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Abstract

Let T be a complete, superstable theory with fewer than 2ℵ0 count-
able models. Assuming that generic types of infinite, simple groups
definable in T eq are sufficiently non-isolated we prove that ωω is the
strict upper bound for the Lascar rank of T .

Throughout the paper T is a complete, superstable theory in a countable
language having infinite models. I(T,ℵ0) is the number of its countable
models. Sn(T ) is the space of all complete n-types and S(T ) =

⋃
n∈ω Sn(T ).

U denotes Lascar’s rank of complete types and U -rank of the theory is
U(T ) = sup{U(p) | p ∈ S(T )}. In [8] it was conjectured:

Conjecture 1. U(T ) ≥ ωω implies I(T,ℵ0) = 2ℵ0 .

There the conjecture was proved for trivial theories and for one-based theo-
ries, but the general case is still open even for ℵ0-stable theories. The proof
in [8] was based on a technical fact (see Proposition 1.1 below) asserting
that whenever in a superstable theory there exists an infinite family of suffi-
ciently non-isolated types {pn |n ∈ I} such that each pn has a finite domain
and U -rank equal to ωn, then I(T,ℵ0) = 2ℵ0 holds; here ‘sufficiently non-
isolated’ refers to ‘eventually strongly non-isolated’, or ESN for short, which
is defined below. So, in order to prove the conjecture, assuming U(T ) ≥ ωω

it suffices to find an infinite family of ESN types pn with U(pn) = ωn. This
was easily done in [8] because in a one-based or trivial theory any type of
limit-ordinal U -rank turned out to be ESN. In this article we will show that
the nonexistence of such a family in the general case is of geometric nature:
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it is caused by a presence of simple groups of U -rank ωn · k in T eq where n
can be arbitrarily large natural number. Also, we will prove that the generic
type of a field of U -rank ωn · k is ESN, so these simple groups are ‘big-bad’:
they do not interpret a field of approximately the same U -rank as that of
the group.

The situation is clear in the finite rank case: it is well known that any
simple group of finite rank is ℵ1-categorical but not ℵ0-categorical. This
implies that its generic type is eventually non-isolated, meaning that its
nonforking extension over some finite set is non-isolated; it is also ESN,
because the two notions coincide for types of rank 1. It is interesting whether
the generic type of an arbitrary superstable group is eventually nonisolated.

Question 1. Is the generic type of any simple, superstable group eventually
non-isolated?

The main result of this article is:

Theorem 1. If T is superstable, U(T ) ≥ ωω and the generic type of any sim-
ple group definable in T eq of U -rank smaller than ωω is eventually strongly
non-isolated then I(T,ℵ0) = 2ℵ0 .

Theorem 1 is a simplified and corrected version of the corresponding
result from the author’s PhD Thesis [9].

1 Preliminaries

We will assume that the reader is familiar with basic stability theory and
stable group theory, references are [1], [4], [5], [6] and [10]. Throughout the
paper we will assume T = T eq and operate in the monster model M̄ of T .
The notation is standard. A regular type is assumed to be stationary. For
any regular type p ∈ S(A) and any B by clp(B) we will denote the set of
elements realizing a forking extension of p over AB. This is a pregeometry
operator on the locus of p. If p, q are possibly incomplete types then p
is q-internal if whenever M is ℵ1-saturated and contains dom(p) ∪ dom(q)
then for any a realizing p there is a tuple b̄ of realizations of q such that
a ∈ dcl(b̄M). The binding group is the group of all automorphisms of p(M̄)
fixing pointwise dom(p) ∪ dom(q) ∪ q(M̄ ); if p, q are stationary and p is
q-internal then the binding group is type-definable.

p ∈ S(A) is semiregular if it is stationary and there is a regular q such that
p is q-simple and domination-equivalent to a power of q, in which case we also
say that p is q-semiregular. If tp(ā/A) 6⊥ q then there is b ∈ acl(āA) \ acl(A)

2



such that stp(b/A) is q-internal; if in addition tp(ā/A) is stationary, then
such a b can be found in dcl(āA)r dcl(A). Moreover, if ωα · n is the lowest
monomial term in the Cantor normal form of U(ā/A) then there is a regular
q 6⊥ tp(ā/A) of U -rank ωα and for the corresponding b we have U(b/A) =
ωα ·m where m ≤ n; in particular stp(b/A) is q-semiregular and q-internal.
In this article we will often deal with types which are q-semiregular and
q-internal for some regular q of U -rank ωα; their U -rank is the monomial
ωα ·m where m = wtq(b/A), and any extension of such a type of U -rank at
least ωα is 6⊥ q.

Recall that p ∈ S(A) is eni, or eventually non-isolated, iff there is a finite
set B and a non-isolated, nonforking extension of p in S(AB). p is ENI if it
is strongly regular and eni; p is NENI if it is strongly regular and is not eni
(this slightly differs from the original definition from [7] in that we allow a
NENI type to have infinite domain).

Next we recall the notion of strong non-isolation from [8]. Let p ∈ S(A)
be non-algebraic. p is strongly nonisolated if for all n and all finite B

{q ∈ Sn(AB) | q a⊥ p} is dense in Sn(AB);

here p a⊥q denotes almost orthogonality: any pair of realizations of p |AB and
q is independent over AB. Note that a strongly non-isolated type is almost
orthogonal to all isolated types; in particular, it is non-isolated. Moreover,
if T is small (i.e. |S(∅)| = ℵ0) then isolated types are dense in Sn(A) for any
finite A and strong non-isolation of p ∈ S(A) is equivalent to: p is almost
orthogonal to any isolated type over a slightly larger domain. p is eventually
strongly nonisolated, or ESN for short, if there is a finite B and a nonforking
extension q ∈ S(AB) which is strongly nonisolated. By Theorem 1 from [8]
we have:

Theorem 2. (T countable superstable) p ∈ S(A) is ESN if and only if it
is orthogonal to all NENI types whose domain is a finite extension of A in
M̄ eq.

This is a strong dichotomy especially for regular types over finite do-
mains: such a type is either ESN or is 6⊥ to a NENI type; if T is ℵ0-stable,
then it coincides with the ENI-NENI dichotomy. A consequence of the theo-
rem is that the property of being ESN is preserved under non-orthogonality,
for regular types whose domains differ on a finite set. Also, by Proposition
2.1 from [8], a type p ∈ S(A) is ESN if and only if each of its regular com-
ponents is ESN, assuming that the domain of each component differs from
A on a finite set.

The next fact is an instance of Proposition 5.1 from [8]:
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Proposition 1.1. Suppose that there exists an infinite I ⊆ ω and a family
{pn|n ∈ I} of regular, ESN types over finite domains such that U(pn) = ωn

for all n ∈ I. Then I(T,ℵ0) = 2ℵ0 .

2 Internally isolated types

The notion of internal isolation for types was introduced in [8] in order to
approximate certain definability property of forking on the locus of a NENI
type: If A is finite and p ∈ S(A) is NENI then any nonforking extension of
p over a finitely extended domain is isolated; by induction, it is not hard to
prove that pn is isolated for all n.

Definition 2.1. A stationary type p ∈ S(A) is internally isolated if for each
n ∈ N there exists a formula φn(x1, x2, ..., xn) over A such that:

(p(x1) ∧ p(x2) ∧ ... ∧ p(xn) ∧ φn(x1, x2, ..., xn)) ⇔ pn(x1, x2, ..., xn).

Another way to describe internal isolation of p ∈ S(A) is the following:

for all n the locus of pn(M̄ ) is a relatively A-definable subset of p(M̄)n;

where a subset of a type-definable over A set C is relatively A-definable if
it is the intersection of C and an A-definable set. Here we also note that,
by Lemma 1.2 from [8], a complete type is NENI if and only if it is regular,
isolated and internally isolated.

In the next lemma we prove that internal isolation of a regular type p
has a strong consequence: relative definability of clp within p(M̄ )n.

Lemma 2.2. Suppose that p ∈ S(A) is regular and internally isolated. Then

{(a, b1, ..., bn) ∈ p(M̄)n+1 | a ∈ clp(b̄)}

is a relatively A-definable subset of p(M̄)n+1 for all n

Proof. In order to simplify notation we will assume that p ∈ S1(A). Fix n
and let S ⊂ Sn+1(A) be the set of all completions of p(x)∪p(y1)∪ ...∪p(yn).
We will prove that C = {tp(ab̄/A) ∈ S | a ∈ clp(b̄)} is clopen in S.

Suppose that tp(ab̄/A) ∈ C. Then there is an independent over A set
B ⊂ b̄ such that a ∈ clp(B); without loss of generality we will assume that
B = b1...bm. Note that b1...bm |= pm and that ab1...bm does not realize
pm+1. Consider the formula:

¬φm+1(x, y1, ..., ym) ∧ φm(y1, ..., ym)

4



(where φi’s are given by Definition 2.1). It belongs to tp(ab̄/A) and whenever
tp(a′b̄′/A) ∈ S contains the formula then a′ ∈ clp(b̄

′). Therefore C is open
is S.

To prove that S rC is open in S suppose that tp(cb̄/A) ∈ S rC. Then
c |= p |Ab̄. Choose a maximal independent subset of b̄ over A; without loss
of generality suppose that {b1, ..., bk} is chosen. Consider the formula

φk+1(x, y1, ..., yk) ∧
∧n

i=k+1 ¬φk+1(yi, y1, ..., yk) .

Clearly it belongs to tp(ab̄/A), and whenever tp(a′b̄′/A) ∈ S contains the
formula then a′b′1...b

′
k |= pk+1 and b′i ∈ clp(b

′
1...b

′
k) holds for all k < i ≤ n.

Combining the two we derive a′ /∈ clp(b̄
′), so our formula witnesses that

S rC is open in S. This completes the proof of the lemma.

As an immediate corollary we obtain:

Corollary 2.3. Suppose that p ∈ S(A) is regular and internally isolated.
Then clp(ȳ) = clp(z̄) is a relatively A-definable equivalence relation on p(M̄)n

for all n.

By compactness, it follows that for any regular, internally isolated type
p ∈ S(A) there exists a formula over A defining an equivalence relation on the
whole of M̄n and relatively defining clp(ȳ) = clp(z̄) within p(M̄)n × p(M̄ )n.

Definition 2.4. Suppose that p ∈ S(A) is regular and internally isolated.

(1) Ep
n(ȳ, z̄) is a formula defining an equivalence relation on the whole

of Mn and relatively defining clp(ȳ) = clp(z̄) on p(M̄)n.

(2) p(n) = pn/Ep
n.

Throughout the paper whenever the meaning of p is clear from the con-
text then we will simply write En instead of Ep

n. Further, note that p(n) is
a complete type over A, we will refer to it as to the type of the name of an
n-dimensional p-subspace (Grassmannian).

Remark 2.5. Suppose that p ∈ S(A) is regular and internally isolated. Let
ā |= pn and let c = ā/En.

(i) There is a unique type over cA of an n-tuple of members of clp(ā)
which are independent over A. In other words, if b̄ |= pn and b̄ ⊆ clp(ā) then
tp(ā/cA) = tp(b̄/cA). This holds because any A-automorphism moving ā to
b̄ fixes setwise clp(ā) (= clp(b̄)), so it is an Ac-automorphism.

(ii) For m ≤ n any independent over A m-tuple is contained in an
independent n-tuple so, by part (i), there is a unique type over cA of an
independent (over A) m-tuple of elements of clp(ā).
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(iii) p has a unique forking extension in S(cA): applying part (ii) to
the case m = 1 we conclude that there is a unique extension of p in S(cA)
consistent with x ∈ clp(ā); it is a forking extension because the nonforking
extension clearly satisfies x⌣| ā (A).

(iv) The uniqueness of forking extension implies that clp(ā) = clp(c)
holds.

Definition 2.6. Suppose that p ∈ S(A) is regular and internally isolated,
and that c |= p(n). By pc we will denote the unique forking extension of p in
S1(cA).

Thus pc is the type of an element of the subspace c. Next we recall
Definition 2 from [8]: a regular type p ∈ S(A) is strictly regular if whenever
a1, a2 |= p then either a1 = a2 or a1⌣| a2 (A) holds.

Lemma 2.7. Suppose that p ∈ S(A) is regular and internally isolated.

(i) p(1) is strictly regular :

(ii) U(p(1)) = ωα where α is the smallest power of a monomial in the
Cantor normal form of U(p).

Proof. (i) Suppose that a1, a2 realize p(1). Choose b1, b2 |= p such that
bi/E1 = ai. Then a1 6⌣| a2 (A) implies b1 6⌣| b2 (A) and |= E1(b1, b2) holds.
Thus b1/E1 = b2/E2 and a1 = a2.

(ii) Let a1 realize p(1). Since p is regular there is b ∈ dcl(a1A) r acl(A)
such that U(b/A) = ωα. Let a1, a2 be a Morley sequence in stp(a1/bA).
Then a1 6⌣| b (A) and a2 6⌣| b (A) imply, by regularity, a1 6⌣| a2 (A). By part (i)
we get a1 = a2. Since a1, a2 is a Morley sequence we conclude a1 ∈ dcl(bA)
and U(a1/A) = ωα.

We order ∪n≥1p(n)(M̄ ) by inclusion of clp-closures: c ≤ c′ iff clp(c) ⊆
clp(c

′).

Lemma 2.8. Suppose that p ∈ S1(A) is regular and internally isolated. If
c ≤ c′ realize p(n)’s and a |= pc then a⌣| c

′(cA) .

Proof. c ≤ c′ implies that there are a1, ..., am, ..., an |= pn such that:

a1...am/Em = c and a1...an/En = c′.

Clearly, any automorphism of M̄ fixing c, am+1...an pointwise fixes also c′,
so c′ ∈ dcl(cam+1...anA). From the independence of a1, ..., an and c ∈
dcl(a1, ..., am, A) we get a1⌣| am+1...an (cA). Combining with c′ ∈ dcl(cam+1...anA)
we derive a1⌣| c

′ (cA). This completes the proof of the lemma.
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We will be interested in (types of) Grassmannians and in types of their
elements, i.e. in p(n)’s and pc’s, when p is a regular, internally isolated
type. By Corollary 1.1 from [8] internal isolation is preserved under non-
orthogonality of regular types whose domains differ on a finite set. Note
that if p, q ∈ S(A) are two such types which are not almost orthogonal
then the names of their corresponding Grassmannians are interdefinable
over A. In particular, this holds for p and p(1) = p/E1: the names for
clp(ā) and clp(1)(ā/E1) are interdefinable over A. Further, if such a p has
successor-ordinal U -rank then, by Lemma 2.7(ii), p(1) has U -rank 1; for our
purposes this is not an interesting case, because we are interested in isolation
properties of types of U -rank ωα when α > 1. So, the interesting case is
when p is regular and U(p) is a limit ordinal. For such a type p it will turn
out that pc’s are stationary for all sufficiently large n and all c |= p(n), and
that U(pc) can be arbitrarily close to U(p(1)) = ωα.

Lemma 2.9. Suppose that p ∈ S(A) is regular, internally isolated and has
limit-ordinal U -rank. Denote p(1) by q.

(i) There exists a natural number n such that qd is non-algebraic for all
m ≥ n and all d |= q(m).

(ii) For any n satisfying part (i): pc is non-algebraic for all m ≥ n and all
c |= p(m).

Proof. (i) By Lemma 2.7(ii) U(q) = ωα > 1 so q has a non-algebraic, forking
extension r = stp(a/B). Let I = (ai | i ∈ ω) be a Morley sequence in r. Then
Cb(r) ⊂ dcl(I). Let n be the smallest integer such that {a0, ..., an} is not
independent over A. Let d be the name for clq(a0...an−1). Then d |= q(n) and
tp(an/a0, ..., an−1Ad) is non-algebraic, because it is a nonforking extension
of r. It also extends qd = tp(an/Ad) so qd is non-algebraic. Now suppose
that d ≤ d′ |= q(m) holds. By Lemma 2.8 we have an⌣| d

′(dA) so tp(an/Add
′)

is non-algebraic because it is a nonforking extension of qd. On the other hand
tp(an/Add

′) is an extension of qd′ and qd′ is non-algebraic, too.

(ii) p and q have interdefinable names of Grassmannians and q ∈ dcl(p)
holds, so pc is non-algebraic whenever the corresponding qd is non-algebraic.

Definition 2.10. Suppose that p ∈ S(A) is regular, internally isolated and
has limit-ordinal U -rank. Denote p(1) by q. Define np to be the smallest
integer n such that qd is non-algebraic for all m ≥ n and all d |= q(m).
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Remark 2.11. Suppose that p ∈ S(A) is regular, internally isolated and
has limit-ordinal U -rank. Denote p(1) by q.

(i) Strict regularity of p(1), established in Lemma 2.7(i), implies that
np ≥ 2 always holds.

(ii) By Lemma 2.9(ii) pc is non-algebraic for any c naming a Grassma-
nian of p-dimension ≥ np.

Lemma 2.12. Suppose that A is finite and that p ∈ S1(A) is a regular,
internally isolated type of limit-ordinal U -rank. Then for all n ≥ np and all
c |= p(n):

(i) pc is stationary.

(ii) If a1, ..., an ∈ clp(c) then: ā |= pn if and only if ā |= (pc)
n. Moreover,

the same holds for any m ≤ n in place of n.

(iii) pnc
a⊥A.

Proof. Let q = p/E1 and let d be the name for clq(c). So d |= q(n).
(i) Suppose that a1, a2 realize pc and a1⌣| a2 (Ac); we will show that

a1⌣| a2 (A) holds. Otherwise a1 6⌣| a2 (A) and let a1/E1 = a2/E1 = b |=
q. Then a1⌣| a2 (Ac) and b ∈ dcl(a2A) imply a1⌣| b (Ac) so, because b ∈
dcl(a1A), we get b ∈ acl(cA). Because c and d are interdefinable over A we
get b ∈ acl(dA). This holds for any b |= qd because a1 can be an arbitrary
element of clp(c). We conclude that qd is algebraic, which is in contradiction
with n ≥ np. Thus any pair of independent realizations of pc realizes also
p2. Since np ≥ 2 holds we can apply Remark 2.5(ii) to conclude that there
is a unique type over cA of a pair of independent over A realizations of pc;
pc is stationary.

(ii) Suppose that ā realizes pn and ā ⊂ clp(c). Let I = b1, b2... be an
infinite Morley sequence in pc, and let C = Cb(pc) ⊂ dcl(I) ∩ dcl(cA).
Pick the largest m such that {b1, ..., bm} is independent over A; then I ⊂
clp(b1...bm) so C ⊂ dcl(clp(b1...bm)). Since I ⊂ clp(c) we have m ≤ n.
Suppose that m < n holds. Then for some i we have ai⌣| b1...bm (A). This
implies ai⌣| dcl(clp(b1...bm)) (A) so ai⌣| C(A) which is in contradiction with
ai |= pc and C = Cb(pc). Therefore m = n and any tuple b̄ |= (pc)

n also
realizes pn. This proves the direction ⇐. The other direction follows by
Remark 2.5(i).

(iii) Suppose that pnc
a⊥A fails to be true. Then there is b⌣| c (A) such

that b 6⌣| ā (Ac) (where ā |= pnc and c names clp(ā)). Since wtp(ā/Ac) = 0
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and b⌣| c (A), after replacing b by an appropriate element from Cb(āc/bA),
we may assume wtp(b/A) = 0. Then p⊥stp(b/A) and, because ā |= pn, we
have b⌣| ā (A). Now c ∈ dcl(Aā) implies b⌣| ā (Ac). A contradiction.

We say that a non-algebraic type p ∈ S1(A) is primitive if there is no
nontrivial A-definable equivalence relation on its locus; clearly, a primitive
type is stationary. We say that a non-algebraic type p ∈ S1(A) is strictly
primitive if it is stationary and for all a, b |= p either a = b or a⌣| b (A) holds;
equivalently, p2(x, y) is the unique complete extensions of p(x)∪p(y)∪{x 6=
y} in S2(A). Clearly, a strictly regular type is strictly primitive, while a
strictly primitive type is primitive.

Remark 2.13. A primitive type is semiregular and has U -rank of the form
ωα · n where n is the weight of the type; in particular, it is 6⊥ to any of
its extensions of U -rank ≥ ωα. Moreover, whenever p is primitive, q is
regular and p 6⊥ q, then p is q-internal and q-semiregular: Suppose that p =
tp(a/A) is primitive and let b ∈ dcl(aA) \ dcl(A) be such that tp(b/A) is
semiregular with monomial U -rank; say b = f(a) where f is an A-definable
function. f(x) = f(y) defines an equivalence relation on p(M̄) so, because
p is primitive, it is the identity relation. Thus x ≡ a(bA) ⊢ x = a so
a ∈ dcl(bA) and tp(a/A) is semiregular of monomial U -rank.

Lemma 2.14. Suppose that p ∈ S1(A) is a regular, internally isolated type.

(i) p is primitive if and only if it is strictly primitive.

(ii) If p is primitive and has limit-ordinal U -rank then pc is strictly prim-
itive for all n ≥ np and c |= p(n).

Proof. (i) If p is primitive then E1 is the equality on p(M̄), so any two
distinct realizations of p are independent over A and p is strictly primitive.

(ii) pc is non-algebraic by Remark 2.11(ii); it is stationary by Lemma
2.12(i). Suppose that a, b are distinct realizations of pc. Because p is strictly
primitive we have (a, b) |= p2 which, by Lemma 2.12(ii), implies (a, b) |=
(pc)

2. Thus any pair of distinct realizations of pc realizes (pc)
2 and pc is

strictly primitive.

Remark 2.15. If p ∈ S1(A) is a regular, internally isolated, primitive type
of limit-ordinal U -rank then p/E1 and p are interdefinable, so np is the
smallest integer n for which pc’s are non-algebraic for c |= p(n).
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Definition 2.16. We say that a complete type q controls a complete type
p, or that p is q-controlled, if p is foreign to q (i.e. p is ⊥ to any extension
of q) and any forking extension of p is q-internal.

Proposition 2.17. Suppose that p ∈ S1(A) is a regular, primitive, inter-
nally isolated type of U -rank ωα+1.

(1) There exists a regular type q of U -rank ωα which controls p.

(2) If q ∈ S1(A) has U rank ωα and controls p then for all n ≥ np and
c |= p(n) the binding group Gc = Autq(M̄)A(pc(M̄)) acts transitively on the
locus of (pc)

n;

(3) If c |= p(n) and U(pc) ≥ ωα then the generic type of Gc is 6⊥ q.

Proof. Without loss of generality suppose A = ∅.

(1) First we show that any forking extension of p is parallel to an
extension of some pd. Indeed, let tp(a/B

′) be a forking extension of p and let
I = a1, a2, .... be an infinite Morley sequence in stp(a/B′). Letm be maximal
such that a1, ..., am is independent over ∅ and let d name clp(a1, ..., am).
The independence of I and d ∈ dcl(a1, ..., am) imply am+1⌣| a1...amd (B′).
Hence tp(am+1/B

′) is parallel to tp(am+1/a1...amd) which is an extension
of tp(am+1/d) = pd.

Let B be finite and let q = tp(a/B) be a stationary extension of p such
that U(q) = ωα. We will show that q controls p. p is clearly foreign to q,
so it remains to prove that any forking extension of p is q-internal. Since
any forking extension of p is (parallel to) an extension of pc for some n ≥ 2
and some c |= p(n), it suffices to show that any pc is q-internal. tp(a/B) is a
forking extension of p, so let a1...am and d = a1...am/Em be as in the first
paragraph of the proof. We have:

ωα+1 > U(pd) ≥ U(a/B) = ωα.

pd is clearly non-algebraic so, by Lemma 2.14(ii), pd is primitive. By Remark
2.13 we have U(pd) = ωα · k where k = wt(pd). Since q is parallel to an
extension of pd and U(q) = ωα we derive pd 6⊥ q. Since pd is primitive Remark
2.13 applies and pd is q-semiregular and q-internal.

Now let n and c |= p(n) be arbitrary and we will prove that pc is q-
internal. Let b1, ..., bn |= pn be such that c = b1...bn/En, and let c′ be the
name for clp(āb̄). Then c, d ≤ c′ and both pd and pc′ are primitive. In fact,
pc′ is q-semiregular. To prove it note that pd | dc

′ is an extension of pc′ so
U(pd | dc

′) ≥ ωα and U(pc′) = ωα · l (where l = wt(pc′)) together imply
pc′ 6⊥ pd. Then q-semiregularity of pd implies pc′ 6⊥ q and pc′ is q-internal and
q-semiregular.
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Now consider pc | c
′c. It is an extension of pc′ so, because pc′ is q-internal,

it is q-internal, too. On the other hand, it is a nonforking extension of pc so
pc is q-internal, too. p is q-controlled.

(2) Suppose that q ∈ S(A) controls p and let n ≥ 2. Since tp(c/A) is p-
semiregular and p⊥q we have c⌣| q(M̄) (A) which, combined with (pc)

n a⊥A
from Lemma 2.12, implies that there is a unique type over cAq(M̄) of a
realization of (pc)

n. Gc acts transitively on the locus of (pc)
n.

(3) Since the action of Gc is transitive we have U(Gc) ≥ U(pc) and
U(Gc) ≥ ωα. Since Gc is q-internal and U(q) = ωα, we conclude that the
generic type of Gc is 6⊥ q.

3 Proof of Theorem 1

In this section we will prove Theorem 1. For a specialist in the stable group
theory the proof is rather a straightforward consequence of Proposition 2.17
and well-known facts on interpreting simple groups or fields in the super-
stable context. The essence is in the following: If p is NENI and U(p) = ωα+1

then, for sufficiently large n and c |= p(n), Proposition 2.17 applies. We get
a regular type q of U -rank ωα which controls p, and a transitive action of Gc

on the locus of (pc)
n. Since pc is strictly primitive the action is 2-transitive;

in this situation it is routine to show that the α-connected component of Gc

is q-connected and has trivial center. In general, for any regular type q the
existence of a q-connected group with trivial center implies the existence of
a q-connected simple group or of a q-connected field. In either of the cases
we will conclude that q is ESN; by Lemma 3.2 this always holds in the field
case, for simple groups this is an assumption of the theorem. Thus the exis-
tence of a NENI type of U -tank ωα+1 implies the existence of an ESN type
of U -rank ωα. This suffices to produce many countable models by applying
Proposition 1.1.

We will sketch the proof in some more detail assuming that the reader
is familiar with the subject, references are [6] and [10]. All the groups
considered are type-definable. Following [3], for a regular type p we will say
that a group is p-connected if it is p-simple, connected, and has a generic
type domination-equivalent to a power of p. Hrushovski’s analysis of stable
groups is based on the following fact (see Theorem 3.1.1 in [10]; for a group-
action version see Fact 1 in [3]):

Fact 3.1. If a generic type of a stable group G is non-orthogonal to a type
p then there is a relatively definable, normal subgroup H of infinite index
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such that generic types of G/H are p-internal and 6⊥ p.

If G is superstable and p is chosen to have minimal U -rank among types
non-orthogonal to the generic of G, then (stationarizations of) generic types
of G/H are domination-equivalent to a power of p and the connected compo-
nent (G/H)0 is p-connected. Moreover, U(G/H) = ωα · n where U(p) = ωα

and n = wtp(G/H). As an immediate consequence we derive that the
generic type of a definably simple group G is p-connected and p-internal for
any regular p which is 6⊥ to the generic; for any such p we have U(G) = ωα ·n
where n = wtp(G).

The situation is similar with fields, one argues as in the proof of Corollary
3.1.2 from [10]: suppose that F is a superstable field whose generic is 6⊥ p.
Let H be given by Fact 3.1 applied to the additive group of F . Then F/bH
is also p-internal for every non-zero b ∈ F . I =

⋂
b6=0 bH is, by Baldwin-Saxl,

a finite subintersection so F/I is also p-internal. But I is an ideal of infinite
index, hence trivial: F is p-internal. The conclusion is that a superstable
field F is p-internal, p-semiregular and p-connected whenever p is regular
and 6⊥ to a generic type of a field; U(F ) = ωα · n where n = wtp(F ).

Lemma 3.2. The generic type of a superstable field of U -rank smaller than
ωω is ESN.

Proof. Let F be a superstable field such that U(F ) = ωn ·m. Suppose that
the generic type of F is not ESN. By Theorem 2 there exists a NENI type
p which is nonorthogonal to the generic of F ; without loss of generality p is
over ∅. Then F is p-internal. Choose a generic a ∈ F and a finite B ⊂ F
such that U(a/B) = ωn and let a′B′, aB be a Morley sequence in stp(aB).
Define:

E′ = {x ∈ F |wtp(x/BB′) = 0} and E = {x ∈ F |wtp(x/B) = 0}.

p is NENI so, by Lemma 2.2, both E and E′ are relatively definable within
F . Either of them is closed under addition and multiplication, so they are
subfields of F . E is a subfield of E′ and, because a′ ∈ E′ \E, it is a proper
subfield. Clearly, U(E′) < ωn+1 and, because a ∈ E and U(a/B) = ωn, we
have ωn ≤ U(E), U(E′) < ωn+1. Since any superstable field is algebraically
closed, E′ is an infinite-dimensional vector space over E. Every element of
an m-dimensional subspace is interdefinable with an element of Em over a
generic basis, so U(E) ·m ≤ U(E′). Here m can be chosen arbitrarily large
so U(E′) ≥ ωn+1 follows. A contradiction.

In the following, well-known fact no stability assumption is needed.
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Fact 3.3. Suppose that a group H acts faithfully and 2-transitively on an
infinite set X. Then H has trivial center.

Proof. Suppose that Z(H) is nontrivial: 1 6= h ∈ Z(H). Let a ∈ X be such
that h(a) 6= a and let b ∈ X be distinct from a and h(a). 2-transitivity
implies that there exists g ∈ H mapping (a, h(a)) to (a, b). Then h(g(a)) =
h(a) 6= b = g(h(a)) so g and h do not commute. A contradiction.

It is well known that the connected component of a stable group is
properly defined: it is the intersection of all the relatively definable (normal)
subgroups of finite index. This was generalized by Berline and Lascar in [2]:
α-connected component of a superstable group G is the intersection of all
relatively definable (normal) subgroups H such that U(G/H) < ωα; denote
it by Gα. Then Gα is the smallest type-definable subgroup whose index has
U -rank < ωα. However, the meaning of ‘q-connected component of a group’
is not clear at all in the general stable case; it requires some additional
assumptions.

Below we will be interested in groups which are q-internal where q is
regular and has U -rank ωα. For such a group G we have U(G) = ωα ·m+ ξ
where ξ < ωα. Here U(Gα) = ωα · m and m = wtq(G) = wtq(G

α). Gα

is q-connected and it is the largest q-connected subgroup of G. Therefore,
q-connected subgroups of G are precisely those which are α-connected.

Proposition 3.4. Suppose that q ∈ S1(A) is a regular type of U -rank ωα

which controls a primitive, NENI type p ∈ S1(A) of U -rank ωα+1. Then
there exists a simple, q-connected group or a q-connected field.

Proof. Without loss of generality assume A = ∅. Fix n ≥ np sufficiently
large and c |= p(n) so that U(pc) ≥ ωα and Proposition 2.17(3) applies: the
binding group Gc is 6⊥ q. Since Gc is q-internal U(Gc) = ωα ·m + ξ where
ξ < ωα. Let H ≤ Gc be the α-connected component of Gc.

We claim that H acts transitively on the locus of (pc)
n. By Proposition

2.17 Gc acts transitively on the locus of (pc)
n, so Gc/H acts transitively on

the set of H-orbits. U(Gc/H) < ωα implies that the U -rank of any (name
of an) orbit is < ωα. Let d be a name of such an orbit. Clearly, d is in
the dcl of some ā |= (pc)

n. By Remark 2.13(i) pc is semiregular. It is also
q-internal because p is q-controlled, so U(pc) ≥ ωα implies U(ā) = ωα · k.
Then U(d) < ωα and d ∈ dcl(ā) imply U(d) = 0, so there are only finitely
many orbits. Because (pc)

n is stationary, there is a unique H-orbit and H
acts transitively on (pc)

n, proving the claim.
p is a primitive, NENI type so Lemma 2.14(ii) applies: pc is strictly

primitive. Transitivity of the action of H on (pc)
2(M̄ ) and strict primitivity
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of pc imply that H acts 2-transitively on pc(M̄ ). By Fact 3.3 H has trivial
center. Altogether: H is q-internal, q-connected and has trivial center.

Now, suppose that G is a q-internal, q-connected group of minimal q-
weight having trivial center. Clearly, G is non-abelian. There exists a series
of normal, relatively definable subgroups of G = G0 > G1 > ... > Gn = {1}
such that each quotient Gi/Gi+1 is either abelian or simple (this is a con-
sequence of the Zilber Indecomposability Theorem, see Corollary 3.6.15 in
[10]). Then, because G is non-abelian and q-connected, we have wtq(G1) <
wtq(G). Since G is q-connected G/G1 is q-connected, too. Now we have two
cases: G/G1 is either simple or abelian. In the first we are done, so suppose
that G/G1 is abelian and we will find a q-connected field.

Since G/G1 is abelian the commutator subgroup G′ is a proper sub-
group of G; also, it is relatively definable in G and q-connected (again by
indecomposability, see Corollary 3.6.13 in [10]). The minimality of wtq(G)
implies that G′ has non-trivial center: Z(G′) is non-trivial and G-invariant.
Let K be a G-minimal (minimal, type-definable, nontrivial, G-invariant)
subgroup of Z(G′). First we rule out the possibility U(K) < ωα: if it
holds then the U -rank of any G-orbit in K is < ωα, so [G : CG(k)] < ωα

holds for all k ∈ K r {1}. Since G is α-connected we have G = CG(k)
and k is central in G. A contradiction. Therefore U(K) ≥ ωα and Kα,
the α-connected component of K, is non-trivial. For any g ∈ G we have
U(K/gKα) = U(K/Kα) < ωα, which implies (gKα ⊇ Kα and, similarly,
g−1Kα ⊇ Kα so) gKα = Kα. Thus Kα is G-invariant and α-connected.
Because K is G-minimal we have K = Kα and K is α-connected.

Let CG(K) be the pointwise centralizer of K. It is a relatively definable,
normal subgroup of G and it contains G′ (because K ⊂ Z(G′)): G/CG(K)
is abelian. Also, because G is centerless, CG(K) is not the whole of G.
We conclude that G/CG(K) is non-trivial and, because G is q-connected,
G/CG(K) is q-connected, too. Further, for any g /∈ CG(K) there exists
k ∈ K such that g(k) 6= k; it follows that G/CG(K) acts faithfully on
K. Since the orbits under the action of G and G/CG(K) on K are the
same, K is a G/CG(K)-minimal, q-connected abelian group. Therefore we
have a faithful action of a q-connected, abelian group G/CG(K) on the
abelian, q-connected, G/CG(K)-minimal group K. In this situation Zilber’s
Indecomposability Theorem implies that K is the additive group of a field:
see Theorem 5.3.1 in [10], or (the proof of) Lemma 2 from [3]. K is a
q-connected field. This completes the proof of the proposition.

Proof of Theorem 1. Suppose that U(T ) ≥ ωω holds and that the generic
type of any definable, infinite, simple group is ESN. We will prove that T
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has 2ℵ0 countable models. By Proposition 1.1 it suffices to find an infinite
I ⊂ ω and a family {pn|n ∈ I} of regular, ESN types over finite domains
such that U(pn) = ωn holds for all n ∈ I. Suppose, for a contradiction,
that such a family does not exist; let n be such that any regular type of
U -rank ωm for m ≥ n is not ESN. Then, by Theorem 2, any such type is
non-orthogonal to a NENI type. Fix a NENI type p′ of U -rank ωn+1 and,
without loss of generality, assume that p′ ∈ S1(∅) is primitive (by Remark
2.13, say).

Now we apply Proposition 2.17: there exists a finite set A and a regular
type q ∈ S1(A) which controls p′ and has U -rank ωn. Since p′ |A is NENI,
by Remark 2.13, p = (p′|A)/E1 is a primitive, NENI type of U -rank ωn+1.
Any forking extension of p is q-internal because it is in the dcl of some
forking extension of p′, and the latter extension is q-internal because p′ is q-
controlled. Hence q controls p. We have the following situation: p, q ∈ S1(∅)
are regular, p is a primitive NENI type, U(p) = ωn+1, U(q) = ωn and q
controls p. By Proposition 3.4 there exists a q-connected, simple group or
a q-connected field. By our assumption on generic types of simple groups
and Lemma 3.2, in either case the generic type is ESN ; by Theorem 2 q is
ESN . A contradiction.

It was conjectured in [9] that the answer to Question 1 is affirmative.
Here we will be a little bit more careful:

Conjecture 2. The generic type of a simple superstable group of U -rank
ωα+1 · n is ESN.
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