
HAL Id: hal-00380651
https://hal.science/hal-00380651

Submitted on 4 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semantical proof of the strong normalization theorem
for full propositional classical natural deduction

Karim Nour, Khelifa Saber

To cite this version:
Karim Nour, Khelifa Saber. A semantical proof of the strong normalization theorem for full propo-
sitional classical natural deduction. Archive for Mathematical Logic, 2006, 45 (3), pp.357-364. �hal-
00380651�

https://hal.science/hal-00380651
https://hal.archives-ouvertes.fr

A semantical proof of the strong normalization
theorem for full propositional classical natural

deduction

Karim NOUR and Khelifa SABER
LAMA - Equipe de logique
Université de Chambéry
73376 Le Bourget du Lac

e-mail : {knour,ksabe}@univ-savoie.fr

Abstract We give in this paper a short semantical proof of the strong normalization

for full propositional classical natural deduction. This proof is an adaptation of reducibility

candidates introduced by J.-Y. Girard and simplified to the classical case by M. Parigot.

1 Introduction

This paper gives a semantical proof of the strong normalization of the cut-elimination
procedure for full propositional classical logic written in natural deduction style.
By full we mean that all the logical connectives (⊥, →, ∧ and ∨) are considered as
primitive. We also consider the three reduction relations (logical, commutative and
classical reductions) necessary to obtain the subformula property (see [5]).

Until very recently (see the introduction of [5] for a brief history), no proof of
the strong normalization of the cut-elimination procedure was known for full logic.

In [5], Ph. De Groote gives such a proof by using a CPS-style transformation
from full classical logic to implicative intuitionistic logic, i.e., the simply typed
λ-calculus.

A very elegant and direct proof of the strong normalization of the full logic is
given in [6] but only the intuitionistic case is given.

R. David and the first author give in [3] a direct and syntactical proof of this
result. This proof is based on a characterization of the strongly normalizable de-
ductions and a substitution lemma which stipulates the fact that the deduction
obtained while replacing in a strongly normalizable deduction an hypothesis by an-
other strongly normalizable deduction is also strongly normalizable. The same idea
is used in [2] to give a short proof of the strong normalization of the simply typed
λµ-calculus of [9].

R. Matthes recently found another semantical proof of this result (see [7]). His
proof uses a complicated concept of saturated subsets of terms.

Our proof is a generalization of M. Parigot’s strong normalization result of the
λµ-calculus (see [10]) for the types of J.-Y. Girard’s system F using reducibility
candidates. We also use a very technical lemma proved in [3] concerning commuta-
tive reductions. To the best of our knowledge, this is the shortest proof of a such
result.

The paper is organized as follows. In section 2, we give the syntax of the terms
and the reduction rules. In section 3, we define the reducibility candidates and
establish some important properties. In section 4, we show an “adequation lemma”
which allows to prove the strong normalization of all typed terms.

1

2 The typed system

We use notations inspired by the paper [1].

Definition 2.1 1. The types are built from propositional variables and the con-
stant symbol ⊥ with the connectors →, ∧ and ∨.

2. Let X and A be two disjoint alphabets for distinguishing the λ-variables and
µ-variables respectively. We code deductions by using a set of terms T which
extends the λ-terms and is given by the following grammars:

T := X | λX .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µA.T | (A T)

E := T | π1 | π2 | [X .T ,X .T]

An element of the set E is said to be an E-term.

3. The meaning of the new constructors is given by the typing rules below where
Γ (resp. ∆) is a context, i.e. a set of declarations of the form x : A (resp.
a : A) where x is a λ-variable (resp. a is a µ-variable) and A is a type.

Γ, x : A ⊢ x : A ; ∆
ax

Γ, x : A ⊢ t : B; ∆

Γ ⊢ λx.t : A → B; ∆
→i

Γ ⊢ u : A → B; ∆ Γ ⊢ v : A; ∆

Γ ⊢ (u v) : B; ∆
→e

Γ ⊢ u : A; ∆ Γ ⊢ v : B; ∆

Γ ⊢ 〈u, v〉 : A ∧ B; ∆
∧i

Γ ⊢ t : A ∧ B; ∆

Γ ⊢ (t π1) : A; ∆
∧1

e

Γ ⊢ t : A ∧ B; ∆

Γ ⊢ (t π2) : B; ∆
∧2

e

Γ ⊢ t : A; ∆

Γ ⊢ ω1t : A ∨ B; ∆
∨1

i

Γ ⊢ t : B; ∆

Γ ⊢ ω2t : A ∨ B; ∆
∨2

i

Γ ⊢ t : A ∨ B; ∆ Γ, x : A ⊢ u : C; ∆ Γ, y : B ⊢ v : C; ∆

Γ ⊢ (t [x.u, y.v]) : C; ∆
∨e

Γ ⊢ t : A; ∆, a : A

Γ ⊢ (a t) : ⊥; ∆, a : A
absi

Γ ⊢ t : ⊥; ∆, a : A

Γ ⊢ µa.t : A; ∆
abse

4. The cut-elimination procedure corresponds to the reduction rules given bellow.
There are three kinds of cuts:

(a) The logical cuts: They appear when the introduction of a connective is
immediately followed by its elimination. The corresponding rules are:

• (λx.u v) ⊲ u[x := v]

• (〈t1, t2〉 πi) ⊲ ti
• (ωit [x1.u1, x2.u2]) ⊲ ui[xi := t]

(b) The permutative cuts: They appear when the elimination of the disjunc-
tion is followed by the elimination rule of a connective.The corresponding
rule is:

• ((t [x1.u1, x2.u2]) ε) ⊲ (t [x1.(u1 ε), x2.(u2 ε)])

2

(c) The classical cuts: They appear when the classical rule is followed by the
elimination rule of a connective. The corresponding rule is:

• (µa.t ε) ⊲ µa.t[a :=∗ ε], where t[a :=∗ ε] is obtained from t by
replacing inductively each subterm in the form (a v) by (a (v ε)).

Notation 2.1 Let t and t′ be E-terms. The notation t ⊲ t′ means that t reduces to
t′ by using one step of the reduction rules given above. Similarly, t ⊲∗ t′ means that
t reduces to t′ by using some steps of the reduction rules given above.

The following result is straightforward.

Theorem 2.1 If Γ ⊢ t : A; ∆ and t ⊲∗ t′ then Γ ⊢ t′ : A; ∆.

We have also the confluence property (see [1], [5] and [8]).

Theorem 2.2 If t⊲∗ t1 and t⊲∗ t2, then there exists t3 such that t1⊲∗ t3 and t2⊲∗ t3.

Definition 2.2 An E-term t is said to be strongly normalizable if there is no in-
finite sequence (ti)i<ω of E-terms such that t0 = t and ti ⊲ ti+1 for all i < ω.

The aim of this paper is to prove the following theorem.

Theorem 2.3 Every typed term is strongly normalizable.

In the rest of the paper we consider only typed terms.

3 Reducibility candidates

Lemma 3.1 Let t, u and u′ be E-terms such that u ⊲ u′, then:

1. u[x := t] ⊲ u′[x := t] and u[a :=∗ t] ⊲ u′[a :=∗ t].

2. t[x := u] ⊲∗ t[x := u′] and t[a :=∗ u] ⊲∗ t[a :=∗ u′].

Proof 1) By induction on u. 2) By induction on t. �

Notation 3.1 The set of strongly normalizable terms (resp. E-terms) is denoted
by N (resp. N ′). If t ∈ N ′, we denoted by η(t) the maximal length of the reduction
sequences of t.We denote also N ′<ω

the set of finite sequences of N ′.

Definition 3.1 Let w̄ = w1...wn ∈ N ′<ω
, we say that w̄ is a nice sequence iff wn

is the only E-term in w̄ which can be in the form [x.u, y.v].

Remark 3.1 The intuition behind the notion of the nice sequences will be given
in the proof of the lemma 3.3.

Lemma 3.2 Let w̄ = w1...wn be a nice sequence and w̄′ = w1...w
′
i...wn where

wi ⊲ w′
i. Then w̄′ is also a nice sequence.

Proof This comes from the fact that if ε ⊲ [x.u, y.v] then ε = [x.p, y.q], where
p ⊲ u or q ⊲ v. �

3

Notation 3.2 1. The empty sequence is denoted by ∅.

2. Let w̄ = w1...wn a sequence of E-terms and t a term. Then (t w̄) is t if n = 0
and ((t w1) w2...wn) if n 6= 0. The term t[a :=∗ w̄] is obtained from t by
replacing inductively each subterm in the form (a v) by (a (v w̄)).

3. If w̄ = w1...wn is a nice sequence, we denote η(w̄) =
∑n

i=1
η(wi).

Lemma 3.3 Let w̄ be a nice sequence.

1. (x w̄) ∈ N .

2. If u ∈ N and (t[x := u] w̄) ∈ N , then ((λx.t u) w̄) ∈ N .

3. If t1, t2 ∈ N and (ti w̄) ∈ N , then ((〈t1, t2〉 πi) w̄) ∈ N .

4. If t, u1, u2 ∈ N and ui[xi := t] ∈ N , then (ωit [x1.u1, x2.u2]) ∈ N .

5. If t[a :=∗ w̄] ∈ N , then (µa.t w̄) ∈ N .

Proof

1. Let w̄ = w1...wn. All reduction over (x w̄) take place in some wi, because w̄
is a nice sequence, and therefore the wi cannot interacte between them via
commutative reductions. Since all wi are strongly normalizable, then (x w̄)
itself is strongly normalizable.

2. It suffices to prove that: If ((λx.t u) w̄) ⊲ s, then s ∈ N . We process by
induction on η(u) + η(t[x := u] w̄). Since w̄ = w1...wn is a nice sequence, the
wi cannot interact between them via commutative reductions. We have four
possibilities for the term s.

• s = ((λx.t′ u) w̄) where t ⊲ t′: By lemma 3.1, (t′[x := u] w̄) ∈ N and
η(u) + η((t′[x := u] w̄)) < η(u) + η((t[x := u] w̄)), then, by induction
hypothesis, s ∈ N .

• s = ((λx.t u′) w̄) where u ⊲ u′: By lemma 3.1, (t[x := u′] w̄) ∈ N and
η(u′) + η((t[x := u′] w̄)) < η(u) + η((t[x := u] w̄)), then, by induction
hypothesis, s ∈ N .

• s = ((λx.t u) w̄′) where w̄′ = w1...w
′
i...wn and wi ⊲ w′

i: By lemma 3.2,
w̄′ is a nice sequence. We have (t[x := u] w̄′) ∈ N and η(u) + η((t[x :=
u] w̄′)) < η(u) + η((t[x := u] w̄)), then, by induction hypothesis, s ∈ N .

• s = (t[x := u] w̄): By hypothesis, s ∈ N .

3. Same proof as 2).

4. Same proof as 2).

5. It suffices also to prove that: If (µa.t w̄) ⊲ s, then s ∈ N . We process by
induction on the pair (lg(w̄), η(t[a :=∗ w̄]) + η(w̄)) where lg(w̄) is the number
of the E-terms in the sequence w̄. We have three possibilities for the term s.

• s = (µa.t′ w̄) where t ⊲ t′: By lemma 3.1, t′[a :=∗ w̄] ∈ N and η(t′[a :=∗

w̄]) < η(t[a :=∗ w̄]), then, by induction hypothesis, s ∈ N .

• s = (µa.t w̄′) where w̄′ = w1...w
′
i...wn and wi ⊲ w′

i: by lemma 3.2, w̄′

is a nice sequence and, by lemma 3.1, t[a :=∗ w̄′] ∈ N and η(t[a :=∗

w̄′]) + η(w̄′) < η(t[a :=∗ w̄]) + η(w̄), then, by induction hypothesis,
s ∈ N .

• s = (µa.t[a :=∗ w1] w̄
′) where w̄′ = w2...wn: It is obvious that w̄′ is

a nice sequence and lg(w̄′) < lg(w̄). We have t[a :=∗ w1][a :=∗ w̄′] =
t[a :=∗ w̄] ∈ N , then, by induction hypothesis, s ∈ N .

�

4

Lemma 3.4 Let w̄ be a nice sequence.
If (t [x.(u w̄), y.(v w̄)]) ∈ N , then ((t [x.u, y.v]) w̄) ∈ N .

Proof This is proved by that, from an infinite sequence of reduction starting from
((t [x.u, y.v]) w̄), an infinite sequence of reduction starting from (t [x.(u w̄), y.(v w̄)])
can be constructed. A complete proof of this result is given in [3] in order to
characterize the strongly normalizable terms. �

Definition 3.2 1. We define three functional constructions (→,∧ and ∨) on
subsets of terms:

(a) K → L = {t ∈ T / for each u ∈ K, (t u) ∈ L}.

(b) K ∧ L = {t ∈ T / (t π1) ∈ K and (t π2) ∈ L}.

(c) K ∨ L = {t ∈ T / for each u, v ∈ N : If (for each r ∈ K,s ∈ L: u[x :=
r] ∈ N and v[y := s] ∈ N), then (t [x.u, y.v]) ∈ N}.

2. The set R of the reductibility candidates is the smallest set of subsets of terms
containing N and closed by the functional constructions →,∧ and ∨.

3. Let w̄ = w1...wn be a sequence of E-terms, we say that w̄ is a good sequence
iff for each 1 ≤ i ≤ n, wi is not in the form [x.u, y.v].

Lemma 3.5 If R ∈ R, then:

1. R ⊆ N .

2. R contains the λ-variables.

Proof We prove, by simultaneous induction, that R ⊆ N and for each λ-variable
x and for each good sequence w̄ ∈ N ′<ω, (x w̄) ∈ R.

• R = N : trivial.

• R = R1 → R2: Let t ∈ R. By induction hypothesis, we have x ∈ R1, then
(t x) ∈ R2, therefore, by induction hypothesis, (t x) ∈ N hence t ∈ N .

Let w̄ ∈ N ′<ω be a good sequence and v ∈ R1. Since w̄v is a good sequence,
then, by induction hypothesis (x w̄v) ∈ R2, therefore (x w̄) ∈ R1 → R2.

• R = R1 ∧ R2: Let t ∈ R, then (t πi) ∈ Ri and, by induction hypothesis,
(t πi) ∈ N , therefore t ∈ N .

Let w̄ ∈ N ′<ω be a good sequence, then w̄πi is also a good sequence and, by
induction hypothesis, (x w̄πi) ∈ Ri, therefore (x w̄) ∈ R.

• R = R1 ∨ R2: Let t ∈ R and y, z two λ-variables. By induction hypothesis,
we have, for each u ∈ R1 ⊆ N and v ∈ R2 ⊆ N , y[y := u] = u ∈ N and
z[z := v] = v ∈ N , then (t [y.y, z.z]) ∈ N , therefore t ∈ N .

Let w̄ ∈ N ′<ω be a good sequence and u, v ∈ N such that for each r ∈
R1, s ∈ R2, u[x := r] ∈ N and v[y := s] ∈ N . We have [x.u, y.v] ∈ N ′

because u and v ∈ N . Thus w̄ [x.u, y.v] is a nice sequence, and by lemma 3.3,
(x w̄ [x.u, y.v]) ∈ N , therefore (x w̄) ∈ R.

�

5

Notation 3.3 For S ⊆ N ′<ω
, we define S → K = {t ∈ T / for each w̄ ∈ S, (t w̄) ∈

K}.

Definition 3.3 A set X ⊆ N ′<ω is said to be nice iff for each w̄ ∈ X, w̄ is a nice
sequence.

Lemma 3.6 Let R ∈ R, then there exists a nice set X such that R = X → N .

Proof By induction on R.

• R = N : Take X = {∅}, it is clear that N = {∅} → N .

• R = R1 → R2: We have R2 = X2 → N for a nice set X2. Take X = {u v̄ /
u ∈ R1, v̄ ∈ X2}. We have u v̄ is a nice sequence for all u ∈ R1 and v̄ ∈ X2.
Then X is a nice set and we can easly check that R = X → N .

• R = R1 ∧ R2: Similar to the previous case.

• R = R1 ∨ R2: Take X = {[x.u, y.v] / for each r ∈ R1 and s ∈ R2 , u[x :=
r] ∈ N and v[y := s] ∈ N}. We have X is a nice set and, by definition,
R = X → N .

�

Remark 3.2 Let R ∈ R and X a nice set such that R = X → N . We can suppose
that ∅ ∈ X. Indeed, since R ⊆ N , we have also R = X ∪ {∅} → N .

Definition 3.4 Let R ∈ R, we define R⊥ = ∪{X / R = X → N and X is a nice
set }.

Lemma 3.7 Let R ∈ R, then:

1. R⊥ is a nice set.

2. R = R⊥ → N .

Proof

1. By definition.

2. This comes also from the fact that: If, for every i ∈ I, R = Xi → N , then
R = ∪i∈IXi → N .

�

Remark 3.3 For R ∈ R, R⊥ is simply the greatest nice X such that R = X → N .
In fact any nice X such that ∅ ∈ X and R = X → N would work as well as R⊥.

Lemma 3.8 Let R ∈ R, t ∈ R and t ⊲∗ t′. Then t′ ∈ R

Proof Let ū ∈ R⊥. We have (t ū) ⊲∗ (t′ ū) and (t ū) ∈ N , then (t′ ū) ∈ N . We
deduce that t′ ∈ R⊥ → N = R. �

6

Remark 3.4 Let R ∈ R, we have not in general N ⊆ R, but we can prove, by
induction, that µaN = {µa.t / t ∈ N and a is not free in t} ⊆ R.

4 Proof of the theorem 2.3

Definition 4.1 An interpretation is a function I from the propositional variables
to R, which we extend to any formula as follows: I(⊥) = N , I(A → B) = I(A) →
I(B), I(A ∧ B) = I(A) ∧ I(B) and I(A ∨ B) = I(A) ∨ I(B).

Lemma 4.1 (Adequation lemma) Let Γ = {xi : Ai}1≤i≤n , ∆ = {aj : Bj}1≤j≤m,
I an interpretation, ui ∈ I(Ai), v̄j ∈ I(Bj)

⊥ and t such that Γ ⊢ t : A ; ∆.
Then t[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m] ∈ I(A).

Proof For each term s, we denote
s[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m] by s′.
We look at the last used rule in the derivation of Γ ⊢ t : A ; ∆.

• ax, →e and ∧j
e: Easy.

• →i: In this case t = λx.t1 with Γ, x : C ⊢ t1 : D ; ∆ and A = C → D.
Let u ∈ I(C) and w̄ ∈ I(D)⊥. By induction hypothesis, we have t′1[x :=
u] ∈ I(D), then (t′1[x := u] w̄) ∈ N , and, by lemma 3.3 ((λx.t′1 u) w̄) ∈ N .
Therefore (λx.t′1 u) ∈ I(D), hence λx.t′1 ∈ I(C) → I(D) = I(A).

• ∧i and ∨j
i : Similar to →i.

• ∨e: In this case t = (t1 [x.u, y.v]) with Γ ⊢ t1 : B∨C ; ∆ , Γ, x : B ⊢ u : A ; ∆
and Γ, y : C ⊢ v : A ; ∆. Let r ∈ I(B) and s ∈ I(C). By induction
hypothesis, we have t′1 ∈ I(B)∨I(C), u′[x := r] ∈ I(A) and v′[y := s] ∈ I(A).
Let w̄ ∈ I(A)⊥, then (u′[x := r] w̄) ∈ N and (v′[y := s] w̄) ∈ N , therefore
(t′1 [x.(u′w̄), y.(v′w̄)]) ∈ N . By lemma 3.4, ((t′1 [x.u′, y.v′])w̄) ∈ N , therefore
(t′1 [x.u′, y.v′]) ∈ I(A).

• abse: In this case t = µa.u and Γ ⊢ µa.u : A ; ∆. Let v̄ ∈ I(A)⊥. It suffies to
prove that ((µa.u′) v̄) ∈ N . By induction hypothesis, u′[a :=∗ v̄] ∈ I(⊥) = N ,
then, by lemma 3.3, (µa.u′ v̄) ∈ N . Finally (µa.u)′ ∈ I(A).

• absi: In this case t = (aj u) and Γ ⊢ (aj u) :⊥ ; ∆′, aj : Bj . We have to prove
that t′ ∈ N , by induction hypothesis, u′ ∈ I(Bj), then (u′ v̄j) ∈ N , therefore
t′ = (a (u′ v̄j)) ∈ N .

�

Notation 4.1 We denote IN the interpretation such that, for each propositional
variable X, IN (X) = N .

Proof [of theorem 2.3]: If x1 : A1, ..., xn : An ⊢ t : A; a1 : B1, ..., am : Bm, then,
by the lemma 3.5, xi ∈ IN (Ai), and, by definition, ∅ ∈ IN (Bj)

⊥. Therefore by
lemma 4.1, t = t[x1 := x1, ..., xn := xn, a1 :=∗ ∅, ..., am :=∗ ∅] ∈ IN (A) and finally,
by lemma 3.5, t ∈ N . �

7

Remark 4.1 We can give now another proof of remark 3.4: “if R ∈ R, the
µa.N ⊆ R”. Let t = λz.µa.z, we have ⊢ t :⊥→ p for every propositional vari-
able p. By lemma 4.1, for every R ∈ R, t ∈ N → R, then, for every u ∈ N ,
(t u) ∈ R, therefore, by lemma 3.8, µa.u ∈ R.

References

[1] Y. Andou. Church-Rosser property of simple reduction for full first-order clas-
sical natural deduction. Annals of Pure and Applied logic 119 (2003) 225-237.

[2] R. David and K. Nour. A short proof of the strong normalization of the simply
typed λµ-calculus. Schedae Informaticae vol.12, pp. 27-33, 2003.

[3] R. David and K. Nour. A short proof of the Strong Normalization of Classical
Natural Deduction with Disjunction. Journal of symbolic Logic, vol 68, num 4,
pp 1277-1288, 2003.

[4] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge University
Press , 1986.

[5] P. de Groote. Strong normalization of classical natural deduction with disjunc-
tion. In 5th International Conference on typed lambda calculi and applications,
TLCA’01. LNCS (2044), pp. 182-196. Springer Verlag, 2001.

[6] F. Joachimski and R. Matthes. Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and Gödel’s T. Archive for
Mathematical Logic 42, pp 59-87 (2003).

[7] R. Matthes Non-strictly positive fixed-points for classical natural deduction.
Manuscript, 2003.

[8] K. Nour and K. Saber Church-Russer property of full propositional classical
natural deduction. Manuscript, 2004.

[9] M. Parigot λµ-calculus: An algorithm interpretation of classical natural deduc-
tion. Lecture Notes in Artificial Intelligence (624), pp. 190-201. Springer Verlag
1992.

[10] M. Parigot. Proofs of strong normalization for second order classical natural
deduction. Journal of Symbolic Logic, 62 (4), pp. 1461-1479, 1997.

8

