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SOUSLIN ALGEBRA EMBEDDINGS

GIDO SCHARFENBERGER-FABIAN

Abstract. A Souslin algebra is a complete Boolean algebra whose main features
are ruled by a tight combination of an antichain condition with an infinite distribu-
tive law.

The present article divides into two parts. In the first part a representation
theory for the complete and atomless subalgebras of Souslin algebras is established
(building on ideas of Jech and Jensen). With this we obtain some basic results on
the possible types of subalgebras and their interrelation.

The second part begins with a review of some generalizations of results from
descriptive set theory concerning Baire category which are then used in non-trivial
Souslin tree constructions that yield Souslin algebras with a remarkable subalgebra
structure. In particular, we use this method to prove that under the diamond
principle there is a bi-embeddable though not isomorphic pair of homogeneous
Souslin algebras.

Introduction

Souslin trees are well-known to most set theorists, Souslin algebras not so well any
more, and subalgebras of Souslin algebras in general are suspected of being a messy
business. I would like to put in a good word for them here.

We consider κ-Souslin algebras (for definitions see the following section) as well
as their representations by normal κ-Souslin trees and address the problem how
to describe and classify complete embeddings between κ-Souslin algebras. After
introducing the representation for Souslin subalgebras we give a rough classification of
the possible types of embeddings and find implications between existence statements
involving them as well as counter examples proving non-implications.

The representation theory of Part 1 of this text was primarily developed exclusively
for the case κ = ℵ1 in my PhD thesis ([21]1) in order to establish the consistency of
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1Readers familiar with [21] should note 1.) that the notion of tree equivalence relation (t.e.r.)

as defined in this article corresponds to what is called a decent t.e.r. in [21], and 2.) that only
Part 1 and Sections 5.2 and 5.3 of Part 2 consist of generalizations of results given in [21] while the
remainder of Part 2 brings new material.
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the existence of a chain homogeneous ℵ1-Souslin algebra (cf. the subsequent paper
[22]). Here we take κ to be any regular cardinal. To describe Souslin subalgebras we
define the notion of a tree equivalence relation on a κ-normal tree. The properties
considered for the classification of embeddings are mainly niceness (introduced by
Jensen, cf. [5]) and largeness and the global negations thereof. For example, we
show that large subalgebras are always nice (Theorem 3.5) and that the existence
of a nice and nowhere large subalgebra always implies that there also is a nowhere
nice subalgebra (Theorem 4.9). We also study connections between the symmetric
structure of κ-Souslin algebras (i.e. its automorphisms) and its subalgebra structure.
Apart from the applications as given in this text, the representation theory might
also be useful in the study of intermediate models of generic extensions built using
κ-Souslin trees or κ-Souslin algebras or in other related areas of set theoretic research.

The topological notions developed at the beginning of Part 2 in Section 5.1 serve
to facilitate the choice of the relevant limit levels in the κ-Souslin tree constructions
and provide a nice tool for involved diagonalization procedures. The argument is a
refinement of the Diagonal Principle as formulated by Jech in [10, p.63]:

If T is a countable normal tree of limit length, then there exists a
branch through T which satisfies a countable number of prescribed
conditions.
(E.g., given a countable set B of branches of T , there exists a branch
which is not in B.)

Here we observe that the set of relevant branches is (a generalization of) a Polish
space and “conditions” are comeagre subsets. The idea to use Baire category for
Souslin tree constructions is not at all new. Taking into account the correspondence
between Baire category and Cohen reals it was implicitely used by Jensen in his
countable models constructions of Souslin trees (cf. [5, Chapters IV and V]) whose
generic branches are close to being Cohen reals. Or, for a more recent example,
it applies along with the parametrized diamond principles for Baire category as
considered in [6].

Nevertheless, this tool has, as far as I know, not yet been used to perform advanced
Souslin tree constructions. We use it to construct a rigid µ+-Souslin algebra with non-
rigid Souslin subalgebras (Section 5.3), a rigid µ+-Souslin algebra with an essentially
unique Souslin subalgebra (Section 6) and a pair of µ+-Souslin algebras that forms a
counter example to the Schröder-Bernstein-Theorem for µ+-Souslin algebras (Section
7.2). In a subsequent paper ([22]) I will present constructions of chain homogeneous
ℵ1-Souslin algebras in which the same method is applied. Of course, non of these
constructions can be carried out in ZFC alone. We do not intend to give an exhaustive
picture of what can be done under varying hypothesis and simply assume variants
of the well-known diamond principle ♦.
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The paper is fairly self-contained, though of course some acquaintance with Souslin
tree constructions is an advantage for the reader.

1. Preliminaries

Our notation and terminology follow mainly [16] and [5] (Boolean) and [13] (set
theoretic, exception: we use ϕ”M to denote the image of the set M under the
mapping ϕ).

All Boolean algebras considered in this text are complete and all subalgebras are
tacitly assumed to be regular, i.e., if A is a subalgebra of B and for some M ⊂ A
the infimum

∑AM with respect to A exists (and it does as A is assumed to be

complete), then it coincides with the sum
∑BM taken in B. If M is a subset of the

Boolean algebra B, then 〈M〉cm denotes the subalgebra of B completely generated by
M , i.e., the least complete subalgebra of B which contains M as a subset.

A frequently used item is the canonical (upper) projection of a (complete) Boolean
B algebra onto its subalgebra A:

h = hB,A : B → A, b 7→
∑

{a ∈ A | ab = a}.

As usual we omit subscripts if there is no danger of confusion. Note that h is not
a homomorphism as it only respects sums but neither products nor complements in
general.

Whenever we talk of the natural ordering of a Boolean algebra B, we mean the
relation defined by a ≤B b : ⇐⇒ ab = a. We denote the relative algebra of B
with respect to b by B↾b = {a ∈ B | a ≤ b}. When a (complete) subalgebra A of
B and an element b ∈ B are given, we might also consider the algebra of products
bA = b ·A = {ba | a ∈ A} which is a (complete) subalgebra of B↾b. In this situation
the projection h = hB,A gives rise to an isomorphism between bA and A↾h(b), the
inverse map being multiplication with b.

A (complete) Boolean algebra B is called

simple, if it has no atomless (complete) subalgebras,
rigid, if it admits no automorphisms except for the identical map,
homogeneous, if for every b ∈ B+ the relative algebra B↾b is isomorphic to B.

1.1. κ-Souslin algebras. Let κ be an regular uncountable cardinal. An antichain
of a Boolean algebra is a subset consisting of pairwise disjoint elements, and the κ-
chain condition states that every antichain is of cardinality less than κ. A κ-Souslin
algebra is a complete Boolean algebra that satisfies both the κ-chain condition and
the (κ,∞)-distributive law, i.e., for index sets I, J where |I| < κ and J is arbitrary
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and each family (aij | i ∈ I, j ∈ J) of elements the following equation holds:

∑

i∈I

∏

j∈J

aij =
∏{∑

i∈I

aif(i) | f ∈ IJ

}
.

This distributive law also has valuable characterizations in terms of common refine-
ments of paritions of unity, i.e. maximal antichains (cf. [16, Propositions 14.8/9]): A
Boolean algebra is (κ,∞)-distributive if and only if every family (Xi)i∈I of less than
κ maximal antichains has a common refinement, i.e., there is a maximal antichain
X such that for every i ∈ I and each member a ∈ Xi there is an element b ∈ X with
ab = b, i.e., b lies below a in the natural partial ordering of B. As a consequence, if
B is (κ,∞)-distributive and A is a subalgebra of B which is completely generated
by fewer than κ elements, then A is atomic. These two results are heavily used when
a κ-Souslin algebra is represented as the regular open algebra of a κ-Souslin tree.

Note that every atomless (and complete) subalgebra of a κ-Souslin algebra is κ-
Souslin itself. We therefore call these subalgebras Souslin subalgebras (omitting the
parameter κ as it is determined by the context).

A result concerning κ-Souslin algebras and well-known only in the case where
κ = ℵ1 is Solovay’s barrier for the cardinality of κ-Souslin algebras (cf. [13, Theorem
30.20]): A κ-Souslin algebra can have at most 2κ elements. We will not use this result
here as we concentrate on κ-Souslin algebras that can be represented by κ-Souslin
trees and therefore always are of cardinality 2<κ.

1.2. Trees. A tree is a partial order (T,<T ) with the additional property, that for
every element t ∈ T , the set of its predecessors, {s <T t} := {s ∈ T | s <T t}, is
well-ordered by the ordering <T . Whenever possible, we omit the subscript T and
denote the tree ordering just by <.

The elements of a tree are called its nodes, the minimal elements are roots. The
height of a node, ht t, is the order type of the well-order ({s < t}, <). Nodes of limit
height are also called limit nodes. If ht t = γ + 1 is a successor ordinal, then we
denote by t− := t↾γ the immediate predecessor of t.

For every node t we define the set of its immediate successors,

succ t := {s ∈ T | t < s and ht s = ht t+ 1}.

For a cardinal µ we say that T is µ-splitting if every node has exactly µ immediate
successors. For every ordinal α we define the αth level of T and denote it by Tα :=
{t ∈ T | ht t = α}. The height of T is the minimal ordinal α such that Tα is empty.
For a subset C of ht T we consider the tree

T↾C =
⋃

α∈C

Tα
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with the ordering < inherited from T and call this tree the restriction of T to (the
levels from) C. If t ∈ Tα and γ < α then t↾γ denotes the unique predecessor of t on
level γ.

A subset b of a tree T is a branch if it is closed downwards and linearly ordered by<.
The length ℓ(b) of a branch b is just its order type with respect to <. We sometimes
take branches to be maps ℓ(b) → b enumerating the nodes in a monotone way. A
branch x ⊂ T of limit length λ is extended if there is a node t ∈ Tλ that dominates
all members of x: t > s for all s ∈ x. A branch is cofinal if its length coincides with
ht T . An antichain of T is a subset that consists of pairwise incomparable nodes. We
call branches or antichains maximal if they cannot be extended. Note, that every
(non-empty) level of T is a maximal antichain.

A tree T is µ-closed if all branches in T , whose length has cofinality less than µ,
are extended. In particular, a µ-closed tree has no maximal branches with cofinality
less than µ.

A tree T is normal if the following hold:

• T has a unique root,
• every node t has at least two successors on every level Tα with ht t < α < ht T
• branches of limit length λ have at most one extension to level Tλ (the unique
limits condition)

A tree T is µ-normal if it is normal and every level of T has less than µ nodes.
For every node t ∈ T we let T (t) := {s ∈ T | t ≤ s} and call it the tree T relativized

to t. A homogeneous tree is a tree T , that admits tree isomorphisms between T (s)
and T (t) for all pairs s, t of nodes from the same level Tα of T . A rigid tree has no
tree automorphism but the identical map. Operations on trees sometimes used in
the text are the tree product and the tree sum

S ⊗ T :=
⋃

γ<α

Sγ × Tγ and S ⊕ T := {root} ∪ S ∪̇T ,

where α = ht T = htS and root is a new node, equipped with the obvious orderings.
The apparatus used in Part 2 of the article rests entirely on the following definition,

which is albeit useful also in Part 1: For a normal tree T of limit height let [T ] be
the set of cofinal branches of T . We topologise [T ] with the basis that consists of
the sets ŝ := {x ∈ [T ] | s ∈ x} for all s ∈ T . With this topology [T ] is a regular
Hausdorff (i.e. T3) space of weight |T |. Moreover, if T is an ℵ1-normal tree of
countable limit height, then [T ] is a Polish space, i.e., it is completely metrizable and
second countable.

1.3. κ-Souslin trees. Now let κ be an uncountable, regular cardinal. A κ-Souslin
tree is a tree of height κ that has neither antichains nor branches of size κ. Note,
that a κ-normal tree of height κ is κ-Souslin if and only if it has no cofinal branches.
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A subtree is a subset which is a union of branches, i.e., it is closed downwards. (For
example, {s < t}∪T (t) is always a subtree of T .) Every κ-Souslin tree has a normal
subtree which is κ-Souslin. In this text we only consider normal Souslin trees.

The following Subtree Lemma is well-known for the case κ = ω1 but its proof (as
given, e.g., in [19]) literally translates to the general, regular case. It captures the
content of the notion of a κ-Souslin tree without recourse to related structures such
as Souslin lines or κ-Souslin algebras.

Lemma 1.1 (Subtree Lemma). Let κ be an uncountable, regular cardinal and T a
normal κ-Souslin tree. If S is a subtree of T with |S| = κ then S contains a subtree
{s < t} ∪ T (t) for some t ∈ T .

In order to turn a tree into a Boolean algebra we provide it with the (reversed)
partial order topology: The basic open sets are T (s) for s ∈ T . Then we simply
take the regular open algebra RO T of the space T with this topology. The basic
representation lemma for Souslin algebras is given by (the proof of) [16, Theorem
14.20]:

1) For every (normal) κ-Souslin tree T its regular open algebra RO T is κ-Souslin,
and

2) for every κ-Souslin algebra B, if B is completely generated by κ many of its
elements, then there is a (normal) κ-Souslin tree T which can be (with reversed
order) regularly embedded onto a dense subset of B.

We stress once more that in the present paper only κ-Souslin algebras are considered
which are completely generated by trees as in (2) above. Following [5] we call a
subset T of the κ-Souslin algebra B a Souslinization of B if (T,>B) is a normal κ-
Souslin tree and the limit nodes in T are obtained as products over their predecessors:
s =

∏
{t ∈ T | t >B s}. A minor inconvenience of this terminology is that we regard

trees as growing upwards while Souslinizations grow downwards with respect to the
natural Boolean order ≤B of B. If possible we prefer the tree order view, i.e., the
common phrase “t is above s” is tantamount to “s is closer to the root than t” or in
Boolean notation to t ≤B s.

Two Souslinizations of the same κ-Souslin algebra can look quite different, e.g.
2-splitting vs. infinitarily splitting. However, by the following Restriction Lemma
they always coincide on a club set of levels. We will use this fact in a considerable
portion of proofs.

Lemma 1.2 (Restriction Lemma). If the κ-Souslin algebras A and B are souslinized
by S and T respectively and if ϕ : A → B is an isomorphism, then there is a club set
C ⊂ κ such that the restriction of ϕ to S↾C is an isomorphism onto T↾C.

For a proof take the one of [12, Lemma 25.6] (or a solution to [13, Exercise 30.15])
and translate “countable” to “less than κ”.
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1.4. ♦-principles. For a cardinal κ and a stationary subset E ⊂ κ we denote the
following statement by ♦κ(E):

There is a sequence (Rα)α<E (the ♦-sequence) such that for every
subset X of κ the set

{α ∈ E | X ∩ α = Rα}

is stationary in κ.

The principle ♦κ(E) implies that 2κ = κ+ and is therefore not a theorem of ZFC.
But for many stationary sets E it follows from Gödel’s axiom of constructibility and
can be made true by forcing. We will use this principle in situations where κ is a
successor cardinal κ = µ+ with µ = µ<µ and E = CFµ = {α < κ | cf(α) = µ}.

Part 1. Elementary representation and classification of Souslin

subalgebras

Throughout all of Part 1 let κ denote a regular uncountable cardinal.

2. Tree equivalence relations

Subalgebras of Souslin algebras have been considered before, e.g. in [11] or [3, §5],
[17] and more implicitly in [5] or [19, §8]. To represent a subalgebra A of the Souslin
algebra B with respect to some Souslinization T of B, the first three sources define
a good equivalence relation on the Souslinization T , while the last two use maps
between trees T↾C (for some club set C ⊆ ω1) and a Souslinization S of A.

We combine the two approaches in so far as we will consider equivalence relations,
which are designed in a way such that they directly induce the relevant mappings
between the Souslinizations.

Definition 2.1. a) Let T be a κ-normal tree of height µ ≤ κ. An equivalence
relation ≡ on T is a tree equivalence relation (t.e.r.) if
i) ≡ respects levels, i.e., s ≡ t only if htT s = htT t;
ii) ≡ is compatible with <T , i.e., for s <T s′ and t <T t′ with s and t of the

same height, s′ ≡ t′ implies s ≡ t;
iii) the induced partial order on the set T/≡ of ≡-cosets given by

a <T/≡ b ⇐⇒ (∃s ∈ a, t ∈ b)s <T t

for a, b ∈ T/≡ is a κ-normal tree order;
iv) ≡ is honest, by which we mean that for all triples (s, s′, t) of nodes s ≡ t in

some level γ of T and s′ >T s the following holds: If there is no successor of t
that is equivalent to s′, then the same holds already for s′↾(γ + 1), i.e., there
is no t′ ∈ Tγ+1 above t equivalent to s′↾(γ + 1).
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b) If T souslinizes B and A is a Souslin subalgebra of B, we say that the t.e.r. ≡ on
T represents A on T if the sums over the ≡-classes form a dense subset of A:〈∑

s/≡ | s ∈ T
〉cm

= A.

Remark 2.2. (1) Note that in point (iii) the tree T/≡ has unique limits. This
implies that on a limit level Tα the t.e.r. ≡ is completely determined by its
behavior on T↾α below.

(2) Furthermore, as the tree order on T/≡ splits in every node, we get that every
t.e.r. represents an atomless, i.e. a Souslin subalgebra.

(3) Call a triple (s, s′, t) of nodes a dispute (on ≡) if s ≡ t and s < s′ yet there is
no successor of t equivalent to s′, i.e., (s, s′, t) is as in the definition of honesty
above. Then ≡ is honest if and only if for every dispute (s, s′, t) on ≡ already
(s, s′↾(ht(s) + 1), t) is a dispute. This is illustrated in figure 1.

(4) Honesty prevents a t.e.r. from associating two nodes of level Tγ that can be
distinguished by the subalgebra that the t.e.r. represents. In partucular, if
a κ-Souslin tree carries two different t.e.r.s, then the subalgebras represented
by these t.e.r.s differ as well.

t

s′

s ≡

Tβ

Tγ

Tγ+1

¬∃ t′ ≡ s′

T (t)
T (t)

ts

s′

≡

t′

above t
in Tβ

in Tγ+1 above t

⇓
‖

s′↾γ + 1

¬∃ t∗ ≡ s′↾γ+1

≡

Figure 1. Honesty of a tree equivalence relation — the dispute case
on the left hand side versus the nice case on the right

For the moment, let us denote by pre-t.e.r. an equivalence relation on a tree which
satisfies conditions (i-iii) above but not necessarily honesty.

Part b) of the following proposition gives us a necessary criterion for testing
whether a pre-t.e.r. is honest with respect to a limit level Tα. With its aid we
can destroy unwanted t.e.r.s/subalgebras in recursive Souslin algebra constructions
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during which we have to choose appropriate limit levels of a tree (cf. Example 2.8
and Theorem 6.1).

Proposition 2.3. Let T be a κ-normal tree of height β ≤ κ carrying a t.e.r. ≡. Let
α < β be a limit ordinal. Consider the equivalence relation ≃ on [T↾α] induced by ≡
through

x ≃ y : ⇐⇒ (∀γ < α)x↾γ = y↾γ.

a) The ≃-classes are closed subsets of [T ].
b) For s ∈ Tα denote by xs the branch {r ∈ T↾α | r < s} ∈ [T↾α]. For each branch
x ∈ [T ] consider its class x/≃ as a subspace of [T ]. Then for every s ∈ Tα the
α-branches associated to the members of the ≡-class of s, i.e. the set

{xr | r ∈ Tα and r ≡ s},

lies densely in the corresponding class xs/≃. Stated in more elementary terms,
for every node s ∈ Tα, branch y ≃ xs and ordinal γ < α there is a node t in level
Tα such that t ≡ s and t > y↾γ.

Proof. Part a) follows easily from the fact that for each x ∈ [T ] the set

Sx =
⋃

x/≃ = {s ∈ T | (∃ y ≃ x) s ∈ y}

is a subtree of T and x/≃ = [Sx], which is always closed.
To prove b) by contradiction, assume that for s, y and γ as above there is no

t > y↾γ, t ≡ s. Then the triple (s↾γ, s, y↾γ) would constitute a dispute on ≡, but
s↾(γ + 1) ≡ y↾(γ + 1). This contradicts point (iv) of the last definition. �

Remark 2.4. (1) Note that, while in Proposition 2.3 we used different symbols for
the t.e.r. ≡ and the induced equivalence relation ≃ on the space of branches
of length α (because here this difference was crucial) we will further on denote
the induced relation with the same symbol as the t.e.r. (in most cases: ≡).

(2) In some of the later arguments we will identify the branches of the form xs
with the corresponding nodes s.

(3) Given an equivalence relation ≡ on some topological space X, call a subset
M ⊂ X suitable for ≡ if for every member x ∈M the intersection M ∩ (x/≡)
is a dense subset of the space x/≡. With this notion at hand, the conclusion
of Proposition 2.3.b) reads as:

The set of branches {xs | s ∈ Tα} corresponding to the nodes
of level Tα is suitable for the equivalence relation induced by ≡
on the α-branches of T .

Jensen defined a subalgebra A of a κ-Souslin algebra B to be a nice subalgebra if
there is some Souslinization T of B such that the image of T under the canonical
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projection h : B → A, b 7→
∏
{a ∈ A | b ≤ a} is a Souslinization of A. We now define

the corresponding notion for t.e.r.s.

Definition 2.5. a) A t.e.r. ≡ on T is called nice, if for all s, s′, t in T with s <T s
′

and s ≡ t there is some t′ >T t with s
′ ≡ t′.

b) A t.e.r. ≡ on T is called almost nice, if for all s, s′, t in T with s <T s
′ and s ≡ t

and ht(s) = α + 1 for some α there is some t′ >T t with s
′ ≡ t′.

Remark 2.6. (1) Obviously niceness is the complete absence of disputes and al-
most niceness means that no dipute may have its lower nodes in a successor
level of the tree. So both properties imply the honesty of the t.e.r. (from now
on we can forget about pre-t.e.r.s).

(2) Honesty and niceness are handed down to any restriction to a club set of
levels while almost niceness is not, because such a restriction can turn a limit
level into a successor level. On the other hand it is easy to see, that every
t.e.r. can be obtained as a restriction of an almost nice t.e.r. to some club
set of levels.

(3) It is easy to see that the nice subalgebras (with respect to Jensen’s definition)
are exactly those that can be represented by nice t.e.r.s. Given a t.e.r. ≡ on
a Souslinization T of B let us denote the associated projection by

π≡ : T → B, t 7→
∑

t/≡ .

The t.e.r. ≡ is nice if and only if π≡ = h↾T , and it is almost nice if and only
if π≡ and h coincide on all successor levels of T .

The next lemma will be called the Representation Lemma for Souslin subalgebras.

Lemma 2.7. Let A be a Souslin subalgebra of the κ-Souslin algebra B, and let S be
any Souslinization of B.

a) There is a Souslinization T of B that admits an almost nice t.e.r. ≡ representing
A.

b) There are a club C ⊆ κ and a t.e.r. ≡ on S↾C such that ≡ represents A.
c) If A is furthermore nice and represented by ≡ on S then there is a club C ⊆ κ

such that ≡ is nice on S↾C.

Proof. We only prove part a) since parts b) and c) follow directly from part a) by
the Restriction Lemma. Before constructing T and ≡ by recursion, we describe a
method of refining a given partition P of unity in B to a partition R in B with the
property, that h′′R is a partition in A. Let Q be the set of atoms of 〈h′′P 〉cm ⊂ A

and define

R = {pq | p ∈ P, q ∈ Q} \ {0}.
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Then R refines P , and for pq ∈ R we have h(pq) = qh(p) = q since q is an atom. So
h′′R = Q.

Now fix a dense subset {xα+1 | α ∈ κ} of B indexed by successor ordinals. Starting
with the root level T0 = {1B} let Pα be any partition in B refining Tα in such a way
that every s ∈ Tα is divided in at least two parts, for all s ∈ Tα the image h(s) is
not equal to the h-images of the parts of s, and xα ∈ 〈Pα〉

cm. Then let Tα+1 be the
refinement of Pα with respect to h as described above. So h′′Tα+1 is a partition in
A. The limit levels of T are canonically defined as

Tα :=
{∏

b | b ∈ [S↾α]
}
\ {0}.

Thus T is a Souslinization of B. The t.e.r. is then given on successor levels by

s ≡ t :⇐⇒ h(s) = h(t).

This also determines ≡ on the limit levels and defines an almost nice t.e.r. on T . �

As an illustration of the notion of t.e.r. and a first application of the Representation
Lemma we reformulate Jech’s construction of a simple κ-Souslin algebra, i.e., one
having no non-trivial Souslin subalgebra. (cf. [11]).

Example 2.8 (a simple κ-Souslin algebra). We construct a Souslinization T of a
simple κ-Souslin algebra B. We assume that κ = µ+ is a successor cardinal and
µ<µ = µ and ♦κ(CFµ) hold

2. Let (Rν)cf(ν)=µ be a ♦-sequence.
We will define a κ-normal and µ-closed κ-Souslin tree order on the set κ. We let 0

be the root and provide every node of T with µ direct successors such that level Tα
consists of the ordinal interval between3 µ · α and µ · (α + 1) = µ · α + µ.

We take full limits on limit levels α of cofinality < µ, i.e. we extend all branches
of length α. Thanks to our our hypothesis on cardinal arithmetics there are only µ
branches to extend, so our tree remains κ-normal.

On limit stage α of cofinality µ we consider the space [T ↾α] of cofinal branches
through T ↾α and have to choose a dense subset of cardinality µ subject to some
further restrictions imposed by our ♦κ(CFµ)-sequence (Rν)cf ν=µ. If α < µα then we
can extend T↾α by choosing any dense subset Q of [T↾α] of size µ and extending the
branches in Q to Tα+1.

In the case where α = µα we ask the ♦-sequence for some information about T↾α.
We let the first bit of Rα decide whether we care about antichains or about t.e.r.s.
If 0 ∈ Rα and A = Rα \ {0} is a maximal antichain of T↾α then we choose our dense

2A similar construction (which also applies to an inaccessible cardinal κ that is not weakly
compact) under an appropriate (� + ♦)-assumption is of course possible but more cumbersome,
cf. [4, Theorem VII.1.3] for that framework.

3To be correct, T1 = µ \ {0}, Tn = µ · n \ µ(n− 1) for n ∈ ω \ {0, 1} and Tα = µ(α+ 1) \ µα for
all α ∈ κ \ ω.
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subset Q from the dense open set P = {x ∈ [T ↾α] | (∃t ∈ A)t ∈ x} to guarantee
that A is still a maximal antichain when considered as a subset of Tα+1.

If 0 /∈ Rα and if Rα codes a t.e.r. ≡ on T ↾C for some club set C ⊂ α then we
want to choose the new level Tα in a way that destroys ≡, i.e., the unique extension
of ≡ to Tα+1 violates the honesty criterion of Proposition 2.3. For this consider the
equivalence relation induced by ≡ on the space [T↾α] of cofinal branches via

x ≡ y : ⇐⇒ (∀γ ∈ C)x↾γ ≡ y↾γ.

The ≡-classes of [T↾α] are closed and nowhere dense subsets of [T↾α]. If ≡ is a non-
trivial t.e.r. then there is certainly a ≡-class x/≡ of size > 1. Fix a representative x
of such a class. In order to define Tα we choose a dense subset Q of [T ↾α] \ (x/≡)
of elements not equivalent to x. Then extend every branch in Q ∪ {x}. The node
extending x violates the conclusion of Proposition 2.3, so the extension of ≡ to
T↾C ∪ {α} is no longer honest and therefore no t.e.r.

If cf(α) = µ yet Rα neither is an antichain nor does it code some t.e.r. on T , then
we simply choose any dense µ-subset Q of [T ↾α] and extend the branches in Q to
level Tα. This finishes the recursive construction of T .

By standard ♦κ-arguments, the result T of this construction is a κ-Souslin tree
that admits no t.e.r. So by the Representation Lemma B = RO T has no proper and
atomless complete subalgebra.

Note that, while in the above construction we explicitely talk about a non-trivial
t.e.r., we will from now on tacitly assume the t.e.r.s proposed by a ♦-sequence not
to be trivial, i.e., not to be the identity.

We close this section with a proposition on the local nature of niceness. For this
and also for later purposes, we say that a Souslin subalgebra A is nowhere nice in
the κ-Souslin algebra B if for every b ∈ B+ the relative subalgebra bA = {ba | a ∈ A}
is not nice in the relative algebra B↾b.

Proposition 2.9. Let B be a κ-Souslin algebra and A a Souslin subalgebra of B. Let
b :=

∑
{x ∈ B | xA is nice in B↾x}. Then bA is nice in B↾b and (−b)A is nowhere

nice in B↾(−b).

Proof. It follows directly from the definitions that (−b)A is nowhere nice.
Clearly, the property “xA is nice in B↾x” descends from x to y ≤B x. We prove

that this property is also preserved under taking arbitrary sums. So let M be a
subset of B, such that all elements of M have this property. We want to show that
for x :=

∑
M the subalgebra xA is nice in B↾x. We can without loss of generality

assume that M is an antichain. Then M is of cardinality < κ. Furthermore we
can assume that also h′′M is an antichain by the argument used at the beginning
of the proof of the Representation Lemma 2.7. We finally assume that there is a
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Souslinization T of B such that M is a subset of T1, the first nontrivial level of T ,
and T carries a t.e.r. ≡ which represents A.

Now for every element r of M there is by part c) of the Representation Lemma
2.7 a club Cr of κ, such that ≡ is nice on T (r)↾Cr. Let C be the club intersection of
all sets Cr for r ∈M . We claim that ≡ is nice on the subtree

S =
⊕

r∈M

T (r)↾C

of T ↾C. So let s ≡ t in S and s′ > s. If there is a unique member r of M below
both nodes s and t, then we can directly apply the hypothesis on r. Otherwise we
would still have rs := s↾1 ≡ t↾1 =: rt and h(rs) = h(rt) by our assumption that
h”M is an antichain. But then we have that rth(s

′) > 0. So there is a node t∗ > rt
equivalent to s′. Finally, by niceness above rt, there also is a node t′ above t such
that t′ ≡ t∗ ≡ s′. �

3. Large subalgebras

Large subalgebras can be regarded as the simplest type of subalgebras4. They are
closely related to symmetries of the Souslin algebra and admit a detailed yet clear
representation.

Definition 3.1. Let B be a complete Boolean algebra. We say that C is a large
subalgebra of B, if there is an antichain M of B, such that 〈A∪M〉cm = B. We say
that a large subalgebra A of B is µ-large for some cardinal µ if there is an antichain
M of size µ such that 〈A ∪M〉cm = B.

Note that large subalgebras of κ-Souslin algebras are always atomless and therefore
Souslin subalgebras, since for every atom a of A, the set M ∪ {a} of size < κ would
have to generate the relative algebra B↾a. But this is impossible, because 〈M〉cm is
itself atomic.

As a first example we consider a κ-Souslin algebra that has exactly one non-trivial
subalgebra, and this subalgebra is large.

Example 3.2. Let B be a simple κ-Souslin algebra, i.e., that B has no proper
atomless and complete subalgebra, cf. Example 2.8.

We claim that the κ-Souslin algebra C := B× B has exactly one proper atomless
and complete subalgebra, which is furthermore 1-large in C.

Clearly, C has the large subalgebra

A := {(b, b) | b ∈ B},

4In [12, pp.266] such subalgebras are called “locally equal” and studies in the general context of
forcing with complete Boolean algebras.
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and A is 1-large in C, because 〈A ∪ {(1, 0)}〉cm = C. As we have A ∼= B, there are
no (atomless and complete) subalgebras of C below A.

On the other hand we have

C↾(1, 0) ∼= C↾(0, 1) ∼= B.

So if there was any other atomless and complete subalgebra A′ of C, then (0, 1) · A′

or (1, 0) ·A′ would be a nontrivial subalgebra of the respective relative algebra of C.
But the latter are simple. So the existence of such a subalgebra A′ is impossible.

In general, (2ℵ0-)large subalgebras always occur whenever a κ-Souslin algebra has
non-trivial symmetries.

Theorem 3.3. Let B be a κ-Souslin algebra and ϕ ∈ AutB. Then the set of fixed
points of ϕ is a large subalgebra A of B. In particular, if κ > 2ℵ0 then A is 2ℵ0-large.

Proof. We use Froĺık’s Theorem, a deep result from the theory of complete Boolean
algebras (cf. [16, Theorem 13.23]): For every automorphism f of a complete Boolean
algebra A, there is a partition of unity {a0, a1, a2, a3} in A such that f↾(A↾a0) is the
identity and for i > 0 we have f(ai) · ai = 0.

We consider the at most countable family (ϕn | n ∈ Z) of automorphisms of
B and let (an0, an1, an2, an3) be a partition of unity given by Froĺık’s Theorem for
ϕn, n ∈ Z. Let M be the set of atoms of the complete subalgebra of B that is
(completely) generated by the elements ϕk(ani) for k, n ∈ Z and i < 4. Then M has
by distributivity of B at most 2ℵ0 elements. Note that ϕ↾M is a permutation of M
and if for some x ∈ M and n ∈ ω we have ϕn(x) = x, then the restriction of ϕn to
B↾x is the identity map.

We claim that 〈A ∪M〉cm = B. Since M is an antichain, it suffices to show that
for all x ∈ M and b ∈ B↾x there is a member a ∈ A, i.e., a fixed point of ϕ, with
ax = b. For all integers n we know that either ϕn(b) = b or ϕn(b) is disjoint from x.
Let a =

∑
{ϕn(b) | n ∈ Z} and it is easy to check that the proof is finished. �

Note that the algebra C from Example 3.2 has exactly two automorphisms: the
identical mapping and flipping of coordinates.

The following technical lemma states the existence of optimal witnesses of large-
ness. With these witnesses at hand we can easily deduce the main structural prop-
erties of large subalgebras.

Lemma 3.4. Let A be a µ-large subalgebra of the κ-Souslin algebra B. Define X :=
{x ∈ B | B↾x = xA}.

a) The set X is dense in B, and x <B y ∈ X imply x ∈ X.
b) For every x ∈ X the restriction of the canonical projection h : B → A to B↾x,

i.e. the map
ϕ : B↾x → A↾h(x), b 7→ h(b)
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is an isomorphism between B↾x and A↾h(x). The inverse map of h↾(B↾x) is
given by multiplication with x:

ϕ−1 : A↾h(x) → B↾x, a 7→ ax.

c) Every subset M ⊆ X with
∑
M = 1 (or even 1−

∑
M ∈ X) witnesses that

A is large.
d) For every x ∈ X there is a maximal element y of X above x.

If additionaly A↾a 6= B↾a for all a ∈ A+ and Y denotes the set of maximal elements
of X, then the following hold as well.

e) The image of Y under h is a maximal antichain of A.
f) Every set of pairwise disjoint elements of Y is extendible to a maximal an-

tichain ⊂ Y of B.
g) For every maximal antichain M ⊆ Y we have h′′M = h′′Y .

The announced optimal witnesses of largeness are simply the partitions of unity
that are subsets of the set Y defined in the lemma.

Proof. We only give proofs of points c-e). The rest is then trivial or follows by
standard arguments.

For the proof of c) pick a subset M ⊂ X with
∑
M = 1. We want to show that

every b ∈ B+ is of the form

b′ =
∑

{xh(bx) | x ∈M, xb >B 0}.

It is clear that b′ ≥B b, because h(b),
∑
M ≥ b. On the other hand we conclude from

part b) that xh(bx) = bx for x ∈ X , so b′ ≤B b as well. So we have 〈A ∪M〉cm = B.
To prove the existence of maximal elements of X , it is enough to verify that X

is closed under taking sums over increasing sequences of length < κ. So let xα ∈ X
and xα+1 >B xα for all α < δ (< κ). Set x =

∑
xα. We prove that every xα is in xA

as follows. Fix α. For every β > α pick an element aβ ∈ A that satisfies xβaβ = xα.
Defining a =

∏
β>α aβ we get xβa = xα for all β > α and therefore (using the infinite

distributive law available in B)

xa =
∑

xβa = xα.

But then we already have xA = B ↾ x, because every element y ∈ B ↾ x can be
decomposed into a sum

y =
∑

α<ν

yα with yα := y(xα+1 − xα).

By the same argument as above we have yα ∈ xA for all α < δ.
Concerning the proof of part e) of the lemma, we know by a) and d) that 1 =

∑
Y

and therefore 1 =
∑
h′′Y . It remains to show that for all pairs x, y ∈ Y with
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h(x)h(y) >B 0 we have h(x) = h(y). To reach a contradiction we assume the existence
of a pair x, y ∈ Y with a non-empty intersection of the h-images, h(x)h(y) >B 0, yet
h(x)− h(y) >B 0. This implies x− h(y) >B 0, for otherwise h(x)h(y) = 0. We set

z := y + (x− h(y))

and get that z >B y and zh(y) = y. This shows that y, z − y ∈ zA+ and implies
thus that z ∈ X (because z− y <B x so z− y ∈ X), contradicting the maximality of
y in X . �

We are prepared to state and prove the key properties of large subalgebras. Fig-
ure 2 below corresponds to part c) of the theorem in terms of Souslinizations and
illustrates the strong resemblance between superalgebra and large subalgebra.

Theorem 3.5. Let A be a large subalgebra of the κ-Souslin algebra B. Then the
following hold.

a) A is a nice subalgebra of B.
b) There is a group G of size less than κ of automorphisms of B such that

A = {x ∈ B | (∀ϕ ∈ G)ϕ(x) = x}.

If furthermore µ is the minimal cardinal such that A is µ-large in B, then G can
be chosen of size ℵ0 · µ.

c) There are a maximal antichain N in A and a map f associating a cardinal f(a)
to each member a of N such that we have the following representation of B over
A:

B ∼=
∏

a∈N

(A↾a)f(a).

d) If B is homogeneous, then A and B are isomorphic.

Proof. Let h : B → A be the canonical projection. To prove a) we construct a
Souslinization of T such that h′′T souslinizes A. Let T1, the first non-trivial level of
T , be a maximal antichain of B consisting of maximal elements x with xA = B↾x, i.e.,
T1 ⊂ Y in the notation used above. Then N := h′′T1 is an antichain in A. Now fix a
pre-image ba ∈ h−1(a) ∩ T1 for each a ∈ N . To construct the higher successor levels,
we first refine the nodes above ba for each a ∈ N and then copy these refinements by
virtue of the isomorphisms

ψb : B↾ba → B↾b, x 7→ bh(x)

for all b ∈ h−1(a) ∩ T1. This automatically transfers to limit levels and guarantees
that also for limit α the set h′′Tα consists of products over cofinal branches in T↾α.

Finally, in order to prove that the relation

s ≡ t : ⇐⇒ ht s = ht t and h(s) = h(t)
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is a nice t.e.r., let s ≡ t on level Tα and let s′ be a T -successor of s. Then the node
t′ = (t↾1) · h(s′) is the witness for this instance of niceness.

.....

.....

.....

...

(T/≡)α

(T/≡)1

(T/≡)0

Tα

T1

T0

T

T/≡

h↾T

Figure 2. Nice representation of a large subalgebra A = RO(T/≡)
(above) of B = RO T (below). The algebras and their Sousliniza-
tions can be decomposed in relative parts (here there are 3), such that
the B-part consists of a Cartesian product (resp. a tree sum) of the
corresponding A-part. The factors/tree summands of the B-part are
interconnected by the isomorphism coming from the projection h
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For the proof of b) let A ⊂ Y be a maximal antichain in B such that 〈A∪A〉cm = B.
For a, b ∈ A with h(a) = h(b) let

ϕab : B → B, x 7→ x− (a + b) + a · h(bx) + b · h(ax),

which is a self-inverse automorphism of B interchanging a with b. The fixed points
of ϕab form the subalgebra

B↾(−(a + b)) ∪ (a+ b)A.

Letting G be the group of automorphisms of B generated by the set

{ϕab | a, b ∈ A, h(a) = h(b)}

we see that this is as stated in the theorem.
Part d) readily follows from part c) which we prove now. Let A ⊂ Y be as above

and set N := h”A = h”Y . Define f : N → κ by f(a) := |h−1(a) ∩ A|. Taking into
account that for each b ∈ a we have that

B↾b = bA ∼= A↾h(b)

we get as a Cartesian product

B ∼=
∏

b∈A

B↾b ∼=
∏

b∈A

A↾h(b) ∼=
∏

a∈N

(A↾a)f(a).

This finishes the proof. �

4. Nowhere large subalgebras

We now consider more general algebras with more involved representation features.

Definition 4.1. Let B be a κ-Souslin algebra, T be a Souslinization of B and A a
complete subalgebra of B.

a) A is nowhere large (in B) if for all b ∈ B+ we have bA 6= B↾b.
b) A t.e.r. ≡ on T is µ-nice (for a cardinal µ < κ) if it is nice and for all α < β <

ht(T ) and

(∀r ∈ (s↾α)/≡) |{t ∈ s/≡| t↾α = r}| ≥ µ ,

i.e., for all s ∈ Tβ, the projections t 7→ t↾α, when restricted to the ≡-class of s,
are (≥µ)-to-one.

c) A is ∞-nice in B if for one/any cardinal 1 < µ < κ there is a club C of κ, such
that T↾C carries an µ-nice t.e.r. ≡ that represents A.

Note that in point c) one cardinal µ suffices as an easy argument shows that a
2-nice t.e.r. on a κ-Souslin tree can be turned into a µ-nice t.e.r. for any µ < κ by
concentrating the tree on a club set of levels.
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Remark 4.2. If A is any atomless complete subalgebra of the κ-Souslin algebra B,
then obviously we have for

x :=
∑

{b ∈ B | bA = B↾b}

that xA is large in B↾x while (−x)A is nowhere large in B↾(−x). This corresponds
to the situation for niceness as stated in Proposition 2.9. Note that, if a nice t.e.r.
≡ for the large portion xA as in the last section is found, then the ≡-classes on limit
levels are discrete (above x).

Before we give a first example of an ∞-nice subalgebra, we turn to clarify the
interrelationship between the new notions.

Proposition 4.3. Let A be a nice subalgebra of the κ-Souslin algebra B. Then A is
∞-nice if and only if it is nowhere large.

Plainly: the ∞-nice subalgebras are just the nice and nowhere large ones.

Proof. Let T souslinize B, and let the nice t.e.r. ≡ on T represent A. We start from
left to right, so let ≡ be 2-nice. We show for every node s of T , that A ·s 6= B↾s. Pick
any node t above s in T . Since ≡ is 2-nice, there is a node r above s and equivalent
to t, so t 6∈ A · s. So what we actually have shown, is A · s = {0, s}.

For the other implication let A be nowhere large. We define a club set C ⊂ κ,
such that the restriction of ≡ to T ↾C is 2-nice. The inductive construction of C is
straightforward once we have proven the following claim.
Claim. Given any α < κ there is a β ∈ (α, κ) such that for all nodes t ∈ Tβ there is
a node t′ ∈ Tβ \ {t} above t↾α and equivalent to t.

To prove the claim by contradiction, assume that there is an ordinal α such that
for all β > α there is a node tβ of level Tβ such that above its predecessor tβ↾α there
is no other node equivalent to tβ. By the pigeon hole principle one of the < κ many
nodes of level Tα sits underneath κ many of these nodes tβ. So we can assume, that
we have one node s∗ ∈ Tα such that s∗ < tβ for all β > α. But then these nodes
tβ for β > α span a tree of height κ which by the Subtree Lemma 1.1 contains a
canonical subtree {s < r} ∪ T (r) of T for some node r above s∗. But then in turn
we have that A · r = B↾r, which contradicts the hypothesis on A to be nowhere large
in B. �

The basic example we consider now can easily be generalized to κ-Souslin algebras
for regular κ > ℵ0.

Example 4.4. Let S and T be ℵ0-splitting ω1-trees such that their tree product
S ⊗ T is ω1-Souslin

5. Set B := RO(S ⊗ T ) and (s, t) ∼ (u, v) if and only if s = u.

5For example, the principle ♦ implies, that for every given ω1-Souslin tree S there is an ω1-Souslin
tree T , such that S ⊗ T is c.c.c.. For a proof of this fact see [19, Lemma 7.3].
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Then ∼ is an ℵ0-nice t.e.r.: If s <S s
′ and htS(s) = htT (t) = htT (r) and t

′ >T t, then
for any r′ > r we have that (s′, t′) ∼ (s′, r′). So ∼ is nice. The ℵ0-part follows from
the splitting assumption on T . The quotient tree (S⊗ T )/∼ is obviously isomorphic
to S, and the subalgebra A represented by ∼ is ∞-nice in B.

Remark 4.5. Note that not not all ∞-nice subalgebras of κ-Souslin algebras do have a
complement as in the example above. For example, one of the subalgebras, that will
be constructed in Section 7.2, call it C, is ∞-nice, yet isomorphic to the superalgebra
B. If there was a subalgebra C′ of B independent of C, then an isomorphic copy of
C

′ would exist inside of C. This contradicts the chain condition satisfied by B.

4.1. Homogeneity and ∞-nice subalgebras. Recall that a Boolean algebra B is
homogeneous, if for all pairs b ∈ B+ there is a Boolean isomorphism between B and
B↾b, while homogeneity of the tree T means that for all pairs of nodes s, t of the
same height in T the trees T (s) and T (t) of nodes above s and t respectively are
isomorphic

Proposition 4.6. Let κ be an uncountable, regular cardinal. Then every homoge-
neous κ-Souslin algebra has a homogeneous Souslinization.

Proof. Let B be homogeneous and T be any Souslinization of B. Our task is to find
a club C ⊂ κ such that T↾C is a homogeneous κ-Souslin tree. By the homogeneity
of B we can choose a Boolean isomorphism ψst : B↾s → B↾t for every pair s, t ∈ T
of the same height α < κ. By the Restriction Lemma 1.2 for Isomorphisms, there is
also a club Cst ⊂ κ containing α, such that ψst↾(T (s)↾Cst) is an isomorphism onto
T (t)↾Cst.

Finally, we define C to be the range of the normal sequence (γν) which is given as
follows: Set γ0 = 0 and let for ν < κ

γν+1 := min
⋂

s,t∈Tγν

Cst \ (γν + 1),

the limit values of the sequence are then determined by normality. �

In Section 3 we have seen that the existence of large subalgebras is linked to the
existence of automorphisms. Yet if there are enough automorphisms, which here
means: if B is homogeneous, then we even get subalgebras of different kinds (∞-nice
and nowhere nice, see also Theorem 4.9).

Theorem 4.7. Every homogeneous κ-Souslin algebra has an ∞-nice subalgebra.

Proof. Let T be a homogeneous κ-Souslin tree, i.e., for every pair s, t of nodes on the
same level of T there is a tree isomorphism between T (s) and T (t). We inductively
show for α < κ that T↾α carries an 2-nice t.e.r. ≡ using the homogeneity of T . After
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construction stage α < κ we will have fixed the t.e.r. ≡ on T↾α + 1, sets Iγ ⊂ Tγ of
representatives of the ≡-classes for γ ≤ α and a family of isomorphisms

{ϕst : T (s) ∼= T (t) | s ≡ t, ht(s) ≤ α}.

These isomorphisms commute in the sense that

ϕtt = idT (t) and ϕst = ϕrt ◦ ϕsr (for all r ≡γ s ≡γ t).

Furthermore they have the following coherence property: for s, t ∈ Tα and r = s↾γ,
u = t↾γ where γ < α and ϕru(s) = t we have ϕst = ϕru↾T (s). These isomorphisms
ϕst will help to guarantee that ≡ always remains honest.

We will use the representatives from the set Iα for the constructions of both the
t.e.r. and the tree isomorphisms. We will first define the relevant piece of structure
above the representative nodes r ∈ Iα and then copy it over to the equivalent nodes
by virtue of the tree isomorphisms that have already been fixed.

In the case of the successor ordinal α + 1, we consider the equivalence relation ≡
on Tα, the set of representatives Iα ⊂ Tα and the isomorphisms ϕst for s ≡α t, all
given by the inductive hypothesis. For s ∈ Tα denote by rs the unique element of
s/≡ ∩ Iα. In order to define ≡ on Tα+1, we first choose for each r ∈ Iα a partition of
succ(r) into 2 sets P r

0 , P
r
1 of equal cardinality.

Then for all s, t ∈ Tα+1 we let s and t be equivalent if their (immediate) prede-
cessors s− and t− are and if their images under the tree isomorphisms sending them
above the representative node r = rs− = rt− lie in the same member of the partition,
both in P r

0 or both in P r
1 :

s ≡ t : ⇐⇒ s− ≡ t− and (∃i ∈ {0, 1}) ϕs−r(u), ϕt−r(v) ∈ P r
i .

Afterwards, we pick a set of representatives Iα+1 ⊂
⋃

r∈Iα
succ(r).

Finally, we have to choose the tree isomorphisms ϕst for all equivalent pairs s, t ∈
Tα+1 such that the coherence requirement as formulated above is satisfied. Fix a
representative r ∈ Iα+1 and choose for a pair of successors (s, t) of r− := r ↾α,
both equivalent but unequal to r, isomorphisms ϕst and ϕsr respectively and let
ϕst = ϕrt ◦ ϕ

−1
rs . For s, t both equivalent to r, but not necessarily successors of r−,

define

ϕst := (ϕr−t−↾T (v)) ◦ ϕuv ◦ (ϕs−r−↾T (s)),

where u := ϕs−r−(s) and v := ϕt−r−(t).
Whenever α < κ is a limit ordinal, we have no choice for the equivalence relation

≡ on Tα: For s, t ∈ Tα we let s ≡ t if and only if s↾γ ≡ t↾γ for all γ < α.
Before defining the remaining tree isomorphisms we check, that this definition

yields a nice t.e.r. up to level Tα . So fix s ∈ Tα. For every γ < α and u ≡ s↾γ there
is some t ∈ Tα equivalent to s and above u, namely t = ϕs↾γ,u(s). So niceness is
maintained up to level α, and for equivalent pairs (s, t) of this kind we already have
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the isomorphism ϕst = ϕs↾γ,t↾γ↾T (s) at hand. But there can be equivalent nodes s and
t on level α, such that for all their pairs u, v of respective predecessors on the same
level we have ϕuv(s) 6= t. However, each ≡-class r/≡ divides into a partition P such
that for every pair of nodes s, t ≡ r, both s and t are elements of the same member
of P if and only if they have such an inherited isomorphism ϕst = ϕs↾γ,t↾γ↾T (s).

After choosing a set of representatives J for the partition P and fixing isomor-
phisms ϕst for representatives s, t ∈ J we can construct the still missing isomorphisms
in the same manner as above.

We finally choose a set Iα of representatives for the ≡-classes of the limit level Tα
without any further restriction.

This finishes the construction of ≡, and we hope that it is clear that the result is
a 2-nice t.e.r. on T . �

4.2. Hidden symmetries. In Section 5.3 we will construct a κ-Souslin algebra with
an ∞-nice subalgebra but without large subalgebras, i.e., without automorphisms
except for the identity. The next lemma and the subsequent theorem say that in
such a situation there have to be other subalgebras, in particular subalgebras which
do have symmetries.

This stands in sharp contrast to the subalgebra to be constructed in Section 6
which is essentially a unique subalgebra.

Lemma 4.8. Let A be an ∞-nice subalgebra of a κ-Souslin algebra B. Then there is
an ∞-nice subalgebra C of B, such that C admits a non-trivial automorphism ϕ and
A is the subalgebra of C that consists of the fixed points under ϕ. So A is a large
subalgebra of C, yet for all a ∈ A+ we have A↾a 6= C↾a.

Proof. Let T souslinize B and let ≡ on T be ∞-nice and represent A in T . Choose
any limit λ < κ and let ≃ coincide with ≡ on T↾(λ+1). Now we divide every ≃-class
a of level Tλ in two indexed parts a = a0∪̇a1, such that for every pair s ∈ a0 and
r <T s there is a node t ∈ a1 above r and vice versa, i.e., for r < t ∈ a1 there exists
s ∈ a0 ∩ T (r). Another way to formulate this condition is to say that we consider
Tλ as a subspace of [T ↾λ] and require that each class a divided in two parts that
lie densely in a. This can be done after choosing an enumeration of minimal length
of the predecessor set

⋃
{s ∈ T | (∃t ∈ a)s <T t}. The family of these partitions

gives rise to a map i : Tλ → {0, 1}, associating to every node s the index i(s) with
s ∈ ai(s).

Now let for α > λ and s, t ∈ Tα

s ≃ t : ⇐⇒ s ≡ t and i(s↾λ) = i(t↾λ).

Then ≃ is clearly ∞-nice when restricted to T↾C, where C = {0} ∪ κ \ λ + 1. This
shows that the subalgebra C := 〈

∑
s/≃| s ∈ T 〉cm is nice and nowhere large in B.
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Furthermore, for every s ∈ T above level λ + 1 the ≡-class of s is divided into
exactly two ≃-classes. So we can define the automorphism ϕ of (T ↾C)/≃ that
for each ≡-class interchanges the two ≃-classes. Then ϕ naturally extends to an
automorphisms of C that has A as its fixed point algebra which is by Theorem 3.3
large in C. (In fact A is 1-large in C as witnessed by {

∑
f−1”{0}}.) �

4.3. Nowhere nice subalgebras. The main idea of the last proof, that of dividing
the classes on a limit level in dense subsets, can be also used to construct nowhere
nice subalgebras.

Theorem 4.9. If a κ-Souslin algebra B has a nice and nowhere large subalgebra A

then there is a nowhere nice subalgebra C of B and A is an ∞-nice subalgebra of C.

Proof. Let T souslinize B and let ≡ represent A in T . We inductively construct an
almost nice, yet not nice refinement ≃ of ≡, which represents C as stated in the
theorem. Up to level Tω the new relation coincides with ≡. Limit levels have to
be treated canonically, and on double successor steps α as well as on successors α
of limits with uncountable cofinality, we choose the minimal possible refinement by
meeting

s ≃ t : ⇐⇒ s ≡ t and s− ≃ t−.

Let now α < κ be a limit of countable cofinality, cf α = ℵ0. Note that the (induced)
≃-classes on the space [T↾α] form closed subsets without isolated points. Therefore,
regarding Tα as a subspace of [T ↾α], the former also divides into a partition whose
members are closed subsets without isolated points (as Tα is suitable for ≃ on T↾α).
To define ≃ on level Tα+1 we first refine ≃ on Tα to the equivalence relation ∼ in
a way such that every ≃ class splits in two ∼-classes and for every s ≃ t ∈ Tα and
u <T t, there is a successor of u in s/∼. (As in the proof of Lemma 4.8, one could
also say that the ∼-classes lie densely in the sense of [T↾α] in the ≃-classes.) Then
let for s, t ∈ Tα+1:

s ≃ t : ⇐⇒ s ≡ t and s↾α ∼ t↾α.

This procedure clearly refines ≡ to an almost nice t.e.r. ≃.
Next we show, that no Souslinization S of B admits a nice t.e.r. representing C.

By the Restriction Lemma 1.2 we only need to consider restrictions S = T ↾C of T
to a club C ⊂ κ. So let α ∈ C be a limit ordinal of countable cofinality and choose
s, t ∈ Tα, such that s ≃ t but s 6∼ t. Then for every r ∈ T ↾C above s there is no
successor of t which is ≃-equivalent to r. So s, t, r witness that C is not nice.

If we now let C be the set of all limit ordinals below κ joined by 0, and defining
on T/≃ the t.e.r. ≈ by

(s/≃) ≈ (t/≃) : ⇐⇒ s ≡ t,

then it is easy to see, that the ∞-niceness descends from ≡ to ≈. �
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Remark 4.10. By Theorem 4.9 and since niceness and largeness are local properties, if
the κ-Souslin algebra B has a non-large subalgebra of B, then there is also one which
is not nice. In particular, if B is homogeneous or if B has a pair of independent
Souslin subalgebras, then B has nowhere nice subalgebras.

Part 2. Some constructions of κ-Souslin algebras with certain

subalgebras

5. T.e.r.s and topology

In this section we develop topological tools which we use to construct Souslin
algebras with nowhere large subalgebras. For these tools to be applicable also in
cases where κ > ℵ1 we have to generalize a few notions and facts concerning Baire
Category.

We then formulate and prove the Reduction Lemma for t.e.r.s which roughly states
that (under favorable circumstances) for a given tree of limit height with a t.e.r. on it,
there is an extension of the tree such that the t.e.r. remains honest, i.e. is preserved.

The constructions carried out in the subsequent sections use ♦ hypotheses. The
Reduction Lemma and the surrounding lemmata can of course also be applied in forc-
ing constructions of generic κ-Souslin trees once the hypothesis on cardinal arithmetic
is satisfied in the ground model.

5.1. Some basic descriptive set theory for weight µ. We introduce some vari-
ants of several classical topological notions that we will use in the Souslin tree con-
structions in subsequent sections. The spaces of interest are all homeomorphic to µµ,
the analog of Baire space N for some regular cardinal µ. Furthermore, the general-
izations of some classical results as formulated here only hold in case that µ<µ = µ.
(While in the case of µ = ℵ0 this follows from the axiom of choice, it is an extra
assumption extending ZFC + ♦µ+ if µ is uncountable.)

So in this section (and also in the remainder of the article) µ denotes a regular
cardinal satisfying µ<µ = µ. Letting κ := µ+, the letter T is used in this section
for a µ-closed and κ-normal tree of height < κ which has an isomorphic copy of
<µµ densely embedded onto a club set of its levels. Thus the spaces [T ] and µµ are
homeomorphic.

For a topological space X and a subset M of X we say that M is µ-Gδ if M is
the intersection over a family of size µ of open subsets of X. The notion of µ-Fσ is
defined analogously. We start with the analog of the Baire Category Theorem.

Theorem 5.1 (Baire Category Theorem for weight µ). Assume that µ is a regular
cardinal.For each ν < µ let Uν be a dense open subset of µµ. Then the intersection⋂

ν<µ Uµ is dense in µµ.
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Proof. First note that the intersection of less than µ open subsets of µµ is open.
From this it is easy to see, that

⋂
ν<µ Uµ intersects every non-empty open subset of

µµ. �

Because of Theorem 5.1, we say that a set M ⊂ [T ] is µ-comeagre if it contains
a µ-Gδ set which is the intersection over a family of µ dense open sets, and we say
that it is µ-meagre, if its complement in [T ] is µ-comeagre, i.e., if it is the union of
a family of up to µ nowhere dense sets. We furthermore call a topological space X

µ-Baire if every µ-comeagre subset of X is dense in X. So e.g., the above theorem
simply states that µµ is µ-Baire. On the other hand, every discrete space is µ-Baire
as well.

Proposition 5.2. Let S be a µ-closed κ-Souslin tree carrying the t.e.r. ≡. Then
there is a club C ⊂ κ such that for every element α of C with cofinality cf(α) = µ
letting T = S↾α every ≡-classe of [T ] is µ-Baire (when equipped with the topology
inherited from [T ]).

Proof. Set B := RO(S) and let A denote the subalgebra represented by ≡. Recall
from Remark 4.2 that there is a unique element b ∈ B with the property that bA is
nowhere large in B↾b and (−b)A is large B↾(−b). We will split up S with the aid of
b and gain a decomposition of [T ↾α] and its ≡-classes in a discrete (and therefore
µ-Baire) part and and one that is µ-Baire by resemblance to µµ.

Let Y be a set of optimal witnesses of largeness for (−b)A in B↾(−b) as found in
the proof of Lemma 3.4. Let β < κ be large enough such that Y ⊂ 〈Sβ〉

cm, i.e. X is
contained in the subalgebra completely generated by the βth level of S. Now with

G := {s ∈ Tβ | s ≤B −b}

and

H := Tβ \G = {s ∈ Tβ | s ≤B b}

let

S+ :=
⊕

s∈G

T (s)

and
S− :=

⊕

s∈H

T (s).

In the part S+ (where A is large) the limit classes of ≡ are discrete subsets [S+↾α].
Now we consider the part S− (where A is nowhere large). Pick the club C ′ ⊂ κ

such that for all subsequent members γ < δ of C ′ and all pairs of nodes s < t of S−

with htS−(s) = γ and htS−(t) = δ there are µ further successors of s equivalent to
t, i.e., on S−↾C the t.e.r. ≡ “splits” µ-ary immediately above every node. Our final
club set is C := {β + γ | γ ∈ C ′}.



26 GIDO SCHARFENBERGER-FABIAN

It is routine to check that for every member α of C ′ with cf(α) = µ and x ∈ [S−↾α]
we have (x/≡) ≈ µµ using the fact that S is µ-closed. But then for every α ∈ C of
cofinality µ and x ∈ [S↾α] the class x/≡ is decomposed in a discrete S+-part and a
continuous S−-part. If now for ν < µ the set Uν is open dense in x/≡, then it contains
the whole discrete part and an open dense subset of the S−-part. Then Theorem 5.1
immediately states that the µ-comeagre subset

⋂
Uν of x/≡ is dense. �

A subset M ⊂ [T ] has the µ-Baire Property if there is an open set U ⊂ [T ], such
that differences M \ U and U \M are both µ-meagre. We need to show that the
µ-Baire Property is shared by somewhat more complicated sets which appear to be
the analogue of analytic subsets of a Polish space. For this we use the fact that
the class of subsets of [T ] having the µ-Baire Property contains all open sets and is
closed under the following modification of the Souslin Operation A: Assign to every
sequence s ∈ <µµ a subset Ps of [T ]. Call this family (Ps) a µ-Souslin scheme. Then
the image of this µ-Souslin scheme under our operation A

µ is given by

A
µ
σ(Ps) :=

⋃

f∈µµ

⋂

ν<µ

Pf↾ν .

Here we can assume that the Souslin scheme is regular (i.e. s ⊂ t ⇒ Pt ⊆ Ps) and
continuous (i.e. Pt =

⋂
s<t Ps for all limit nodes t).

Theorem 5.3 (Nikodym’s Theorem for weight µ). Let µ be a regular cardinal that
satisfies µ<µ = µ and let T be a normal µ-splitting and µ-closed tree of height α < µ+,
cf(α) = µ. Then the class of subsets of [T ] that possess the µ-Baire Property is closed
under the operation Aµ.

Proof. Check that the proof as carried out for the case µ = ω in [15, Section 29.C]
including all references also works under our circumstances. �

When constructing a homogeneous Souslin tree, it is convenient to have arbitrarily
many symmetries in the initial segments of the tree. The following generalization of
a lemma of Kurepa (cf. [18]) provides this. We will also apply it in the proof of the
Reduction Lemma.

Theorem 5.4 (Kurepa Lemma for regular cardinals). Let µ be a regular cardinal
that satisfies µ<µ = µ, and let S, T be normal µ-splitting and µ-closed trees of height
α < µ+, cf(α) = µ. Then S and T are isomorphic.

Proof. We show that the classical back-and-forth argument of Kurepa also works in
the general context of a regular, possibly uncountable cardinal µ = µ<µ.

Let µ, α, S and T be as stated in the lemma. Then |S| = |T | = µ. So we can
pick dense sets X ⊂ [S] and Y ⊂ [T ], both of cardinality µ. Enumerate X and Y
by (xν)ν<µ and (yν)ν<µ respectively. We construct two maps, a bijection ϕ : X → Y
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and the closely related tree isomorphism ϕ : S → T , such that for all x ∈ X we will
have that ϕ(x) = ϕ”x. The even ordinals < µ will count the “forth” steps while
the “back” steps will have odd numbers. For any ordinal ν < µ let ϕ : Xν → Yν be
the bijection constructed after stage ν, i.e., Xν and Yν are the subsets of X and Y
respectively that contain the elements which have been considered in the construction
stages 0 . . . , ν.

We start the construction by assigning ϕ(x0) = y0 and ϕ(x0 ↾γ) = y0 ↾γ for all
γ < α.

We only describe the odd successor steps of the construction, the even successor
steps being symmetric. So let ν < µ by odd (and ν−1 even). Let ξ be minimal such
that yξ ∈ Y \ Yν−1 and set

γ := sup{β < α | (∃y ∈ Yν−1) y↾β = yξ↾β}.

Since α is of cofinality µ > |Yν−1|, we have that γ < α. In order to choose a ϕ-
pre-image of yξ we have to pick some branch in X going through s := ϕ−1(yξ↾γ).
But we furthermore have to ensure that no successor of s is an element of some
x ∈ Xν−1 that is already occupied. But, as our trees are µ-splitting and we have
|Xν−1| < ν < µ, this is not a problem. So let ζ < µ be minimal such that xζ↾γ = s
and for all x ∈ Xν−1 we have xζ↾(γ + 1) 6= x↾(γ + 1). We assign ϕ(xζ) = yξ, and
ϕ(xζ↾β) = yξ↾β for all β < α and define Xν = Xν−1 ∪ {xζ} and Yν = Yν−1 ∪ {yξ}.

If λ < µ is a limit ordinal we just collect what has been fixed so far and set
Xλ =

⋃
ν<λXν and Yλ =

⋃
ν<λ Yν.

Finally, it is easy to check, that this construction does not break down and yields
a bijective map ϕ : X → Y and an associated tree isomorphism ϕ : S → T . �

By now we have collected enough facts from descriptive set theory to prove the
Reduction Lemma 5.7 and carry out the constructions in Sections 5.3 and 6.

The final two lemmata of this section will be used in Section 7.2 to design a more
involved interplay between the subalgebra structure and the endomorphisms of the
κ-Souslin algebra.

Proposition 5.5. If X ⊆ [T ] is µ-comeagre and ϕ : [T ] → X is continuous, onto
and open, then the images of µ-comeagre subsets of [T ] under ϕ are µ-comeagre.

Proof. It is clear that every dense subset D of [T ] has a dense ϕ-image as the map is
onto and continuous. It follows by openness of ϕ that nowhere dense subsets of X
have nowhere dense inverse images. Since the operations of taking unions and taking
pre-images commute, we also have µ-meagre inverse images for µ-meagre subsets of
X . Form this we deduce the claim of the proposition.

So let M ⊂ [T ] be comeagre. Without loss of generality we can even assume that
M is µ-Gδ. So there is a regular and continuous Souslin scheme (Ps) consisting of
closed sets Ps ⊂ [T ] such that Aµ

s = ϕ”M . By the Nikodym’s Theorem 5.3 we
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then know that ϕ”M has the µ-BP. So assume towards a contradiction that there
is some U ⊂ [T ] open such that the intersection of U and ϕ”M is µ-meagre. For
then ϕ−1”(U ∩ ϕ”M) ⊃ M ∩ ϕ−1”U is µ-meagre, contradicting the fact that M is
µ-comeagre. �

The proposition just proven in conjunction with the following lemma will be used
to implement an isomorphism between the κ-Souslin algebra under construction and
one of its ∞-nice subalgebras.

Lemma 5.6. Let ≡ be a nice t.e.r. on T . Then the canonical mapping π : T → T/≡
induces a continuous map π : [T ] → [T/≡] and π is onto and open.

Proof. This a straight forward application of the niceness of ≡. �

5.2. The Reduction Lemma. The Reduction Lemma for t.e.r.s stated below is
a simple observation, but it will be crucial in κ-Souslin algebra constructions that
implement nowhere large subalgebras. It asserts that we can reduce any comeagre
subset M of [T↾α] to a comeagre subset from which we can choose the new level Tα
in a way that a given t.e.r. extends to T ↾(α + 1). This formulation makes it very
flexible, e.g., it is no problem to combine the construction of subalgebras with that
of endomorphisms as performed in Section 7.2.

Recall that given an equivalence relation ≡ on a topological space X we say that
a subset M ⊂ X is suitable for ≡ if for every equivalence class x/≡ the intersection
with M is either empty or dense in x/≡ (viewed as a subspace of X). The central
idea of the proof will be to sort out those classes which are not hit by M in a dense
subset and then check that the remaining classes still form a µ-comeagre set.

Lemma 5.7 (Reduction Lemma). Assume that µ is regular such that µ<µ = µ and
κ = µ+. Let T be a κ-normal and µ-closed tree of height α < κ with cf(α) = µ
carrying a t.e.r. ≡. We denote the induced equivalence relation on [T ] also by ≡ and
assume that for all branches x ∈ [T ] the space x/≡ is µ-Baire. Furthermore let M
be a µ-comeagre subset of [T ]. Then the set

M ′ := {x ∈M | x/≡ ∩M is dense in x/!≡}

is µ-comeagre in [T ] and suitable for ≡.

Note that by Proposition 5.2 the hypothesis that the ≡-classes be µ-Baire is no
restriction.

Proof. Without loss of generality we assume thatM is a µ-Gδ set, i.e. M =
⋂

ν<µ Uν ,

where all the Uν are dense open in [T ]. Define for ν < µ

Xν =
⋃

{x/≡ | (x/≡) ∩ Uν is not dense in x/≡} .
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Note that for x /∈ Xν the set (x/≡) ∩ Uν is then open and dense in x/≡. To
prove the Reduction Lemma, we show that Xν is µ-meagre for every ν < µ, for
then M ′ = M \

⋃
ν∈µXν is as desired: For every member x ∈ M ′ we then have

(x/≡) ∩ M ′ = (x/≡) ∩ M , which is by construction of M ′ a µ-comeagre subset of
the µ-Baire set x/≡.

In order to show that the sets Xν are all µ-meagre fix ν < µ and define for every
node s ∈ T

Ys :=
⋃

{x/≡ | x ∈ ŝ and (x/≡) ∩ Uν ∩ ŝ = ∅} .

For every x ∈ Ys the basic open set ŝ is the witness of the fact that (x/≡) ∩ Uν is
not dense in x/≡. Because of Xν =

⋃
s∈T Ys and |T | = µ, it is enough to show that

Ys is µ-meagre for every s ∈ T .
If we fix s ∈ Tβ then of course Ys =

⋃
r∈Tβ

Ys ∩ r̂. For all nodes r ∈ Tβ with r 6≡ s

we have Ys ∩ r̂ = ∅. On the other hand the set Ys ∩ ŝ ⊂ ŝ \ Uν is nowhere dense
by the definition of Ys. To prove that the intersections Ys ∩ r̂ are µ-meagre also for
r ≡ s we claim that Ys has the µ-Baire Property, i.e. there is an open set V ⊂ [T ]
such that the differences V \ Ys and V \ Ys are both µ-meagre. The proof of this
claim follows below. We first apply it to prove the Reduction Lemma.

Along with Ys the set Ys ∩ r̂ has the µ-Baire Property as well, so either (i) it is
µ-meagre or else (ii) there is a node t > r, such that Ys∩ t̂ is µ-comeagre and therefore
dense in t̂. Towards a contradiction, we assume that the second case holds and fix t.
Then every node u above t is equivalent to x↾ht(u) for some x ∈ Ys ∩ ŝ. Our task is
to exhibit a node u∗ above t that is equivalent to y↾ht(u∗) for some y ∈ ŝ \ Ys. This
will give the desired contradiction.

Let u be any immediate successor of t. By our assumption there is w above s and
equivalent to u. Letting v := w ↾ht(t) be the immediate predecessor of w we get
v ≡ t. Now Ys ∩ ŵ is also nowhere dense. So there certainly is a node w∗ above w
such that ŵ∗ ∩ Ys is empty, i.e., letting γ = htw∗ we have

(⋆) (∀x ∈ ŝ ∩ Ys) w∗ 6≡ x↾γ.

Now the honesty of ≡ for the triple (v, w∗, t) (which is not a dispute as (v, w, t) is
not –by the existence of u ≡ w above t) gives us the node u∗ ≡ w∗ on level Tγ above
u.

Now let z ∈ û∗ be any branch. We show that z 6∈ Ys, contradicting our assumption
that Ys ∩ r̂ is not µ-meagre. If z was in Ys, then there would be a branch x ≡ z in
Ys ∩ ŝ. This in turn would imply that

x↾γ ≡ z↾γ = u∗ ≡ w∗,

which is impossible by (⋆).
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Finally we prove that Ys has the µ-Baire Property. For this we give a µ-Souslin
scheme which consists of open sets and yields Ys under the operation Aµ. Fix a club
C ⊂ α of order type µ. To simplify notation we replace <µµ by T ↾C as index set.
(Theorem 5.4 gives us the necessary tree isomorphism.)

Let Ũ := {t ∈ T | t̂ ⊆ Uν}. For a node r ∈ T↾C of height ht(r) ≤ ht(s) simply set
Pr = [T ]. For nodes r higher up define

Pr :=

{⋃{
t̂ | r ≡ t

}
, r↾ht(s) ≡ s and (r/≡) ∩ Ũ = ∅;

∅, otherwise.

For every x ∈ Ys we easily have x ∈ (x/≡) =
⋂

β∈C Px↾β. If on the other hand

x ∈
⋂

β∈C Py↾β for x, y ∈ [T ], then x and y are equivalent, x ≡ y, and thus Px↾β = Py↾β

for all β ∈ C. In this case we have

x ∈
⋂

β∈C

Px↾β = (x/≡) ⊂ Ys.

This finishes the proof. �

5.3. A rigid Souslin algebra with non-rigid subalgebras. Our first application
of the Reduction Lemma is a relatively simple construction of a rigid κ-Souslin
algebra B that has a nice and nowhere large subalgebra A. By Lemma 4.8 and
Theorem 4.9 this algebra B also has non-rigid and nowhere nice subalgebras. This is
opposed to the construction in the following section, where the explicitely construed
subalgebra is nowhere nice and no non-rigid neither ∞-nice subalgebras occur.

Theorem 5.8. Assume that µ is a regular cardinal such that µ<µ = µ and ♦κ(CFµ)
hold, where κ := µ+. Then there is a rigid κ-Souslin algebra which has an ∞-nice
subalgebra.

Proof. We aim at constructing a κ-Souslin tree T with a µ-nice t.e.r. ≡. The rigidity
of B = ROT is obtained by designing T such that for all club sets C of κ the restricted
tree T ↾C is rigid by a standard argument. Then by the Restriction Lemma B will
also be rigid.

Let (Rν)ν∈CFµ
be a ♦κ(CFµ)-sequence. We inductively construct T as a κ-normal,

µ-closed and µ-splitting tree on the supporting set κ along with the t.e.r. ≡. In
successor steps we appoint to each maximal node µ direct successor nodes and extend
≡ in any way that maintains the µ-niceness of ≡.

In the limit step α < κ we have so far constructed T ↾α and ≡ on this tree. If
cf(α) < µ we extend every cofinal branch through T↾α to level Tα. The new level Tα
then has cardinality µ<µ = µ < κ. The t.e.r. on level Tα is completely determined
by its behavior on the levels below.
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Let now α be of cofinality µ. We consider the induced equivalence relation ≡ on
the space [T↾α]. The ≡-classes are perfect (closed and without isolated points) and
non-empty subsets of [T↾α]. The level under construction, Tα, corresponds to a dense
subset Q of [T ↾α] of cardinality µ. In order to obtain a nice extension of ≡ to the
new level we have to choose this subset Q ⊂ [T↾α] such that it is suitable for ≡, i.e.,
that for every ≡-class a ⊂ [T↾α] the set a ∩Q is either empty or dense in a.

Every automorphism ϕ of T ↾C for some club C ⊂ α induces an autohomeomor-
phism ϕ on [T ↾α]. In order to achieve a rigid algebra we have to choose some
limit levels in a way that prevents the potential automorphisms (proposed by the
♦-sequence) from extending to the next level. This is done by first choosing a branch
x ∈ [T↾α] and then the dense set Q ⊂ [T↾α] such that x ∈ Q but ϕ(x) 6∈ Q. (This is
a standard argument.)

Now for the choice of Q in the following three cases:

1) If α < µα or Rα is neither a maximal antichain of T ↾α nor does it code an
automorphism of T↾C for some club C of α, then we first choose a dense set Q0

of [T↾α] with cardinality µ. Then let for x ∈ Q0 be Qx a dense subset of x/≡ of
size µ. Finally set Q =

⋃
x∈Q0

Qx.

2) If α = µα and Rα codes an automorphism ϕ, then we and start as in the first
case and get Q′ =

⋃
x∈Q0

Qx. Choose x0 ∈ Q′ and set Q := Q′ \ {ϕ(x0)}. Then
Q is easily seen to be suitable for ≡ while at the same time preventing ϕ from
extending to Tα.

3) If Rα is a maximal antichain of T ↾α, we want, as in classical Souslin tree con-
structions under ♦, that every node of Tα lies above some node of Rα. The set

M := {x ∈ [T↾α] | (∃s ∈ Rα)s ∈ x}

of cofinal branches that pass through nodes in Rα is open dense in [T ↾α]. We
thus can apply the Reduction Lemma 5.7 and get a µ-comeagre subset N ⊂ M
which is suitable for ≡. Then we proceed as above, only that all members of Q
are chosen from N .

Note that we can arrange the coding such that we do not have to consider a coinci-
dence of cases 2) and 3) (which would no longer pose a problem anyway).

The result of this recursive construction is a rigid κ-Souslin tree carrying the µ-nice
t.e.r. ≡ which represents the subalgebra A. �

6. A lonely nowhere nice subalgebra

We use the Reduction Lemma to produce a κ-Souslin algebra B that essentially
has only one subalgebra A which is furthermore nowhere nice. In particular B and
all its subalgebras are rigid. Compare this to the phenomenon of hidden symmetries
of Section 4.2 which occur whenever there is an ∞-nice subalgebra: While the latter
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support the paradigm that subalgebras witness some form of symmetry, the following
construction shows that this is not true for nowhere nice subalgebras. This can also be
seen in relation to [17, Theorem 2] which exhibits a similar phenomenon in presence
of homogeneity.

Theorem 6.1. Assume that µ is a regular cardinal such that µ<µ = µ and ♦κ(CFµ)
hold, where κ := µ+. Then there is a κ-Souslin algebra B with a nowhere nice sub-
algebra A and the following holds: For every subalgebra C of B there is an antichain
F of B such that

C = B↾(−
∑

F )×
∏

a∈F

(aA).

Moreover, B is rigid and does not admit ∞-nice subalgebras.

Proof. This construction resembles the previous one, the main differences being

(1) the repeated destruction of niceness for ≡ by picking up the key idea from
the proof of Theorem 4.9 and

(2) the more delicate choice procedure on limit levels in order to maintain ≡ as
an almost nice t.e.r. while destroying almost all the others.

Let again (Rν)ν∈CFµ
denote our ♦κ(CFµ)-sequence. We will use it to kill unwanted

antichains, t.e.r.s and tree automorphisms. The tree T order will again be defined on
the supporting set κ, and it will be µ-splitting and µ-closed. The almost nice t.e.r.
to represent the nowhere nice subalgebra A will be denoted by ≡.

If α is a successor of a successor ordinal or of a limit ordinal γ with cf(γ) < µ (or
if α = 1), then we extend ≡ in any way that maintains almost µ-niceness. If α is a
limit ordinal whose cofinality is below µ, then we extend all cofinal branches of T↾α
to nodes in Tα.

We come to the choice of the limit levels for the case where cf(α) = µ. Our
diamond set Rα proposes either a map on T as described below or it codes a pair
(r,≃), where r ∈ T↾α is a node and ≃ is a t.e.r. on (T↾C)(r) for some C club in α
with minC = ht(r).

We first describe how to choose Tα whenever Rα codes an unwanted symmetry
of T or of T/≡. If Rα is an isomorphism between normal cofinal subtrees of T ↾C
or between normal cofinal subtrees of (T/≡)↾C then we choose the new level as
in Section 5.3 and destroy the isomorphism while maintaining the honesty of the
t.e.r. ≡. By this precaution we guarantee, that both B and A and also all of their
non-trivial relative algebras won’t have any symmetries, and therefore they will not
have any non-trivial large subalgebras.

If Rα proposes a t.e.r. ≃, which differs from ≡ in an essential manner (see below),
then we have to choose Tα such that ≃ is no longer honest above r when extended
to Tα. The node r is introduced to prevent the fatal situation in which by accident
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locally some of the unwanted t.e.r.s survive. In the end r will vary over all nodes of
T .

We distinguish between three cases in the manner how ≃ differs from ≡, the first
being the one of negligible difference in which we (cannot and therefore) will not
destroy ≃, while in the other two cases we can and will prevent ≃ from extending
to the limit level Tα. We list the three cases and describe how Tα is to be chosen.
When mentioning ≃ or ≡ we always mean the equivalence relation induced on r̂.

(1) The proposed relation ≃ refines ≡ on r̂ in a way such that there is a maximal
antichain E of T (r) such that for all s ∈ E the restriction of ≃ to ŝ coincides
with either ≡ (restricted to ŝ) or with =, the identity, and the following holds
for all nodes s, t ∈ E, such that ≡ and ≃ are equal above s and above t: If
there are branches x ∈ ŝ and y ∈ t̂ with x ≃ y (and therefore also x ≡ y,
as ≃ refines ≡) then the two equivalence relations also coincide on the set
ŝ∪ t̂. (Note that this last condition is not a requirement put on ≃ but on the
choice of the antichain E; it has to be quite fine.)
We then let

M := ([T↾α] \ r̂) ∪
⋃

s∈E

ŝ

and apply the Reduction Lemma 5.7 to get a µ-comeagre subset M ′ of M
from which we choose Tα such that it is suitable for ≡.

(2) Here ≡ on r̂ is again refined by ≃ but there is no antichain as in case (1).
Then there must be a node s above r and branch x through s for which
ŝ ∩ x/≃ is a nowhere dense subset of ŝ ∩ x/≡.
In this case choose a node t above s such that (x/≃) ∩ t̂ 6= ∅ yet x/≃ 6⊂ t̂.

Let

M := [T↾α] \ (t̂ ∩ x/≃)

and note that M is already suitable for ≡. Choose Tα suitable for ≡ such
that at least one branch in (x/≃) \ t̂ is extended. Then ≃ is no longer honest
as witnessed by the dispute (x↾ht(t), x, t).

(3) In the last case, ≡ is not refined by ≃. This means that there is a branch
x through r such that (x/≃) ∩ r̂ is not contained in (x/≡) ∩ r̂. Since both
sets are closed in r̂, their intersection cannot be a dense subset of (x/≃) ∩ r̂.
This means that we can find a node s above r such that there is a branch

y ∈ (ŝ ∩ x/≃) \ x/≡ .

Let

M := ( [T↾α] \ x/≃ ) ∪ x/≡

and apply the Reduction Lemma to get M ′. As M contains all of x/≡, this
class will still be present in M ′. If we now choose (the branches extended to
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nodes in) Tα from M ′ and make sure that x is extended, then the dispute
(x↾ht(s), s, x) shows by the choice of s that ≃ is no longer honest.

Note that the first case also seals maximal antichains.
Now let α = γ+1 where cf(γ) = µ. By the inductive hypothesis and our convention

on successor levels of T we have so far constructed the tree T↾(α + 1) and the t.e.r.
≡ on T ↾α. Regarding the ≡-classes of level Tγ as subspaces of the space [T ↾γ] we
divide each class a in two parts a = ared ∪̇ agreen in way such that both parts are
dense subsets of a. This is analogous to the proofs of Lemma 4.8 and Theorem 4.9
and gives us a coloring of the whole limit level Tγ with colors “red” and “green”. We
then extend ≡ to level Tα such that

• for each limit node s ∈ Tγ its set succ(s) of direct successors is partitioned
by ≡ into µ sets of size µ and

• if s, t ∈ Tγ are equivalent and of the same color, then every successor of s has
an equivalent successor of t and

• if s, t ∈ Tγ are not equivalent or of different colors, then none of their succes-
sors are equivalent.

This assures that ≡ is almost nice, yet A = 〈
∑
s/≡〉cm will be nowhere nice in

B = ROT .
Having completed the construction of T and≡, we now prove that every subalgebra

of B is of the form described in the statement of the theorem.
Let C be any atomless subalgebra of B and let ≃ be a t.e.r. on T ↾D′ for some

club D′ ⊂ κ representing C. Let D be the set of µth order limit points of D′, i.e.,
let D = Dµ where

D0 := D′, Dν+1 := {limit points of Dν}, Dλ :=
⋂

ν<λ

for limit λ.

Let S be the stationary set of those ordinals α ∈ D of cofinality cf(α) = µ, such that
≃ on T↾α is coded together with the node r = root by Rα.

By our case split in the construction of Tα, ≃ must always have fallen under case
(1) above. Furthermore there are an ordinal α∗ < κ and a maximal antichain E of
T↾α∗, such that E is the antichain which is referred to in case (1) for all α > α∗. (If
this was not true, then at some limit stage of S we would have dropped out of case
(1), thereby destroying ≃.) We finally have to assemble the elements of E as follows.
Let

e :=
∑

{s ∈ E | ≃ is equality on T (s)},

define on the set E ′ := {s ∈ E | se = 0} of nodes disjoint from e the equivalence
relation

s ∼ t : ⇐⇒ ((∀ c ∈ C)sc 6= 0 ⇐⇒ tc 6= 0)
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and let F be the set of sums
∑
s/∼ for all s ∈ E disjoint from e. As B↾e has no large

subalgebras but B↾e itself, we already know that eC = B↾e. By a similar argument
we have fC = fA for all f ∈ F . And as there are no further symmetries between
relative algebras of A and B, these pieces are relative algebras of C, i.e., the proof is
finished. �

7. The Schröder-Bernstein Property for Souslin algebras

Say for a class C of complete Boolean algebras that it has the Schröder-Bernstein
Property if all pairs A,B ∈ C are isomorphic whenever they are regularly embeddable
into each other. The classical Schröder-Bernstein Theorem then states that the class
of power set algebras has the Schröder-Bernstein Property.

In his well-known list of set theoretic problems D. H. Fremlin [8] asked among
others the question FW, whether or not the class of homogeneous, c.c.c. Boolean
algebras has the Schröder-Bernstein Property.

Farah6 has solved this problem by pointing out that (assuming ZFC only) the
Cohen algebra Cℵ2

, that adjoins ℵ2 generic Cohen reals, has a subalgebra B 6∼= Cℵ2
,

in which Cℵ2
can be regularly embedded (cf. [7, p.93]). By [7, Proposition 4.1] it

is easy to see that B is weakly homogeneous and by a theorem of Koppelberg and
Solovay (cf. [24, Theorem 18.4.1]) it is therefore homogeneous.

Here we consider the question whether the class Sℵ1
of ℵ1-Souslin algebras (and

more generally, the class Sκ of κ-Souslin algebras for a regular uncountable cardinal
κ) has the Schröder-Bernstein Property. Of course, under Souslin’s Hypothesis we
have Sℵ1

= ∅ and the answer is trivially affirmative. But what if there are Souslin
algebras?

Theorem 7.1. The Schröder-Bernstein Theorem for ℵ1-Souslin algebras is indepen-
dent theory ZFC + ¬SH.

The proof of this theorem stretches over the remaining two sections of the paper.
In fact we will show that the Schröder-Bernstein Theorem for κ-Souslin algebras
consistently fails for every successor cardinal κ.

7.1. A model of ¬SH where the Schröder-Bernstein Theorem for ℵ1-Souslin

algebras holds. The model we use for the first part of our independence proof was
constructed by Abraham and published in [1, Section 4]. It is a Jensen-style forcing
iteration with the modification that not all ℵ1-Souslin trees are killed, but one is
preserved. Similar models have also been obtained using the Pmax-forcing method of
Woodin, cf. [19, Section 8] and [23, Section 4.0].

This preserved tree has a certain property which frequently appears in the liter-
ature on Souslin trees under various names: Jensen ([14]) and Todorčević [25] call

6another solution of problem FW is due to S. Geschke



36 GIDO SCHARFENBERGER-FABIAN

these Souslin trees full trees, Abraham and Shelah ([2, 1]) use Souslin trees with all
derived trees Souslin, Fuchs and Hamkins ([9]) denote them as (ω-fold) Souslin off
the generic branch, while Larson ([19]), Shelah and Zapletal ([23]) simply say free
trees.

We follow the last three authors and call an ℵ1-normal tree T of height ω1 free, if
for every finite antichain A = {s0, . . . , sn} the product tree

⊗

k≤n

T (sk)

is an ℵ1-Souslin tree. Abraham calls a product tree like this a tree derived from T
(of dimension n + 1). In his model, call it V , there is a free tree R such that every
ℵ1-Souslin tree contains a copy of one R’s derived trees as a subtree. But this means
that every ℵ1-Souslin tree in V is the tree sum of countably many trees which are
all derived from R.

Furthermore, it is easily checked that for a free tree R the class DR of countable
Cartesian products of the regular open algebras of all trees derived from R, i.e. the
class (Sℵ1

)V of all ℵ1-Souslin algebras in V , has the Schröder-Bernstein Property.
So the Schröder-Bernstein Theorem for Sℵ1

holds in this model and is therefore
consistent to the theory ZFC + ¬SH.

7.2. No Schröder-Bernstein Theorem under ♦. To prove the complementary
consistency statement for our independence result, we perform a last ♦κ-construction
of a κ-Souslin tree.

Theorem 7.2. Assume that µ is a regular cardinal such that µ<µ = µ and ♦µ+(CFµ)
hold. Let κ := µ+. Then there is a homogeneous κ-Souslin algebra B that has a pair
of ∞-nice subalgebras A and C such that C is a subalgebra of A and isomorphic to
B yet A and B are not isomorphic:

B ∼= C ≤ A ≤ B , yet A 6∼= B .

Proof. Let µ and κ be as in the statement of the theorem. We will construct the
µ-closed and µ-normal Souslinization T ⊂ <κµ of B along with

• µ-nice t.e.r.s ≡ and ∼ representing C and A respectively such that ∼ refines
≡ in an µ-nice fashion, and

• a family (ϕst) of tree automorphisms ϕst : T → T satisfying ϕst(s) = t for all
pairs s, t of nodes of the same height in T , and

• a tree isomorphism ϕ : T/≡→ T ; we will define ϕ as a map T → T which is
invariant under ≡.

Furthermore we diagonalize every potential isomorphism between A and B, i.e., be-
tween trees T↾C and (T/∼)↾C for every club C ⊂ κ.
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We start our construction with the trivial level T0 = {∅} carrying only trivial
relations. For the definition of a successor level Tα+1 out of level Tα we attach to
every node s ∈ Tα ⊆ αµ all possible successors sa(ν) = s ∪ {(α, ν)} ∈ α+1µ, where ν
ranges over all ordinals less than µ.

In order to extend the t.e.r.s to the new level fix a partition P = (Pξ,η) of µ into µ
sets of size µ indexed by pairs ξ, η of ordinals less than µ. Set Pξ :=

⋃
η<µ Pξ,η and

define the extensions of ≡ and ∼ given on T↾(α + 1) to Tα+1 by letting for r, t ∈ Tα

ra(ν) ≡ ta(λ) : ⇐⇒ r ≡ t and (∃ ξ < µ)ν, λ ∈ Pξ

and

ra(ν) ∼ ta(λ) : ⇐⇒ r ∼ t and (∃ ξ, η < µ)ν, λ ∈ Pξ,η.

To extend ϕ to the next level let

ϕ(ra(ν)) = ϕ(r)a(ξ) if and only if ν ∈ Pξ.

The tree automorphisms ϕst : T ↾(α + 1) → T ↾(α + 1) (for ht(s) = ht(t) ≤ α) are
extended to the next level by the simple rule ϕst(r

a(ν)) = ϕst(r)
a(ν). To install for

s = ra(ν), v = ta(λ) ∈ Tα+1 a new tree automorphism of T we extend the initial
segment ϕrt↾(T↾α + 1) to Tα+1 in another direction: For w ∈ Tα and ε < µ set:

ϕsv(w
a(ε)) =





ϕrt(w)
a(ε), if ε 6= λ, ν

ϕrt(w)
a(µ), if ε = λ

ϕrt(w)
a(λ), if ε = ν.

We have finished the successor stage of the construction of the tree T and the ad-
ditional structure. Note that for every γ the final segments of the images ϕ(x) and
ϕst(x) of x ∈ [T↾α] beyond γ only depend on the final segment of x beyond γ.

From now on we consider the limit stage α. Once the set of limit nodes on level α
is chosen all mappings and t.e.r.s extend to the new level in a unique way.

We have to find a set Q ⊂ [T↾α] such that Q is

(i) of cardinality µ,
(ii) dense in [T↾α],
(iii) closed under the application of the (homeomorphism of [T↾α] induced by the)

tree automorphism ϕst (and its inverse mapping ϕts) for all nodes s, t ∈ T↾α of
the same height,

(iv) suitable for ≡ and ∼,
(v) and closed under the application of the continuous map ϕ and its inverse map-

ping in the sense that for every x ∈ Q there are u, y ∈ Q such that we have
ϕ(u/≡) = x and ϕ(x/≡) = y.

We take the members Rν of our ♦κ-sequence to be subsets or binary relations on
the initial segments T↾α of our tree by virtue of some pre-fixed bijection between κ



38 GIDO SCHARFENBERGER-FABIAN

and <κµ ∪ <κ(µ× µ). Let H be the monoid of maps acting on [T ↾α] generated by
the maps ϕ and ϕst for s, t ∈ T ↾α of the same height. For a point x ∈ [T ↾α] let
orb(x) := orbH(x) := {h(x) | h ∈ H} be its orbit under the action of H .

If α < κ is a limit ordinal such that either cf(α) < µ or the set Rα neither is a
maximal antichain of T↾α nor does it induce a tree isomorphism between (T↾C)/∼
and T↾C for some club set C of α, then we find a subset Q ⊂ [T↾α] satisying points
(i-v) above as follows. Choose any branch y ∈ [T ↾α] and let Q0 := orb(y). Note
that Q0 is already closed under the action of H , dense in [T ↾α] and suitable for ∼
and ≡. (This follows from the construction as orb(x) ∩ (x/≡) is dense in (x/≡) and
similarly for ∼.) To provide inverse images under the maps from H it suffices to care
about ϕ as all the other generators have their inverse in H . For every x ∈ [T↾α] fix
a branch zx such that ϕ(zx) = x. For n ∈ ω let Qn+1 := Qn ∪

⋃
x∈Qn

orb(zx) and

finally Q =
⋃
Qn.

If Rα guesses a maximal antichain A of T ↾α and a tree isomophism ψ between
(T↾C)/∼ and T↾C for some club C ⊆ α (again we take ψ to be a ∼-invariant map
T↾C → T↾C), then Q also has to satisfy:

(vi) every branch x ∈ Q passes through a node s in A and
(vii) there is a branch y ∈ Q such that ψ(x) 6= y for all x ∈ Q.

(Of course, in case that Rα only guesses one out of antichain and tree isomorphism
the other corresponding condition is void.) We satisfy point (vi) by simply restricting
our set of potential nodes to

K = {x ∈ [T↾α] | (∃ s ∈ A)s ∈ x}

which is an open dense subset of [T ↾α]. To fulfill the last requirement is a more
subtle task. The set Q has to be designed around a special branch y which on one
hand must not be reached by ψ from within Q and on the other hand brings its orbit
and also some necessary inverse images under ϕ. For every branch y ∈ K we define
its forbidden set

Fy :=
⋃

h∈H

(ψ ◦ h)−1(y).

First we have to check that there are enough branches that lie outside of their for-
bidden sets. We claim that the set

L := {y ∈ K | y /∈ Fy}

=
⋂

h∈H

{y ∈ K | ψ(h(y)) 6= y}

is µ-comeagre in [T↾α]. For h ∈ H the set {y ∈ K | ψ(h(y)) 6= y} is clearly open in
K and, as ψ is nowhere 1-to-1, also dense.
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Our next step provides h-pre-images for all h ∈ H . Again, it suffices to care
about h = ϕ. For a µ-comeagre subset of [T ↾α], such as our set L defined above,
the subset of branches x such that the whole orbit of x is in L, i.e., orb(x) ⊂ L, is
again µ-comeagre. Also the set of ϕ-images of the latter branches is µ-comeagre by
by Proposition 5.5 and Lemma 5.6; and therefore also the set M :=

⋂
Mn, where

M0 := L and

Mn+1 := ϕ”{x ∈Mn | orb(x) ⊂ Mn}.

M and all the sets Mn are clearly closed under the action of H , so they contain
orb(x) along with x and are, as a consequence, suitable for ≡. On the other hand, if
we are given y ∈M , then for every n the set ϕ−1(y)∩Mn is µ-comeagre in the space
ϕ−1(y) (which is homeomorphic to [T↾α] by Kurepas Lemma). So the set ϕ−1(y)∩M
is also µ-comeagre in ϕ−1(y) and thus non-empty.

Finally we choose any member y ∈ M and let N := M \ Fy. If we can show that
h”N = N for all h ∈ H , then N is suitable for ∼ and ≡ and we can proceed as in
the default case above with Q0 := orb(y) and the only further restriction that the
inverse images zx of x under ϕ are to be chosen from N .

For every x ∈ M and h ∈ H we clearly have that h(x) ∈ Fy implies x ∈ Fy, so
h”N ⊆ N holds for all h ∈ H .

Concerning the converse inclusion, it is again enough to consider h = ϕ, because
ϕst is invertible inH and therefore done by the first inclusion. We show that ϕ(x) = z
and x ∈ Fy imply that either z ∈ Fy or there is a branch x′ /∈ Fy with x′ ≡ x and

thereby ϕ(x′) = z as well. So let ϕ(x) = z and ψ(h(x)) = y for some h ∈ H . There
are three possible types for h. In the first case let h be a homeomorphism, i.e., a
concatenation of maps of type ϕst. Then h locally maps ≡ to ≡ and ∼ to ∼. As every
∼-class is nowhere dense in its corresponding ≡-class, Fy ∩ ϕ

−1(z) is µ-comeagre in
ϕ−1(z). So there must be some x′ ∈ N ∩ϕ−1(y) \Fy. If in the second case h = g ◦ϕ
then we are already done, for then we have ϕ(g(z)) = y, and z lies in the forbidden
set. Finally let h = h′ ◦ ϕ ◦ g where g is a homeomorphism. Here we exploit the
fact that g leaves a final segment of x unchanged and that the components of ϕ(x)
only depend on the corresponding components of x. So let s, t, u ∈ Tα and v, w be
such that x = sav and g(x) = tav while z = ϕ(x) = raw and ϕ(g(x)) = uaw. Then
easily

ϕ(g(x)) = uaw = ϕru(r
aw) = ϕru(z).

But then ψ ◦ h′ ◦ ϕru(z) = y, so z again is a member of the forbidden set.
This finishes the construction and it can easily be seen that with B := ROT ,

A := 〈T/∼〉 and C := 〈T/≡〉 we have that C is ∞-nice in A which in turn is ∞-nice
in B, and that B and C are isomorphic via ϕ while B and A are not, because all
potential isomorphisms between T and T/∼ have been diagonalized away. �
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8. Concluding remarks

Concerning the representation theory of Souslin algebras, we have not touched here
how it can be used to analyze independent subalgebras and (free) product Souslin
algebras. This can fruitfully be applied, e.g., to strongly homogeneous and to free
Souslin algebras, cf. [21, Sections 1.5-6].

Of course, most if not all of the constructions in Part 2 of the present paper
could be carried out without any recourse to topology and using sophisticated or
involved combinatorial arguments. But, as we hope the constructions performed
in the preceeding sections demonstrate, the topological view substantially simplifies
the diagonalization procedures once the basic notions have been established. In most
cases, it is not hard to see that consistent “conditions” imposed on the branches to
be extended are comeagre sets which therefore can freely be combined (up to µ
conditions at a time).

In [22] (resp. in [21, Chapter 2]) we give a further construction of an ℵ1-Souslin
algebra with aboundant homogeneity properties and with many subalgebras. We
hope that such a construction can in the end be used to construct a model of ZFC
with a unique Souslin line (up to isomorphism).
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