Skip to main content
Log in

The maximal linear extension theorem in second order arithmetic

  • Original Article
  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that the maximal linear extension theorem for well partial orders is equivalent over RCA 0 to ATR 0. Analogously, the maximal chain theorem for well partial orders is equivalent to ATR 0 over RCA 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blass A., Gurevich Y.: Program termination and well partial orderings. ACM Trans. Comput. Log. 9(3), Art. 18–26 (2008)

    MathSciNet  Google Scholar 

  2. Cholak P.A., Jockusch C.G., Slaman T.A.: On the strength of Ramsey’s theorem for pairs. J. Symb. Log. 66(1), 1–55 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cholak P., Marcone A., Solomon R.: Reverse mathematics and the equivalence of definitions for well and better quasi-orders. J. Symb. Log. 69(3), 683–712 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Jongh D.H.J., Parikh R.: Well-partial orderings and hierarchies. Nederl. Akad. Wetensch. Proc. Ser. A 80=Indag. Math. 39(3), 195–207 (1977)

    MathSciNet  Google Scholar 

  5. Friedman H., Hirst J.L.: Weak comparability of well orderings and reverse mathematics. Ann. Pure Appl. Log. 47(1), 11–29 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fraïssé, R.: Theory of relations, Studies in Logic and the Foundations of Mathematics, vol. 145. North-Holland Publishing Co., Amsterdam, revised edition, 2000. With an appendix by Norbert Sauer

  7. Friedman, H., Robertson, N., Seymour, P.: The metamathematics of the graph minor theorem. In: Simpson, S.G. (ed.) Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Applications of Mathematical Logic to Finite Combinatorics held at Humboldt State University, Arcata, CA, August 4–10, 1985, pp. 229–261. American Mathematical Society, Providence, R.I. (1987)

  8. Girard J.-Y.: Proof Theory and Logical Complexity. Bibliopolis, Naples (1987)

    MATH  Google Scholar 

  9. Harzheim E.: Ordered Sets. Advances in Mathematics (Springer), vol. 7. Springer, New York (2005)

    Google Scholar 

  10. Higman G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2(3), 326–336 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirst J.L.: Reverse mathematics and ordinal exponentiation. Ann. Pure Appl. Log. 66(1), 1–18 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hirst, J.L.: Reverse mathematics and ordinal suprema. In: Simpson, S.G., [31], pp. 235–243

  13. Hirst, J.L.: A survey of the reverse mathematics of ordinal arithmetic. In: Simpson, S.G., [31], pp. 222–234

  14. Hirschfeldt D.R., Shore R.A.: Combinatorial principles weaker than Ramsey’s theorem for pairs. J. Symb. Log. 72(1), 171–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kruskal J.B.: Well-quasi-ordering, the tree Theorem, and Vazsonyi’s conjecture. Trans. Am. Math. Soc. 95, 210–225 (1960)

    MathSciNet  MATH  Google Scholar 

  16. Kruskal J.B.: The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theory Ser. A 13, 297–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kříž, I., Thomas, R.: Ordinal types in Ramsey theory and well-partial-ordering theory. In: Mathematics of Ramsey Theory, Algorithms Combin., vol. 5. pp. 57–95. Springer, Berlin (1990)

  18. Laver R.: On Fraïssé’s order type conjecture. Ann. Math. 93(2), 89–111 (1971)

    Article  MathSciNet  Google Scholar 

  19. Marcone, A.: Wqo and bqo theory in subsystems of second order arithmetic. In: Simpson, S.G., [31], pp. 303–330

  20. Marcone A., Montalbán A.: On Fraïssé’s conjecture for linear orders of finite Hausdorff rank. Ann. Pure Appl. Log. 160(3), 355–367 (2009)

    Article  MATH  Google Scholar 

  21. Montalbán A.: Computable linearizations of well-partial-orderings. Order 24(1), 39–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Milner E.C., Sauer N.: On chains and antichains in well-founded partially ordered sets. J. Lond. Math. Soc. (2) 24(1), 15–33 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nash-Williams C.St.J.A.: On well-quasi-ordering transfinite sequences. Proc. Camb. Philos. Soc. 61, 33–39 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nash-Williams C.St.J.A.: On better-quasi-ordering transfinite sequences. Proc. Camb. Philos. Soc. 64, 273–290 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Robertson N., Seymour P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmidt D.: Well-Partial Orderings and Their Maximal Order Types. Heidelberg University, Habilitationschrift (1979)

    Google Scholar 

  27. Schmidt D.: The relation between the height of a well-founded partial ordering and the order types of its chains and antichains. J. Combin. Theory Ser. B 31(2), 183–189 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shore, R.A.: On the strength of Fraï ssé’s conjecture. In: Crossley, J.N., Remmel, J.B., Shore, R.A., Sweedler, M.E. (eds.) Logical methods, Progress in Computer Science and Applied Logic, vol. 12, pp. 782–813. Birkhäuser Boston Inc., Boston, MA, 1993. Papers from the conference in honor of Anil Nerode’s sixtieth birthday held at Cornell University, Ithaca, New York, June 1–3 (1992)

  29. Simpson S.G.: Nonprovability of certain combinatorial properties of finite trees. In: Harrington, L.A., Morley, M.D., Ščedrov, A., Simpson, S.G. (eds) Harvey Friedman's Research on the Foundations of Mathematics, pp. 87–117. North-Holland, Amsterdam (1985)caron;

    Chapter  Google Scholar 

  30. Simpson S.G.: Ordinal numbers and the Hilbert basis theorem. J. Symb. Log. 53(3), 961–974 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simpson, S.G., (ed.): Reverse Mathematics 2001, Lecture Notes in Logic, vol. 21. Association for Symbolic Logic, La Jolla, CA (2005)

  32. Simpson S.G.: Subsystems of Second Order Arithmetic, Perspectives in Logic. 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  33. Thomassen C.: Embeddings and minors. In: Graham, R.L., Grötschel, M., Lovász, L. (eds) Handbook of Combinatorics, vol. 1., pp. 301–349. Elsevier, Amsterdam (1995)

    Google Scholar 

  34. Wolk E.S.: Partially well ordered sets and partial ordinals. Fund. Math. 60, 175–186 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Marcone.

Additional information

Marcone’s research was partially supported by PRIN of Italy. Part of this work was carried out while Shore was a GNSAGA Visiting Professor at the Department of Mathematics and Computer Science “Roberto Magari” of the University of Siena. He was also partially supported by NSF Grant DMS-0852811 and Grant 13408 from the John Templeton Foundation. We thank Andreas Weiermann for some useful bibliographic references. We thank the anonymous referee for pointing out an error in an earlier version of the proof of Theorem 6.4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcone, A., Shore, R.A. The maximal linear extension theorem in second order arithmetic. Arch. Math. Logic 50, 543–564 (2011). https://doi.org/10.1007/s00153-011-0231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-011-0231-1

Keywords

Mathematics Subject Classification (2000)

Navigation