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Abstract
 In this article we introduce the concept of implied optical perspective in deep learning computer vision systems. Taking the 
BBC’s experimental television programme “Made by Machine: When AI met the Archive” (2018) as a case study, we trace 
a conceptual and material link between the system used to automatically “watch” the television archive and a specific type 
of photographic practice. From a computational aesthetics perspective, we show how deep learning machine vision relies 
on photography, its technical regimes and epistemic advantages, and we propose a novel way to identify the latent camera 
through which the BBC archive was seen by machine.

Keywords  Computational aesthetics · Philosophy of photography · AI television · Computer vision · Deep learning · 
Dataset archaeology

1  Introduction

Is that a person or a reflection? A man or a woman? Is the 
woman holding a mobile phone, or is it, rather, the statue 
of an ancient Egyptian king? Is the man wearing a shirt, or 
is it an elephant? Or a stuffed animal holding a banana…? 
(Figs. 1, 2, 3).

These are some of the mislabellings produced when a 
small team of technologists and researchers set a computer 
vision system to “watch” thousands of hours of British tel-
evision for the project “Made by Machine: When AI met the 
Archive”(MbM), whose outputs were eventually packaged 
and broadcast on BBC Four as an experimental “AI TV” 
programme in 2018.1

In line with the public purposes of the British broadcaster 
(BBC 2018), one of the main goals of the programme was 
to show to a wider audience some of the possibilities and 
limitations of AI, and in particular deep learning approaches 
that underlie many contemporary computer vision systems. 
From a research perspective, the project was also designed as 
prompt to explore just how exactly computers are said to be 
“seeing”. What type of knowledge is produced by computer 

vision and how does it inform the ways we understand and 
give currency to audio–visual media more generally?

In related work, such questions have generally been 
approached by focussing on training datasets and how they 
are assembled as well as how the resulting AI systems rep-
resent or fail to represent different sectors of society. Exem-
plary of this approach are the works of Kate Crawford and 
Adam Harvey:

“Training sets, then, are the foundation on which con-
temporary machine-learning systems are built. They 
are central to how AI systems recognize and interpret 
the world. These datasets shape the epistemic bounda-
ries governing how AI systems operate, and thus are 
an essential part of understanding socially significant 
questions about AI.” (Crawford and Paglen 2019)

“A photo is no longer just a photo when it can also be 
surveillance training data, and datasets can no longer 
be separated from the development of software when 
software is now built with data.” (Harvey and LaPlace 
2019)

Research using this approach has shown datasets to be 
deeply problematic, both in their politics of assemblage and 
of representation. The experience in MbM was no excep-
tion here. A team from BBC R&D implemented an auto-
mated dense captioning system pre-trained on the Visual 
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Genome dataset2; comprised of little over 108,000 images 
downloaded from Flickr and annotated by 33,000 Amazon 
Mechanical Turk workers, 61% of whom were under 35 and 
93% from the USA (Krishna et al. 2017, 43). This captioning 
system implementation was used to automatically annotate 

several hundred hours of television from the BBC archive, 
and these annotations used as metadata in an associational 
engine that concatenated new sequences of related television 
clips (Cowlishaw 2018; Chávez Heras et al. 2019).

Fig. 1   MbM still frame with predicted label ‘woman holding a cell phone’

Fig. 2   MbM still frame with predicted label ‘red and white stuffed animal’

2  https​://visua​lgeno​me.org/

https://visualgenome.org/
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One of the results immediately observed in these 
machine-generated clips was the system’s propensity to 
identify men in shirts. Although imbalance in gender repre-
sentation is a known issue in television, including the BBC 
(Cumberbatch et al. 2018), this effect was so pronounced 
that it prompted a closer inspection of the training dataset. 
“white” is the most common attribute, “man” most com-
mon object (with twice as many instances as “woman”) with 
“shirt” also among the top ten (Krishna et al. 2017, 50–53, 
63). Biases such as these have been consistently found in 
this and other large image training sets used in deep learning 
computer vision, the localisation and disaggregation of such 
biases being one of the main goals of Crawford’s proposed 
archaeology of datasets (Crawford and Paglen 2019).

However, by focusing on labelling images as the main 
layer of human intervention, i.e. the principal source of data, 
bias and error, such an archaeology very often overlooks 
other significant areas of human subjectivity encoded in 
these systems, namely the nature of the images themselves. 
These labels are produced not over direct observations of the 
world, but over photographic images of it; images that are 
technically and socially mediated in powerful ways that cre-
ate and sustain specific regimes of visibility and with which 
we hold a complex relationship before they become digital 
artefacts.

Following this line of thought, we set out to look at com-
puter vision through the (figurative and literal) lens of pho-
tography. Through a technical genealogy of photographic 
lenses, the types of images they afford and the social func-
tions given to these images, we show how AI is materially 

and conceptually connected to optical regimes of visibility. 
Based on this connection, in the last section we assemble 
a dataset with which to analyse photographic practice, and 
then use it to train a bespoke focal length classifier as a 
proof-of-concept for a system designed to investigate the 
optical perspectives implied in MbM.

2 � Epistemic discontents

An often unexamined fact about of deep-learning computer 
vision is that the millions of pictures it algorithmically 
mobilises are, for the most part, photographs. Perhaps one 
of the most revealing accounts about how this choice came 
to be seen as obvious comes from Fei-Fei Li, one of the 
creators of ImageNet3 and a key figure in the shift towards 
deep learning over the last decade. Li was asked recently 
about the choice of using photographs for ImageNet during 
an event celebrating the tenth anniversary of the dataset: 
“That’s a great question.” —she replied— “We didn’t really 
stop to think much about it (…). I suppose we wanted as a 
realistic representation of the world as possible” (Li 2019).

Li is not alone in her assumption about realism and pho-
tography. A widely shared intuition about photographic 
images is that “the camera does not lie” or that in any case 
it lies less than other methods of depiction. In an often-cited 
passage of his influential Ontology of the Photographic 

Fig. 3   MbM still frame with predicted label ‘reflection of a mirror’

3  https​://www.image​-net.org/

https://www.image-net.org/
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Image, André Bazin (1960[1958]) wrote that the invention 
of photography and cinema “satisfy, once and for all and in 
its very essence, our obsession with realism. No matter how 
skillful the painter, his work was always in fee to an ines-
capable subjectivity. The fact that a human hand intervened 
cast a shadow of doubt over the image.” (7). What he meant 
exactly by “realism” has been the subject of much debate, 
since but this view of photographs as trusted visual render-
ings of the world due to their alleged automatic mode of 
production has proved remarkably enduring.

Li’s response earnestly voices just such a view, where 
unlike for example drawings or paintings, which are inex-
tricably bound to the mental states and technical abilities of 
their authors (as well as the embodied command of these 
states and abilities), photographs appear to be pictures pro-
duced through mind-independent processes. They capture 
whatever is in front of the camera regardless of what the 
photographer believes about what is in front of the cam-
era, i.e. cameras can only show what is there to be seen. 
In philosophy, this idea of mind-independence mechanical 
process has served to explain the epistemic advantage of 
photographs over other types of images (Cavell 1979; Cohen 
and Meskin 2004; Walden 2005; Abell 2010).

One formulation of this argument proposed by Gregory 
Currie (1999) is that we treat photographs as traces as 
opposed to testimonies. The former are counter-factually 
dependant on nature, like a footprint, in a way that the lat-
ter are not, like the tale of how someone once took a step 
in the mud. For the footprint to be any different, Currie 
would argue, the sole of their shoe would have had to differ 
accordingly, while a description of the step taken, however, 
rich or detailed, necessarily implicates the intentions of the 
describer and belongs, therefore, to a different epistemic reg-
ister altogether. According to this view, the social credibility 
lent to photographs makes them more akin to light detections 
captured as a result of a mind-independent mechanical pro-
cess, while paintings and other pictures made by hand tend 
to be seen as someone’s depiction of a scene, this is, as the 
result of an embodied cognitive and creative process.

This is the dominant logic that underwrites computer 
vision too, at least in its current form and insofar as it is 
powered by photographic images, from which it inherits, 
exploits and amplifies their epistemic advantage founded on 
this mind-independent conjecture about the photographic 
process. When millions of photographs are aggregated into 
large datasets and used to train machine learning systems, 
the representational powers of photography and computa-
tion compound, to the point, where predicted labels are also 
seen as traces, face detection and not face depiction. The 
predictive tokens produced by computer vision are thereby 
presented as the counter-factually-dependent and mind-inde-
pendent detections of something or someone. This person 

or this object was seen automatically and, therefore, had to 
be there to be seen.

Recently, however, this view has been put under mounting 
pressure by the so-called new theory of photography, whose 
proponents argue for an expanded view of the photographic 
event as a multi-staged process of which only some parts 
can be said to occur automatically (Maynard 1997; Phil-
lips 2009; Lopes 2016; Costello 2017). Costello (2017), for 
example, identifies a contradiction in ascribing epistemic 
value to photographs on the basis of their supposed mind-
independence processes while simultaneously characteris-
ing these processes as automatic. A process cannot be both 
natural and automatic, he argues, without separating humans 
from nature (42). Automatic processes are causally-depend-
ant but not spontaneous according to Costello. For a process 
to be called automatic it should be possible to specify it 
in terms of the labour that is being delegated to a mecha-
nism, one that serves human ends and, therefore, necessarily 
involves human minds. Costello asks:

“just what is it exactly that is supposed to ‘happen by 
itself’? […] In photography, almost everything that 
expresses comparable choices [to painting] happens 
off the support—the choice of lens, distance, light-
ing, moment of exposure, point of view, etc.[…] This 
can give those who have no idea, where to look the 
impression that the photographer has done very lit-
tle, or that the mechanism is responsible. But this is 
plain ignorance. The fact that so many of the acts take 
place prior to the image appearing ‘all at once’ does 
not negate the photographer’s responsibility for what 
then appears. Merely noting depth of field markers in 
an image already tell us much about what the photog-
rapher was after. One needs to be a competent judge in 
photography as in any other domain; and this requires 
a basic grasp of the internal relations between focus, 
depth of field, and exposure that most Orthodox theo-
rists fail to evince.” (45) [italics in original].

From this perspective, photographs are seen as faithful 
visual representations by virtue of their mechanisms no less 
than by the ways in which such mechanisms are controlled 
and regulated by photographers. Following Costello, we 
need to also consider that our intuition of what is a “realis-
tic” image rests in the case of photography as much on what 
it shows than on how it shows it, which is to say that the pho-
tographic image is granted its privileged epistemic position 
in society by adding, not subtracting layers of subjectivity; 
not “without the creative intervention of man”(7), as Bazin 
would have it, but precisely because of it.

If the depicted is indeed inextricable from the process of 
depiction, we must then ask why should we not care about 
this process when it comes to computer vision?
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3 � The glass computer

One of the reasons photographic cameras appear to record 
the world automatically is that many of the calculations 
needed to render space visible are pre-programmed in the 
photographic devices themselves, most significantly in pho-
tographic lenses. When photographers pull an image into 
focus by adjusting the focus ring, the lens is doing some of 
the heavy lifting in terms of the calculations necessary to 
harness light convergence and render a slice of space visible 
in a specific manner. This is not to say the lens itself thinks, 
but rather that thought has been put into the lens, quite liter-
ally crystallised in its design, and that the photographer is 
able to interface with it through the camera controls.

From a cognitive standpoint, like the Sumerian abacus or 
the medieval volvelle, photographic lenses can be thought 
of as a type of analogue computer: a system that allows its 
user to actively externalise memory to a programmable cal-
culating object and in this way distribute the cognitive load 
required to perform a specific task. Configured in this man-
ner, user and object enter into an interaction feedback loop, 
creating “a coupled system that can be seen as a cognitive 
system in its own right” (Clark and Chalmers 1998). That 
photographers need not perform optic calculations to mobi-
lise their effects is one of the most salient affordances of 
photography as a technology, and connects it to computer 
vision in their shared overarching project to automate visual 
labour through the computation of space (Pasquinelli 2019), 
with the obvious difference that in the case of photographic 
lenses such computation is analogue.

If we have not traditionally thought of photographic 
lenses as machinery with which to calculate4 is perhaps 
because their inputs and outputs are presented as images 
and not numbers or letters. We do not know, for example, 
whether an image is in focus if presented as a matrix of 
pixel values (or a tensor); we need to see the results as an 
image “all at once” to evaluate it. However, the intermedi-
ate steps of interaction involved in producing photographic 
images are in fact heavily mediated by numerical parameters 
and standardised metrics: focal length, exposure, aperture 
and ISO. These are all given as numbers that describe the 
internal relations of the photographic mechanism, and from 
this point of view a key aspect of photographic practice as 
an imaging technology is to understand, control and har-
ness different permutations of these relations for a variety of 

lenses. An equivalent process in machine learning would be 
the understanding and control of hyper-parameters.

Take focal length as an example. Today, it is widely used 
as a standard measure for lens classification, since it cor-
relates with the size of the image plane5 and the aperture6 
of the camera to define, among other things, the field of 
view, i.e. how much of a given scene fits into the frame, 
and the depth of field, i.e. how much of it is in focus at any 
given time. For a full-frame format,7 a wide angle lens (e.g. 
28 mm) will cover a wider field of view and have a deeper 
focus range, while a telephoto (e.g. 300 mm) will magnify to 
a narrower area and have a shallower focus range. In between 
we find a 50 mm, often called a “normal” lens.

Over time, the effects produced by different focal dis-
tances get thematised and are attached to specific social 
narratives. Long telephotos tend to be used in sports and 
nature photography, where subjects are often moving at a 
distance and backgrounds can be out of focus. Wide lenses, 
on the other hand, privilege field of view and focused scenes 
instead of magnification. Depicted through a different lens 
the same subject can be made to look in fraganti in a leaked 
mobile phone picture (28 mm) or like a model fit for the 
cover of a fashion magazine (175 mm) (Wieczorek 2019).

Different lenses contribute in this way to our understand-
ing of what pictures are about. Our argument is that it is 
precisely this “aboutness” of vision that we feel to be con-
spicuously absent or compromised in the tokens of predic-
tion produced by systems like the one used to machine-see 
the BBC television archive, a type of computer vision which 
only points to what images are of.8 Drawing from this dis-
tinction, we can clearly see how lens aesthetics are not inci-
dental to photography but rather a fundamental dimension 
of its epistemic advantage insofar as they enable distinct 
relations between the see-able and the know-able; between 
knowledge and the appearance of knowledge. That images 
are seen to be about something inasmuch as of something 
suggests that we put our faith in photography not because 
it offers undistorted images of the world, but because we 

4  However there are a lot of optical calculations crystallised in photo-
graphic lenses. One notable example that links optics with computing 
is how in 1840 Joseph Petzval, an Austrian mathematician, employed 
several human computers to aid in the design a new four-element lens 
capable of under-one-minute exposures: the famous Petzval Portrait 
(See: Peres 2007, 159).

5  Usually given in millimetres as the diagonal measure of a rectangu-
lar projection surface or screen onto which an image is formed when 
reflected light is projected through a lens.
6  Known as f-stop or, somewhat confusingly, f-number (N), calcu-
lated using the formula: N = f/D (where f is focal length and D the 
diameter of the iris or pupil that allows light into the lens.
7  35 mm (36 mm × 24 mm frame) film negative or equivalent digital 
sensor. Many digital cameras have smaller sensors, thereby modify-
ing (cropping) the field of view of lenses. The smaller the sensor is 
in relation to a full-frame the larger its crop factor. Conversely, by 
knowing the crop factor of a given sensor, one can estimate a lens’ 
full-frame equivalent focal length. Mobile phones, for example, have 
much smaller sensors and lenses, an iPhone X has a 4  mm lens, 
28 mm equivalent in a full frame camera.
8  For a discussion on this distinction see (Maynard 1997).



1158	 AI & SOCIETY (2021) 36:1153–1165

1 3

believe that photographic distortions are meaningful. Com-
puter vision, we argue, gains it powers by treating photo-
graphs not as detections of the world, but as measurements 
of these beliefs, and in doing so it assumes an implied opti-
cal perspective.

4 � A machine made of images

Let us now return to MbM and ask what optical perspec-
tive is implied in it. What lens or lenses are encoded in 
the computational gaze we set upon the BBC Television 
archive?

We know the Visual Genome uses images originally 
sourced from Flickr (Krishna et al. 2017, 47) and that the 
photo platform hosts many of its images along with their 
EXIF data,9 which is an international metadata standard for 
digital images and sound that includes tags for camera set-
tings and lens information.

EXIF is far from perfect. Its metadata structure is bor-
rowed from TIFF files and is now over 30 years. A notable 
drawback to working with this type of data is, therefore, its 
inconsistency, given the quick pace at which digital cameras 
changed over the last decades and the many differences in 
how they used the standard over time, even among cameras 
from the same manufacturer. What is more, some manufac-
turers like Nikon use custom format fields not common to 
any other brand and encrypt the metadata contained in them. 
This makes it very difficult to extract, disaggregate and pro-
cess EXIF.10 Finally, this type of metadata is not usually 
available for not-born-digital photographs, i.e. taken with 
analogue cameras or images that were scanned.11

These caveats notwithstanding, EXIF is still the most 
widely used metadata standard for photography and as such 
a key resource to research the equipment and technical prac-
tice that underlies the creation of photographic images in the 
digital age. And precisely because of its longevity and perva-
sive use, it is one of the few ways to trace a technical lineage 
from lenses to computer vision. It is quite possibly the only, 
where such a lineage can be done at a larger scale, given 
the size of the collections of images used in deep learning.

We extracted EXIF metadata from all the images whose 
Flickr IDs matched the ones present in the Visual Genome. 
The metadata standard is comprised of over twenty thousand 
tags, but we only selected tags that were general enough so 
as to be reported by most cameras. Within these, we only 
focused on the ones containing data about the parameters 
over which photographers tend to have more choice and con-
trol, namely their choice of camera and lens, as well as the 
aperture, exposure and focal length settings. Table 1 shows 
a list of the tags that were queried and an example of the 
values extracted. Table 2 shows an overview of the extrac-
tion results.

The extraction process yielded a relatively dense distri-
bution, with over 83% of accessible images returning meta-
data in at least one of the five of the queried tags. The one 
exception was < Lens info > , for which only 10% of acces-
sible images returned values. In light of this, we decided to 
consolidate data for all tags except < Lens info > , which was 
kept separately for later analysis. We also parsed over aper-
tures and focal lengths to bin them into categories: twelve 
bins corresponding to full f-stops for apertures—from f1 to 
f45,12 and seven focal distance bins corresponding to a com-
monly used classification13:

Table 1   Example of Exif tags extracted

Tag Value

Camera manufacturer Canon
Camera model Canon EOS 7D
Exposure 1/1600
Aperture (F-number) 2.8
Focal length 145.0 mm
Lens info 0EF70-200 mm 

f/2.8L IS II 
USM

12  There are wider and narrower apertures, for example f/0.95 of the 
Shenyang Zhongyi Mitakon Speedmaster 50 mm. However these are 
very rarely encountered and were not observed in our dataset.
13  These categories are not policed or enforced by any particular 
institution, as the boundaries are seen as irrelevant in most areas of 
photographic practice. They are, rather, more of a tacit agreement 
among photographers, lens and camera manufacturers. Of the tags 
queried, focal distance was the most challenging because, as we noted 
earlier, these values are relative to the size of the sensor. The stand-
ard “full frame” sensor was adopted as an equivalent of 35 mm film 
stock, but as digital cameras shrunk in size so too did their sensors. 
The effect is particularly stark in mobile phones, whose sensors are 
particularly small, so in order to compare their focal length to that 
of larger cameras one needs to multiply their reported Exif value 
by a crop factor so as to obtain a 35 mm equivalent. This crop fac-
tor is different across models and manufacturers, for example many 
Apple iPhone models have a sensor crop factor of 7.6, if the focal 
length in their Exif metadata is 4.3, the 35  mm equivalent is a lit-
tle over 30 mm. If one were to accurately measure focal length one 

9  Developed in 1998 by the Japan Electronic Industries Development 
Association (JEIDA), eventually absorbed by the Japan Electronics IT 
industries association (JEITA) and the Camera & Imaging products 
association (CIPA). (See: JEITA Standards).
10  https​://exift​ool.org/TagNa​mes/Nikon​.html#LensD​ata01​
11  A scanned photo, for example, will sometimes include EXIF data 
from the scanner, but obviously no lens or other information about 
the camera with which was originally taken. It is possible, however, 
to manually write or re-write EXIFtags of a digitised photograph (or 
nearly any other digital image for that matter). For the most authorita-
tive source on working with EXIF see Phil Harvey’s Exif Tool: https​
://exift​ool.org/

https://exiftool.org/TagNames/Nikon.html#LensData01
https://exiftool.org/
https://exiftool.org/
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•	 Ultra wide (< 24 mm)
•	 Wide (24–35 mm)
•	 Normal (35–85 mm)
•	 Short telephoto (85–135 mm)
•	 Medium telephoto (135–300 mm)
•	 Super telephoto (+ 300 mm)

We also parsed over exposures to remove faux entries 
(e.g. a small number of older mobile phones reported infinite 
or zero values for exposure), and manually matched some 
camera manufacturers names (e.g. ‘NIKON’ and ‘Nikon 
Corporation’). The consolidated data frame includes all val-
ues in all remaining tags for a total 68,085 entries, which is 

66% of all images that comprise the Visual Genome (v1.2). 
An example of our working data frame is shown in Table 3.

Our analysis of EXIF data shows the clear dominance of 
DSLR over other types of equipment, with Canon and Nikon 
being the two major manufacturers combining for over 64% 
of all cameras, more than eight times the share of the third 
largest manufacturer, Sony, at 8% (Fig. 4).

From these, the ten most popular camera models all cor-
respond to Canon EOS and Nikon DX systems, with the 
only exception of the Apple iPhone 4, at number nine. The 
most common camera in our dataset is Nikon’s D90, an 
entry-level DSLR released in 2008, and the first model with 
video-recording capabilities. The second most popular is 
the semi-professional Canon 5D Mark II, released the same 
year, closely followed by the 7D also from Canon, released 
in 2009.

In terms of how these cameras were used, our analysis 
identifies large apertures f 2.8, 4, and 5.6 as the most popu-
lar, accounting together for 74% of photographs (Fig. 5).

For focal length, lenses between 35-85 mm are the most 
common, accounting for 50.7% of the images, with the least 
popular being the super telephoto, only used to take 1.6% of 
the photos in our dataset (Fig. 6).

Exposure was more evenly distributed between the 
extremes with the notable exception of 1/60, identified as 
significantly more popular than all other shutter speeds. This 
is possibly due to the common belief that this is the slowest 
shutter speed one can expose without needing a tripod.14 

Table 2   Overview of the 
extraction results

Category Count Percentage

Total number of IDs processed 103,077 100.00%
Unavailable URL request (500 error) 18,521 18.00%
Available image but with no data in the queried tags 443 0.40%
Available images with data in at least one queried tag 84,113 81.60%

Table 3   First five observations 
of our working data frame, 
shaped 68,085 rows × 5 columns

Camera manufacturer Camera model Exposure Aperture Focal length

Canon Canon PowerShot S2 IS 1/640 4.0 72.0 mm
Panasonic DMC-FX9 1/13 3.6 9.9 mm
Canon Canon EOS 20D 1/250 11.0 560.0 mm
Nikon NIKON D50 1/250 5.0 125.0 mm
Canon Canon PowerShot SD600 1/320 2.8 5.8 mm
… … … … …

14  This is commonly known as the “1/focal length rule”. According to 
it, for a 50 mm lens (75 mm in most APS-C sensors), the longest expo-
sure that still produces sharp images with hand-held cameras would 
be approximately 1/60. This is only a guideline, as many other factors 
impact sharpness: ISO, time of day, weather, and indeed how much 
one’s hand shake. Still, as rule of thumb for DSLR aficionados, it might 
contribute to explain the popularity of this particular shutter speed.

would need to extract the size of the sensor from Exif (assuming this 
is not given as the 35  mm equivalent), calculate the crop factor for 
each individual camera model, and then match it to the corresponding 
entry in the dataset. We did not have the time or resources to do this. 
However, through controlled manual sampling we identified entries 
that reported focal lengths consistent with two types of cameras 
widely available at the time these pictures were taken: 3G Mobile 
phones (~ 15 k entries, e.g. iPhone 4 to 5), compact and ultra com-
pact point and shoot cameras (~ 12  k entries, e.g. Canon Powershot 
and Pentax Optio series). Based on this we compensated for these two 
groups by applying a weighted average crops factor of 7.6 and 4.8, 
respectively. From a similar sampling at the other end, it was appar-
ent that this process not necessary for long focal lengths, which were 
mostly taken with full frame or APS-C or APS-H cameras, which 
magnify the image even more.

Footnote 13 (continued)
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Figure 7 shows the ten most common combinations of aper-
ture, focal length and exposure parameters in images in the 
Visual Genome, all of which are under direct control of their 
photographers.

These findings are consistent with the practices of a 
“proficient consumer” community of photo enthusiasts 
working with DSLR equipment.15 These are generally non-
professional photographers who nevertheless are willing to 
invest in a bulkier and more expensive camera and take the 
time to learn how to operate it manually. Users of the Nikon 
D90 are often recent converts migrating upwards from the 

Fig. 4   Camera manufacturers of images in the Visual Genome

Fig. 5   Distribution of apertures in images from the Visual Genome

15  Single-Lens Reflex cameras (both digital and analogue). This type 
of camera allows for interchangeable lenses and has a mirror system 
that allows the photographer to use a view finder to see through the 
camera lens in order to compose their photographs. When the shutter 
is pressed the mirror flips and the sensor or film stock gets directly 
exposed to light coming in through the lens. The acronym is often 
used to differentiate these cameras from point-and-shoot models, 
which are much smaller and have fixed (often retractile) lens, or from 

so-called mirrorless models, which do admit different lenses but do 
not have a mirror.

Footnote 15 (continued)
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common point-and-shoot photography. Or they might also 
be more established and committed users of a Canon 7D, 
who probably own a few lenses already and might be close 
to going professional. This grouping is also supported by our 
smaller sample of lens data from the < Lens Info > tag, which 
shows inexpensive lenses that come bundled with cameras 
to be very popular, e.g. the 18-55 mm f/3.5–5.6 included in 
both Nikon and Canon starter kits (camera body + lens), but 
also include a few more expensive lenses (particularly on 
longer focal lengths, e.g. the 100–400 mm f/4.5–5.6L or the 
EF70-200 mm f/2.8L, both by Canon).16 We believe these 

lenses overlap with professional practice and were prob-
ably acquired as second or third lenses for purpose-specific 
photography, specifically wildlife or sports, both of which 
featured heavily in a manual sampling we conducted over 
images taken with these two models.17

By identifying the dominant photographic practices of 
this community of DSRL enthusiasts in the Visual Genome, 
we show the implicit optical perspective mobilised in 
MbM. If one were to ask not about the accuracy in detecting 

Fig. 6   Focal length categories in images from the Visual Genome

Fig. 7   Combined aperture, focal length and exposure* of images in the Visual Genome. *Exposure is given as the denominator of a fraction of a 
second, e.g. 250 is equivalent to 1/250, or 0.004 s

16  We believe it is possible that Canon lenses on this range make 
more consistent use of the < Lens Info > tag. 17  We looked at about 10% of the images taken with these two lenses.
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what is depicted, but about the latent camera of this particu-
lar computer vision system, we could now reply with some 
degree of confidence that this perspective falls within the 
focal range of a 18–55 mm lens on a APS-C or APS-H cam-
era; apertures between f3.5 and f5.6, and a likely exposure 
1/60 s. Casting aside some of the other complexities of MbM 
for a moment, we could say that in general terms this was the 
lens through which the BBC archive was seen.

Today, DSLR photography of this kind is a somewhat 
dying practice, as sales of this type of camera have been 
steadily declining over the past decade (CIPA 2019). Eve-
ryday photographs are now taken with mobile phones and 
circulated through social media (Herrman 2018). However, 
while the equipment and the communities that supported 
this visual regime recede into history, lens aesthetics are 
anything but history. On the contrary, the standard of pho-
tography set by DSLR practitioners is now being reimagined 
under the logic of digital computation and mobile phones,18 
pursued through software and through AI (See for example: 
Yang et al. 2016; Ignatov et al. 2017).

With this in mind, we suggest turning computer vision to 
itself and asking whether it is possible to engineer a machine 

that tells us about the becoming of images; not only what 
they depict but how. If we concede that the “aboutness” 
with which we invest photographic images—including their 
epistemic advantage—is a function of the depicted no less 
than of the depiction modality, such an aesthetic machine, 
we argue, is as justified as one that distinguishes cats from 
dogs, or hot-dogs from other sandwiches. Could we not train 
machines to learn about optical perspectives as well as what 
these perspectives are used for at given times in history?

To close this article, we offer a prototype along these lines 
as a proof-of-concept, which is purposefully designed to be 
blind to what photographs are of; a type of vision that cares 
nothing about recognising objects, people or scenes, and is 
instead programmed to learn only about how its images were 
made and the visual perspectives they embody, in this case 
the focal distance of the lenses with which they were taken.

Using the EXIF dataset we assembled and the images 
from the Visual Genome, we trained a Neural Network to 
classify focal lengths and to distinguish between photo-
graphs taken with a wide angle lens from those taken with a 
telephoto. The class boundaries are drawn at under 24 mm 
for the former and over 135 mm for the latter. Each class was 
given little over 12,000 training samples (Fig. 8). The model 
was trained from scratch using a VGG-based convolutional 
neural network (Fig. 9).

Our results show test accuracy of 83% after fourteen 
epochs of training. We manually tested the model at this 
checkpoint by running inference on several photographs not 
contained in the Visual Genome to confirm it performed as 
expected in evaluating out of sample images. But we are 
only at the beginning of our work here. Without probing 
further into the model and conducting more systematic tests, 
it is difficult to know what exactly the neural network has 

Fig. 8   Batch of four samples of inputs and labels

Fig. 9   15-layer Convolutional neural network architecture

18  Consider how large phone manufacturers like Huawei and Nokia 
partnered over the last decade with camera and lens manufacturers 
Leica and Zeiss, respectively, to produce multi-camera devices. In the 
case of the Huawei P series, such partnership was overtly marketed 
with the slogan “rewrite the rules of photography”, in direct reference 
to its capacity to reproduce and control lens effects such as shallow 
depth of field and bokeh, which occur at longer focal distances and 
narrower apertures, and had until recently been the sole province of 
photographic cameras, most notably professional and semi-profes-
sional SLRs. See: https​://consu​mer.huawe​i.com/uk/campa​ign/rewri​
tethe​rules​/

https://consumer.huawei.com/uk/campaign/rewritetherules/
https://consumer.huawei.com/uk/campaign/rewritetherules/
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learned from these images. One of our working hypotheses 
is that there are low-level features like the texture of bokeh 
or warmer green tones which might correlate strongly to 
longer focal lengths, since both the field view and speed of 
many of these lenses favours their outdoor use. In any case, 
our initial results already suggest that, with some exceptions 
such as irregularly shaped images from elongated panora-
mas, grainy images or images captured with optical zoom, 
the predictions of our classifier were reasonably accurate 
for photographs taken with either very long or very wide 
lenses. Figure 10 shows a comparison of two successfully 
classified images using this method. For the casual observer 
who sees these two images all at once, instead of counting 
them pixel by pixel, there are many apparent differences: 
one is the Shard in London, the other a baby orangutan in 
Borneo; one is a landscape, the other a portrait; one is a 
night scene, the other was taken in broad daylight. However, 
when it comes to the type of lens used to render these scenes 
visible, a posteriori knowledge might in fact be a task for 
which computer vision is much better suited. In particular 
deep convolutional networks can help with their progressive 
and content-agnostic abstraction of pixel relations.

Going back to MbM, we used our focal length classi-
fier on frames from one of the mislabelled sections men-
tioned at the beginning (Fig. 11). Comparing the predictions 

outputted by the two systems, our ‘telephoto’ classification 
seems intuitively more accurate than MbM’s ‘reflection in 
a mirror’. This might be an extreme example but it points 
us to a fundamental problem that is sometimes overlooked 
in machine learning. Which prediction tells us more about 
the image? What kind of knowledge is implied by each, and 
when or why would we prefer one kind over the other?

5 � Conclusions and future research

Initial results suggest that with more data, extended train-
ing and fine-tuning, a much more sophisticated lens clas-
sifier is possible. To our knowledge this has not been tried 
before, and therefore, we approached the design of the sys-
tem with naive confidence, in the hope that others might 
be intrigued and improve upon it. Similarly, we believe 
there are many other possibilities beyond a binary classi-
fier, even using this relatively small dataset, for example 
by looking at exposure as one of the immanent temporali-
ties of computer vision systems—photographers not only 
manipulate the shape of light but also its speed. These 
need not be isolated dimensions nor indeed separate from 
existing approaches aimed at naming objects or people.

Fig. 10   Photo on the left was taken with a mobile phone (28 mm); photo on the right with a DSLR (340 mm)
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Our contribution is, rather, an initial and tentative 
answer to a much larger question: how can computer 
vision evolve from systems designed to name what is in 
the picture, to systems that approximate more precisely 
what we see in the picture? In this paper, we show from a 
computational aesthetics perspective how diversity in pho-
tographed subjects ought not to be confused with visual 
diversity, nor indeed bias with error. To be clear, our argu-
ment is not that Crawford’s archaeology of datasets is not 
necessary, or that Harvey is mistaken when he states that 
a photo is not just a photo any more. It is rather that “just 
a photo” includes a whole field of meanings and technical 
mediations that are also encoded, abstracted and mobilised 
through machine learning and deep learning in particular. 
This is not to deny the digital dimension of these images, 
nor the latent computational powers of datasets, but to say 
that these powers are largely derived from the representa-
tional powers of photography. Therefore, our relationship 
with the photographic image underwrites our relation with 
computer vision more generally. From this perspective, 
a critical programme of computer vision, insofar as it is 
powered by this type of images, necessitates a techno-aes-
thetics of photography to explain how these images afford 
knowledge by distorting perspective, and how they can be 
seen as faithful representations beyond the factual events 
they depict. So here we must simply insist in incorporating 
insights from the study of the photographic and cinematic 
image in the technical milieu of AI to argue that mean-
ing is not something that can be extracted from pictures 
alone, but that is instead co-constructed with their audi-
ences through usage; photography is an imaging no less 
than an imagining technology, and so too must we learn 
to understand computer vision.
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