw—1) (L — 1)!) ¢Tw—A/ (o= r/tw=D (38)
w

So, the computational complexity is given as the product of three factors, as functions
of w: the first increases roughly agw — 1)?/e, the second exponentially increases
asc~ WD+ =D and the third decreases d$2. A similar expression holds for

the keystream sequence lendth= vM with a difference that the first factor is lin-

ear inw — 1 and that the second factar;*¥/®-1 is roughly constant. Therefore,

N is predominantly determined by the third factét2-b. Unlike N, C is predomi-
nantly determined by the product of the last two factorg?—D+%/ =D 2r/(w=D \which

initially decreases withw, then achieves its minimum valug g —10g: ¢ oo for
wopt & /I /l0g, c~1 — 1+ 1, and increases with further increasewofAccordingly, we
get

Crin & 2 224 /(r—log, c-1) log, c-1+log, 24/ /log, c-1—1 (39)



258 J. Dj. Gol&, M. Salmasizadeh, and E. Dawson
and the corresponding value Nfis given as

N ~ é: 21 /(r—log, ¢ 1) log, c-1+log, 4 /T /l0g, c-lfl' (40)

To simplify the comparisons given below, we use the approximations
Cmin ~ 224/r log, ¢t (41)
andN ~ 2V '0g ¢

Assuming thatthe LFSR lengths are approximately equal, the minimum computational
complexity (41) can be compared with the computational complexities of the divide-
and-conquer attack [2]72-Y/", and of the 2-adic complexity attack [6]22"+1°%m
(neglecting the multiplicative constants). THOgin < 22/™if r > n?10g, Cmax(N) 2.

Finally, we compare the keystream sequence length and the computational complexity
required for the successful fast correlation attack with those required for the successful
basic correlation attack based on the method [4] which reduces the summation generator
to a zero-order correlation immune combiner. Namely, choose the shortest of the LFSRs,
make the productf (x), of the distinct feedback polynomials of the remaining LFSRs,
and find a polynomial multiplé(x) of f(x) of low weight w. Then apply the linear
transform defined bi(x) to the output sequence. According to Theorem 1, the linearly
transformed output sequence is bitwise correlated to the same linear transform of the
chosen LFSR sequence or of its binary derivative. The correlation coefficient can be
well approximated asmax(N)® or —Cmax(N)*, assuming that the correlation noise is
memoryless.

The correlation attack then consists of guessing the initial state of the chosen LFSR and
of estimating the bitwise correlation coefficient between the linearly transformed LFSR
and output sequences. The guessed initial state is assumed as correct if the estimated
correlation coefficient is consistent withcmax(n). The required linearly transformed
output sequence lengthigd (Cmax(N) "), wherer; is the chosen LFSR length.

Assume for simplicity that the LFSR lengths are equal andclet cnax(n). The
required keystream sequence length can then be approximated as

N A 22w log, c~1+log,(r /n) 4+ 2r(-D/(w-1) (42)

The first and the second terms stand for the length needed for testing the correlation
and for the expected degree of the parity-check polynohigl. The required compu-
tational complexity i<C ~ w 2'/n 22w l0g ¢ +og,(/M and the required storage space for
computing the input linear transform &~ 2r "-1/(w=1),

As w increasesC increases and decreases and there is an optimal valug;
minimizing the keystream sequence lenbthNp,;, is approximately achieved if the two
terms in (42) are equal. That iopt ~ /(N — 1r/(2nlog, c-1) + 1 and

Ninin & 2V 201050 (1 4 r/m), (43)
Copt ~ 24/2r(n71) Iogzc*l/n+r/n_ (44)
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Note that the minimum computational complexity (41) is smaller Qg if

r > n?log, Cmax(n) ~* (2 —J2(n— 1)/n)2. (45)

6. Experimental Results

The objective of this section is to examine experimentally the vulnerability of the sum-
mation generators with three and five inputs to fast correlation attacks.

6.1. Three Inputs

The summation generator with three inputs is a binary nonlinear combiner with two bits
of memory. According to Theorem tax(3) = % which is large enough to apply the
fast correlation attack. The current output bit is correlated with the correlation coefficient
—% to the binary sum of the three current input bits, and with the correlation coefficient
% to the binary sum of the three current and any two preceding input bits (there are
three such linear functions). Consequently, the fast correlation attack is run on the binary
complement of the output sequence.

Experiments were conducted on four summation generators. The tap s@Hjpgs
for LFSR,i = 1, 2, 3, the degree, and the weightv, of the resulting product feedback
polynomial are shown in Table 2.

In each case, the attack was performed for 20 randomly chosen initial contents of
the LFSRs for two sets of (not necessarily orthogonal) parity-checks: one, I, with pre-
dominant weight 5 and the other, I, with predominant weight 7 or 6 (dependimg. on
The parity-check sets were obtained by the method described in Section R.2-f@r
andk = 3, respectively. For each out of the 20 initial contents, the number of the
parity-checks used and the keystream sequence length were both minimized.

The weightw, the average numbét,,, the maximum numbef a5, and the maximum
degreeMnmax Of the parity-check polynomials used as well as the average Mluand
the standard deviatian(N) of the keystream sequence length in successful experiments
are all shown in Tables 3 and 4, for the parity-check sets | and Il, respectively. For
comparison, the keystream sequence length obtained by theory is also shown in Tables 3
and 4 (i.e.Ny, = vM, whereM is given by (34) and (w) determined by (36), assuming
thatv = 2 and thatw is the predominant weight).

In the casa = 30 shown in Table 4, where even parity-check weight, 6, is pre-
dominant, the algorithm converged randomly to one of the four input affine transforms
identified above. In other cases, where the predominant parity-check weight is odd, it
converged to the bitwise sum of the input LFSR sequences.

6.2. Five Inputs

The summation generator with five inputs is a binary nonlinear combiner with three
bits of memory. According to Theorem &yax(5) = 135 which is, although smaller
than % also large enough to apply the fast correlation attack. The current output bit is



Table 2. Input LFSRs and product feedback polynomiak- 3.

Taps Taps Taps r wp
0,4,9 0,3,10 0,2,11 30 17
0,39 0,2,10 0,3,15 34 19
0,3,10 0,2,11 0,3,17 38 19
0,1,3,4,13 0,1,15 0,2,35,16 44 17

Table 3. Parity-check polynomials, set |, and keystream sequence length.

r w Kav Kmax Mmax Nav a(N) Nih
4 1 1 838 10.7 8.5 103
30 2 2 2
5 118 169 1495
34 5 137 170 2,877 B4 287 o113
38 5 79 79 4,990 Bs 295 2123
44 5 127 135 14,954 139 296 2138

Table 4. Parity-check polynomials, set I, and keystream sequence length.

r w Kav Kmax Mmax Nav o(N) Nin
5 4 6 559
30 6 425 518 585 gl 277 281
7 282 282 250
5 13 152 800
34 6 146 240 849 ® 290 291
7 5,360 5,945 650
38 6 19 19 830 2107 294 29.8
7 5,360 5,945 650
44 7 2,600 2,600 1,800 1% 297 2108

Table 5. Input LFSRs and product feedback polynomiak- 5.

Taps Taps Taps Taps Taps r wp
0,1,4 0,2,5 0,1,6 0,1,7 0,23,4,8 30 13
0,1,6 0,1,7 0,23,4,8 0,4,9 0,3,10 40 21

Table 6. Parity-check polynomials and keystream sequence length.

r w Kav Kmax Mmax Nav a(N) Nih
5 8,338 9,272 3,915

30 6 598 598 604 71 2104 2115
7 130 130 223

40 5 14,800 14,800 24,968 14 2118 2140
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correlated to six and ten linear functions of the corresponding two successive inputs with
the correlation coefficient equal Eé and—l%, respectively. Any of the six functions

is the binary sum of the five current and zero or four preceding input bits, whereas any
of the ten functions is the binary sum of the five current and two preceding input bits.
Consequently, the fast correlation attack is run on the output sequence.

The fast correlation attack is conducted in the same way as in the case of three inputs
except that there are more multiple linggffine approximations to be checked in the
final stage. Experiments were conducted on two summation generators. The tap settings
Taps for LFSR, 1 <i < 5, the degree, and the weightv, of the resulting product
feedback polynomial are shown in Table 5.

In each case, the attack was performed for 20 randomly chosen initial contents of the
LFSRs by using (not necessarily orthogonal) parity-checks of predominant weight 5.
For each out of the 20 initial contents, the number of the parity-checks used and the
keystream sequence length were both minimized. The results obtained by experiments
and by theory are shown in Table 6. In all the cases, the predominant parity-check weight,
5, is odd and the algorithm converged randomly to one of the six input linear transforms
identified above.

7. Conclusions

It is shown that the summation generators with three, five, and any moderately large
numbem of input LFSRs may be vulnerable to fast correlation attacks based on iterative
probabilistic decoding. Mutually correlated linear transforms of the input and output
sequences are identified by the linear sequential circuit approximation method using
the known asymptotic probability distribution of the carry. The underlying maximum
correlation coefficientgmax(n), is derived for any. For success, sufficiently many low-
weight parity-check polynomials can be generated by a polynomial residue method.
For random feedback polynomials with the least common multiple of degeeel
any fixed parity-check weight, the average required keystream sequence length and
the computational complexity are bo@i2'/(»~1), whereas the precomputation storage
and time for finding the parity-check polynomials &€2'/?) andO(r 2'/2), respectively.
However, primitive feedback polynomials may exist for which these figures are much
smaller. Whenw is varied, itis shown that the minimum computational complexity can be

approximated a€pin ~ 22V 0% (W™ and is achieved iy &~ /r /109, Cmax(N) %+ 1.

The corresponding keystream sequence length iskhen2v'" 109 cmax(m ™"

Successful experimental results are systematically obtained for the summation gener-
ator with three inputs and variousby using the polynomial multiples of weight 5 and
of weight 6 and 7 combined, respectively, and, also, for the summation generator with
five inputs by using the polynomial multiples of predominant weight 5.
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