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Abstract. We introduce the anti-rectangle refining property for forcing no-
tions and investigate fragments of Martin’s axiom for ℵ1 dense sets related to
the anti-rectangle refining property, which is close to some fragment of Mar-

tin’s axiom for ℵ1 dense sets related to the rectangle refining property, and
prove that they are really weaker fragments.

1. Introduction

In [12], Larson–Todorčević introduced the rectangle refining property of partition
on [ω1]2, which is stronger than ccc (as the property for partitions, defined in e.g.
[16]), and the fragment K2(rec) of Martin’s axiom for ℵ1 dense sets, denoted by
MAℵ1 , to show the consistency of Katětov’s statement. In this note, we analyze
relationships of K2(rec) and other fragments of MAℵ1 .

In this note, we introduce some property which is mutually had by both an
Aronszajn tree and an (ω1, ω1)-gap, which will be called the anti-rectangle refining
property. In [2], Abraham–Todorčević pointed out the similarity between Aron-
szajn trees and (ω1, ω1)-gaps. The anti-rectangle refining property defined below
is derived from its similarity. As a forcing notion, an Aronszajn tree has the anti-
rectangle refining property, and a forcing notion freezing an (ω1, ω1)-gap also has
the anti-rectangle refining property.

In 1980’s, Todorčević investigated several fragments of MAℵ1 . One of them is
the statement Kn, for a natural number n larger than 1, that for every ccc forcing
notion P, all uncountable subsets of P have uncountable n-linked subsets. We note
easily that every Kn is weaker than MAℵ1 and Kn+1 implies Kn. Todorčević also
defined another fragment C2 of MAℵ1 , which is the statement that any product of
ccc forcing notions is still ccc. We also notice that K2 implies C2. However it is still
unknown that the weakest fragment C2 in fragments mentioned above is essentially
weaker than MAℵ1 , that is, it is still open whether it is consistent that C2 holds
but MAℵ1 fails. In this note, we introduce fragments of MAℵ1 on the anti-rectangle
refining property, MAℵ1(a(arec)), K2(a(arec)) and ¬C(arec), and prove that they
are essentially weaker than MAℵ1 , more precisely, we show that it is consistent that
MA(a(arec)) holds but C2 fails.

In section 2, we define the anti-rectangle refining property and see a basic fact.
In section 3, we give examples related to the anti-rectangle refining property. In
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section 4, we investigate fragments of MAℵ1 on the anti-rectangle refining property
and show that our fragments are essentially weaker than MAℵ1 .

2. The definition of the anti-rectangle refining property

A forcing notion has the countable chain condition (ccc) if it does not have an
uncountable antichain (an uncountable pairwise incompatible set of conditions).
We introduce a new chain condition which can be considered as the variation of the
property K.

Definition 2.1. • (Knaster, [8]) A forcing notion P has property K if for
every I ∈ [P]ℵ1 , there is a refinement I ′ ∈ [I]ℵ1 such that p and q are
compatible in P (i.e. there exists r ∈ P such that both r ≤P p and r ≤P q
hold, denoted by p 6⊥P q) for every p and q in I ′.

• A forcing notion P has the anti-rectangle refining property if it is uncount-
able and for every I and J in [P]ℵ1 , there are refinements I ′ ∈ [I]ℵ1 and
J ′ ∈ [J ]ℵ1 such that p and q are incompatible in P (denoted by p ⊥P q) for
every p ∈ I ′ and q ∈ J ′.

For a forcing notion P, we define another forcing notion a(P) which consists of
finite antichains in P, ordered by reverse inclusion. If a(P) has the ccc, then by the
genericity, a(P) can add an uncountable antichain in P. So it follows from the next
lemma that if P has the ccc and the anti-rectangle refining property, then a(P) can
destroy the ccc property of P.

Proposition 2.2. If a forcing notion P has the anti-rectangle refining property,
then for every I and J in the set [a(P)]ℵ1 with I∪J pairwise disjoint, i.e. σ∩τ = ∅
for any distinct σ and τ in I ∪ J , there are refinements I ′ ∈ [I]ℵ1 and J ′ ∈ [J ]ℵ1

such that for any σ ∈ I ′ and τ ∈ J ′, σ 6⊥a(P) τ , i.e. σ ∪ τ ∈ a(P).

This property is very similar to the rectangle refining property.

Definition 2.3 (Larson–Todorčević, [11, Definition 4.1.]). A partition [ω1]2 = K0∪
K1 satisfies the rectangle refining property if for every I and J in the set [ω1]ℵ1 ,
there are refinements I ′ ∈ [I]ℵ1 and J ′ ∈ [J ]ℵ1 such that

{{α, β} ; α ∈ I ′ & β ∈ J ′ & α < β} ⊆ K0.

This is the reason why I call the anti-rectangle refining property.
We note that if a partition [ω1]2 = K0 ∪ K1 satisfies the rectangle refining

property, then for every I and J in [ω1]ℵ1 , there are refinements I ′ ∈ [I]ℵ1 and
J ′ ∈ [J ]ℵ1 such that (I ′ and J ′ are disjoint and)

{{α, β} ; α ∈ I ′ & β ∈ J ′} ⊆ K0.

Moreover we should note that this property is stronger than the ccc, so if P has
the anti-rectangle refining property, then a(P) has the ccc.
Proof of Proposition 2.2. Assume that P has the anti-rectangle refining property
and let I and J be uncountable subsets of a(P) such that I ∪ J is pairwise disjoint.
By shrinking I and J respectively if need, we may assume that each element of I
has size m and each element of J has size n. Applying the anti-rectangle refining
property mn times, we can find uncountable subsets I ′ and J ′ of I and J respectively
such that for every σ ∈ I ′ and τ ∈ J ′, the i-th condition in σ and the j-th condition
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in τ are incompatible in P for each i ∈ m and j ∈ n. Then every element of I ′ and
every element of J ′ are compatible in a(P). ¤

We notice that a(P) may contain an atom, that is, there are no strict extension
of it. In a(P), an atom means a finite maximal antichain in P. We consider a′(P)
which consists of conditions in a(P) which are not atoms. Then we can show by
the same argument in the proof of Proposition 2.2, if P has the anti-rectangle
refining property, then a′(P) also has the rectangle refining property. (Let I and J
be uncountable subsets of a′(P) such that each element of I has size m and each
element of J has size n. For each σ ∈ I, we take any pσ ∈ P such that σ ∪ {pσ} is
also a condition in a(P). (pσ is a dummy condition.) Applying the anti-rectangle
refining property (mn + n) times, we can find uncountable subsets I ′ and J ′ of I
and J respectively such that for every σ ∈ I ′ and τ ∈ J ′, any condition in σ ∪{pσ}
and any condition in τ are incompatible in P. Then every element of I ′ and every
element of J ′ are compatible in a′(P).) We note that if P has the anti-rectangle
refining property and for every countable subset I of P and σ ∈ a′(P), there exists
an extension τ of σ in a′(P) which is not a subset of I, then

°a′(P)“
∪

Ġ is an uncountable antichain ”.

For example, if a forcing notion P with the anti-rectangle refining property satisfies
that for every condition p in P, the set of predecessors of p, i.e. {q ∈ P; q ≤P p}, is
uncountable, then a′(P) has this property.

3. Examples

3.1. ω1-trees. A tree is an ordered structure 〈T,<T 〉 such that for each t ∈ T ,
the predecessors {s ∈ T ; s <T t} of t is well ordered with respect to <T . We note
that in a tree-order, the compatibility is same to the comparability. A tree T is
an ω1-tree if T has height ω1 and every level of T is countable. An ω1-tree is
Aronszajn if it does not have uncountable branches, and is Suslin if it does not
have both uncountable branches and uncountable pairwise incomparable subsets.
So a Suslin tree is an Aronszajn tree which has the countable chain condition as a
forcing notion (with the reverse order of the original order). It is well known that
there exists an Aronszajn tree (under ZFC) and Suslin’s hypothesis is equivalent to
the statement that there are no Suslin trees.

Proposition 3.1. An Aronszajn tree has the anti-rectangle refining property.

Proof. Suppose that T is an Aronszajn tree.

Claim 3.2. If I is an uncountable subset of T , then there are s0 and s1 such that
s0 and s1 are incomparable in T and the sets {u ∈ I; s0 <T u} and {u ∈ I; s1 <T u}
are both uncountable.

Proof of Claim 3.2. Assume not. Then for each α ∈ ω1, there exists tα in an α-th
level of T such that the set {u ∈ I; tα <T u} is uncountable. By our assumption,
the family {tα; α ∈ ω1} is pairwise comparable, that is, a chain through T , from
which it follows that T is not Aronszajn. a

Let I and J be in [T ]ℵ1 . By the above claim, we can find s0, s1, t0 and t1 in
T such that s0 and s1, and t0 and t1 are incomparable in T respectively and the
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sets {u ∈ I; si <T u} and {u ∈ J ; tj <T u} are uncountable for each i, j ∈ {0, 1}.
Let i, j ∈ {0, 1} be such that si and tj are incomparable in T and then let I ′ :=
{u ∈ I; si <T u} and J ′ := {u ∈ J ; tj <T u}. Then every node in I ′ is incomparable
with every node in J ′. ¤

This proposition and Proposition 2.2 follows that, if T is an Aronszajn tree, then
a(T ) has the ccc, which is essentially due to Baumgartner in [4]. (However, this
proof is much simpler than Baumgartner’s one.)

From [10, Theorem 11.], it follows that a forcing notion with property K cannot
add an uncountable antichain in a Suslin tree. So if T is a Suslin tree, a(T ) (in fact
T itself) does not have property K.

3.2. (ω1, ω1)-pregaps. An (ω1, ω1)-pregap is a sequence 〈aα, bα;α ∈ ω1〉 of reals
(which means sets of natural numbers) such that

• for every α < β in ω1, aα and bα are almost contained in aβ and bβ re-
spectively, that is, both aα r aβ and bα r bβ are finite (and then we denote
aα ⊆∗ aβ and bα ⊆∗ bβ),

• for every α 6= β in ω1, aα and bβ are almost disjoint, that is, the set aα ∩ bβ

is finite.

An (ω1, ω1)-pregap 〈aα, bα;α ∈ ω1〉 is called a gap if there is no set c of natural
numbers such that for all α ∈ ω1, aα is almost contained in c and bα is almost
disjoint from c. If this c exists, it is called an interpolation of (A,B). For an
(ω1, ω1)-pregap (A,B) = 〈aα, bα;α ∈ ω1〉 with the set aα ∩ bα empty for every
α ∈ ω1, we have the following characterization of being a gap (due to Kunen and
Todorčević). (A,B) is a gap iff it has the following property (f) :

For every uncountable set X of countable ordinals, there exists
different ordinals α and β in X such that

(aα ∩ bβ) ∪ (aβ ∩ bα) 6= ∅.

An (ω1, ω1)-pregap 〈aα, bα; α ∈ ω1〉 is called destructible if it is not a gap in some
forcing extension not collapsing cardinals. In this paper, a destructible gap means
an (ω1, ω1)-pregap which forms a gap and is destructible. For an (ω1, ω1)-pregap
(A,B) = 〈aα, bα; α ∈ ω1〉 with the set aα ∩ bα empty for every α ∈ ω1, we have the
following characterization of destructibility (also due to Kunen and Todorčević).
(A,B) is destructible iff it has the following property (s) :

For every uncountable set X of countable ordinals, there exists
different ordinals α and β in X such that

(aα ∩ bβ) ∪ (aβ ∩ bα) = ∅.

For each (ω1, ω1)-pregap (A,B) = 〈aα, bα; α ∈ ω1〉 with the set aα ∩ bα empty
for every α ∈ ω1, we can define two types of forcing notions (see e.g. [5], [9], [13],
[16]):

• F(A,B) := {σ ∈ [ω1]<ω;∀α 6= β in σ, (aα ∩ bβ) ∪ (aβ ∩ bα) 6= ∅} , ordered
by reverse inclusion.

• S(A,B) := {σ ∈ [ω1]<ω;∀α 6= β in σ, (aα ∩ bβ) ∪ (aβ ∩ bα) = ∅} , ordered
by reverse inclusion.
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We note that F(A,B) generically adds a counterexample of property (s) and and
S(A,B) generically adds a counterexample of property (f). The following charac-
terizations of being a gap and destructibility has been proved (also due to Kunen
and Todorčević):

• (A,B) is a gap iff F(A,B) has the countable chain condition.
• (A,B) is destructible iff S(A,B) has the countable chain condition.

So (A,B) is a destructible gap iff both F(A,B) and S(A,B) have the countable
chain condition.

Proposition 3.3 ([7, Lemma B.1]). Let (A,B) = 〈aα, bα; α ∈ ω1〉 be an (ω1, ω1)-
gap. Then for every I and J in the set [ω1]ℵ1 , there are refinements I ′ ∈ [I]ℵ1 and
J ′ ∈ [J ]ℵ1 such that for every α ∈ I ′ and β ∈ J ′, aα ∩ bβ 6= ∅.

Proof. For each α ∈ ω1, there is a natural number nα such that both sets {ξ ∈ ω1; aα r nα ⊆ aξ}
and {η ∈ ω1; bα r nα ⊆ bη} are uncountable. We note that the set∪

ξ∈I

(aξ r nξ) ∩
∪
η∈J

(bη r nη)

is not empty because the pregap

〈aξ r nξ, bη r nη; ξ ∈ I, η ∈ J〉

is equivalent to the original one and so is a gap. We take α ∈ I, β ∈ J and k ∈ ω
such that k is in the set (aα r nα)∩ (bβ r nβ). Let I ′ := {ξ ∈ I; aα r nα ⊆ aξ} and
J ′ := {η ∈ J ; bβ r nβ ⊆ bη} which are as desired. ¤

Corollary 3.4. S(A,B) has the anti-rectangle refining property.

Proof. This can be proved as arguments in the proof of Proposition 2.2 using the
above proposition. ¤

By Corollary 3.4, a(S(A,B)) has the ccc, and hence it freezes (A,B), that is,
it forces (A,B) to be indestructible. In fact, if an (ω, ω1)-gap (A,B) with the set
aα ∩ bα empty for every α ∈ ω1 is closed under finite modifications (in [17], it is
said that (A,B) admits closed under finite changes), then a(S(A,B)) is forcing-
equivalent to F(A,B).

As in the case of ω1-trees, a forcing notion with property K cannot destroy a
destructible gap, i.e. if P is a forcing notion with property K and (A,B) is an
(ω1, ω1)-pregap,

• and if (A,B) is a gap, then it is still a gap in the extension by P,
• and if (A,B) is destructible, then it is still destructible in the extension by

P.
So we note that if (A,B) is a destructible gap, then both S(A,B) and F(A,B) do
not have property K.

3.3. The bounding number b. For functions f and g in ωω, we define f ≤ g
when f(i) ≤ g(i) for all i ∈ ω, and define f ≤∗ g when f(i) ≤ g(i) for all but finite
many i ∈ ω. The bounding number b is the smallest size of an unbounded family
in the structure 〈ωω,≤∗〉. For a family F of functions in ωω, we define a partition
[F ]2 = KF

0 ∪ KF
1 such that for distinct members f and g in F ,

{f, g} ∈ KF
0 : ⇐⇒ f 6≤ g and g 6≤ f.
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Proposition 3.5. Assume that F = {fξ; ξ ∈ ω1} is a ≤∗-well ordered unbounded
family in 〈ωω,≤∗〉.

For every I and J in the set [ω1]ℵ1 , there are refinements I ′′ ∈ [I]ℵ1 and J ′′ ∈
[J ]ℵ1 and k and l in ω such that for every ξ ∈ I ′′ and η ∈ J ′′, fξ(k) < fη(k) and
fη(l) < fξ(l).

Proof. Let I and J be in [ω1]ℵ1 . We take any injection π from I into J such that
for every ξ ∈ I, fπ(ξ) 6≤∗ fξ. This can be done by our assumption. So for each
ξ ∈ I, there exists kξ ∈ ω such that fξ(kξ) < fπ(ξ)(kξ). There exist k,m0,m1 ∈ ω

and I ′ ∈ [I]ℵ1 such that kξ = k, fξ(k) = m0 and fπ(ξ)(k) = m1 for every ξ ∈ I ′ and
then let J ′ := {π(ξ); ξ ∈ I ′}.

Now, we repeat a same argument with the role of I and J exchanged. We take any
injection π′ from J ′ into I ′ such that fπ′(ξ) 6≤∗ fξ. Then there exist l, n0, n1 ∈ ω

and J ′′ ∈ [J ′]ℵ1 such that for every ξ ∈ J ′′, fξ(l) = n0 < n1 = fπ′(ξ)(l). Let
I ′′ := {π′(ξ); ξ ∈ J ′}. Then I ′′ and J ′′ are as desired. ¤
Corollary 3.6. The partition [F ]2 = KF

0 ∪KF
1 has the rectangle refining property.

Proof. This can also be proved as arguments in the proof of Proposition 2.2 using
the above proposition. ¤

4. Fragments of Martin’s Axiom

4.1. Definitions and implications. In this subsection, we see general results on
the anti-rectangle refining property and relationships between fragments of Martin’s
axiom.

Definition 4.1. • (E.g. [6, (16.4)]) Let κ be a cardinal less than the con-
tinuum and P a set of ccc forcing notions. MAκ(P) denotes the statement
that for any P ∈ P and a family D of dense subsets of P with |D| ≤ κ,
there exists a filter G on P such that G ∩ D 6= ∅ for every D ∈ D. MA(P)
denotes the statement that all MAκ(P) holds for every cardinal κ less than
the continuum.

MAℵ1 is MAℵ1(CCC) where CCC is the set of ccc forcing notions, MAℵ1(propertyK)
is MAℵ1 for forcing notions with property K (in e.g. [10]), and MAℵ1(a(arec))
is MAℵ1(P) where P is the set of forcing notions a(P) for P with the anti-
rectangle refining property.

• (E.g. [15, §2]) K2 denotes the statement that every ccc forcing notion has
property K. (For more on this definition, see the above of Proposition 4.5.)

• ([12, §4]) K2(rec) denotes the statement that every partition of [ω1]2 satis-
fying the rectangle refining property has an uncountable homogeneous set.

• K2(a(arec)) denotes the statement that for every forcing notion P with the
anti-rectangle refining property, a(P) has property K.

• (E.g. [14] or [11, §4]) C2 denotes the statement that the product P × Q
has the countable chain condition if both forcing notions P and Q have the
countable chain condition.

• ¬C(arec) denotes the statement that every forcing notion with the anti-
rectangle refining property have an uncountable antichain, that is, it does
not have the ccc.

In the next proposition, We list three applications of fragments of MAℵ1 about
examples we saw above. All of them are essentially due to Todorčević.
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Proposition 4.2. (1) ¬C(arec) implies Suslin’s hypothesis.
(2) ¬C(arec) implies that all (ω1, ω1)-gaps are indestructible.
(3) K2(rec) implies b > ℵ1.

Proof. The first and second statements follows from subsections 3.1 and 3.2.
The third statement follows from Proposition 3.5 and the following lemma [16,

0.7. Lemma]:
If F is an unbounded family in 〈ωω,≤∗〉 and F is a cofinal subset of finite power

Fk for some k ∈ ω, then there exist x and y in F such that x(i) ≤ y(i) for every
i ∈ k. ¤

It is well known that MAℵ1 implies K2, and K2 implies C2. It is easy to see that
MAℵ1 implies MAℵ1(a(arec)) by definitions, and MAℵ1(a(arec)) implies K2(a(arec))
and K2 implies K2(a(arec)) by Proposition 2.2. We will prove that ¬C(arec) is
derived from each of statements C2 and K2(a(arec)). (A diagram of implications of
them is at the end of this section.)

Proposition 4.3. C2 implies ¬C(arec).

Proof. If P has both the countable chain condition and the anti-rectangle refining
property (hence P is uncountable), then by Proposition 2.2, a(P) is ccc. But the
family {〈p, {p}〉 ; p ∈ P} of conditions in the product P×a(P) forms an antichain in
P × a(P), hence P × a(P) does not have the countable chain condition.

¤

Proposition 4.4. K2(a(arec)) implies ¬C(arec).

Proof. Let P be a forcing notion with the anti-rectangle refining property. Then
by K2(a(arec)), there exists an uncountable subset I of a(P) which is pairwise
compatible in a(P). That is, for conditions σ and τ in I, σ ∪ τ is still a finite
antichain in P. Then

∪
I is an uncountable antichain in P. ¤

It is unknown whether ¬C(arec) implies K2(a(arec)). However the next propo-
sition says that K(a(arec)) and ¬C(arec) are very close statements.

The next proposition has an another viewpoint. K2 is defined by Todorčević in
several papers. In [11, Definition 4.9] and [15, §2], K2 is defined as above, however
in [12, §4] and [16, §7], K2 is defined by the following statement, denoted by K′

2 in
this note, that

every ccc partition on [ω1]2 has an uncountable homogeneous set.

(In [16, §7], Todorčević said that both statements are very close.) It is easy to show
that K2 implies K′

2, but the reverse implication is not known as far as the author
knows. The next proposition says that the version of K2 on our subclass of ccc
forcing notions (K2(a(arec))) is equivalent to the version of K2 on partitions with
the rectangle refining property (K2(rec)) (which is a stronger condition of the ccc).

Proposition 4.5. The following are equivalent.

(1) K2(rec)
(2) K2(a(arec))
(3) For every forcing notion P with the anti-rectangle refining property, any

uncountable subset of P has an uncountable antichain in P.
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Proof. (1 ⇒ 2) Assume that P has the anti-rectangle refining property and I is a
subset of a(P) of size ℵ1. Without loss of generality, we may assume that I forms
a ∆-system with a root σ. Let I ′ := {τ \ σ; τ ∈ I}. We consider the following
2-colored partition of [I ′]2 such that for distinct p and q in I ′,

{p, q} ∈ K0 : ⇐⇒ p 6⊥a(P) q.

Since I ′ is pairwise disjoint, it satisfies the rectangle refining property. By K2(rec),
there exists J ′ ∈ [I ′]ℵ1 which is K0-homogeneous. Let J := {p ∪ σ; p ∈ J ′}. Then
J is an uncountable subset of I and pairwise compatible in a(P).

(2 ⇒ 3) Assume that P satisfies the anti-rectangle refining property and I ∈
[P]ℵ1 . Then the set {{p} ; p ∈ I} is an uncountable subcollection of a(P). By
K2(a(arec)), there exists I ′ ∈ [I]ℵ1 such that the set {{p} ; p ∈ I ′} is pairwise com-
patible in a(P), i.e. for each different p and q in I ′, p ⊥P q, i.e. I ′ is an uncountable
antichain in P.

(3 ⇒ 1) Let [ω1]2 = K0 ∪K1 be a partition with the rectangle refining property.
Let

P :=
{
p ∈ [ω1]<ℵ0 ; [p]2 ⊆ K0

}
,

ordered by reverse inclusion. We consider the following suborder a′′(P) of a(P) such
that

a′′(P) := {σ ∈ a(P);σ is pairwise disjoint} .

It follows from the rectangle refining property of our partition that a′′(P) has the
anti-rectangle refining property. Let I := {{{α}} ;α ∈ ω1}, which is an uncountable
subset of members of a′′(P). By the property 3, we can find I ′ ∈ [I]ℵ1 such that
{{{α}} ; α ∈ I ′} is an antichain in a′′(P), i.e. for each different α and β in I ′,

{{α}} ⊥a′′(P) {{β}} ,

which means that {α} 6⊥P {β}, i.e. {α, β} ∈ K0. Therefore I ′ is an uncountable
homogeneous set. ¤

4.2. Separating C2 and MAℵ1(a(arec)). In [14], Todorčević proved that C2 con-
tradicts the existence of an entangled set of reals of size ℵ1. A set E of reals
is entangled if E is uncountable and for every n ∈ ω and every s ∈ 2n and ev-
ery uncountable family F of increasing (with respect to the usual ordering of the
reals) pairwise disjoint n-tuples of elements in E, there exist x and y in F such
that for every i ∈ n, x(i) < y(i) iff s(i) = 0 (which is defined in [1, §8.]). It
has been proved that MA(Productive-ccc) plus the statement that every Aronszajn
tree is special does not imply MA (see in [3, Corollary 3.11.]). This follows from
the following Todorčević’s theorem [3, Theorem 3.10.]: It is consistent with ZFC
that MA(Productive-ccc) holds, every Aronszajn tree is special and there exists an
entangle set of reals. By a similar argument1 we can show the following theorem.

1In the proof of Lemma 3.12 which is the key lemma for the proof of Theorem 3.10, there is a
trivial mistake.

Let T be an Aronszajn tree and A0 and A1 uncountable subsets of QT (which is just a(T ) in

our notation). In the proof, it is shown that ax ∈ A0 and by ∈ A1 are found such that ax and by

are compatible in QT . But it does not hold in general. For example, let s0 and s1 be nodes in T
with s0 <T s1, and let 〈tα; α ∈ ω1〉 be an pairwise incomparable sequence of nodes in T such that

each tα is not comparable with s0 in T . Let A0 := {{s0, tα} ; α is odd} and A1 := {{s1, tα} ; α is
even}. Then for any σ ∈ A0 and τ ∈ A1, σ and τ are incompatible in QT .
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Theorem 4.6. It is consistent with ZFC that MA(a(arec)) holds and there exists
an entangled set of reals, so we conclude that MA(a(arec)) does not imply C2.

The only difference between the proof of [3, Theorem 3.10.] and Theorem 4.6
is Lemma 4.8 which is related to [3, Lemma 3.12.]. The theorem follows from the
next two lemmata.

Lemma 4.7 ([3, Lemma 3.14]). The preservation of the entangledness of sets of
reals by ccc forcing is preserved by finite support iterations. ¤

Lemma 4.8. Suppose that E is an entangled set of reals and P is a forcing notion
which has the anti-rectangle refining property. Then E is still entangled in the
extension by a(P).

Proof. This proof is essentially same to the proof in [3, Lemma 3.12.]. We use the
following fact:

[3, Fact 3.13.]: If E is an entangled set of reals, then for every n ∈ ω, every s ∈ 2n

and every uncountable family F of increasing pairwise disjoint n-tuples of elements
in E, there are F0 and F1 in [F ]ℵ1 such that for every x ∈ F0 and every y ∈ F1

and every i ∈ n, x(i) < y(i) iff s(i) = 0.

Proof of this fact. By recursion on α ∈ ω1, we can take xα and yα in F and
rationals z0

α,i and z1
α,i for each i ∈ n such that

• xα and yα is in F \ {xβ , yβ ; β ∈ α},
• for every i ∈ n, xα(i) < yα(i) iff s(i) = 0, and
• if s(i) = 0, then xα(i) < z0

α,i < yα(i), and if s(i) = 1 and xα(i) > yα(i),
then xα(i) > z1

α,i > yα(i).
Let I be an uncountable set of countable ordinals such that for every α and β in I
and i ∈ n, z0

α,i = z0
β,i and z1

α,i = z1
β,i, and for each i ∈ n with s(i) = 1 and α and β

in I,
xα(i) = yα(i) iff xβ(i) = yβ(i).

For each i ∈ n with xα(i) = yα(i) (α ∈ I), either there exists an uncountable
subset I ′ of I such that xα(i) = yα(i) = xβ(i) = yβ(i), or we take a rational wi

such that both the sets {ξ ∈ I;xξ(i) > wi} and {ξ ∈ I;wi > yξ(i)} are uncountable.
By this observation, we can take an uncountable subset I ′ of I such that letting
F0 := {xξ; ξ ∈ I ′} and F1 := {yξ; ξ ∈ I ′}, F0 and F1 satisfy the desired property. a

Let n ∈ ω, s ∈ 2n, Ḟ be a a(P)-name for an uncountable family of increasing
pairwise disjoint n-tuples of elements in E, and p ∈ a(P). (We should notice that
the set of finite subsets of E in the extension is same to one in the ground model.)
We can find a pair 〈pξ, xξ〉, for ξ ∈ ω1, of a condition below p in a(P) and an
n-tuples of elements in E such that

pξ °a(P)“ x̌ξ ∈ Ḟ ”

and the family {xξ; ξ ∈ ω1} is pairwise disjoint. Without loss of generality, we
may assume that the set {pξ; ξ ∈ ω1} forms a ∆-system with root r. By the above
fact, there are I0 and I1 in [ω1]

ℵ1 such that for all ξ ∈ I0, η ∈ I1 and i ∈ ω,
xξ(i) < xη(i) iff s(i) = 0. Applying Proposition 2.2 to the set {pξ r r; ξ ∈ I0} and
{pξ r r; ξ ∈ I1}, we can find I ′0 ∈ [I0]ℵ1 and I ′1 ∈ [I1]

ℵ1 such that for every ξ ∈ I ′0
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and η ∈ I ′1, pξ and pη are compatible in a(P). Then for some (any) ξ ∈ I ′0 and
η ∈ I ′1, pξ ∪ pη is a common extension of pξ and pη and

pξ ∪ pη °a(P)“ x̌ξ, x̌η ∈ Ḟ ”

and xξ(i) < xη(i) iff s(i) = 0, for all i ∈ n, which finishes the proof. ¤

In [10], Kunen–Tall proved that it is consistent with ZFC that MAℵ1(property K)
holds and Suslin’s Hypothesis fails (i.e. there exists a Suslin tree). So MAℵ1 and
MAℵ1(property K) can be separated. Therefore we have the following diagram:

MAℵ1(property K)

6xxx
xx

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

x¡ xxxxxxxxxxx

xxxxxxxxxxx

6

¦°

+

qy kkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkk

MAℵ1
+3

8@xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx

®¶

K2
+3

®¶

C2

®¶
MAℵ1(a(arec)) +3

jjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjj

6 llllllllll

llllllllll

19lllllllll
lllllllll

K2(a(arec)) +3 ¬C(arec)
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