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Rank-into-rank hypotheses and the failure of
GCH

Vincenzo Dimonte∗, Sy-David Friedman∗

December 11, 2013

Abstract

In this paper we are concerned about the ways GCH can fail in
relation to rank-into-rank hypotheses, i.e., very large cardinals usually
denoted by I3, I2, I1 and I0. The main results are a satisfactory
analysis of the way the power function can vary on regular cardinals
in the presence of rank-into-rank hypotheses and the consistency under
I0 of the existence of j : Vλ+1 ≺ Vλ+1 with the failure of GCH at λ.

Keywords: Rank-into-rank, Embedding lifting, Easton forcing.
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1 Introduction

The behaviour of the power function κ 7→ 2κ has been under scrutiny since
the birth of set theory. Already in 1878 Cantor proposed the Continuum
Hypothesis and years later Hausdorff [9] extended it globally, stating for the
first time the Generalized Continuum Hypothesis. Gödel’s universe of con-
structible sets provided a model for the Generalized Continuum Hypothesis,
while the consistency of its negation was first proved locally by Cohen and
then globally by Easton [4], who used a class-product of Cohen forcings to
prove the consistency of the failure of GCH at all regular cardinals. This
left open the more difficult case of singular cardinals, known as the Singular
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Cardinal Problem. At the same time, another line of research was thriv-
ing. Just before the advent of forcing, Dana Scott [15] connected the power
function with large cardinals, proving that if a measurable cardinal violates
GCH, then GCH is violated on a measure one set of cardinals below it. After
that, Silver [16] proved that if the GCH holds below a singular cardinal of
uncountable cofinality it must hold at that cardinal, and Solovay [17] proved
that the GCH holds at all strong limit singular cardinals above a strongly
compact cardinal. Therefore large cardinals have a big impact on the power
function, and the investigation of the possible behaviours of the power func-
tion under large cardinal hypotheses is now a fundamental subject in the
Singular Cardinal Problem analysis.

This paper is a contribution to the Singular Cardinal Problem in a novel
case. After Kunen’s proof that a Reinhardt cardinal is inconsistent [11], some
very large cardinal hypotheses appeared, at the border of inconsistency, the
rank-into-rank hypotheses I0-I3. These hypotheses naturally give rise to a
strong limit cardinal of countable cofinality that is traditionally denoted as
λ, and we study the failure of GCH at λ.

In Section 2 all the preliminary facts are collected. In Section 3 we present
a proof of the consistency of I0 with the failure of GCH at regular cardinals.
In Section 4 we use an absoluteness result of Woodin to prove that starting
with a model of I0 there is a model of I1 in which the power function at
λ violates GCH in numerous ways. In Section 5 we extend the results of
Section 4 to hypotheses stronger than I1.

The authors would like to thank the FWF (Austrian Science Fund) for
its generous support through project P23316-N13 and the referee for her/his
helpful suggestions.

2 Preliminaries

To avoid confusion or misunderstandings, all notation and standard basic
results are collected here.

If M and N are sets or classes, j : M ≺ N denotes that j is an elemen-
tary embedding from M to N . We write the case in which the elementary
embedding is the identity, i.e., M is an elementary submodel of N , simply
as M ≺ N , while when j is indicated we always suppose that it is not the
identity.

If j : M ≺ N and either M � AC or N ⊆ M then it moves at least one
ordinal. The critical point, crt(j), is the least ordinal moved by j.

Let j be an elementary embedding and κ = crt(j). Define κ0 = κ and
κn+1 = j(κn). Then 〈κn : n ∈ ω〉 is the critical sequence of j.
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Kunen [11] proved under AC that if M = N = Vη for some ordinal
η ≤ Ord, and λ is the supremum of the critical sequence, then η cannot be
bigger than λ+ 1 (and of course cannot be smaller than λ).

Kunen’s result leaves room for a new breed of large cardinal hypotheses,
sometimes referred to in the literature as rank-into-rank hypotheses:

I3 iff there exists λ s.t. ∃j : Vλ ≺ Vλ;

I2 iff there exists λ s.t. ∃j : V ≺ M , with Vλ ⊆ M and λ is the supremum
of the critical sequence;

I1 iff there exists λ s.t. ∃j : Vλ+1 ≺ Vλ+1.

The consistency order of the above hypotheses is reversed with respect
to their numbering: I1 is strictly stronger than I2, which in turn is strictly
stronger than I3 (see [12]). All of these hypotheses are strictly stronger than
all of the large cardinal hypotheses outside the rank-into-rank umbrella (see
[10], 24.9 for n-huge cardinals, or [1] for the Wholeness Axiom).

Note that if j witnesses a rank-into-rank hypothesis, then λ is uniquely
determined by j, so in the following λ always denotes the first nontrivial
fixed point of the embedding j under consideration.

An interesting point is that every elementary embedding j : Vλ ≺ Vλ has
a unique extension to Vλ+1: let 〈κn : n ∈ ω〉 be its critical sequence; then for
any X ⊆ Vλ define j+(X) =

⋃
n∈ω j(X ∩ Vκn). Then j+ is a Σ0-elementary

embedding from Vλ+1 to itself.
A consequence of this is the possibility of defining finite iterates of j, when

j : Vλ ≺ Vλ. Since j ∈ Vλ+1 and “j : Vλ ≺ Vλ is an elementary embedding”
is a Σ0 property of Vλ+1 with parameters j, Vλ, we can define j2 = j+(j),
and consequently j2 is an elementary embedding from Vλ to itself. More
generally, define jn+1 = j+(jn). As for the iterates for I1-related elementary
embeddings, Laver [12] proved that if j : Vλ+1 ≺ Vλ+1, then the extension
of j(j � Vλ) to Vλ+1 is in fact an elementary embedding, so we can define
jn+1 = (j(jn � Vλ))+. In the same paper Laver also proved a similar result
for I2.

Suppose that j witnesses I3 and let 〈κn : n ∈ ω〉 be its critical sequence.
Then it is immediate to see by elementarity that crt(j2) = crt(j+(j)) =
j(crt(j)) = κ1, and more generally crt(jn+1) = κn. The same holds if j
witnesses I1: note that

(j(j � Vλ))
+ � Vλ = (j � Vλ)

+(j � Vλ),

so, as before, crt(jn+1) = crt(jn+1 � Vλ) = κn. Therefore for any γ < λ we
can always assume j to have a critical point between γ and λ.
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We define also jn as the composition of n copies of j, i.e., j1 = j and
jn+1 = j ◦ jn. Note that these are different from the iterates: for example,
jn and j have the same critical point, but crt(j2) = j(crt(j)).

If X is a set, then L(X) denotes the smallest inner model that contains
X; it is defined like L but starting with the transitive closure of {X} as
L0(X).

In the early 1980’s Woodin proposed an axiom even stronger than all the
previous ones:

I0 For some λ there exists a j : L(Vλ+1) ≺ L(Vλ+1), with crt(j) < λ.

Note that if λ witnesses I0, then L(Vλ+1) 2 AC, because otherwise L(Vλ+1) �
ZFC, and we would contradict the proof of Kunen’s Theorem [11], which
shows that one cannot have j : V ≺ M with critical point less than λ and
a well-order of Vλ+1 in V . The fact that I0 is strictly stronger than I1 was
proved by Laver [12].

Definition 2.1. We define ΘL(Vλ+1) = {α : ∃π : Vλ+1 � α, π ∈ L(Vλ+1)},
where � denotes a surjection.

The following is Lemma 5 in [18]:

Lemma 2.2. Let j : L(Vλ+1) ≺ L(Vλ+1) be such that crt(j) < λ. Let

U = Uj = {X ∈ L(Vλ+1) ∩ Vλ+2 : j � Vλ ∈ j(X)}.

Then U is an L(Vλ+1)-ultrafilter such that Ult(L(Vλ+1), U) is well-founded.
By condensation the collapse of Ult(L(Vλ+1), U) is L(Vλ+1), and jU : L(Vλ+1) ≺
L(Vλ+1), the inverse of the collapse, is an elementary embedding. Moreover,
there is an elementary embedding kU : L(Vλ+1) ≺ L(Vλ+1) with crt(kU) >
ΘL(Vλ+1) such that j = kU ◦ jU .

Definition 2.3. Let j : L(Vλ+1) ≺ L(Vλ+1) be such that crt(j) < λ. Then j
is proper iff j = jUj .

By Lemma 2.2 any elementary embedding j : L(Vλ+1) ≺ L(Vλ+1) can be
substituted with a proper one, that coincides on L

ΘL(Vλ+1)(Vλ+1).
Properness is used to define finite iterates for the I0 case: let j : L(Vλ+1) ≺

L(Vλ+1) with crt(j) < λ be a proper elementary embedding, and let U = Uj
be the relevant ultrafilter. Define

j(U) =
⋃
{j(ran(π)) : π ∈ L(Vλ+1), π : Vλ+1 → U}

and then define j2 as the map associated to j(U). All the jn are defined
accordingly by induction. Woodin [18] proved that the jn are elementary
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embeddings, so also in this case for any γ < λ we can always assume j to
have a critical point between γ and λ.

The elements of the critical sequence of elementary embeddings that wit-
ness rank-into-rank hypotheses are really large cardinals.

Definition 2.4. Let κ be an uncountable cardinal. We say that κ is:

• strong limit if for any η < κ, 2η < κ;

• measurable if there is a nontrivial κ-complete ultrafilter over κ;

• strongly compact if for any η ≥ κ there is a fine κ-additive measure on
Pκ(η), where U is fine means that for any ξ < η, {A : ξ ∈ A} ∈ U ;

• supercompact if for any η ≥ κ there is a fine normal measure on Pκ(η),
i.e., a measure U such that for any f : Pκ(η) → η such that f(x) ∈ x
for almost every x, f is constant on a set in U ;

• n-huge if there is a sequence κ = λ0 < λ1 < · · · < λn = λ and a
κ-complete normal ultrafilter U over P(λ) such that for any i < n,

{x ∈ P(λ) : ot(x ∩ λi+1) = λi} ∈ U.

Let j : Vλ ≺ Vλ and let 〈κn : n ∈ ω〉 be its critical sequence. Note that
for any n, κn = crt(jn+1), so any property of κ0 expressible in Vλ is shared
by all of the κn’s. We have

• “κ0 is measurable” is witnessed by U = {X ⊆ κ0 : κ0 ∈ j(X)};

• “κ0 is n-huge” is witnessed by κ0 < κ1 < · · · < κn and

U = {X ⊆ P(κn) : j′′κn ∈ j(X)};

• “Vλ � κ0 is strongly compact and supercompact”: let κ0 ≤ η < λ, and
suppose η < κn; then this is witnessed by

U = {X ⊆ Pκ0(η) : (jn)′′η ∈ jn(X)}.

The situation is radically different for λ, since it is a singular cardinal,
and the large cardinals described in Definition 2.4 (strong limit excluded)
must be regular. However, since it is a limit of strong limit cardinals, λ is a
strong limit cardinal. Moreover, we trivially have that Vκ0 ≺ Vκ1 and for any
n ∈ ω, Vκn ≺ Vκn+1 . But then the Vκn ’s form a direct system with limit Vλ
and Vκn ≺ Vλ for any i ∈ ω. In particular, Vλ is a model of ZFC.
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For proving results about rank-into-rank elementary embeddings and the
continuum function two forcings will be used: Easton forcing, that will be
explained in the following section, and Prikry forcing. For both forcings we
use the notation ǎ to indicate the canonical name of an element in the ground
model, and Ġ to indicate the canonical name for the generic.

Prikry forcing (a detailed discussion about it can be found in [7]) is defined
as follows: fix an ultrafilter U over κ measurable; p ∈ P iff p = (s, A), where
s ∈ [κ]<ω, A ∈ U and

⋃
s <

⋂
A. For p = (s, A), q = (t, B) ∈ P, we say

q ≤ p iff s ⊆ t, B ⊆ A and t \ s ⊆ A.

Theorem 2.5. Prikry forcing on κ is κ+-c.c. and doesn’t add bounded sub-
sets of κ.

3 GCH and its negation at regular cardinals

There are various results already published about the interaction of rank-
into-rank hypotheses with different behaviours of the continuum function.
The following definition captures the concept of “right behaviour” of the
continuum function at regular cardinals:

Definition 3.1. Let E : Reg → Card be a class function. Then E is an
Easton function iff

• α < β → E(α) ≤ E(β);

• cof(E(α)) > α for all α ∈ Reg.

Theorem 3.2. Let I∗ be I3, I2, I1 or I0, and suppose that I∗ holds with as-
sociated cardinal λ. Let E be an Easton function such that E � λ is definable
over Vλ. Then in a generic extension, I∗ still holds for λ and 2κ = E(κ) for
regular κ. Moreover, if E(κ) = κ+ for regular κ we have

Con(ZFC + I∗)→ Con(ZFC + I∗ + GCH).

Note that in the I0 case the Easton function will be realized in V [G], not
in L(Vλ+1)[G] or L(V [G]λ+1).

Specific cases of Theorem 3.2 have already appeared in the literature:
Hamkins [8] proved it for I1 and E(κ) < 2κ, Corazza [2] proved it for I3 and
E(κ) less than the first inaccessible cardinal larger than κ, and Friedman [5]
proved it for I2 and GCH. Although the framework of the proof is the same
as in the cited papers, Theorem 3.2 weakens the hypotheses on E and also
considers I0. For this reason, we give the proof just for the I0 case.
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The main tool for the proof is forcing iteration. If Pλ is a forcing iteration
of length λ, for any δ < λ we denote Pδ as the δ-th stage of the iteration,
and Qδ as the δ-th forcing of the iteration.

Definition 3.3. Let Pλ be a forcing iteration of length λ, where λ is either a
strong limit cardinal or is equal to ∞, the class of all ordinals. We say that
Pλ is

• reverse Easton if nontrivial forcing is done only at infinite cardinal
stages, direct limits are taken at all inaccessible cardinal limit stages,
and inverse limits are taken at all other limit stages; moreover, Pλ is
the direct limit of the 〈Pδ, δ < λ〉 if λ is regular or ∞, the inverse limit
of the 〈Pδ, δ < λ〉, otherwise;

• directed closed if for all δ < λ, Qδ is < δ-directed closed, i.e., for any
D ⊆ Qδ, |D| < δ such that for any d1, d2 ∈ D there is an e ∈ D with
e ≤ d1, e ≤ d2, there exists p ∈ Qδ such that p ≤ d for any d ∈ D;

• λ-bounded if for all δ < λ, Qδ has size < λ. Note that in the case
λ =∞, this just means that each Qδ is a set-forcing;

• above ω if Qω is trivial forcing.

Moreover, if j is any elementary embedding such that j′′λ ⊂ λ and Pλ ⊂
dom(j), we say that Pλ is j-coherent if for any δ < λ, j(Pδ) = Pj(δ).

Note that these definitions are local, i.e., if Pλ satisfies one of the above,
then for any δ < λ, Pδ satisfies the same.

The following theorem was proved by Easton in 1970:

Theorem 3.4 (Easton, [4]). Let E be an Easton function. Then there exists
a generic extension V [G] of V such that V [G] � ∀κ(κ regular → 2κ = E(κ)).

Theorem 3.4 can be proved using iterated forcing. Define Qδ, for δ closed
under E, as the Easton product of forcings to make 2γ = E(γ) for regular
γ in [δ, δ∗), where δ∗ is the least cardinal greater than δ closed under E.
Limits are taken so that the iteration is reverse Easton. It is easy to prove
that this forcing is directed closed. If λ is closed under E then the forcing
is λ-bounded, and 〈Pα : α < λ〉 ⊆ Vλ. Finally, if E � λ is definable over
Vλ, then 〈Pα : α < λ〉 is definable over Vλ and if the parameters used in the
definition of E � λ are in Vcrt(j) then Pλ is j-coherent.

We will prove the following:
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Theorem 3.5. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ and Pλ a λ-
bounded, j-coherent, directed closed, reverse Easton iteration. Then for Pλ-
generic G, j lifts to j∗ : L(Vλ+1)[G] ≺ L(Vλ+1)[G] and the restriction of such
a lifting to L(V [G]λ+1) witnesses I0 in V [G].

Lemma 3.6. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ and Pλ a λ-bounded,
j-coherent, directed closed, reverse Easton iteration. Then there exists q ∈ Pλ
such that q  p ∈ Ġ→ j(p) ∈ Ġ.

Proof. Let 〈κn : n ∈ ω〉 be the critical sequence of j. The key point is
that j-coherence limits the largeness of forcing stages. Let γ < κ0. Then if
|Pγ| ≥ κ0, by elementarity we would have |j(Pγ)| = |Pj(γ)| = |Pγ| ≥ κ1, and
by ω applications of j it follows |Pγ| ≥ λ, a contradiction by λ-boundedness.
By elementarity, it follows that for any γ < κn, |Pγ| < κn.

We define q piece by piece. Let q � κ1 be the trivial condition. Now, fix
n ≥ 1. Then

 |{j(p)(κn) : p ∈ Ġ}| < κn,

because

{j(p)(κn) : p ∈ G} = {j(p(κn−1)) : p ∈ G} =

= {j(p(κn−1)) : p � (κn−1)+ ∈ G ∩ P(κn−1)+}

and |P(κn−1)+| < κn. So, since Qκn is < κn-directed closed in V Pκn , there

exists a name τ such that  ∀p ∈ Ġ τ ≤ j(p)(κn), and define q(κn) = τ .
As for the definition of q between elements of the critical sequence, we have
that  |j′′Ġ � (κn, κn+1)| ≤ κn, and as Pκn,κn+1 (the forcing strictly between
κn and κn+1) is ≤ κn-directed closed there exists a name τ such that

 ∀p ∈ Ġ ∀β ∈ (κn, κn+1) τ(β) ≤ j(p)(β)

and define q � (κn, κn+1) = τ . Now, suppose that p, q ∈ G. Clearly q �
[κ1, λ) ≤ j(p) � [κ1, λ), so j(p) � [κ1, λ) ∈ G � [κ1, λ). But j(p) � κ0 = p, and
j(p) � [κ0, κ1) is trivial, so j(p) ∈ G.

To use the typical lifting lemma, we have to prove that in fact the model
L(Vλ+1) as constructed in the generic extension is in the domain of the lifting.

Lemma 3.7 ([8]). If Pλ is a λ-bounded, directed closed forcing iteration, then
V [G]λ+1 = Vλ+1[G].
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Proof. Let p be a condition forcing that σ is a name for a subset of λ. Then
there is an extension q of p and a sequence 〈σn : n < ω〉 in V such that for
each n, q forces σ ∩ κn = σn and σn is a canonical Pκn-name for a subset of
κn. Then each σn belongs to Vλ and therefore q forces σ = σ∗ for some name
σ∗ in Vλ+1. This proves that V [G]λ+1 is contained in Vλ+1[G∩Vλ] = Vλ+1[G].
The converse is clear, as any element of Vλ+1[G] belongs to L(X,G∩ Vλ) for
some X in Vλ+1 and therefore belongs to V [G]λ+1.

Although it will not be used in this paper, the following Corollary of
Lemma 3.7 is of independent interest.

Corollary 3.8. If Pλ is a λ-bounded, directed closed, reverse Easton itera-
tion, and G is Pλ-generic then L(V [G]λ+1) is contained in L(Vλ+1)[G]. If Pλ
is above ω then we have equality.

Proof. The first conclusion follows immediately from Lemma 3.7: by induc-
tion, it is possible to prove that a set constructible in V [G] from some ele-
ments has a name that is constructible in V from the names of such elements,
therefore by Lemma 3.7 any element of L(V [G]λ+1) has a name in L(Vλ+1).

For the second conclusion, note that if Pλ is above ω and X is a subset
of λ in V [G] then X belongs to V iff X ∩ κn belongs to V for each n, and
therefore as elements of Vλ+1 are coded by subsets of λ, Vλ+1 belongs to
L(Vλ, V [G]λ+1) = L(V [G]λ+1). From this it follows that G also belongs to
L(V [G]λ+1) as p ∈ G iff p ∈ Vλ+1 and p|Vα ∈ G ∩ Vλ for all α < λ, and so
G belongs to L(Vλ+1, G∩Vλ). As both Vλ+1 and G belong to L(V [G]λ+1) we
can then conclude that L(Vλ+1)[G] is contained in L(V [G]λ+1).

Now we have enough tools to prove Theorem 3.5:

Proof of Theorem 3.5. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ. We can
suppose that the condition q in Lemma 3.6 is in the generic G. By the
usual argument, we can extend j to j′ : L(Vλ+1)[G] ≺ L(Vλ+1)[G], letting
j(τG) = j(τ)G for any τ ∈ L(Vλ+1), and j′ is an elementary embedding. By
Corollary 3.8 that L(V [G]λ+1) ⊆ L(Vλ+1)[G], and as j′(V [G]λ+1) = V [G]λ+1,
the restriction of j′ to L(V [G]λ+1) witnesses I0 in V [G].

Corollary 3.9. Suppose I0 and let E be an Easton function such that E � λ
is definable over Vλ. Then Con(ZFC + I0 + GCH) and there is a generic
extension that satisfies I0 + 2κ = E(κ) holds for all regular κ.

Proof. Fix a j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ and such that all the
parameters that define E � λ are in Vcrt(j). Let P be the Easton iteration
on all ordinals from Theorem 3.4. First we consider the first λ steps of the
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iteration, Pλ. Then 〈Pα : α < λ〉 ⊆ Vλ is definable in Vλ with parameters
that are fixed points of j, therefore Pλ is λ-bounded and j-coherent, so by
Theorem 3.5 j lifts to

j′ : L(V [G ∩ Vλ]λ+1) ≺ L(V [G ∩ Vλ]λ+1).

Now, the rest of the iteration is < λ+-directed closed, in particular is λ-
closed (every descending sequence of length λ has a lower bound), therefore
it doesn’t change L(V [G]λ+1), and j′ witnesses I0 in V [G].

After having proved the consistency of rank-into-rank hypotheses with
the failure of GCH at regular cardinals, the next step is to prove it at some
singular cardinal. However, there are some well-known limitations:

Theorem 3.10 (Solovay [17]). Let κ be a strongly compact cardinal. Let λ
be a singular strong limit cardinal greater than κ. Then 2λ = λ+.

Suppose that j : Vλ ≺ Vλ. The critical point of j is strongly compact in
Vλ, so for any crt(j) < η < λ singular strong limit cardinal we have 2η = η+,
and this is impossible to kill while preserving the embedding. For the rest
of this article we will focus on the failure of GCH at λ, the first point not
covered by Solovay’s result.

Theorem 3.11. Let j : Vλ ≺ Vλ. Then for any δ < ℵ1 there exists a generic
extension V [G] such that j lifts to V [G]λ and 2λ = λ+δ+1.

This is a simple corollary of Gitik’s construction using short extenders
for blowing up the size of the power set of a singular cardinal [6]:

Theorem 3.12. Assume GCH. Suppose λ is a cardinal of cofinality ω such
that {κ < λ : o(κ) ≥ κ+n} is cofinal in λ for every n ∈ ω. Then for any
δ < ℵ1 there exist a cofinality preserving generic extension having the same
bounded subsets of λ and satisfying 2λ = λ+δ+1.

Proof of Theorem 3.11. Let j : Vλ ≺ Vλ and (κn)n∈ω the critical sequence.
Then for any n,m ∈ ω, o(κn) ≥ (κn)+m, therefore λ satisfies the hypotheses
of Theorem 3.12. Moreover, by Theorem 3.2 we can suppose GCH, thereby
allowing the proof of Theorem 3.12 to go through. Since Gitik’s forcing
doesn’t add bounded subsets of λ, we have trivially Vλ = V [G]λ, so there is
no need to lift j, and Theorem 3.11 is proved.

The case I2 has been treated by Cummings and Foreman: in [3] they
prove, using a hypothesis slightly stronger than I2, that I2(λ) is consistent
with 2λ = λ++.
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Unfortunately, the same cannot be said for I1. There are many obstacles
for lifting an I1 elementary embedding to a forcing that kills GCH at λ, like
the fact that the names for elements of V [G]λ+1 live outside Vλ+1, or the
difficulties of finding a master condition for such a forcing. This is why we
change strategy, and we reflect the embedding instead of lifting it. For this
we need more information about elementary embeddings that witness I0.

4 Consistency of I1 and the negation of GCH

In the Preliminaries we defined the finite iterates for an I0 elementary em-
bedding, but in this section we need more.

Definition 4.1. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ be a proper
elementary embedding, and let U = Uj be the relevant ultrafilter. Remember
that the second iterate of j was defined as the map associated to j(U).

Define the successive iterates in the usual way: let α be an ordinal. Then

• if α = β + 1, Mβ is well-founded and jβ : Mβ ≺ Mβ is the ultrapower
via W , then Mα = Ult(Mβ, jβ(W )) and jα = jβ(jβ).

• if α is a limit, let (Mα, jα) be the direct limit of (Mβ, jβ) with β < α.

We say that j is iterable, if for every α ∈ Ord, Mα is well-founded and
jα : Mα ≺Mα. In this case, we call jα,β the natural embeddings between Mα

and Mβ.

The following is a conjunction of Lemma 16 and Lemma 21 in [18]:

Theorem 4.2. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ be a proper
elementary embedding. Then j is iterable. Moreover, for any n ∈ ω, jn :
L(Vλ+1) ≺ L(Vλ+1).

Theorem 4.2 states that Mn = L(Vλ+1) for n < ω, but Mω is definitively
different. The key point is that j0,ω(crt(j)) = λ, so many characteristics of the
critical point of j are transferred by elementarity to λ in Mω. For example,
in L(Vλ+1), crt(j) is measurable and there is a well-ordering of Vλ, therefore
λ is measurable in Mω and there is a well-ordering of V Mω

j0,ω(λ) = Vj0,ω(λ) ∩Mω

in Mω. In particular, also V Mω
λ+1 = Vλ+1 ∩ Mω is well-ordered in Mω, and

Vj0,ω(λ)∩Mω � AC. This last point will be important in the proof of Theorem
4.4 below.

However, adding again the critical sequence to Mω makes it a little more
similar to the original L(Vλ+1):
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Theorem 4.3 (Generic Absoluteness). Let j : L(Vλ+1) ≺ L(Vλ+1) with
crt(j) < λ be a proper elementary embedding. Let 〈κn : n ∈ ω〉 be the
critical sequence of j and let (Mω, jω) be the ω-th iterate of j. Then for all
α < λ there exists an elementary embedding

π : Lα(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ≺ Lα(Vλ+1)

such that π � λ is the identity.

The previous theorem is Theorem 135 in [18] by Woodin.

Theorem 4.4. Suppose I0. Then there exists a generic extension V [G] of V
such that V [G] � ∃γ ∃i : Vγ+1 ≺ Vγ+1 ∧ 2γ > γ+.

Proof. Let j : L(Vλ+1) ≺ L(Vλ+1) witness I0 in V . By Lemma 2.2 we can
suppose that j is proper, and by Corollary 3.9 we can suppose that for all
regular cardinals κ, 2κ = κ++. Let 〈κn : n ∈ ω〉 be the critical sequence
of j. Let (Mω, jω) be the ω-th iterate of j. Then, by elementarity, since
L(Vλ+1) � “for all regular cardinals κ < λ, 2κ = κ++”, λ is regular in Mω

and λ < j0,ω(λ), Mω � “there exists a bijection between P(λ) and λ++”.
Let U = {X ⊆ κ0 : κ0 ∈ j(X)} be the measure on κ0 derived from j and

let P be the Prikry forcing on κ0 with measure U . Then j0,ω(P) is the Prikry
forcing on λ with measure j0,ω(U).

Claim 4.5. 〈κn : n ∈ ω〉 is generic for j0,ω(P) over Mω.

Proof of Claim. We use the Mathias characterization of genericity for Prikry
forcing [14], i.e., we prove that for any A ∈ j0,ω(U), the set 〈κn : n ∈ ω〉 \ A
is finite. The characterization needs the Axiom of Choice, but works also
in this setting, as Vj0,ω(λ) ∩Mω � AC. First, note that if A ∈ j0,n(U), then
κn ∈ jn,ω(A): by definition of U and elementarity A ∈ j0,n(U) iff κn ∈ jn(A);
the critical point of jn+1,ω is κn+1, so by elementarity

κn = jn+1,ω(κn) ∈ jn+1,ω(jn(A)) = jn,ω(A).

Now, let A ∈ j0,ω(U). There exists n ∈ ω and Ā ∈ L(Vλ+1) such that A =
jn,ω(Ā), and by elementarity Ā ∈ j0,n(U) and, more generally, jn,n+i(Ā) ∈
j0,n+i(U). So for any i ∈ ω, κn+i ∈ jn+i,ω(jn,n+i(Ā)) = A.

Because of the claim we can use the usual properties of Prikry forcing:

Claim 4.6. Mω[〈κn : n ∈ ω〉] � there exists a bijection from 2λ to λ++.

12



Proof of Claim. Note that, even if Mω[〈κn : n ∈ ω〉] 2 AC, we have in
fact that Vj0,ω(λ) ∩ Mω � AC, therefore no special care is needed in this
respect. Since Prikry forcing does not add bounded subsets of λ, Vλ ∩Mω =
Vλ ∩Mω[〈κn : n ∈ ω〉], therefore for any name τ for a subset of Vλ ∩Mω, we
can suppose that dom(τ) ⊆ {ǎ : a ∈ Vλ ∩Mω}. Prikry forcing is λ+-c.c., so
there are only

(2λ)Mω = (λ++)Mω = (λ++)Mω [〈κn:n∈ω〉]

possible nice names for subsets of Vλ ∩Mω, and this proves the claim.

This proves that λ in Mω[〈κn : n ∈ ω〉] has the desired properties, and
we will use generic absoluteness (Theorem 4.3) to prove the existence of the
I1-elementary embedding.

Consider j � Vλ+1 : Vλ+1 ≺ Vλ+1. We can define it as

(j � Vλ+1)(a) =
⋃
n∈ω

(j � Vλ)(a ∩ Vκn),

using only j � Vλ and the critical sequence as parameters, both elements of
Vλ+1, so j � Vλ+1 ∈ L1(Vλ+1) and L1(Vλ+1) � ∃i : Vλ+1 ≺ Vλ+1. By generic
absoluteness (Theorem 4.3) then

L1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) � ∃i : Vλ+1 ≺ Vλ+1,

and this is enough, since L1(Mω[〈κn : n ∈ ω〉]∩Vλ+1) computes correctly the
satisfaction relation of

Mω[〈κn : n ∈ ω〉] ∩ Vλ+1 = (Vλ+1)Mω [〈κn:n∈ω〉]

and
L1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ⊆Mω[〈κn : n ∈ ω〉].

Therefore
Mω[〈κn : n ∈ ω〉] � ∃i : Vλ+1 ≺ Vλ+1.

By reflecting j0,ω we will have the desired generic extension: from what
we proved above

Mω � ∃p ∈ j0,ω(P) p j0,ω(P) ∃i : (Vλ̌+1) ≺ (Vλ̌+1) ∧ 2λ̌ = λ̌++

therefore by elementarity of j0,ω

L(Vλ+1) � ∃p ∈ P p P ∃i : (Vκ̌0+1) ≺ (Vκ̌0+1) ∧ 2κ̌0 = κ̌++
0 .

Let G be any generic such that p is as above and p ∈ G. Then in L(Vλ+1)[G],
and therefore in V [G], ∃i : Vκ0+1 ≺ Vκ0+1 and 2κ0 = κ++

0 .
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The proof does not depend specifically on 2λ = λ++, therefore it yields a
more general theorem.

Theorem 4.7 (Main). Suppose there exists j : L(Vλ+1) ≺ L(Vλ+1) with
crt(j) < λ. Then for every Easton function E such that E � λ is definable
over Vλ, there is a generic extension V [G] of V that satisfies

∃γ < λ ∃i : Vγ+1 ≺ Vγ+1 + 2γ = E(γ).

In particular, for any δ < λ, there is a generic extension V [G] of V that
satisfies

∃γ < λ ∃i : Vγ+1 ≺ Vγ+1 + 2κ = κ+δ+1

holds for all regular κ < γ and also for κ = γ.

We make a short comment regarding the meaning of “larger”, in the
expression “one large cardinal is larger than the second one”. Over the years
the meaning of this sentence grew more and more ambiguous: it is mostly
used to indicate the consistency strength of a large cardinal hypothesis, but
it sometimes implies that the least cardinal which is large in the first sense is
larger than the least cardinal which is large in the second sense with respect
to the cardinal order. While at the beginning the two concepts coincided,
during the exploration of the upper part of the large cardinal hierarchy the
two concepts often differed completely. Theorem 4.4, coupled with Solovay’s
Theorem 3.10, gives us another such example.

Theorem 4.8. Suppose there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ.
Then it is consistent that there exists γ and j : Vγ+1 ≺ Vγ+1 and that every
strongly compact cardinal is larger than γ.

5 Consistency of hypotheses stronger than I1

and the negation of GCH

In the proof of Theorem 4.4, Theorem 4.3 was greatly underutilized: the
case α = 1, the one we considered, gave us a result related to I1, but in fact
we can consider larger α. This will give us consistency results on hypotheses
stronger than I1, such as the existence of j : Lα(Vλ+1) ≺ Lα(Vλ+1), for α < λ.
These unnamed hypotheses have been proven by Laver [12], [13] to be strictly
stronger than I1 and strictly weaker than I0.

It is also worthy not to stop at the bound given by Theorem 4.3. There
is no evidence that it is optimal. On the contrary, there are hints that
generic absoluteness could possibly be extended, and Woodin outlined such
situations in [18] (see for example Lemma 130 and Remark 139).
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Definition 5.1. Suppose I0(λ) and let α < ΘL(Vλ+1). We say that generic
absoluteness holds at α if for any proper j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) <
λ there exists

π : Lα(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ≺ Lα(Vλ+1)

such that π � λ is the identity, where 〈κn : n ∈ ω〉 is the critical sequence of
j and Mω is the model of its ω-th iterate.

Theorem 4.3 states, therefore, that generic absolutess holds at any α < λ.
The study of the structure of the sets Lα(Vλ+1) for α < ΘL(Vλ+1) made

by Laver in [13] gives us the tools to approach Theorem 4.7 under stronger
hypotheses.

Definition 5.2 ([13]). Let λ be a cardinal and let α < ΘL(Vλ+1). Then α is
good iff every element of Lα(Vλ+1) is definable in Lα(Vλ+1) from an element
in Vλ+1.

The successor of a good ordinal is a good ordinal: let α be good; the
largest ordinal in Lα+1(Vλ+1) is λ+1+α, therefore α is definablein Lα+1(Vλ+1)
with λ as a parameter, so Lα(Vλ+1) is definable in Lα+1(Vλ+1) with λ as a
parameter. But every element in Lα+1(Vλ+1) is definable using Lα(Vλ+1)
and elements of Lα(Vλ+1) (which in turn are definable with parameters from
Vλ+1), and therefore α+ 1 is good. This proves that the natural numbers are
good. But also ω is good: every element of Lω(Vλ+1) is in some Ln(Vλ+1),
n ∈ Vλ+1 and n is good for every n. Following the same line of reasoning,
every ordinal up to λ is good, and considering that all ordinals less than λ+

are coded as subsets of λ, and therefore in Vλ+1, every ordinal up to λ+ is
good.

On the other side, non-good ordinals exist. The definition of good ordi-
nal is restricted to ordinals strictly less than ΘL(Vλ+1) because larger ones are
trivially not good: if x is definable with a parameter, then it is uniquely deter-
mined by its definition, therefore for any α there exists in L(Vλ+1), π : Vλ+1 �
Gα = {x ∈ Lα(Vλ+1) : Lα(Vλ+1) � x is definable from an element in Vλ+1};
then if ΘL(Vλ+1) ⊆ Lα(Vλ+1), Gα must be strictly contained in Lα(Vλ+1), by
definition of ΘL(Vλ+1). But non-good ordinals exist also below ΘL(Vλ+1): de-
fine Lγ(Vλ+1) as the collapse of the Skolem closure of Vλ+1 in L

ΘL(Vλ+1)(Vλ+1);
as L

ΘL(Vλ+1)(Vλ+1) � ∃x x not definable from an element in Vλ+1, by elemen-
tarity the same must be true in Lγ(Vλ+1), as the collapse does not collapse
Vλ+1, therefore γ is not good.

One can ask how many good ordinals there are.

Lemma 5.3 ([13]). Let λ be a strong limit cardinal. Then the good ordinals
are unbounded in ΘL(Vλ+1).
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Therefore assuming α good is in most cases a reasonable choice.
By the usual condensation argument, if α < ΘL(Vλ+1) and i : Lα(Vλ+1)→

Lα(Vλ+1) then i ∈ L
ΘL(Vλ+1)(Vλ+1). If α is good, however, it is possible to be

much more precise:

Lemma 5.4 ([13]). Let λ and α be such that α is good and there exists
i : Lα(Vλ+1) ≺ Lα(Vλ+1) with crt(i) < λ. Then i is induced by i � Vλ, and
therefore i ∈ Lα+1(Vλ+1).

Lemma 5.5 (Woodin). Let λ be a cardinal. If there exists j : L
ΘL(Vλ+1)(Vλ+1) ≺

L
ΘL(Vλ+1)(Vλ+1), then for any α < ΘL(Vλ+1) there exists an i : Lα(Vλ+1) ≺

Lα(Vλ+1).

Proof. Suppose it is false. Then there is a counterexample α such that every
i : Lα(Vλ+1)→ Lα(Vλ+1) is not an elementary embedding. All such i’s are in
L

ΘL(Vλ+1)(Vλ+1) (see remark before Lemma 5.4), therefore L
ΘL(Vλ+1)(Vλ+1) �

∃α (α is a counterexample). Let α0 be the least counterexample. Then α0 is
definable in L

ΘL(Vλ+1)(Vλ+1) and j(α0) = α0. Then j � Lα0(Vλ+1) is as in the
lemma, contradiction.

The previous lemmas suffice to prove a more general version of Theorem
4.7:

Theorem 5.6. Suppose that there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) =
κ0 < λ and that generic absoluteness holds at α+1, with α good and such that
α = j0,ω(β) for some β. Then there exists a generic extension that satisfies

∃i : Lβ(Vκ0+1) ≺ Lβ(Vκ0+1) + 2κ0 = (2κ0)V .

Proof. The key point is that by Lemma 5.5 there exists i : Lα(Vλ+1) ≺
Lα(Vλ+1) and by Lemma 5.4, i ∈ Lα+1(Vλ+1), therefore

Lα+1(Vλ+1) � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1).

Let (2κ0)V = η. Using the same notation as in the proof of Theorem 4.4,
by the elementarity of j0,ω, Mω � there exists a bijection between P(λ) and
j0,ω(η), and this is true also in Mω[〈κn : n ∈ ω〉]. By generic absoluteness at
α + 1 there exists an elementary embedding

π : Lα+1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ≺ Lα+1(Vλ+1).

Note that π(α) = α, as α is definable in both models. Since

Lα+1(Vλ+1) � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1),
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Lα+1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1),

and therefore

Mω[〈κn : n ∈ ω〉] � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1) ∧ 2λ = j0,ω(η).

This means that

Mω � ∃p ∈ j0,ω(P) p  ∃i : Lα̌(Vλ̌+1) ≺ Lα̌(Vλ̌+1) ∧ 2λ̌ = j0,ω(η̌)

and by the elementarity of j0,ω

L(Vλ+1) � ∃p ∈ P p  ∃i : Lβ̌(Vκ̌0+1) ≺ Lβ̌(Vκ̌0+1) ∧ 2κ̌0 = η̌

and this proves the theorem.

Corollary 5.7. Suppose I0(λ). Let E be an Easton function such that E � λ
is definable over Vλ and let α < λ. Then there exists j : L(Vλ+1) ≺ L(Vλ+1)
with α < crt(j) < λ and a generic extension in which

∃i : Lα(Vcrt(j)) ≺ Lα(Vcrt(j)) + 2crt(j) = E(crt(j))

holds.

Proof. By Theorem 3.2, we can start with a generic extension in which 2κ =
E(κ) for any κ regular. Fix a j that witnesses I0(λ) and such that crt(j) is
bigger than α. Then j(α) = α and j0,ω(α) = α. Since generic absoluteness
holds below λ and α is good, by Theorem 5.6 the corollary holds.

Theorem 4.3 states that generic absoluteness holds for α less than λ,
therefore this is the bound for Theorem 5.6 for now. Even if a generalization
of generic absoluteness could be proved, there would still be questions to
answer. Let I0(λ) and I1(λ) be the the corresponding hypotheses with fixed
λ. While we used I0 for the consistency strength of ∃λ I1(λ) + the failure of
GCH at λ, it is not known whether this is optimal.

Question 1. Does Con(ZFC+ I1) imply Con(ZFC+ ∃λ (I1(λ)∧ 2λ > λ+))?

Theorem 4.7 is limited also in a further direction: in the theorem the
behaviour at λ of the power function is controlled by the Easton function on
the regular cardinals below it. But this seems not a necessary condition, as
in Theorem 3.11 λ is in fact the first cardinal at which GCH fails. Therefore
we can ask:

Question 2. Is ZFC + ∃λ (I1(λ) ∧ 2λ > λ+ ∧ ∀κ < λ 2κ = κ+) consistent?
If so, what is its consistency strength?
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Another way to improve the results in this paper would be to approach
the consistency of I0(λ) + the failure of GCH at λ.

Question 3. Is ZFC + ∃λ (I0(λ) ∧ 2λ > λ+) consistent? If so, what is its
consistency strength?

There is a result of Woodin that indicates a direction for a solution for
Question 3 and can be seen as a corollary to Theorem 5.6:

Corollary 5.8 (Woodin). Suppose that generic absoluteness holds at any
α < ΘL(Vλ+1). Then

Con(ZFC + ∃λ(I0(λ) + 2λ large)).

Sketch of proof. As generic absoluteness holds for any α < ΘL(Vλ+1), for any
such α,

π−1(j � Lα(Vλ+1)) : (Lα(Vλ+1))Mω [〈κi:i∈ω〉] ≺ (Lα(Vλ+1))Mω [〈κi:i∈ω〉],

and therefore j∗ =
⋃
α<ΘL(Vλ+1) π

−1(j � Lα(Vλ+1)) is an elementary embed-

ding from (L
ΘL(Vλ+1)(Vλ+1))Mω [〈κi:i∈ω〉] to itself. Define Uj∗ as in Lemma 2.2.

Then the ultrapower of (L(Vλ+1))Mω [〈κi:i∈ω〉] is well-founded, and this proves
I0 in Mω[〈κi : i ∈ ω〉]. As with Theorem 5.6, it is possible to make 2λ large
in Mω[〈κi : i ∈ ω〉], and because of the elementarity of j0,ω the corollary is
proved.

The consistency strength of such hypothesis is not yet known. A different
road would be to extend generic absoluteness in another direction. In [18]
Woodin introduced new hypotheses even stronger than I0, and it would be
natural to prove an analog of Theorem 4.3 in that setting as a strategy for
answering Question 3 affirmatively. However this seems difficult and therefore
Question 3 remains a compelling challenge.
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