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Abstract Let M be a fine structural mouse. Let D be a fully backgrounded
L[E]-construction computed inside an iterable coarse premouse S. We describe
a process comparing M with D, through forming iteration trees on M and on
S. We then prove that this process succeeds.
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1 Introduction

Let M be a fine structural mouse. Let D = (N,),, ., be a fully backgrounded
L[E]-construction ! computed inside an iterable coarse premouse S. In certain
situations, one would like to compare M with D, carrying along the universe
S. For example, one might want to form an iteration tree 7 on M, with last
model M’, and an iteration tree U on S, also with a last model, such that
either i¥(Ny) < M’ or M’ = NéM(D) for some «. (Here T is fine, as in [2,
Chap. 5], and U is coarse, as in [1].) We give details of such a comparison here,
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making fairly minimal assumptions about the L[E]-construction. This sort of
comparison is used (without explanation of the details) in [4]. 2 3

Notation & Definitions: Given a transitive structure M, we use both ord™
and ord(M) for ord N M. Likewise for other classes of M. See [1] for the def-
inition of coarse premouse, and [5] for premouse. Let M be a premouse and
let a < ord™ be a limit. We write M|a for the P such that ord” = « and
P < M, and we write M||a for its passive counterpart. We write FM for the
active extender of M, EM for the extender sequence of M, not including F™,
and EY for EM =~ F™. We write lh for length, and v(F) denotes the natu-
ral length of an extender F. We say M is typical iff condensation holds for
the proper segments (i.e., proper initial segments) of M, and [3, 4.11, 4.12,
4.15] hold for M and its proper segments. (These properties are consequences
of (0,wy,w; + 1)-iterability.) Given a squashed premouse N, we write N""54
for the unsquash of N; if N is a premouse, we let N'""*1 = N. Given an it-
eration tree T of successor length 6 + 1, we write b7 for [0,6]7 and Z7 for
M/ . Given an extender E*, we write p(E*) for the strength of E*, i.e. the
largest p such that V, C Ult(V,E*). Let R be a coarse premouse and U a
putative iteration tree on R. We say U is strictly strength increasing iff for
every a +1 < B+ 1 < Ih(U) we have pMe (EY) < pM5 (EY); U is nonover-
lapping iff for every a + 1 < lh(U), U—pred(a + 1) is the least v < a such
that crit(EY) < p(EY) for all § € [y, a); U is normal iff it is strictly strength
increasing and nonoverlapping. Given an iteration tree 7, we write 7~ P for
an extension of 7 consisting only of padding P = (0,0,...); here Ih(P) is de-
termined by context. We consider ) as the trivial extender, with Ult(V,0) =V
and ig = id. We write v()) = p(0) = occ.

2 Main result

Definition 2.1 (Construction). Suppose V = (|V|,§) is a coarse premouse.*

Let € R. We say C is an L[E, z|-construction iff:

(a) C = (Na, E%) <, is a sequence of z-premice N, and extenders E} € Vs
(possibly EX =10);
(b) No = Ji(x);
(c) For limit n < A, N,; is the lim inf of (IV,)
(d) Let o < A. Either
(i) Nat1 = J1(€u(Na)); or
(ii) N, is passive, Ngy1 is active with Not1 = (N, F) for some F, and
Flv(F)CE},,.

y<n’

2 See the proofs of Corollary 14.3 and Theorem 16.1 of [4].

3 A related problem is that of comparing (the outputs of) two L[E]-constructions C*,CY,
computed inside coarsely iterable universes R, S, through forming coarse iteration trees
on R, S. This problem presents somewhat different challenges, and will be dealt with in a
separate paper.

4 We don’t assume V' |= ZFC here; we're just working inside some coarse premouse.
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Let C = (Ng, E}),_,<, be an L[E, z]-construction. Given a + 1 < X such
that N = Ny is active, F = FY and E* = E}_,, we associate an ex-
tender F,, = E* | 8 where 8 is least such that § > v(F) and p(E* |
B) > min(p(E*),v(F)). Then in fact, p(E* | 8) = min(p(E*),v(F)). (We
have v(F) < 1h(E*) since F'[v(F) C E*.)

We say C is (e) strongly reasonable, (f) reasonable, (g) normal iff for all
a < A\ if N = N, is active then

(e) Strong reasonableness: For all k < v(FN), if N |=“k is inaccessible” then
K< p(Eoi)-

(f) Reasonableness: Let X\ be the largest limit cardinal of N, let n = (AT)Y
and k < v(FY). Suppose  is measurable in U = Ult(V, E},_ ;) and for
every & < n there are E', N’ € U such that U E“F’ is an extender with
crit(E’) = k7, N’ is an active premouse, ordV > &, either N 9 N or
N'||n = Nln, and FN" [y(FN") C E'. Then & < p(E%_;).

(g) Normality: (i) E1 € H|v,|41, where p = p(E;;); (ii) For all x such that
v(FNet1) < i < p(E%. ), we have Ult(V, EX ;) E“ is not measurable”.

Remark 2.2. The reasonableness of C is roughly what we need to prove that
the comparison to be defined succeeds (it will be used to show that the coarse
tree U that we build does not move fine-structural generators); the definition
is extracted from the proof. The assumption is probably not optimal, but
it seems hard to get by with much less. In typical applications, an L[E, |-
construction is strongly reasonable or more; the proof that the comparison
succeeds simplifies a little under this extra assumption (but only in one spot).

Remark 2.3. Given an active N = No11 and £ = E}, || asin 2.1, we have a
canonical factor embedding j : Ult(N, FV) — ig- (), which is Yp-elementary,
preserves cardinals, and crit(j) > v(FY) and j o iy = ip- | N. Using j, it’s
easy to see that if C is strongly reasonable then it is reasonable.

Remark 2.4. Our main theorem, 2.9, is used in the proofs of [4, 14.3, 16.1].
Given a real z, part (b) of the conclusion of the theorem can be used to ensure
that for each limit A < Ih(7), (z,7 | A) is (class) extender algebra generic
over M (T [ A). This is used in the proof of [4, 16.1]. The first author wishes
to thank Nam Trang for pointing out to him that the version of the theorem
given in an earlier draft of the paper, which omitted (b), was insufficient for
the proof of [4, 16.1]. In the construction of 7 and U, if one omits the use of
extenders included specifically for the purposes of establishing (b), then one
still obtains trees satisfying (a) and (c). The next two definitions relate to part

(b).

Definition 2.5. A pair (7,U) of padded iteration trees is neat iff we have: (a)
Ih(7) =1h(U); (b) T is on a premouse and is normal; (c) Let A < 1h(7) be a
limit. Then either 7 [ A is cofinally non-padded (i.e. EJ # {) for cofinally many
a < A) or U [\ is cofinally non-padded. If both are cofinally non-padded then
S(TTA)=3d8UTA). In any case, let §5 denote §(7 [A) or §(U | A), whichever is
defined. Then for all limits v < A < 1h(7) we have 6, < dy.
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Assume (7,U) is neat. The neat code for (T,U) is the set of triples (i, d, )
such that for some limit A < 1h(7) we have § = d) and either (i) ¢ =0, T [ A
is cofinally non-padded and for some « € [0, \)7 such that EZ; # (), we have
v =1h(E7T); or (ii) i = 1 and U | X is cofinally non-padded and ~ € [0, \).

Definition 2.6. Let M be a premouse, let o < ordM7 Y Cordand Z C ord?.
We say that M is (Y, Z)-valid at o iff either o is not a cardinal in M, or for
all E € B}, if o = v(E) and M|[Ih(E) =0 is inaccessible” then ¥ C ¢ and
(Y, Z N o3) satisfies all extender algebra® axioms in M|lh(E) induced by E.
We say that M is (Y, Z)-valid iff M is (Y, Z)-valid at o for every o < ord™.

Definition 2.7. A coarse iteration tree U is normalizable iff it is nonoverlap-
ping and for each v + 1 < 1h(T), M] |=“E] € My, |41 where p = p(ET)”.

The key property of a normalizable tree is the following:

Proposition 2.8. Let i/ be a normalizable putative tree on a coarse premouse
R. Then there is a unique normal padded putative tree U’ on R such that
Ih(U") = 1h(U), and for each o + 1 < 1h(U):

o BY #0iff p(EY) < p(EY) for all B+ 1 € (a+ 1,1h(T)),

o if EY' + () then EY = EY,

e for all limits A < 1h(lf), if U’ has non-padded stages cofinally in A, then
[0, \r = [0, A]us-

Proof. Omitted. O

Theorem 2.9 (Main Theorem). Let M,S € H,+ and z € RN S. Let
m,n < w.

Suppose M is an m-sound, typical®, normally (m,v™ + 1)-iterable (fine)
x-premouse. Let Xy be an (m, vt + 1)-iteration strategy for M.

Suppose S = (|S],8%) is a (vT + 1)-iterable coarse premouse.” Let Xg be
a (vt + 1)-iteration strategy for S. Let A < §° and let D = (N,)_., € S be
such that S =D is a reasonable L[E, z]-construction”. B

Let A C vt with A bounded in vt.

Then there is a padded m-maximal normal iteration tree 7 on M, via Xy,
and a padded iteration tree U on S, via Xg, both of successor length < v,
such that:

(a) Either:
(i) iM(€u(Na)) QI7; or
i“(D)

(ii) b7 does not drop in model or degree and Z7 = €&,,(N, ') for some
a <HU(A).

5 Here we mean the “S-generator” extender algebra. That is, for each € o< there is a
corresponding atomic formula ¢,

6 Typical is defined at the end of §1.

7 Tt’s not particularly important that S be a coarse premouse. We just need that iteration
maps on S are sufficiently elementary, for iteration trees using extenders in V/f and its
images.



Comparison of fine structural mice via coarse iteration* 5

(b) (T,U) is neat. Let B be the neat code for (7,U).
(i) If (€, (N4)) <Z7 or [b drops in model and (€, (N,)) = Z7] then
let P =i“(¢,(N4)) and p = pf.
(ii) I Z7 = Cn(Ni ™) for some a < #M(A) then let P =Z7 and p = pE.
(iii) Let & = min(m,n). If b does not drop in model and Z7 = ¥ (€;(N,))
then let P =77 and p = pr.
Let 7 = (p™)".® Then P|r is (A, B)-valid.
(c) Let C* = i (D) for v < Ih(Uf). We may take U to satisfy condition (i)
below; alternatively (ii) below. (But maybe not (i) and (ii) simultaneously.)
(i) U is nonoverlapping, and for each a + 1 < lh(U), if EY # ) then
MY E“There is y 4+ 1 < if (A) such that N = Nf?:l is active and
EY = Fii,7; or
(ii) For each a+1 < 1h(U), if EY # () then MY |=“There is v+ 1 < A such
that N = Nf?j:l is active, and EY = E3.,”, and moreover, if S =D is
normal” then ¢/ is normalizable.

It seems we can’t strengthen (c)(ii) by replacing “normalizable” with “nor-
mal”, since the extraction of a normal tree /' from a normalizable tree U can
change the model of origin for a given extender (e.g. we can have Eg,l = FY
for some o/ < a, and MY = MY % MY), so (c)(ii) might fail for ¢’ even if
it held for U. Also, conclusion (b) becomes somewhat unclear if we replace U
with U’ (at least, with regard to the genericity of the code for U").

Proof (Theorem 2.9). We will first produce an m-maximal normal tree 7 on
M, via Ypq, and a tree U on S, via Y, each of successor length < vT, such
that:

(a’) Either:
(i) (Na) QI7; or
(ii) b7 does not drop in model and Z7 = NQM(D) for some o < ¥ (A).

(b") (T,U) is neat. Let B be the neat code for (7,U). If (a’)(i) holds let P =
i(N,); otherwise let P = Z7. Then P is (A, B)-valid.

(¢") U satisfies 2.9(c)(i) (alternatively, at our will, 2.9(c)(ii)).

We will then find ¢ < 1h(7) such that 7 [ e+ 1 and U | € + 1 satisfy the
requirements of 2.9.

To construct 7, we will define a sequence 7 = (T) < ¢ of padded normal
trees on M, and will set 7 = T¢. The trees T® approximate initial segments
of T; we will have Ih(7%) = a + 1. We simultaneously construct T and U ,
recursively through ordinal stages 5 < (. The process is much like standard
comparison, but is also significantly different.

When beginning stage 8 we will have already built ¢ [ § and T [ 6. We will
then define U | f + 1 and 7. For limit 3, the trees T | 8 will be defined such
that the sequence converges to a padded tree 7 < of length 8 with (T <%,U | B)
neat; we then apply our iteration strategies to obtain 772 and U [ 8 4+ 1. We

8 Here if p = ord® or p is the largest cardinal of P then (pT)F denotes ord? . In particular,
if n =0 and P is type 3 then (o) = ord?, not ord(€o(P)).
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will show that for limit 3, 7% < 7 for all a > B. (Applying this to the
largest limit 8’ < «, it follows that (T%,U [a+1) is neat.) At successor stages
a+ 1, we will choose extenders EY € MY and E = ET"" € {0} UE, (M),
such that either EY # () = E or EY = () # E. If E # () then we will have
Ih(E) > 1h(F) for all extenders F used in 7%, and we set 7ot =T~ (E),
with 721 —pred(a+ 1), etc, determined by m-maximality. In this case we are
making a tentative decision to use E in the final tree 7T this decision may be
tentatively retracted later. If E = () then we will set 7ot = T (y+1) " P,
where v +1 < 1h(7%) and P = (0,0,...) consists of only padding. Here if
v+ 1 < 1h(T*%), we will have E’ = Ez—a # (), and we are tentatively retracting
the use of £’ from the final T; we may later change our mind about E’ again.
No such retractions occur in the construction of U. Regarding padding, if
EY =0 we set U—pred(ar+1) = a and ¥ , | = id. If EY # () then we will

ensure that ngpred(aJrl) # () also. Likewise for trees in T.

We will simultaneously define various other objects in order to guide our
selection of the extenders used in building 7_;, U, and in order to prove that the
comparison succeeds.

We now begin the construction. We set 79 and U | 1 to be the trivial trees
on M and S respectively.

Now consider stage o + 1. We are given trees 7% and U [ o + 1, with last
models M and MY respectively. Define M® = MJ" R* = MY, C* =
ifl (D), A% = if (A) and N§ = N§".

We will analyse M and (R, C%). This will culminate in either a proof that
our comparison has already succeeded (i.e., T* U [a+1 are as in (a’)-(¢’)), or
else in a selection of extenders EZ;Q+1 , EY_ chosen by finding the earliest roots
of disagreement between M“ and C%, or the first extenders we reach that, if
ignored, could be an obstacle to validity. The analysis is related to resurrection
(see [2, §12]). We will in fact define the analysis a little more generally. After
this, we will explain how we determine &/ —pred(c« + 1) and any retraction of
extenders required to form 7t1.

Definition 2.10 ((Y, Z)-descent). Let M be an a-premouse. Let R = (| R, )
be a coarse premouse with o € R. Let I' < § and let C = (Ny), <y € R be
such that R =“C is a reasonable L[E,x]-construction”. Let Y, Z C ord. The
(Y, Z)-descent of (M, (R,C)) is a quadruple (c,d, e, ), defined as follows.

We will first define k < w and ¢ = (v, &, i, 0i) ;<) With v;, &, p; € ord
for all i < k, 0; € ord for i < k, and 0 € ord U {1}. We will also say “Oj is
undefined” to mean “f; = 1”.°

We will have k > 0. Let vg = ord™ and & =1T1.

Suppose that for some ¢ < w, we have determined that £ > i, and have
defined ~; < ord™ and & < I.

Let p; be the largest ordinal p such that (x), holds, where (), asserts:

9 Usually 0, € ord. If in the descent of (M, (R™,C%)) we get 6;, = f then we will show
that the comparison has already been successful, i.e. 7% U | a+ 1 are as required. Moreover,
this is the only manner in which the comparison can terminate.
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(i) p < i Mord(Ne,);

(if) M|p= Ne,|p;

ii) if p < 4; then p is a cardinal of M|~;;
)
)

—

i
iv) if p < ord(Ng,) then g is a cardinal of Ng,;
(v) M|pis (Y, Z)-valid.

Note p; is well defined, as (x)¢ holds, and if p is a limit of ordinals g’ such
that (x), holds then both M|u, N¢, | are passive, and (x),, holds.

Let (}); be the statement “u; = min(~y;, ord(Ng,))”.

Suppose (t); holds. Then we set k = ¢, stop the analysis, and do not define
0. Note that here if v, < ord(Ng,) then pp = v is a cardinal of Ng, and
M v, < Ng,,, so M|y, is passive. Likewise if ord(Ne, ) < 7.

Now suppose (f); fails. So p; is a cardinal of M|v; and of Ng,. Let 6; be
the sup of all ordinals 6 + w such that § € v; N Ng, and M6 = Ng,|d and M|d
projects to u; and is (Y, Z)-valid at p;.

We consider two cases. In the following if y; is the largest cardinal of M|v;
then (p; )M denotes v; = ord™i and likewise for Ng,.

Case 1. Either (i) 6; = (u;)M = (uf)Ne:, or (i) M|0; = Ng,|0; is not
(Y, Z)-valid.
Then let k = i; we have finished defining c.

Case 2. Otherwise.
Then we will have k > i; we have not yet finished defining c.

If 9, < (uj)M‘W then let ;41 < ~; be least such that 6; < 7,41 and
pM|’Yi+1
w

= Hi-
If 0; = (7)™ then let ;11 = ;.
If 0; < (u)Nei then let g < Ng, be least such that Ng,|0; < ¢ and p? = pu;,
and let {11 < & be such that €, (Ne,,,) = €o(q).
If 91 = (uj)Nﬁl then let §i+1 = gz

Suppose Case 2 attains at stage i. Then:

(Yitr1, &ir1) <tex (74, &i)-

0; < viy1 < and MH@Z - Nfi b; = N§i+1||9i'

Either 6; is a cardinal of M|vy;41 or 6; = 7,41, and either 6; is a cardinal
of N¢,,, or 0; = ord(Ng,,,). The latter follows from the universality of
standard parameters and condensation of the models of C.

M < it

Suppose i = i1 Then Miv1 < min('yiJrl,ord(Nng)), (T)iJrl fails, 9i+1 =
0;, and k =i+ 1, but Case 1(ii) fails at stage ¢ + 1. (If Case 1(ii) attained
at stage 7 + 1 then it would in fact attain at stage i, by universality.)

—~
o T o
~

—~
@
~— —

There must be a stage ¢ at which Case 1 attains, by (a) above. This defines
k and c. We next define d and e.

Let p (& resp.) be the set of all p such that for some i < k, p = p; and
Yig1 < Vi (&i41 < & resp.). For such p,i with p € p, let v, = ;11 and P, =
M|y, (so pu(P,) = p). For such o = p,i with o € &, let &, = &1, Qo = N,
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and ¢, be such that €y(q,) = €, (Q,). Note that gU G = {uo,..., -1}
Finally, let Py = M, Qo = N, and let gy be undefined.

Let d = <7P’PP>pe{o}uﬁv e = (qg,fg,QU)Ue{o}Ua and 0 = 0. This com-
pletes the definition of descent.

Remark 2.11. We continue with the same notation. Let p € g and ¢ € &.
We claim that P, # g,. For suppose P, = ¢,. Let P = P,. Then p = p = 0.
We have i < k such that p = p,. Also, 6; = (p™)F < ord”. But P < P; and
P < @;. Therefore P is not (Y, Z)-valid at p, so P|6; is not (Y, Z)-valid. But
then k = i, contradiction.

Remark 2.12. Suppose (1) fails.

We have P, = M|y, and Qi = Ne,. We have M||0, = Q||0x and this
model is (Y, Z)-valid. Note that either M |0y is active or Q|0 is active.

Suppose that M |0, = Qy|0k. Let P = M|0. Then P is not (Y, Z)-valid. For
otherwise, by Case 1(i), we have (x)g, , so uxr > 0, contradiction. So P is type
3, and pu, is a limit cardinal of P, and of ). Moreover, we claim that P = N¢
for some &. For suppose P <@y, and let £ be such that €, (Ng) = €(P). Then
ol = i, and the core embedding €o(P) — €o(N¢) is in fact the identity.
So if P # N¢ then by the initial segment condition, P € N¢, but then by
universality, P € P, contradiction.

Now suppose that Case 1(i) attains at stage k. Then if M |0y, is active then
O = vk, and if Q|0 is active then 0, = ord(Qy).

So in any case, Q|0 = N¢ for some &. (If Qx|0) is passive then this is
because py, is a cardinal of Q = Ng, and Q|0 is a limit of levels projecting
to ix.)

We now proceed with the construction. Let B be the neat code for (T, U |
a + 1). Consider the (A, B)-descent of (M, (R,C)) = (M®*, (R*,C?%)); we use
notation as in 2.10.

Suppose that (1) fails. Then the comparison has not yet succeeded. We
will specify Egaﬂ and EY. Exactly one of these extenders will be non-empty,
with EY # () if it’s reasonable. This helps to organize the analysis. 1°

Let B = FMlox and F = FNal% If E # () = F then set ET""' = E and
EY = (). Otherwise F # (); in this case set ET" =0 (even if E # 0), let &
be such that Ng, |0 = N¢ (see 2.12) and set EY to be either E* = (Eg)(c or
F* = (FE*)C, depending on what properties we want for Y. For 2.9(c)(i) we
use F*; for 2.9(c)(ii) we use E*. In all cases also define FY = F.

If EY # () then set «—pred(a + 1) to be the least v < o such that EY # ()
and for all § € [y, ), crit(EY) < p(EY) and crit(EY) < v(F¥). Note that if
we are following the prescription for 2.9(c)(i), then we always have p(EY) <
v(FY), so U will be non-overlapping. If R =“C is normal” and we are following

10" We might have organized the comparison such that if both M |6} and N¢, |0y are active,
then EIQH = FMI0: and FY = 18 (or EY = ng) However, then we may get M0, <
igu (N, ). If this occurs and M0y # N¢, |0 we would want to retract our use of FMI0y

when defining 7®*2. This is one motivation to wait longer before using an extender in T.
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the prescription for 2.9(c)(ii), then E* = EY is such that E* € Hjy, .. |41,
and for any B8 < q, if crit(EY) < p(EY) for all § € [B, ), we automatically
have crit(EY) < v(FJ'). So in this case, U will be normalizable.!

If ET""" # 0 then we set 7o+ = 7o~ <EZ—Q+1>; normality and m-

maximality determine the remaining structure of 7+1.

Suppose EY # 0, so Eg;a+1 = (). Suppose there is v + 1 < 1Th(7*) such
that E,Z’a # (), and M“||1h(E,Z—a) A zgg (Ng,.). Let v be the least such. We set
Tt = (T2 | (y+1)) " P, where P = (D,0,...) is only padding, such that
Th(7et) = a + 2. If there is no such v + 1 we set 7Tt =T (().

This completes stage o + 1 of the comparison, given that (1) fails.

Remark 2.13. Suppose now that ()x holds. We set ¢ = «a, and claim that
the comparison has succeeded, i.e. that 7 = 7¢ and U = U | ¢ + 1 satisfy (a’)-
(¢’). We have either M|y, < N¢, or Ne, < M|yg. First observe that either
e = o = ord™ or & = & = I'. Suppose not, so k > 0 and v, < ord™ and
§r < I'. By 2.10(e), pi—1 < e, 80 pu(M|ry) < pue and po,(Ne,) < pe- But e
is a cardinal of both models. Therefore M|y, = Ng¢,, so p = po,(M|v,) € pNG
and M|y, = P, = q,, contradicting 2.11.

If M|y, < Ne, then pg, =i (by (1)x) so M|y is a cardinal proper segment
of Ng,. This gives that M|y, = N¢ for some § < &, and pyh’“ =Yk = Y0,
so in fact M = N¢, and b7 does not drop in model or degree. This completes
the proof in this case. So assume N¢, < M|y If & = & we are done, and
this follows if N¢, < M|y, as in the previous case. So we are left with the
case that & < & and Ng, = M|y, = M. We must prove that b7 does not
drop in model. We will do this later, because to do so, and to prove that the
comparison terminates, we first need to analyse the comparison in detail.

This completes stage a 4+ 1 of the comparison.
Given (T%),,, n alimit, let T<"=limg_, T That is, Ih(7<") = n and

for all v < n, ET™" = limy_,, ET". (Note that the sequence <ETB>
v <mn, Ej S BT ( q T ) seriim

is of the form £ =P, where & = (E, E,...) is constant with F # () (possibly
1h(€) = 0), and P = (0,0, ...) (possibly Ih(P) = 0).) We may have that T<"
is eventually only padding, but note that in this case, U | n is cofinally non-
padded. Finally, let 77 =T<"" X (T<M and U [n+1=UIn" XsU|n).

This completes the definition of the comparison.

We now work toward a proof that the comparison succeeds. For this we
need to establish some agreement conditions, by induction through 1h(7_", U).
First we establish some notation.

Fix o < Ih(7,U). With notation as in the definition of the descent of
(M (R*,C*)), let ¢® = ¢, v =i, (1)% = (1), etc. Also let v, (1)* denote

Yo s (1) s ete. If ()@ fails and the stage a descent terminates through Case

1 If R |=“C is not normal” and we are aiming for 2.9(c)(ii), then the clause “and crit(EY) <
V(Fg’)” in the definition of &/ —pred(a+ 1) might prevent U from being nonoverlapping, but
it is needed for our proof to work.
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1(ii), let P> denote P*|0*. Otherwise let P> denote P“. Define Q¢ similarly,
and also let £ be the ¢ such that QF = N¢'. So if (1)* fails then p® < 0> =
(L)) = ((u*) )9 | and P|[0> = Q||0*. Let A* be the largest A < u®
such that A is a limit of cardinals of P* (equivalently, of Q%, P%, or Q%).

Let n < lh(’f, U) be a limit. When 7 <" is cofinally non-padded, let M (’71[
1) denote M (T <"); otherwise, let M (T | 7) denote M;r"|5, where § = §(U |
n).12 (These coincide when 7 <" and U |7 are both cofinally non-padded.)

If the comparison runs to stage v™ + 1, then we stop it there, producing
TV U (v +1); in this case set ¢ = v. Otherwise we stop at the first stage
¢+ 1 < vt such that (1)¢ holds, producing final trees 7¢,U [ (¢ + 1).

Before beginning the analysis we make a couple more observations.

Remark 2.14. Suppose E&THI # (). We have lh(E&TE“) = 6, and the stage
¢ descent does not terminate through Case 1(ii). Therefore §° = ~°. Let N =
Me¢. Then 6° = ord™ iff 5 = 0. Suppose = # 0, so k. > 0. Let ° = {5, <
o<}, with i, < ke (If g € p° then p® = pj__;.) Then (Ag,..., A\n) =
(Vi 4157, 41) s the 7f ,;-model-dropdown sequence for N below ord™.
That is, \g = an+1 and A\;1p is the least A > \; such that A < ord™ and
N|X N|X;
Pu < Pw
each j <n.
Similar remarks apply when EY # (), but things can be a little different,
as it is possible for the stage ¢ descent to terminate through Case 1(ii).

, with n as large as possible. Moreover, pf = pw(N|’yfj+1) for

Remark 2.15. We will prove that U does not move fine structural generators.
That is, if a+1 <y f+1 then v(FY) < crit(EY ). The proof of this depends on
other properties of U, to be established inductively, by Claim 1 below. However,
if R E“C is strongly reasonable” then we can prove the fact right now; the
more general case is an elaboration of this argument. Suppose otherwise. For
simplicity, we assume U has no padding. Let 5+1 < Ih(i) be least such that for
some a + 1 <y f+1, we have k = crit(EY) < v(FY). Let v = U—pred( +1).
We claim that v is a successor. For otherwise we have o + 1 as above with
a+1 <y 7. By minimality of 8+1, v(FY) < crit(Fg’,) forall 5/+1 € (a+1,7)y.
This implies v(FY) < p(EY) and v(FY) < v(F¥) for all § € [a + 1,7). But
then U—pred(8 + 1) < =, contradiction. So let v + 1 = 7. By minimality
of B+ 1, we have k < v(FY). Since U—pred(B8 + 1) > a, p(EY) < k. We
claim that (x) Q% =“k is inaccessible”. But then since MY |=“C* is strongly
reasonable”, k < p(EY), contradiction.

So we prove (x). We have k < p(EY) for all § € [a+ 1,/), so k is mea-

u
surable in MY, |, and therefore inaccessible in ¢, (Q%|n) = ng‘} (QY|w),
where p = crit(EY) and e = U—pred(a + 1). Moreover, p is a cardinal

u
of Q%, so k is inaccessible in U’ = zgjg} (QY). But therefore r is inaccessi-

ble in U = Ulto(Q%, FY), since k < v(FY) and using the factor embedding
j:U — U’ (see 2.3). Therefore k is inaccessible in Q¢, as required.

12 This might involve a slight abuse of notation, as § need not be determined by T ['n
alone.
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The following claim lists various facts about the comparison, particularly
how different stages are related. Most of our work will be in giving its statement
and proof. It is proved by induction on ¢. Probably the most central fact is

(2).
Claim 1. For all 1 < ¢ +1 = Ih(T,U):

(1) Suppose n < a < ¢, 1 is a limit, and either « is a limit or & < ¢. Then
Th=T*n+1and (T Ua+ 1) is neat. Let B* denote the neat code
for (T*,U | a+1). Then B* C (A* 4 1)3. For all oy < ag < ¢ we have
B = B (A +1)3.

(2) Let a, 8 <, let p € p* and o € 3. Then Py # q°.

(3) Let o < 8 < v. Then:

(i) Suppose a < B. Then A* < M\ the models P®, P% Q% Q° agree
strictly below ((A*)F)P* = ((A*)*)9%, and A is a limit cardinal of
each of these models.

(ii) 7 agrees with 77 in terms of use and indexing of extenders E such
that 1h(E) < A\*. That is, 7% v+ 1= T? v+ 1 where v is least such
that either v = « or Ez—a # () and \* < 1h(Ez—a); and if v € [a, 8) and
ET" # 0 then X* < Ih(E]").

(iii) If o +w < ¢ then there is n < w such that A% < A7,

(4) Suppose a < B <t and E = EI” # (). Then:

(i) 7+ N1h(E) = 7°+! N1h(E) and e+ [1h(E) = e®

(i) 1n(E) < u°

(iii) p” N1h(E) =0

(iv) M?|[In(E) <« P? and M*||Ih(E) < Q7 and Ih(E) is a cardinal of P?. If

Ih(E) = ord(Q%) then 8 = a+1 and (1)°.

(v) If FY # 0 then E[v(E) € FY.

(5) Suppose a« < < f+1<iand E = Ezﬁ # (. If E is retracted at stage
B+1,ie. Eg;ﬂ+1 = (), then E is the last non-empty extender used in 77,
Ih(E) = uf = V(Fé’), A =M\ and 8 < a+w.

(6) Suppose o <¢¢ 8 < ¢ and k = crit(i¥ 5) < co. Then el Ik = i g I K),
and for all p € 7* Nk, qg =q,.

(7) Suppose x + 1 < ¢ and E)Lj # (. Let a = U—pred(x + 1), k = crit(Ef(’) and
p =max({0} U (d* N k)). Then:

(i) & < ord(Q3)

(i) x < A% and Q%, @, QX agree through x, which is a limit cardinal of
these models.

(iii) Ef(’ does not move fine structural generators. That is, given any y+1 <y

X + 1 such that EY # (), we have v(FY) < crit(EY).

u
Let p’ be the largest cardinal p” of N = zgjgf (QX) such that p” < pX. Let
X

0 = ((/)*)?*. Then:
(iv) N|o" = Qx||¢".
(v) Suppose p/ < pX. Then F)%’ is type 1 or type 3 and ' = pX.
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u
(vi) Q;“H and N agree through igﬁxﬂ(/ﬁ) = z{\E{E (), a cardinal of these
models,
(vii) A < g/ < pXtand g/ is a cardinal of QX*! and of QX*,
(viii) g/ < min(é¥* N [k, 00)),
(ix) The models QXT', QX+, QxT, @ agree strictly below 6.

(8) Suppose x+1 < v and EY # (. We use the notation of (7) and let u = pX. If
there is no retraction at stage x+1, i.e. if TX*1 = TX7 (()), then let 5 = x.
If there is retraction, let S = -, where E,T * is the retracted extender. So
MXFE = M5,

(i) P Ny =57 N’ and PY = P) for all p' € {0} U (2 N ).
(ii) Let p’ = max({0} U (pXT1 N /). Then p' is a cardinal of P;f"'l.

(9) Suppose n < ¢ is a limit such that U | n is eventually only padding. So
M%’ = limg, Mg’ Let 6 = 6(7 I'n). Let (¢,d, e,0) be the (A, B7)-descent
of (M(T ), (MY,C")). Let & = (T In). Then:

(i) If v < B < nare such that U [n =U[(y+1) " P, then ¥ C €.
(il) e = e™ for all sufficiently large oo < 7. Let o < n be such that U [n =
Ul (a+1)" P and e* =e. Let p = max({0} UG*). Then T<"[[a,n) is
given by the standard comparison of the phalanx ¢(7%) with Qy = Q5.
(iii) 0 is a limit of cardinals of Q5.
(10) Assume the hypotheses and notation of (9) and also that n < ¢. Then:
(i) e’ =e, 50 Q1 = Q%;
(i) g7 N6 = 0; ’ ’
(iii) ¢ is a limit of cardinals of M, Q}, Q", these models agree through 6,
and § < \7;
(iv) If 6 = min(ord(Q5), ord(M™)) then ().
(11) Suppose n < ¢ is a limit and U |7 is cofinally non-padded. Let

7<= J & nerit(i¥,). (1)
E<un
Then there is ¢ <y 1 such that #<7 = 7 N crit(ig{n). Let &€ be such, let
p=max({0}UF<") and 6 = 6(U [n). Then M(T [n) = i?’n(Qg)M and 4§ is
a limit of cardinals of ZZW(QIE)
(12) Assume the hypotheses of (11) and also that n < ¢. Fix §,&, p as there.
Then:
(i) d"Ndé=<"and e"]d = i?m(eg [ k) where & = crit(i¥ ).
(ii) 6 < ord(Q}), ¢ is a limit of cardinals of Q] and 6 < A". If § = ord(Q})
then (1)".
(iii) QU[6 = Q1|6 = M(T In) = liminf, <, Q7.
(iv) Suppose T <" is cofinally non-padded. Then ¢ is a limit of cardinals of
M7 and g7 N = 0. If 6 = ord(M™") then (})".
(v) Suppose T<" is eventually only padding. Then there is 7 < n such
that: 7<7 = 77 " P (so M" = M), d? | A7 = d" | ¢, and letting
p' =max({0} U (9" N A7)), 0 is a limit of cardinals of P, = P} and of
P, Moreover, M(T 1) < PJ.If 6 =), then (1)".
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Proof. We proceed by induction on ¢. We write, for example, “(3i)(¢ < 5)” for
(3i) for values of ¢ < 5.

Case 1. 1 <1

For ¢ = 0 the claim is trivial. For ¢« = 1 the only non-trivial item is (2), which
follows 2.11.

Case 2. 1 =x+2

We must prove (1) for a = x + 1, (2) for max(«, 8) = x + 1, (3),(4),(6) for
B=x+1,(5) for +1=x+1,and (7),(8) for x + 1.

(71),(7ii): We have that  is a limit cardinal of MY and Q*,Q% € MY,
and r < v(FY) < ord(Q2), so £ < A%, and by choice of p, Q*|x = Q%|x and
x < ord(Q5). Applying (3i) to a, x, we get that Qs = QX|x and & is a limit
of cardinals of QX; in fact £ < ord(QY) since x = crit(FY).

(7iii): Let v 4+ 1 <y o with EY # 0. Suppose that x = crit(EY) < v(FY).

By (7iii)(¢ = x + 1) and part of 2.15, we may assume v + 1 = «, and
p(EY) < k. This will lead to a contradiction with the reasonableness of C7 in

We need to establish the hypotheses on x given in 2.1(f). We will first
establish the appropriate facts about U = Ult(M,%’,E,LY’), and then if E,LY’ =+
E* = (Eg;,)@, deduce them about U’ = Ult(MY, E*).

As in 2.15, k is measurable in MY, | and so in Ult(MY, EY). Let £ < n =
(ONHL By Bi)(e = x+ 1), Q¥|ln = Q7|ln = QY||n and N7 is a limit
cardinal of QY. If \7 = Z/(Fi/{) let F' = F;’ and E = E;’ [AY.IENY < V(F;Z{)
then there is ¢ < 1 such that £ < ¢ and F' = Fg [¢+ 1is non-type Z. Then F'
and F = E;’ ¢ + 1 are both generated by A7 U {¢}. Moreover, by the initial
segment condition, there is § with F' = FQ1% . Moreover, letting N = QX|9,
either N <Q”||n or N|ln=Q"|n.

Now we claim that N, E € Ult(My,Fy) and F is an extender there. If
k<X leti=1;if K =\ let i = 2. Then (N, E) is coded by an element of

MY vy Ult(MY, E“)
V/\VL < VXY:YFz = Vm+z (2)

To see line (2), suppose first i = 1. Then for every § € [y,x), A7 < X0 <
v(F§), and F§' [ v(F§) C EY, so igu(crit(Ef')) > X7. This gives (2) in this
case. If ¢ = 2 then A7 < ipu (crit(Eu)) for every such J, which suffices. Now
in either case, Vi1 (MY, ;) = Vi1 (MY), so E is an extender in MY, | and in
Ult(MY, FX), as required.

Finally, suppose E* # E,LY’ . So we are following the prescription for 2.9(c)(i),
and E,ﬁ{ = E* |8 for some 8 > V(F”) So we have a fully elementary j : U —
U' = Ult(MY, E*) with crit(j) > . So j(x) = £ and & is measurable in U’.

Moreover, fixing &, N, E as above, N’ = j(N) and E’ = j(E) witness 2.1(f)
with respect to &.
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Now since M,%’ E4“C" is reasonable”, we have that K < p(E*), so k <
p(EY), contradiction.

u
(7iv),(7v): et i = ipgs and j : Ulto(QY, FY) — N = i(QX) the factor map.
X
Now pX is the largest cardinal of QX, so is a cardinal of Ultg(QX, Fg) So if
crit(j) > lh(Fi’) or pX is a limit cardinal of Q¥ then y/ = pX, and condensation
(and that QX < QX) gives (7iv). Suppose crit(j) = pX is a successor cardinal
of @QX. Then QY = QX and pX is not a cardinal of N, so u/ < pX and p’ is the
largest cardinal of N which is < pX. Since crit(j) > v(FY), FY is either type
1 or type 3. Moreover, QX||ord(QX) = Ulord(QX) and U|uX = N||uX, so u is
the largest cardinal of QX which is < pX, so pX = ((u/)H)?* =¢'.

(5): Assume B+1 = x+1 and o < x is such that E = ET" # () is retracted
at stage x + 1, ie. BT = 0. We use (4)( = y + 1). By (4ii), Ih(E) < pX.
By (7iv), with N as there, MX||uX = N||pX. But N|h(E) # M®|lh(E) =
MX|Ih(E), since E is being retracted. So Ih(E) = pX and N|uX is active. By
(7iv), p/ < pX, so p® = 1/, and by (4ii), F is the last extender used in 7X. By
(7v), ' = v(FY).

The fact that AX = A* follows by (4iv) and since pX = 1h(F). By (3iii)(+ =
x) this implies y < o + w.

(1): We may assume that « = x + 1 and 7 is the largest limit < y. Let
§ = 6(T" I 5). Then § < A7 < AX by (12ii),(10iii),(3)(c = x + 1). So the
property follows from (5).

(6): We may assume 3 = x + 1 and o = U —pred(x + 1).

It suffices to prove () &X' Nk = 3 Nk and for all p € &L Nk,
§/>J<+i1: iZ’XH(—ia)l; and let_‘fying v < x be such thiirz‘xﬂ - ’ZY ~ P, we have
MXT = M7, p Nk =p" Nk, and for all p € g Nk, X =77,

Since k < pX, by (5) and (3i)(v = x + 1): ignoring padding, either TXT! =
TX or TXtL™ (E) = TX for some E such that x < Ih(E); and k < A7, A%, and
Pk = QX|k = Q%|k and k is a cardinal of P7, @X and Q. Therefore also
MXTk = MX|k = QX|k. Moreover, by (1), BXT!, BX, B* and B have the
same intersection with x3, and QX|x is (A, BX)-valid.

Since r < ord(P?), for all p € p7, we have k < 7). Now by (2)(t = x + 1),
for all p € p7 NG“, P # g. This will give the claim, by induction through
(d, €)Xt | k. That is, we have PXT' = P and &1 = il 1 (€5). Since
K= crit(E% ), aﬁ'l and Qf agree below x, and have the same cardinals below
k. Assume (uo, ..., ;) = (6*UpY) Nk # 0; the contrary case is simpler. Note
that pg < k is a cardinal in both Pg‘“ and Qé‘“. If pp € pY\&® then Qé‘“,
R, @QX, PX and P agree beyond their common value p* for uar, and Q%|u* is
(A, B¥)-valid, but P, <Py and P} projects to . So pStt = pg e pxrh\gxt!

and X = X =], and X = I g € @\ it’s similar, noting
that g5 < Qf|r because & is a cardinal of MY, so qijjl =qp,- lfpo € p" N

then use that P # g . Now iterate this argument through to f;, resulting

in 'y;.‘:ll = vy where p = max({0} U (p” N x)), and f;‘:‘ll =Y 1 (€y) where
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o =max({0} U (*Nk)). Then Pj)fllm =QX|k = 3(:11|/£, and £ is a cardinal
of both Pj)fl nd Q]+1 ,80 Kk < uﬁfll This proves (x).

(7vi): This follows from the fact that QX*' =¥ ., (Q%) (just shown), and
that Q% |k = Q¥|k, and & is a cardinal of QX and of Q5.

(7vii)-(7ix); (8): By (7iv),(7vi), we have that 4/ is a cardinal of QX' and
QX0 = QX[|¢" (this gives part of (7ix)). We proved, in the argument for
(6), that (8i) holds with “s” replacing “u’”. If there is no retraction things are
easier; assume otherwise, so v < x, and by (5), Ih(E) = uX where F = E,Z’X,
and p? = p/ < pX = 0. Let p) = max({0} U (p7 N u')). So E is active
on P/ < PJ and y is a cardinal of P), (which will give (8ii)). Moreover,
PJ[Ih(E) is a cardinal segment of QX, so PJ|[pX = QX*!|uX (which will
give (7ix)). Also, BX*1 = BX and QX|uX is (A, BX)-valid. Now an induction
through (d,e)X*! | 1’ like for (6) gives (8i) and (7viii), and the observations
above give (8ii) and (7vii),(7ix).

(4i): Assume o = x for non-triviality. An argument like for (6) works, using
the facts: BXT! = BX; and EY = 0, so MY, = MY and Cx*! = CX; and
E=E]"" #0,0X =1h(E) is a cardinal of N = MX+1, and N|6X = QX|0X is
passive.

(4ii)-(4iv): If @ = x, use (4i) and the facts above. Suppose o < x. If

ET"" # 0 then h(E]™") > Ih(E), and (4)(c = x + 1) implies the result.
Suppose instead EY # . By (4ii)(t = x + 1), Ih(E ) puX. By (7), defining
i, p as there, ' < pXt QX' = QX|y and y' is a cardinal of QXT!
and QX. Let N = Mx*+L, Slnce TXF! uses F, 1h(E) is a cardinal of N. By
(4iv)(t = x + 1), N|Ih(E) <« Q¥ and 1h(F) is a cardinal of QX. If Ih(E) < p’
this suffices. Assume p/ < lIh(E) = pX. Since F was not retracted, by (7),
QXtIh(E) = N[Ih(E), these are passive, but since y/ < Ih(E), Ih(E) is not a

x+1
cardinal of QX*!. Therefore p/ € GXT1\pX*! and ((1/) )% =1h(E) € qffﬂ,
which gives the result.

/\v

(4v): This follows from (4iv) and the initial segment condition.

(3): For (3i) we may assume o = yx; use (4ii),(4iv) and (7vii),(7ix). For
(3ii) we may assume a = x. If E = EZXH # () then TXTL = 7X~ (E) and
M < 1h(E). If E is an extender retracted at x 4+ 1 then by (5), \X < 1h(E).
Part (3iii) is trivial by induction.

(2): Suppose otherwise We may assume max(a, ) = X—i—l By 2.11, a # 5.
Let P = P2 = g2. We have p = pl = 0. Let (T*), (T”)’ be the non-padded
trees equlvalent to T, TP, We claim that (T%) = (T?) | v+ 1 for some
v+ 1 <1h((T?)), and in fact v is least such that (p*)F < 1h(E( 7 ) < ord”.

To see this, first note that P < M“, and (7%)" is m-maximal and via 3,
and by (4iii), Ih(E) < p for each E used by (7®), and P|p < Z(T")". Now (T*)’
is the unique non-padded tree satisfying these conditions. But since ¢, = P,
MPB||(p™)F = P||(pT)F, so (T*) < (TP, and for any E # () used by T#
but not by 7%, we have (p*) < 1h(FE). Now let us show that (77)" # (T,

and letting v be least such that F = E(T )" is not used in (T*), we have
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Ih(E) < ord” Suppose otherwise. Then PaMP = PP and letting i < kg
be least such that [LZ = p, we have v > (pT)P, but then P« Pﬁ (if g <
then either Pﬁ = Pﬁ or pw(Pﬁ) <y ) But P = qp Qﬁ and Hﬁ (pH)F.
Therefore P is not (A, B?)-valid. So ks = i, contradiction.

Now let v be least such that p < 1h(E7Tﬁ). Then p € p7 and P) = P. This
is by similar reasoning to that in the previous paragraph.

So we may assume’y =a< f=x+1 Nowsuppose U [ x +2 =U|
(v+1)"P,so MY, , = MY. By (4i) and (9),(10)(c = x+1), 67 = 6XT' NIh(E),
and §X+1 &y for all p € UV But p < Ih(F) and if p € &7 then qy # P), but
gX*tt = P, contradiction. So EY # () for some € € (v, x]. Let € be least such
that v < e, EY # 0, e+1 <y x+1, and let § = U —pred(e+1). So either § <
or 6 =/, where v/ > ~ is least such that E,LY’, £ (). Now k = crit(i%fxﬂ) < p,
by(6)and()( = x+1). Also p < Ih(E) < pf < v(FY). Soif e < x
then p < crit(i¥, x+1) by (7iii), so p € 77! and ¢5™' = ¢X*!, contradicting
(2)(t =x+1). So e = x. So by (7), smcef<5<pamdpéax‘”1 we have p > 1/,
where 1/ is defined as there. But p < Ih(E) < pX, so p = ¢/ < pX. Now let
¢ = max({0}U&°Nk). Then by (7), QXH ig X+1(Q6 ) and q,’j“dQZ‘,H, and

u ’
s0 QX aN' = z{\E{E (QY). But P} = ¢X*', and E is on E4 (P}), and so on EV".

Therefore E should have been retracted and not used in 7XT!, contradiction.
It is particularly in order to deal with the preceding situation that we use
retraction of extenders.

Case 3. ¢ is a limit 7.

We must prove (3iii)(¢ = a + w) and (1),(9),(11)(¢ = n).

(1): We omit the proof.

(3iii): Let 6 = 6(7 [+ w). Then 4 is a limit of limit cardinals of M(7 |
a+w), since either 7<%t or U | a+w, is cofinally non-padded, and in the case
that 7<% is eventually only padding, if v <y a + w and k = crit(i¥ S otw)s
then £ < A7 is a limit cardinal of MY and Q7, and so by (3i)(1 < n), Q7|x <

M(71 @ +w) and & is a limit cardinal there. Now, A% < A7 < o+ for
all n < w, by (3i). Now suppose U | « + w is cofinally non-padded. Then for
every x € [a,a + w) such that EY # (), we have A* < lh(FY). Since MY, is
wellfounded, there is such a x < a +w with \* < crit(Fﬁ’) < AX. It’s similar
if 7<2*t“ is cofinally non-padded.

(9): This follows (4),(9),(10)(¢ < n) and (1)(« = 7). Prove (9i) first; the
others follow. (Note any descent has finite length.)

(11): This follows (6),(31)(¢ < 7).

Case 4. + =n+1 for a limit 7.

We must prove (3),(4),(6) with 8 = 7, (2) with max(a,8) = 7, and
(10),(12).

(10): Let « be as in (9ii). Then 6 is a limit of cardinals of M7, and of
Qy = Q7 since Ih(FE) is a cardinal of Q® for each extender F used by T <",
by (4)(¢ = n) and (9). Moreover, M"|6 = Q%|§ by (9). This gives the result.



Comparison of fine structural mice via coarse iteration* 17

(12): We assume that 7 <" is eventually only padding as the contrary case is
easier. However, there still may be cofinally many o < n such that E(Zaﬂ # 0.
We prove most of (12v) and omit the rest. Let o be least such that 7<7 =
T<"1(y+1)"P. Let Ay be the set of all 3 € [yp,7) such that 77 = 77~
Then Ay is cofinal in 7. Let N = M. For each f € Ay, M? = N. For
B1 < Po with 1,82 € Ay we have d®t | M1 = dP | A%2. This follows by
induction on Bs, using (8i),(31),(12v)(¢ < 1) (note (12v) applies at every limit
7 € (v0,n) as T<" = T7 ~P). So there is v € Ag such that 77 N AP C \7
for all B € Ao N [y,n). But § = supz_, A?, by (3i),(3iii). It follows that v is as
required. Now use an argument like that for (6); we omit the details.

(2): Suppose P = qg. By the argument for (2) in the “c = x 4+ 2” case, we
may assume « < = 7, and that argument shows that T uses some extender
E such that p < Ih(E). Therefore p < 8(T ). But then by (10i),(12i), ¢7 = ¢§
for some § <. So P = qp, contradicting (2)(¢ = max(a + 1,£ + 1)).

(3),(4),(6): We om1t the proof.

This completes the proof of Claim 1.

We can now show that the construction works.

Claim 2. The comparison terminates at some stage ¢ < 67,

Proof. Suppose not. Then we reach 7 = 79" and U = U [0+ + 1. Since M, S
have cardinality < 6T, both 7 [ 6% and U | 6T are cofinally non-padded. Let
7 be some large ordinal and 7 : H — V), elementary with H transitive, H of
cardinality 6, crit(r) > 0, and T [ (07 +1),U, etc, in range(r). Let x = crit(r).
As usual, izm and i%,% both exist, have critical point s, send x to 61, and
agree over M N MY. Let a+ 1 € (x,0%]7 be such that crit(E7) = s and let
B+1 € (k,07 |y be such that crit(E%’) = k. Since 7 is normal and since U does
not move fine structural generators, by Claim 1(7iii), the extenders £ and
E” are compatible over P(x) N M N MY, through v = min(v(E]), v(Fg),
i1,0t) 2 v(F§).

For all v € [k,0%] we have P(k) N M;] = P(k) N M and P(k) N MY =
P(k)NMY. Also, letting ' > k be least such that E, # (), we have M, = M,T
and Ih(ET) > (+M)M7. So P(k) N MT C MT|[Ih(ET) = Q~'||60% € MY, so
P(k)NM] C MY.

Let Q = M(T [07). So Q, M, M all compute the same value for s+
and agree strictly below that point. Also E7 ¢ Q. By Claim 1(6) we have that
Qg“ = i%’BH(Q;), where p = max({0} U (7" N k)). Also, Q = ’L'Z9+(QH|H)
which, again by Claim 1(6), implies that p = max({0}U (57! ﬂcmt(zﬁJrl 0+))-
Since crit (% U511.0+) 2 V(Fﬁ”), we have Q|1/(Fé’) = Q5+1|I/(Fé/{) and Q||1/(F”)
Qv (Fu) In particular, Q[|(x7)?” = Q#|(k7)?”. However, we might have
(k)2 < (k).

Since F” [V(Fé/{) C Eﬁ, the compatibility of ET with E” implies that
if v(ET) § V(F ) then ET | v(E]) C Fu, and if V(Fu) § v(ET) then

and crit(i¥
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FY 1 v(FY) € E]. But maybe v(FY) < (v%)%, in which case F§' is not total
over Q.

Subclaim 1. v(ET) > V(FBM) and o > f.

Proof. Suppose v(E]) < v(FY). Then (kH)Ma < w(ET) < v(FY) and ET |
v(ET) is a proper, non-type Z initial segment of Fg’. So EI ¢ i%ﬁH(Qz),
by Claim 1(7vi). But crit(iYf,, o) > v(FY), so crit(iYf,, y) > h(E]), so
ET € Q, contradiction.

Now a # B by construction. If a < S then by Claim 1(4ii), v(E]) <
Ih(ET) < v(F Bu ), a contradiction, which proves the subclaim.

So v = v(FY). Let N = M7 [In(E]) = M*|Ih(E]).

Subclaim 2. Either (a) F§ € EY or else (b) F§ is either type 1 or type 3, N|v

is active and Flgl c EUE(NI[E])

Proof. We know that F,g{ v C ET.Soif (k*)¥ < v then the desired conclusion
follows the initial segment condition.

Suppose v < (k1)%. Then FBu is type 1. For otherwise, v = (f{“)Qﬁ < v,
s0 7 is a cardinal of Q47! contradicting that (fiJr)Qf€+1 = (k7)9. So F¥ is a
partial normal measure derived from E/, inducing the type 1 premouse R =
Q" such that v = (k7)® < (k*)N and R|v = N||v. We now use [3, 4.11, 4.12,
4.15] to yield the conclusion of the subclaim.'3 Since M is typical, these apply
to N. However, if N|v is active with a type 3 extender, then we must verify that
3, 4.15] applies; that is, we must verify that R||ord™ = Ult(N||v, EY)||ord".
Well, 7% and T use the same extenders E such that 1h(E) < v. However,
N|v is active while M”|v is not, so T¥ uses EYY. Moreover, v is the largest
cardinal of R, and R||ord® = M?#||ord®. Therefore 77 uses no extenders E
such that v < Ih(E) < ord®™ and M?|jord®™® = Ult(N||v,EN)||ord™. So [3, 4.15]
applies.

This completes the proof of the subclaim.

Subclaim 3. Fg{ ¢ E (MP).
Proof. Suppose Fé{ € B, (M#). Then P?|0° = Mﬁ|lh(Fg’) = QP|0” is active,
but, (1)? fails, so by 2.12, M?[In(F}) is not (A, B?)-valid. But A is bounded in

K. So F| z? induces an extender algebra axiom which is not satisfied by (A, B?),
which gives a contradiction as usual, proving the subclaim.

Subclaim 4. TP uses FB”

13 Tt seems one might try to deduce [3, 4.11, 4.12, 4.15] from the n = 0 condensation
given in [2, pp.87,88]. That is, let E = Effv be the type 1 initial segment of E7. Using a
restriction of the factor map j : Ulto(Q|v, FQ) — Ulto(N|(k1T)N, E), we get a Yo-elementary
71 Q — Ny, with crit(r) = v and 7(v) = (k7). Moreover, py’ < v. However, m need not
be X'i-elementary, even for formulas without parameters, so m might not even be a weak
0-embedding (for instance, if F = F @ is the least partial measure derived from E such that
F is on EV). So the n = 0 condensation of [2, pp.87,88] does not apply.
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Proof. Suppose Subclaim 2(a) holds. Then 7 and 77 use the same extenders
E such that Ih(E) < Ih(F§). Since F € EY but FYf ¢ Ey(M?), T? uses FY.
If Subclaim 2(b) holds it is similar but there are §y < §; < S such that
T7° _jN pT° — pu 7% _
B =E), Ef =F§, and Ef =0 for all § € (do,d1).
This completes the proof of the subclaim.
But Subclaim 4 contradicts Claim 1(4ii) at stage § + 1, proving Claim 2.

By Claim 2 we have ¢ < 6% such that (1)¢ holds. Let T =T and U = U |
¢+ 1L

Claim 3. Either b7 does not drop in model or i(N,) < Z7.

Proof. We first relate cores of models on 7 to the structures arising in the
comparison.

Subclaim. Let a+1 < Ih(T#) and let e = TP —pred(a+1). Let s = crit(E]").
If k < min(5®) then 77 does not drop in model at o + 1 (here min(f})) = o).
If min(p®) < & then Mo’jff = P5 where p = max(p° N (k + 1)).

Proof. This follows 2.14.

Now suppose the claim fails. So b7 drops in model, and by 2.13, we may
assume that Z7 = M¢ = QS and & < 53. Let ¢ < 1h(7) be such that
CL(ZTYmsaa M7, Let p = po,(Z7). By the Subclaim, p € §° and €,(Z7) =
€o(P5). We have I7 = Q¢ = Q5 for some 0 € ¢ (since & < £5). So
Co(q5) = €u(QS) = €o(Pg). Therefore g5 = Pg, contradicting Claim 1(2),
and completing the proof of Claim 3.

We have shown that 7, U satisfy conditions (a’)-(c’). We now refine this to
complete the proof of 2.9:

Claim 4. Thereis e < ¢ such that (T [e+1,U |e+1) satisfies the requirements
of 2.9.

Proof. 1f iY(N,) <Z7 then Nfl is w-sound, and we just use ¢ = (. So assume
that Z7 = N for some o < AS. Let b = b7 . If b does not drop in model or
degree, again we use € = (. So assume that b drops in model or degree. We
have two cases to deal with: (i) either b drops in model or [ = A% and m > n];
(ii) otherwise.

We assume we are in case (ii), but the proof in case (i) is almost the
same. So b drops in degree but not in model, and (o, m) <jex (A%, n). Now
Cm(NS) = €u(Z7) = M for some v < In(T). Let v be least such and

~' greatest such (so v/ > « is least such that £ = Ezj # (). Let p = p,InT
and let 7 = (p+)MvT. Let § € ¢ = 0" be least such that either 7% . = id or

crit(i%ﬁc) > p. Let /3 be largest such that Mé’, = Mg’ Let € = max(vy, 5). We
will show that this works.

Since b does not drop in model and crit(i7 .) > p, we have Ih(E) > 7,
and if Ih(E) = 7 then E is type 2. Since type 2 extenders are not relevant to
validity, therefore MT |7 is (A, BY')-valid.

By choice of § and elementarity, M,Z’ = (N, 5,) for some o < AP.
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Subclaim. & = min(5’,7").

Proof. Since < 8’ and v < +/, we just have to rule out the possibility that
either 8 < ' <~yorvy <+ <p.

Suppose § < ' < . In particular, v # 0 and 1h(U) > ' + 1, so E%’, # 0.
Now p < crit(i ) < M by Claim 1(7ii), but because ' < v, Claim 1(3i)
gives that A% < p, (MI), contradiction.

Now suppose v < +' < B. Let £ > ~' be least such that Eg’ # () and
£+ 1€ c. Then £ > 7/ since E,Zj # (). Since 7 < 1h(E), therefore by Claim 1,
7 < I/(Fgu) < crit(z’?+17<). Sopf=&+1.Let o =U—pred(§ + 1), let j = ig’75+1
and let x = crit(j). Let n be such that N, = MT |k. Let i/ > 1 be least such
that either n' = oo or for some k, (1, k) <iex (A7,n) and pp11(N;,) < k. So
j(n') is defined similarly in Méﬂrl. Now MT||r = N§7H||T and pm(Nf;j_l) = p.
By Claim 1, and since E was never retracted after stage v/, j(M,Z-|Ii)|1h(E> =

T . . . . T
M [[Ih(E), and p is a caTrdmal in j(M] |K).

Suppose 7 = (p)? M~ 1% Then fol witnesses that j(n) # oo, son’ # oo.
But j(n') < o, because p ¢ range(j). Moreover, p,,(N7,) < r. But Né,ﬂm =
J(INS)|k, which leads to contradiction.

So T < (p+)j(MvT|”). But then the properties of fol, and that p is a
cardinal of j(M,Z—|I€), give that MI <]j(M,Z—|I€), contradicting the fact that
MIHIh(E) < j(Mﬂm) This proves the subclaim.

Now by the subclaim, B* = B?' N (p+ 1), so M |7 is (A, B)-valid, and
the claim, and properties 2.9(a),(b), follow.

This completes the proof of the theorem. O

We finish with one corollary to the foregoing proof, which answers a ques-
tion of Nam Trang and Martin Zeman. For simplicity we assume that m =
n = 0.

Corollary 2.16. Let M, etc, be as in the statement of 2.9, and assume m =
n = 0. Let 7,U be constructed as in its proof. Let { +1 = 1h(7) = lh(U). Let
S=M CM and D = z? (D). Let T, U be given by applying the same construction
to (M, (S,D)). Then 7 is the non-padded tree T’ equivalent to T and U is
only padding.

Proof. We adopt the notation of the proof of 2.9 regarding the construction
of T,U. Let M “, RO‘, etc, be the corresponding notation regarding the con-
struction of ’7A“,Z/Al Note that since m = n = 0, Claim 4 of the proof of 2.9 is
trivial and its proof does nothing.

Claim. For each o < Th(T"), T* =T’ [+ 1 and U [ a + 1 is pure padding.

Proof. The proof is by induction on «. Suppose it holds for «, and 1h(7") >
a+1. Let B be the neat code for (T,U). Let P =Z7 or P = i¥(NY), whichever
is smaller. Because P is (4, B)-valid, and because of the inductive hypothesis,
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and the fact that 7@ and 7 are coded (via their neat codes) in a manner that
ignores padding, the proof that T+l = 7'} o+ 2 will not break down due to
(A, Ba)-invalidity. (Since Ula+1is pure padding, this portion of B is also
not a problem.)

Now let v = Ih(ET"). Let 8 be such that E] = E7". Then d* = d° and
é* = ¢ [y and P* = PP, (Recall (+1 = Ih(7); see 2.10 for the definition of d?,
€S, etc.) This follows by an argument like in the proof of Claim 1(6), combined
with the above observations regarding validity, and using that M BT | |lh(Eg—) is

a cardinal segment of Z7 and Q¢ (by Claim 1(4)). Also, Q|4 is passive since
Q*|0~ < Q¢. So EI = ET’, as required.
The claim easily follows.

So we reach stage Agt, at which we have M¢ = M¢ and U [f—i— 1 is pure
padding. But then (1)¢ holds since ()¢ does. This completes the proof. O
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