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THE FAN THEOREM, ITS STRONG NEGATION, AND THE

DETERMINACY OF GAMES

WIM VELDMAN

Abstract. In the context of a weak formal theory called Basic Intuitionistic
Mathematics BIM, we study Brouwer’s Fan Theorem and a strong negation of
the Fan Theorem, Kleene’s Alternative (to the Fan Theorem). We prove that
the Fan Theorem is equivalent to contrapositions of a number of intuitionis-
tically accepted axioms of countable choice and that Kleene’s Alternative is
equivalent to strong negations of these statements. We discuss finite and in-

finite games and introduce a constructively useful notion of determinacy. We
prove that the Fan Theorem is equivalent to the Intuitionistic Determinacy
Theorem. This theorem says that every subset of Cantor space is, in our con-
structively meaningful sense, determinate. Kleene’s Alternative is equivalent
to a strong negation of a special case of this theorem. We also consider a
uniform intermediate value theorem and a compactness theorem for classical
propositional logic. The Fan Theorem is equivalent to each of these theorems
and Kleene’s Alternative is equivalent to strong negations of them. We end
with a note on ‘stronger’ Fan Theorems. The paper is a sequel to [43].

1. Introduction

1.1. Intuitionistic reverse mathematics. L.E.J. Brouwer did not present his
intuitionistic mathematics as a formal axiomatic theory. He did not like formalism
and formalization and anxiously maintained the distinction between a mathematical
proof and the linguistic expression that should help us to recover the proof but may
fail to do so. The challenge to develop formal theories coming close to Brouwer’s
intentions was taken up by A. Heyting, G. Gentzen, S.C. Kleene, G. Kreisel,
J. Myhill, A.S. Troelstra, and others.

Given a preferably weak formal basic theory Γ and a formal proof in Γ of a
statement T from some extra assumption A, one may ask: is there also a formal
proof in Γ of this extra assumption A from the statement T ? The study of such
questions, as far as they belong to the field of classical analysis or second-order
arithmetic, is called reverse mathematics, see [26]. The weak basic theory there is
RCA0.

1.2. The basic theory BIM. Our subject is intuitionistic reverse mathematics.
The weak basic theory we use is the two-sorted first-order intuitionistic the-

ory BIM (Basic Intuitionistic Mathematics), introduced in [43]. The domain of
discourse of BIM consists of two kinds of objects: natural numbers and infinite
sequences of natural numbers. The axioms express some basic assumptions like
the (full) principle of induction on the set ω of the natural numbers, and the fact
that the set ωω of the infinite sequences of natural numbers is closed under the
recursion-theoretic operations.

The reason that we use a basic theory different in spirit from the basic theory
used in classical reverse mathematics is that, in intuitionistic analysis, one prefers
the notion of an infinite sequence of natural numbers as a primitive notion above
the notion of a subset of the set of the natural numbers, see [43, Section 5].
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For the intuitionistic mathematician, the set ωω of all infinite sequences of nat-
ural numbers is not, as one sometimes says when explaining the notion of ‘set’ that
lies at the basis of classical set theory, the result of taking together the earlier con-
structed and completed items that are to be the ‘elements’ of the set. The set ωω is
a realm of possibilities: it is a framework for constructing, in the future, in all kinds
of possibly as yet unforeseen ways, the objects that will be called the elements of
the set. There are several kinds of infinite sequences α =

(

α(0), α(1), . . .
)

of natural
numbers. Sometimes, α is the result of executing a program, a finitely formulated
algorithm. It is also possible that α is the result of a more or less free step-by-step
construction that is not governed by a rule formulated at the start.

1.3. Two interpretations. The axioms of BIM hold for their intended interpre-
tation, the interpretation given to them by the intuitionistic mathematician. The
axioms of BIM also become true for her if she assumes that the elements of ωω are
just the Turing-computable functions from ω to ω. Turing-computable functions
may be represented by the natural number coding their program, and BIM may
be seen to be a conservative extension of first-order intuitionistic arithmetic HA,
Heyting arithmetic.

The model given by the computable functions thus is the second interpretation of
BIM. Our study of this model is a contribution to intuitionistic recursive analysis.

In the weak context given by BIM one may study the further assumptions of the
intuitionistic mathematician. They fall into three groups:

(1) Axioms of Countable Choice,
(2) Brouwer’s Continuity Principle and the Axioms of Continuous Choice, and
(3) Brouwer’s Thesis on bars in Baire space ωω and the Fan Theorem.

The intuitionistic mathematican is prepared to argue the plausibility of these as-
sumptions for her intended interpretation.

She defends the Axioms of Countable Choice, for instance, by explaining that
the functions promised by the axioms may be constructed step by step.

She has no argument for the truth of the further assumptions under the second
interpretation, where every function is assumed to be given by an algorithm. It is
not clear to her if the Axioms of Countable Choice then are true.

Brouwer’s Continuity Principle and its extensions, the Axioms of Continuous
Choice, certainly fail in the second interpretation.

The Thesis on bars in ωω was introduced by Brouwer for the sake of the Fan
Theorem. The Fan Theorem itself, dating from 1924, see [5], might be called the
Thesis on Bars in Cantor space C, see [39], [40], and [43, Subsection 2.3].

In 1950, see [11], Kleene saw that, in our second interpretation, also the Fan
Theorem, and, a fortiori, the Thesis on bars in ωω, do not hold. Actually, a
positively formulated strong negation of the Fan Theorem becomes true. In [43],
we called this statement Kleene’s Alternative (to the Fan Theorem).

1.4. Strong negations. The (strict) Fan Theorem, FT, see 2.2.4, is the statement:

∀α[BarC(Dα)→ ∃n[BarC(Dαn)]],

and Kleene’s Alternative (to the Fan Theorem), KA, see 2.2.8, is the statement

∃α[BarC(Dα) ∧ ∀n[¬BarC(Dαn)]].

We want to call KA the strong negation ¬!FT of FT. In general, if we decide to
call a statement B the strong negation of a statement A, B will be a statement
more positive than the negation of A that constructively implies the negation of
A. We do not require that the statement B is completely positive in the sense that
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the corresponding formula does not contain ¬ and→1. We do not introduce strong
negation as a syntactical operation on formulas. It is important to realize that,
once we have understood that statement A is equivalent to statement B, it may
be the case that statements C,D, which have been chosen to be called the strong
negations of A,B, respectively, fail to be equivalent.

If we have decided to call the formula (denoted by) B the strong negation of
the formula (denoted by) A, we will write B = ¬!A, but note that this notation
belongs to the meta-language of BIM. ¬! is neither a connective belonging to the
language of BIM nor a syntactical operation on formulas.

We shall prove a number of results of the form:

In BIM, A is equivalent to B and ¬!B is equivalent to ¬!A.

When we do so, we try to explain that the conclusions A→ B and ¬!B → ¬!A
have a common ground and that also the conclusions B → A and ¬!A→ ¬!B have
a common ground.

1.5. Contrapositions or reversals. We may compare Weak König’s Lemma,
WKL, see 2.2.12:

∀α[∀n[¬BarC(Dαn)]→ ∃γ ∈ C∀n[α(γn) = 0]].

with the (strict) Fan Theorem, FT:

∀α[BarC(Dα)→ ∃n[BarC(Dαn)]].

We like to say that WKL is a reversal or contraposition of FT and also that FT
is a reversal or contraposition of WKL.

We like to write: WKL =
←−
FT and FT =

←−−−−
WKL.

In general, if we call a statement B the contraposition or reversal
←−
A of a state-

ment A, both A and B will be largely positively formulated statements and the
classical mathematician would think A and B are equivalent, but, constructively,
A and B will have quite different meanings.

This is clear from the above example as FT is intuitionistically true (under our
first interpretation) and WKL is false (in both interpretations).

It may happen also that both A and B are intuitionistically true (at least under
the first interpretation), although they make different sense. An important example

of this phenomenon is given by Π0
1-ACω,2, see 4.7, and Σ0

1-
←−−−−
ACω,2, see 5.4 and

Lemma 5.3.
Note that Kleene’s Alternative (to the Fan Theorem), KA, might be called the

strong negation ¬!WKL of WKL as well as the strong negation ¬!FT of FT.
We do not claim that, given a statement A, there always is a unique candidate

for being called the contraposition of A. We do not introduce contraposition as a
syntactical operation on formulas and use the term only in certain specific cases. It
is important to realize that, once we have understood that statement A is equivalent
to statement B, it may be the case that statements C,D, which one would like to
call contrapositions of A,B, respectively, fail to be equivalent.

1.6. Non-intuitionistic assumptions. The reader may wonder why we pay at-
tention to statements that fail in both our models, like Weak König’s Lemma,
WKL, and Bishop’s Omniscience Principles, LPO, see 2.2.15, and LLPO, see
2.2.14. Doing so, however, we come to understand that certain other statements,
being equivalent, in BIM, to one of them, also do not make sense in either one of
our two interpretations.

1See, for instance, the sentences 7.3 and 7.5 and Subsection 9.3.
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1.7. Our aim. As in [42] and [43], it is our aim, in this paper, to find statements
that are, in BIM, equivalent to either FT or ¬!FT = KA.

1.8. The contents of the paper. Apart from this introduction, the paper con-
tains Sections 2-13.

Section 2 is divided into two Subsections. In Subsection 2.1 we introduce the
formal system BIM. Subsection 2.2 lists a number of assumptions one might study
in the context of BIM.

In Section 3 we prove that, in BIM, the Σ0
1-Separation Principle Σ0

1-Sep is
equivalent to WKL.

In Section 4 we formulate some special cases of the First Axiom of Choice ACω,ω,
among them Π0

1-ACω,2, the Π0
1-Axiom of Countable Binary Choice.

In Section 5 we introduce Σ0
1-
←−−−−
ACω,2, a contraposition of Π0

1-ACω,2, and we

prove: in BIM, Σ0
1-
←−−−−
ACω,2 is equivalent to FT, and a strong negation of Σ0

1-
←−−−−
ACω,2

is equivalent to ¬!FT = KA.
Section 5 thus shows that a contraposition of Π0

1-ACω,2 fails in our second
interpretation. This gives us no conclusion about the validity of Π0

1-ACω,2 itself
in our second interpretation.

In Section 6 we formulate some special cases of the Second Axiom Scheme of
Countable Choice ACω,ωω , among them Π0

1-ACω,C, the Π0
1-Axiom of Countable

Compact Choice.

In Section 7 we introduce Σ0
1-
←−−−−
ACω,C , a contraposition of Π0

1-ACω,C , and we

prove: in BIM, Σ0
1-
←−−−−
ACω,C is equivalent to FT, and a strong negation of Σ0

1-
←−−−−
ACω,C

is equivalent to ¬!FT.

In Section 8 we introduce Σ0
1-
←−−−−
AC2,C , a contraposition of a statement provable

in BIM, to wit, the Π0
1-“axiom” of Twofold Compact Choice.

We prove: in BIM + Π0
1-ACω,2, Σ

0
1-
←−−−−
AC2,C is equivalent to FT. There is no

companion result for ¬!FT.
In Section 9 we consider finite and infinite games. We explain in what sense we

want to call such games I-determinate or II-determinate. We see that Σ0
1-
←−−−−
ACω,2

can be read as the statement that certain 2-move games are I-determinate. We
prove: in BIM, FT is equivalent to the statement that every subset of Cantor space
C is (weakly) I-determinate, and ¬!FT is equivalent to the statement that there
exists an open subset of C that positively fails to be I-determinate.

In Section 10 we consider a Uniform Contrapositive Intermediate Value Theorem
←−−−−
UIVT and we prove: in BIM, FT is equivalent to

←−−−−
UIVT and ¬!FT is equivalent

to a strong negation of
←−−−−
UIVT.

In Section 11 we see that, if one formulates the compactness theorem for classical
propositional logic carefully and contrapositively, one obtains a statement that, in
BIM, is equivalent to FT. ¬!FT is equivalent to a strong negation of this statement.

In Section 12 we ask the reader’s attention for the Approximate-Fan Theorem
AppFT, a statement stronger than FT. We did so already in [43, Subsection 10.2],
see also [44]. AppFT is studied further in [44].

Section 13 contains a list of defined notions. This Section may be used as a
reference by the reader of the preceding Sections.

I thank the referees of earlier versions of this paper. Their thorough comments
and criticisms were very useful and led to numerous improvements. The last referee
deserves special mention. He wrote three very detailed reports and found many
points where I expressed myself wrongly or confusingly.

I also thank U. Kohlenbach for providing some references and for making me
repair a mistaken observation in Section 10.
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2. The formal system BIM

2.1. The basic axioms. BIM, introduced in [43, Section 6], has two kinds of
variables, numerical variables m,n, p, . . ., whose intended range is the set ω of the
natural numbers, and function variables α, β, γ, . . ., whose intended range is the set
ωω of all infinite sequences of natural numbers. There is a numerical constant 0.
There are five unary function constants: Id, a name for the identity function, 0, a
name for the zero function, S, a name for the successor function, and K, L, names
for the projection functions. There is one binary function symbol J , a name for the
pairing function on ω. From these symbols numerical terms are formed in the usual
way. The basic terms are the numerical variables and the numerical constant and
other terms are obtained from earlier constructed terms by the use of a function
symbol. The function constants Id , 0, S, K and L and the function variables are
the only function terms.

BIM has two equality symbols, =0 and =1. The first symbol may be placed
between numerical terms and the second one between function terms. When confu-
sion seems improbable we simply write = and not =0 or =1. The usual axioms for
equality are part of BIM. A basic formula is an equality between numerical terms
or an equality between function terms. A basic formula in the strict sense is an
equality between numerical terms. We obtain the formulas of the theory from the
basic formulas by using the connectives, the numerical quantifiers and the function
quantifiers.

The logic of the theory is intuitionistic logic.
Our first axiom is

Axiom 1 (Axiom of Extensionality).

∀α∀β[α =1 β ↔ ∀n[α(n) =0 β(n)]]

The Axiom of Extensionality guarantees that every formula will be provably
equivalent to a formula built up by means of connectives and quantifiers from basic
formulas in the strict sense.

The second axiom is the axiom on the unary function constants Id, 0, S, K,L,
and the binary function constant J .

Axiom 2.

∀n[Id(n) = n] ∧

∀n[¬(S(n) = 0)] ∧ ∀m∀n[S(m) = S(n)→ m = n] ∧

∀n[0(n) = 0] ∧

∀m∀n[K
(

J(m,n)
)

= m ∧ L
(

J(m,n)
)

= n ∧ J
(

K(n), L(n)
)

= n]

Thanks to the presence of the pairing function we may treat binary, ternary and
other non-unary operations on ω as unary functions. “α(m,n, p)”, for instance, will
be an abbreviation of “α

(

J(J(m,n), p)
)

”.
We also introduce the following notation: for each n, n′ := K(n) and n′′ := L(n),

and, for all m,n, (m,n) := J(m,n). The last part of Axiom 2 now reads as follows:
∀m∀n[(m,n)′ = m ∧ (m,n)′′ = n ∧ (n′, n′′) = n].

The next axiom2 asks for the closure of the set ωω under composition, pairing,
primitive recursion and unbounded search.

Axiom 3.

∀α∀β∃γ∀n[γ(n) = α
(

β(n)
)

] ∧

∀α∀β∃γ∀n[γ(n) =
(

α(n), β(n)
)

] ∧

2A referee made us see that this Axiom 3, as formulated in [43], is a little bit too weak.
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∀α∀β∃γ∀m∀n[γ(m, 0) = α(m) ∧ γ
(

m,S(n)
)

= β
(

m,n, γ(m,n)
)

] ∧

∀α[∀n∃m[α(n,m) = 0]→ ∃γ∀n[α
(

n, γ(n)
)

= 0]]

We also need the Axiom Scheme of Induction:

Axiom 4.

(P (0) ∧ ∀n[P (n)→ P
(

S(n)
)

])→ ∀n[P (n)]

Instances of this axiom scheme are obtained by substituting a formula
φ = φ(m0,m1, . . . ,mk−1, α0, α1, . . . , αl−1, n) for P and taking the universal closure
of the resulting formula. The reader should understand the further axiom schemes
we are to mention in this paper in the same way.

The axioms 1-4, together with the usual axioms for equality, define the system
BIM.

Note BIM has the full induction scheme whereas RCA0 has only Σ0
1-induction,

see [26, Definition II.1.5], a fact that is indicated by the suffix 0. We did not study
the possibility of restricting induction likewise and we do not answer the question
if our results might have been obtained in a system that probably should be called
BIM0.

We form a conservative extension of BIM by adding constants for all primitive
recursive functions and relations and making their defining equations into axioms.
Primitive recursive relations are present via their characteristic functions. ‘x < y’,
for instance, will be short for: ‘χ<(x, y) 6= 0’. Somewhat loosely, we also denote
this conservative extension of BIM by the acronym BIM although one might decide
to use the acronym BIM+, see [30].

BIM may be compared to the system H introduced in [9] and to the system
EL occurring in [29] and to the system IRA, proposed by J.R. Moschovakis and
G. Vafeiadou, see [22]. A precise proof of the fact that BIM and these systems are
essentially equivalent may be found in [30].

2.2. Possible further assumptions.

2.2.1. First Axiom Scheme of Countable Choice, ACω,ω(= AC0,0):

∀n∃m[R(n,m)]→ ∃γ∀n[R
(

n, γ(n)
)

].

The intuitionistic mathematician accepts ACω,ω. If ∀n∃m[R(n,m)], she builds
the promised γ step by step, first choosing γ(0) such that R

(

0, γ(0)
)

, then choosing

γ(1) such that R
(

1, γ(1)
)

, and so on. In her view, there is no need to give a finite
description or algorithm that determines the infinitely many values of γ at one
stroke.

2.2.2. Second Axiom Scheme of Countable Choice, ACω,ωω = AC0,1:

∀n∃γ[R(n, γ)]→ ∃γ∀n[R(n, γ↾n)].3

The intuitionistic mathematician accepts ACω,ωω . If ∀n∃γ[R(n, γ)], she first
starts a project for building γ↾0 with the property R(0, γ↾0) and determines γ↾0(0),
she then starts a project for building γ↾1 with the property R(1, γ↾1) and determines
γ↾1(0), and also, continuing the project started earlier, γ↾0(1), she then starts a
project for building γ↾2 with the property R(2, γ↾2) and determines γ↾2(0) and
also, continuing the projects started earlier, γ↾1(1) and γ↾0(2), . . ..

2.2.3. The Fan Theorem as an Axiom Scheme, FAN:

∀β[
(

Fan(β) ∧ BarFβ
(B)

)

→ ∃a[Da ⊆ B ∧ BarFβ
(Da)]].

3For the notation γ↾n see Subsection 13.4.
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2.2.4. The (strict) Fan Theorem, FT:

∀α[BarC(Dα)→ ∃m[BarC(Dαm)]], or, equivalently,

∀β[Explfan(β)→ ∀α[BarFβ
(Dα)→ ∃m[BarFβ

(Dαm)]]] or , equivalently ,

∀β[Explfan(β)→ ∀α[BarFβ
(Dα)→ ∃m∀γ ∈ Fβ∃n ≤ m[γn ∈ Dα]]].

Theorem 2.1. BIM ⊢ FT↔
∀α[

(

ThinbarC(Dα) ∧ Dα ⊆ Bin
)

→ ∃n∀m > n[m /∈ Dα]].

Proof. The proof is left to the reader. �

2.2.5. The strengthened (strict) Fan Theorem, FT+:

∀β[Fan(β)→ ∀α[BarFβ
(Dα)→ ∃m[BarFβ

(Dαm)]]] or , equivalently ,

∀β[Fan(β)→ ∀α[BarFβ
(Dα)→ ∃m∀γ ∈ Fβ∃n ≤ m[γn ∈ Dα]]].

Theorem 2.2. BIM ⊢ FT+ ↔
∀β[Fan(β)→ ∀α[

(

ThinbarFβ
(Dα) ∧ ∀s ∈ Dα[β(s) = 0]

)

→ ∃n∀m > n[m /∈ Dα]]].

Proof. The proof is left to the reader. �

Note: BIM + FAN ⊢ FT+.
In this paper, we restrict attention to FT. For the equivalence of the three

formulations of FT, see [43, Section 2.3, Theorem 9.6(ii) and Theorem 7.7(v)], and
also [28] and [29, vol. I, Chapter 4, Section 7.5]4.

In 4.5, we introduce Weak -Π0
1-ACω,ω, a special case of ACω,ω.

BIM+Weak -Π0
1-ACω,ω ⊢ FT→ FT+, see Theorem 4.2.

2.2.6. Brouwer’s Thesis: Bar Induction as an Axiom Scheme, BARIND:
(

Barωω (B) ∧ ∀s[s ∈ B → s ∈ C] ∧ ∀s[∀n[s ∗ 〈n〉 ∈ C]↔ s ∈ C]
)

→ 〈 〉 ∈ C.

Brouwer derived FAN from BARIND, see [43, Subsections 2.2 and 2.3]. We
repeat the proof, in order to prepare the reader for Theorem 12.4.

Theorem 2.3. BIM +BARIND ⊢ FAN.

Proof. Let β be given such that Fan(β) and β(〈 〉) = 0.5 Assume BarFβ
(B).

Define B′ := B ∪ {s | β(s) 6= 0}.
We claim: Barωω (B′). We prove this claim as follows. Let γ be given. Define

γ∗ such that, for each n, if β
(

γ(n + 1)
)

= 0, then γ∗(n) = γ(n), and, if not, then

γ∗(n) = µp[β(γn ∗ 〈p〉) = 0]. Note: γ∗ ∈ Fβ and find n such that γ∗n ∈ B. Either
γn = γ∗n and γn ∈ B or γn 6= γ∗n and β(γn) 6= 0. In both cases, γn ∈ B′.

We thus see: ∀γ∃n[γn ∈ B′], i.e. Barωω (B′).

Let C be the set of all s such that
either: β(s) 6= 0 or: β(s) = 0 and ∃a[Da ⊆ B ∧ BarFβ∩s(Da)].

For every s, if β(s) = 0 and s ∈ B, define a := 0s ∗ 〈1〉 and note: {s} = Da ⊆ B
and BarFβ∩s(Da). Conclude: B ⊆ C.

Now let s be given such that ∀m[s ∗ 〈m〉 ∈ C].
Find n such that ∀m ≥ n[β(s ∗ 〈m〉) 6= 0]. Find b in ωn such that
∀m < n[β(s ∗ 〈m〉) = 0→

(

Db(m) ⊆ B ∧ BarFβ∩s∗〈m〉(Db(m))
)

] and
∀m < n[β(s ∗ 〈m〉) 6= 0→ b(m) = 〈 〉].
Find a such that p := length(a) = maxm<n length

(

b(m)
)

and

∀t < p[a(t) 6= 0↔ ∃m < n[
(

b(m)
)

(t) 6= 0]].
Note: Da ⊆ B and BarFβ∩s(Da), and conclude: s ∈ C.

4At the latter two places, no attention is given to the rôle of Weak -Π0

1
-ACω,ω , see 4.5.

5If β(〈 〉) 6= 0, then Fβ = ∅ and there is nothing to prove.
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We thus see: ∀s[∀m[s ∗ 〈m〉 ∈ C]→ s ∈ C].
Obviously: ∀s∀m[s ∈ C → s ∗ 〈m〉 ∈ C].
Using BARIND, we conclude: 〈 〉 ∈ C, i.e. ∃a[Da ⊆ B ∧ BarFβ

(Da)]. �

2.2.7. Church’s Thesis, CT:

∃τ∃ψ∀α∃e∀n∃z[z = µi[τ(e, n, i) 6= 0] ∧ ψ(z) = α(n)].

Kleene has shown that CT is true in the model of BIM given by the computable
functions. He provided Kálmar-elementary functions τ, ψ satisfying the above con-
ditions.

Note that our formulation of CT is cautious and somewhat weaker than the
usual one. We do not require that the set {(e, n, z) | τ(e, n, z) 6= 0} coincides with
Kleene’s set T , but only ask that the set behaves appropriately. A similar ‘abstract’
approach to Church’s Thesis has been advocated by F. Richman, see [24] and [3,
Chapter 3, Section 1].

2.2.8. Kleene’s Alternative (to the Fan Theorem), ¬!FT:

∃α[BarC(Dα) ∧ ∀m[¬BarC(Dαm)]].

The following result is due to Kleene.

Theorem 2.4. BIM +CT ⊢ ¬!FT.

Proof. Let τ, ψ be as in CT. Define α such that, for all m, for all c in Binm,

α(c) = 0↔ ∀e < m∀z < m[z = µi[τ(e, e, i) 6= 0]→ c(e) = 1− ψ(z)].

Let γ in C be given. Find e such that, for all n, γ(n) = ψ(µi[τ(e, n, i) 6= 0]).
Define z = µi[τ(e, e, i) 6= 0]. Note: γ(e) = ψ(z). Define m := max(e, z) + 1 and
note: α(γm) 6= 0. Conclude: BarC(Dα).

Let m be given. Find c in Binm such that
∀e < m∀z < m[z = µi[τ(e, e, i) 6= 0]→ c(e) = 1− ψ(z)]. Note: ∀n ≤ m[α(cn) = 0].
Define γ := c∗0 and note: ∀n[c∗0n > m] and conclude: ¬∃k[γk < m ∧ α(γk) 6= 0]
and: ¬BarC(Dαm). �

The above proof may be found in [29, vol. I, Chapter 4, Subsection 7.6]. In [43,
Section 3] one finds two proofs.

We do not know the answer to the question if BIM + ¬!FT ⊢ CT.

2.2.9. Brouwer’s (unrestricted) Continuity Principle as an Axiom Scheme, BCP:

∀α∃n[αRn]→ ∀α∃m∃n∀β[αm ⊏ β → βRn].

Brouwer used this principle for the first time in 1918, see [4, Section 1, page 13].
The intuitionistic mathematician believes the axiom to be plausible.

She argues as follows.
If ∀α∃n[αRn], I must be able, given any α, to find effectively an n as promised,

also if the values of α are disclosed one by one and nothing is told about a law
governing the development of α as a whole. I will decide upon n at some point of
time and, at that point of time, only finitely many values of α, say
α(0), α(1), . . . , α(m−1), will be known to me. The number n will satisfy any infinite
sequence that is a continuation of α(0), α(1), . . . , α(m− 1).

The Continuity Principle is revolutionary and changes one’s mathematical per-
spective, see [35].

The classical mathematician may ask for a consistency proof for BCP. Kleene
proved, using realizability methods, that his formal system FIM for intuitionistic
analysis, actually an extension of BIM + FT + BCP, is (simply) consistent, see
[12, Chapter II, Subsection 9.2]. Kleene’s consistency proof should convince both
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the classical mathematician and the constructive mathematician, should the latter
accept BARIND but be plagued by doubts concerning BCP.

It is not difficult to see that BIM + CT + BCP is inconsistent, as it implies
∀α∃m∀β[βm = αm→ β = α], see [29, vol. I, Chapter 4, Theorem 6.7].

The next two axioms strengthen BCP. Kleene’s consistency proof extends to
these stronger forms of the Continuity Principle.

2.2.10. The First Axiom Scheme of Continuous Choice, ACωω,ω(= AC1,0):

∀α∃n[αRn]→ ∃ϕ : ωω → ω∀α[αRϕ(α)].

2.2.11. The Second Axiom Scheme of Continuous Choice, ACωω,ωω(= AC1,1):

∀α∃β[αRβ]→ ∃ϕ : ωω → ωω∀α[αRϕ|α].

2.2.12. Weak König’s Lemma, WKL:

∀α[∀n∃a ∈ Binn∀m ≤ n[α(an) = 0]→ ∃γ ∈ C∀n[α(γn) = 0]],

or, equivalently, ∀α[∀n[¬BarC(Dαn)]→ ∃γ ∈ C∀n[α(γn) = 0]].

WKL, as a classical theorem, dates from 1927, see [13]. It is a contraposition
of FT and, from a classical point of view, the two are equivalent. The following
result is due to U. Kohlenbach, see [14] and also [10].

Theorem 2.5. BIM ⊢WKL→ FT.

Proof. Assume WKL.
Let α be given such that BarC(Dα). We intend to prove: ∃n[BarC(Dαn)].
Define α∗ such that ∀s ∈ Bin[α∗(s) = 0↔ ∀t ⊑ s[α(t) = 0]].
Define α∗∗ such that, for all n, for all s in Binn, α

∗∗(s) = 0 if and only if
either α∗(s) = 0 or ¬∃t ∈ Binn[α∗(t) = 0].

Clearly, for each n, there exists s in Binn such that α∗∗(s) = 0.
Applying WKL, find γ in C such that ∀n[α∗∗(γn) = 0].
Find n such that α(γn) 6= 0.
Conclude: ¬∃t ∈ Binn[α∗(t) = 0] and: ∀δ ∈ C∃j ≤ n[α(δj) 6= 0] and:

∃m[BarC(Dαm)].
We thus see: ∀α[BarC(Dα)→ ∃m[BarC(Dαm)]], i.e. FT. �

2.2.13. Weak König’s Lemma with a uniqueness condition, WKL!:

∀α[
(

∀m[¬BarC(Dαm)] ∧ ∀γ ∈ C∀δ ∈ C[γ ⊥ δ → ∃m[α(γm) 6= 0 ∨ α(δm) 6= 0]]
)

→

∃γ∀n[α(γn) = 0]].

The next two theorems, apart from being of interest in themselves, are useful for
the discussion in Subsubsection 8.1.1.

Theorem 2.6. BIM ⊢WKL!→ FT.

Proof. 6 Assume WKL!.
Let α be given such that BarC(Dα). We intend to prove: ∃m[BarC(Dαm)].
If α(0) = α(〈 〉) 6= 0, then Dα1 = {〈 〉} and BarC(Dα1), and we are done.
We now assume α(〈 〉) = 0, that is: 〈 〉 /∈ Dα.
Define α∗ such that ∀s ∈ Bin[α∗(s) = 0↔ ∀t ⊑ s[α(t) = 0]].
Define α∗∗ such that α∗∗(〈 〉) = 0 and, for all n > 0, for all s in Binn,

α∗∗(s) = 0 if and only if either α∗(s) = 0 and ∀t ∈ Binn[α∗(t) = 0 → s ≤lex t] or
¬∃t ∈ Binn[α

∗(t) = 0] and ∃t ∈ Binn−1[α
∗∗(t) = 0 ∧ s = t ∗ 〈0〉].

Using induction, one proves that, for each n, there is exactly one s in Binn such
that α∗∗(s) = 0.

6The equivalence of FT and WKL! is a result due to J. Berger and H. Ishihara, see [2].
Another proof has been given by H. Schwichtenberg, see [25].
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Let γ, δ in C be given such that γ ⊥ δ.
Find n such that γn ⊥ δn and note: α∗∗(γn) 6= 0 ∨ α∗∗(δn) 6= 0.

We thus see: ∀γ ∈ C∀δ ∈ C[γ ⊥ δ → ∃n[α∗∗(γn) 6= 0 ∨ α∗∗(δn) 6= 0]].
Applying WKL!, find γ in C such that ∀n[α∗∗(γn) = 0].

Find n such that α(γn) 6= 0.
Conclude: ¬∃t ∈ Binn[α∗(t) = 0] and: ∀δ ∈ C∃j ≤ n[α(δj) 6= 0] and

∃m[BarC(Dαm)].
We thus see: ∀α[BarC(Dα)→ ∃m[BarC(Dαm)]], i.e. FT. �

Theorem 2.7. BIM ⊢ FT→WKL!.

Proof. Assume FT. Let α be given such that ∀n[¬BarC(Dαn)]] and
∀γ ∈ C∀δ ∈ C[γ ⊥ δ → ∃n[α(γn) 6= 0 ∨ α(δn) 6= 0]].
We intend to prove: ∃γ ∈ C∀n[α(γn) = 0].
Define α∗ such that ∀s ∈ Bin[α∗(s) = 0↔ ∀t ⊑ s[α(t) = 0]].

Let s in Bin be given.
Note: ∀γ ∈ C∀δ ∈ C∃k[α(s ∗ 〈0〉 ∗ γk) 6= 0 ∨ α(s ∗ 〈1〉 ∗ δk) 6= 0].

Applying FT, find m such that
∀γ ∈ C∀δ ∈ C∃k ≤ m[α(s ∗ 〈0〉 ∗ γk) 6= 0 ∨ α(s ∗ 〈1〉 ∗ δk) 6= 0].

Conclude: ∀c ∈ Binm∀d ∈ Binm[α∗(s ∗ 〈0〉 ∗ c) 6= 0 ∨ α∗(s ∗ 〈1〉 ∗ d) 6= 0].
Conclude: ∀c ∈ Binm[α∗(s ∗ 〈0〉 ∗ c) 6= 0] ∨ ∀d ∈ Binm[α∗(s ∗ 〈1〉 ∗ d) 6= 0].

This last step is justified by the fact that BIM proves the following scheme7:
∀n[∀k < n∀l < n[A(k) ∨ B(l)]→ (∀k < n[A(k)] ∨ ∀l < n[B(l)])].

Now define ζ such that, for every s in Bin,
ζ(s) = µk[∀c ∈ Bink[α∗(s ∗ 〈0〉 ∗ c) 6= 0] ∨ ∀d ∈ Bink[α∗(s ∗ 〈1〉 ∗ d) 6= 0].

Then define δ in C such that, for every s in Bin,
∀c ∈ Binζ(s)[α

∗(s ∗ 〈1− δ(s)〉 ∗ c) 6= 0].
Finally, define γ such that ∀n[γ(n) = δ(γn)].
One may prove by induction, using ∀n[¬BarC(Dαn)]:

for each n, ∀m ≥ n∃s ∈ Binm[γn ⊑ s ∧ α∗(s) = 0].
Conclude: ∀n[α∗(γn) = 0] and ∀n[α(γn) = 0].

We thus see: for each α, if ∀n[¬BarC(Dαn)] and

∀γ ∈ C∀δ ∈ C[γ ⊥ δ → ∃n[α(γn) 6= 0 ∨ α(δn) 6= 0]], then ∃γ ∈ C∀n[α(γn) = 0],
i.e. WKL!. �

2.2.14. The Lesser Limited Principle of Omniscience, LLPO: 8

∀α∃i < 2∀p[2p+ i 6= µn[α(n) 6= 0]].

Theorem 2.8. BIM ⊢ BCP→ ¬LLPO.

Proof. Assume LLPO.
Using BCP, find m,i such that i < 2 and ∀α[0m ⊏ α→ ∀p[2p+ i 6= µn[α(n) 6= 0]]].
Define α := 0(2m + i) ∗ 〈1〉 ∗ 0 and note: 0m ⊏ α and 2m + i = µn[α(n) 6= 0].
Contradiction. �

Theorem 2.9. BIM ⊢WKL→ LLPO.

Proof. Assume WKL. Let α be given. Define β such that, for every s, β(s) = 0
if and only if ∃q∃i < 2[s = iq ∧ ∀p[2p+ i < n → 2p + i 6= µn[α(n) 6= 0]]]. Note:
∀m∃i < 2∀q ≤ m[β(iq) = 0]. Using WKL, find γ such that ∀n[β(γn) = 0]. Define
i := γ(0) and conclude: γ = i and ∀p[2p+ i 6= µn[α(n) 6= 0]]. �

7This follows from our Lemma 9.1.
8µn[P (n)] = k ↔

(

P (k) ∧ ∀n < k[¬P (n)]
)

. Therefore:

µn[α(n) 6= 0] 6= k ↔
(

α(k) = 0 ∨ ∃i < k[α(i) 6= 0]
)

.
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Using a weak axiom of countable choice, one may also prove LLPO →WKL,
see Theorem 4.3.

2.2.15. The Limited Principle of Omniscience, LPO:

∀α[∃n[α(n) 6= 0] ∨ ∀n[α(n) = 0]].

LPO and LLPO were introduced by E. Bishop, see [3, Chapter 1, Section 1].
The following result is not difficult and well-known, see [20, Section 2.6] and [1,
Theorem 3.1].

Theorem 2.10. BIM ⊢ LPO→ LLPO.

Proof. Let α be given. Apply LPO and distinguish two cases.
Case (1). ∃n[α(n) 6= 0]. Find q, k such that k < 2 and 2q + k = µn[α(n) 6= 0].

Conclude: ∀p[2p+ 1− k 6= µn[α(n) 6= 0]].
Case (2). ∀n[α(n) = 0]. Then ∀k < 2∀p[2p+ k 6= µn[α(n) 6= 0]]. �

The following Lemma shows that, in BIM+BCP, not every closed subset of ωω

is a spread, see also [45, Theorem 2.10 (vi)].

Lemma 2.11. BIM ⊢ ∀β∃γ[Spr(γ) ∧ Fβ = Fγ ]→ LPO.

Proof. Let α be given.
Define β such that β(0) = 0 and ∀n∀s[β(〈n〉 ∗ s) = 0↔ α(n) 6= 0].
Assume we find γ such that Spr(γ) and Fβ = Fγ .
If γ(0) = 0, then ∃n[α(n) 6= 0] and, if γ(0) 6= 0, then ∀n[α(n) = 0]. �

2.2.16. Markov’s principle, MP:

∀α[¬¬∃n[α(n) 6= 0]→ ∃n[α(n) 6= 0]].

For some discussion of this principle, see [29, Volume I, Chapter 4, Section 5]. In
this paper, the principle figures only in Subsection 12.1.

We would like to make a philosophical observation. For a constructive math-
ematician, the assumptions LPO, WKL, LLPO and MP make no sense, as he
does not know a situation in which these assumptions are true. Theorem 2.9:
WKL→ LLPO concludes something which is never true from something which is
never true. Nevertheless, the proof of Theorem 2.9 makes sense. It shows us how
to find, given any α, a suitable β such that if β has the WKL-property, then α has
the LLPO-property. This part of the argument does not use the assumption that
every β has the WKL-property. Theorems 2.5 and 2.10 deserve a similar comment.

The reader may find more information on the axioms of intuitionistic analysis in
[5], [6], [8], [12], [9], [29] and [46].

3. The Σ0
1-separation principle

3.1. In classical reverse mathematics, weak König’s Lemma is equivalent to a
principle called Σ0

1-separation, see [26, Lemma IV.4.4].
We call X ⊆ ω enumerable or Σ0

1 if and only if ∃α[X = Eα].
The following statement, formulated in the intuitionistic language of BIM, comes

close to the just-mentioned classical principle.

Σ0
1-separation principle, Σ0

1-Sep:

∀α[¬∃n∀i < 2[(n, i) ∈ Eα]→ ∃γ∀n[
(

n, γ(n)
)

/∈ Eα]].

The next Theorem seems to confirm the just-mentioned classical result.

Theorem 3.1. BIM ⊢WKL↔ Σ0
1-Sep.
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Proof. (i) Assume WKL. We prove: Σ0
1-Sep.

Let α be given such that ¬∃n∀i < 2[(n, i) ∈ Eα].
Define β such that ∀n∀a ∈ Binn[β(a) = 0↔ ∀m < n[

(

m, a(m)
)

/∈ Eαn]].

Let n be given. Note: ∀m < n∃i < 2[(m, i) /∈ Eαn] and find a in Binn such that
∀m < n[

(

m, a(m)
)

/∈ Eαn].
Conclude: ∀j ≤ m[β(aj) = 0].
We thus see: ∀n∃a ∈ Binn∀m ≤ n[β(an) = 0].
Using WKL, find γ in C such that ∀n[β(γn) = 0].
Conclude: ∀n∀m < n[

(

m, γ(m)
)

/∈ Eαn] and: ∀n[
(

n, γ(n)
)

/∈ Eα].

We thus see: ∀α[¬∃n∀i < 2[(n, i) ∈ Eα]→ ∃γ∀n[
(

n, γ(n)
)

/∈ Eα], i.e. Σ0
1-Sep.

(ii) Assume Σ0
1-Sep. We prove: WKL.

Let α be given such that ∀m[¬BarC(Dαm)].
Define β such that, for both i < 2, for all n, for all s,

if s ∈ Bin and BarC∩s∗〈i〉(Dαn) and ¬BarC∩s∗〈1−i〉(Dαn), then β(n, s) = (s, i)+ 1,
and, if not, then β(n, s) = 0.

Note: Eβ is the set of all s ∗ 〈i〉 such that s ∈ Bin and i < 2 and
∃n[BarC∩s∗〈i〉(Dαn) ∧ ¬BarC∩s∗〈1−i〉(Dαn)].

Note: for all s in Bin, for all i < 2,
if s ∗ 〈i〉 /∈ Eβ , then ∀n[BarC∩s∗〈i〉(Dαn)→ BarC∩s∗〈1−i〉(Dαn)].

Note: ¬∃s∀i < 2[(s, i) ∈ Eβ ].

Using Σ0
1-Sep, find γ in C such that ∀s[

(

s, γ(s)
)

/∈ Eβ ].

Define δ in C by: ∀n[δ(n) = γ(δn)].

Suppose we find n such that α(δn) 6= 0.
Define q := δn+ 1 and note: δn ∈ Dαq, that is: BarC∩δn(Dαq).
We prove, using backwards induction: ∀j ≤ n[BarC∩δj(Dαq)].

Our starting point is: BarC∩δn(Dαq).

Now suppose j + 1 ≤ n and BarC∩δ(j+1)(Dαq). Note: δ(j + 1) = δj ∗ 〈γ(δj)〉.

Also:
(

δj, γ(δj)
)

/∈ Eβ and, therefore: BarC∩δj∗〈1−γ(δ(j)〉(Dαq) and: BarC∩δj(Dαq).

This completes the proof of the induction step.
After n steps we reach the conclusion: BarC(Dαq).
This contradicts the assumption: ∀m[¬BarC(Dαm)].

Conclude: ∀n[α(δn) = 0].

We thus see: ∀α[∀n[¬BarC(Dαn)]→ ∃δ ∈ C∀n[α(δn) = 0]], i.e. WKL. �

Theorem 3.1 shows that Σ0
1-Sep, like WKL, is not constructive, see Theorem

2.9. It is not true in intuitionistic analysis and it also fails in the model of BIM
given by the recursive functions.

4. ACω,ω, some special cases

The following restricted version ofACω,ω is provable in BIM as it is a consequence
of Axiom 3, see Section 2.

4.1. Minimal Axiom of Countable Choice, ∆0
1-ACω,ω:

∀α[∀n∃m[α(n,m) = 0]→ ∃γ∀n[α
(

n, γ(n)
)

= 0]].

4.2. Axiom Scheme of Countable Unique Choice, ACω,ω! = AC0,0!:

∀n∃!m[R(n,m)]→ ∃γ∀n[R
(

n, γ(n)
)

].

where ‘∀n∃!m[R(n,m)]’ abbreviates ‘∀n∃m[R(n,m) ∧ ∀p[R(n, p)→ m = p]]’.
ACω,ω! is not a theorem of BIM, see Subsection 4.8 and [30].
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4.3. Σ0
1-First Axiom of Countable Choice, Σ0

1-ACω,ω:

∀α[∀n∃m[(n,m) ∈ Eα]→ ∃γ∀n[
(

n, γ(n)
)

∈ Eα]].

Theorem 4.1. BIM ⊢ Σ0
1-ACω,ω.

Proof. Assume ∀n∃m[(n,m) ∈ Eα]. Then ∀n∃m∃p[α(p) = (n,m)+ 1]. Find δ such
that ∀n[δ(n) = µq[α(q′) = (n, q′′) + 1]]. Define γ such that ∀n[γ(n) = δ′′(n)] and
note: ∀n[

(

n, γ(n)
)

∈ Eα]. �

We call X ⊆ ω co-enumerable or Π0
1 if and only if there exists α such that

X = ω \ Eα.

4.4. Π0
1-First Axiom of Countable Choice, Π0

1-ACω,ω:

∀α[∀n∃m[(n,m) /∈ Eα]→ ∃γ∀n[
(

n, γ(n)
)

/∈ Eα]].

Π0
1-ACω,ω is unprovable in BIM, see Subsection 4.8. In [43, Section 6], we

introduced the following special case of this axiom.

4.5. Weak Π0
1-First Axiom of Countable Choice, Weak-Π0

1-ACω,ω:

∀α[∀m∃n∀p ≥ n[α(m, p) 6= 0]→ ∃γ∀m∀p ≥ γ(m)[α(m, p) 6= 0]].

Weak-Π0
1-ACω,ω follows from ACω,ω! = AC0,0!.

Weak-Π0
1-ACω,ω is a special case of the axiom scheme ACm0,0 introduced in [22,

Subsection 3.1]. We suspect that, in BIM, Weak-Π0
1-ACω,ω does not imply Π0

1-
ACω,ω, but we have no proof.

Theorem 4.2. (i) BIM+Weak-Π0
1-ACω,ω ⊢ ∀β[Fan(β)→ Explfan(β)].

(ii) BIM+Weak-Π0
1-ACω,ω ⊢ FT→ FT+.

Proof. The proof is left to the reader. �

One may also study statements one obtains from ACω,ω by limiting the number
of alternatives one has at each choice.

4.6. Axiom Scheme of Countable Binary Choice, ACω,2:

∀n∃m < 2[R(n,m)]→ ∃γ ∈ C∀n[R
(

n, γ(n)
)

].

Here is a restricted version of ACω,2:

4.7. Π0
1-Axiom of Countable Binary Choice, Π0

1-ACω,2:

∀α[∀n∃m < 2[(n,m) /∈ Eα]→ ∃γ ∈ C∀n[
(

n, γ(n)
)

/∈ Eα]].

A result related to the following Theorem has been proven by U. Kohlenbach,
see [15, Theorem 3]. A similar result is mentioned in [1, Subsection 2.2].

Theorem 4.3. BIM ⊢ (Π0
1-ACω,2 ∧ LLPO)↔WKL.

Proof. (i) Assume, in BIM, Π0
1-ACω,2 and LLPO. It suffices to prove: Σ0

1-Sep,
as, according to Theorem 3.1, BIM ⊢ Σ0

1-Sep↔WKL.
Let α be given such that ∀n¬∀m < 2[(n,m) ∈ Eα]. Let n be given.

Define β such that ∀q∀i < 2[β(2q + i) 6= 0↔ q = µp[α(p) = (n, i) + 1]].
Apply LLPO and find i < 2 such that ∀q[2q + i 6= µm[β(m) 6= 0]].
Assume (n, i) ∈ Eα. Then (n, 1 − i) /∈ Eα and ¬∃p[α(p) = (n, 1 − i) + 1] and
∀q[β(2q + 1 − i) = 0]. Find q := µp[α(p) = (n, i) + 1]. Note β(2q + i) 6= 0 and
∀m < 2q + i[β(m) = 0], so 2q + i = µm[β(m) 6= 0]. Contradiction.
Therefore, (n, i) /∈ Eα.

Conclude: ∀n∃i < 2[(n, i) /∈ Eα].
Apply Π0

1-ACω,2 and find γ in C such that ∀n[
(

n, γ(n)
)

/∈ Eα].
13



Conclude: ∀α[∀n[¬∀m < 2[(n,m) ∈ Eα] → ∃γ ∈ C∀n[
(

n, γ(n)
)

) /∈ Eα]], i.e.:

Σ0
1-Sep.

(ii) Note that ¬(P ∧ Q) ↔ ¬¬(¬P ∨ ¬Q) is a valid scheme of intuitionistic
logic, and, therefore:
BIM ⊢ Σ0

1-Sep ↔
(

∀α[∀n¬¬∃m < 2[(n,m) /∈ Eα] → ∃γ ∈ C∀n[
(

n, γ(n)
)

/∈ Eα]]
)

.

Conclude: BIM ⊢ Σ0
1-Sep→ Π0

1-ACω,2.
The conclusion BIM ⊢WKL→ LLPO has been drawn in Theorem 2.9. �

From a constructive point of view, Σ0
1-Sep, or equivalently, WKL, is an axiom

of countable choice that is formulated too strongly.

4.8. ACω,2! and Π0
1-ACω,2 are unprovable in BIM.

Note that the theory BIM+CT may be translated into intuitionistic arithmetic HA,
by interpreting functions from ω to ω as indices of total computable functions. The
negative translation due to Gödel and Gentzen, see [29, vol. I, Ch. 3, Subsection
3.4], shows that first order classical (Peano) arithmetic PA, the theory that results
from HA by adding the axiom scheme X ∨ ¬X , is consistent. It follows that also
the theory BIM+CT remains consistent upon adding the axiom scheme X ∨ ¬X .

4.8.1. Note that the theory BIM+CT+ X ∨ ¬X +ACω,2! is inconsistent. The
argument is as follows.
Let τ, ψ be as in CT. Define H := {n | ∃z[τ(n, n, z) 6= 0]}.
Using classical logic, conclude: ∀n∃!i < 2[i = 0↔ n ∈ H ].
Using ACω,2!, find α such that ∀n[α(n) 6= 0↔ n ∈ H ].
Define β such that, for each n, if α(n) 6= 0, then β(n) = ψ(µz[τ(n, n, z) 6= 0]) + 1.
Using CT, find n0 such that ∀n[β(n) = ψ(µz[τ(n0, n, z) 6= 0])].
Note: α(n0) 6= 0 and: β(n0) = β(n0) + 1. Contradiction.

Conclude: If HA is consistent, then ACω,2! is not derivable in BIM.

4.8.2. Theorem 4.3 implies: BIM+¬!FT+LLPO+Π0
1-ACω,2 is not consistent,

as ¬!FT contradicts WKL.
Conclude: BIM+ ¬!FT+ LLPO ⊢ ¬Π0

1-ACω,2.
On the other hand, BIM + ¬!FT + LLPO is consistent, as it is a subsystem of

BIM+CT+ X ∨¬X . It follows that Π0
1-ACω,2 is not derivable in BIM+¬!FT+

LLPO and, a fortiori, not derivable in BIM. The stronger axiom Π0
1-ACω,ω and

the even stronger axiom Π0
1-ACω,ωω , to be introduced in Section 6, also are not

derivable in BIM.
From Theorem 4.3, we also conclude BIM + ¬!FT+Π0

1-ACω,2 ⊢ ¬LLPO.

In the context of HA, Church’s Thesis is sometimes introduced as an axiom
scheme, CT0, see [29, vol. I, Ch. 4, Sect. 3]:

∀n∃m[nAm]→ ∃e∀n∃z[T (〈e, n, z〉) ∧ ∀i < z[¬T (〈e, n, i〉)] ∧ nA
(

U(z)
)

].9

It is not difficult to see that BIM + CT + ACω,ω and also BIM + CT + ACω,ωω

translate into HA+CT0. There is no straightforward model for HA+CT0 but, using
realizability, one may show that, if HA is consistent, then so is HA + CT0, see [29,
vol. I, Ch. 4, Sect. 4].

It follows that, if HA is consistent, then BIM+ ¬!FT+Π0
1-ACω,2 is consistent.

4.9. Axiom Scheme of Countable Finite Choice, ACω,<ω:

∀β[∀m∃n ≤ β(m)[R(n,m)]→ ∃γ∀n[γ(n) ≤ β(n) ∧ nRγ(n)]].

9T is Kleene’s T -predicate and U his result-extracting function.
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4.10. Π0
1-Axiom of Countable Finite Choice, Π0

1-ACω,<ω:

∀α[∀n∃m ≤ α↾0(n)[(n,m) /∈ Eα↾1 ]→ ∃γ∀n[γ(n) ≤ α↾0(n) ∧
(

n, γ(n)
)

/∈ Eα↾1 ]].

We conjecture that Π0
1-ACω,<ω is not provable in BIM + Π0

1-ACω,2, but we
have no proof of this conjecture. There might be many statements intermediate in
strength like Π0

1-ACω,3, the Π0
1-Axiom of Countable Ternary Choice.

5. Contrapositions of some special cases of ACω,ω

The following statement is a contraposition of ACω,ω:

5.1. First Axiom Scheme of Reverse Countable Choice,
←−−−−
ACω,ω:

∀γ∃n[R
(

n, γ(n)
)

]→ ∃n∀m[R(n,m)].

A special case is:

5.2. Minimal Axiom of Reverse Countable Choice, ∆0
1-
←−−−−
ACω,ω :

∀α[∀γ∃n[
(

n, γ(n)
)

∈ Dα]→ ∃n∀m[(n,m) ∈ Dα]].

The following result may be found in [32, Section 2].

Theorem 5.1. BIM +∆0
1-
←−−−−
ACω,ω ⊢ LPO.

Proof. Let β be given.

Assuming ∆0
1-
←−−−−
ACω,ω, we prove: ∃n[β(n) 6= 0] ∨ ∀n[β(n) = 0].

To this end, define α such that ∀n∀m[α(n,m) = 0↔ (βn = 0n ∧ βm 6= 0m)].

For every γ, either : β
(

γ(0)
)

= 0
(

γ(0)
)

and, therefore, α
(

0, γ(0)
)

6= 0, that is
(

0, γ(0)
)

∈ Dα, or : β
(

γ(0)
)

6= 0
(

γ(0)
)

, and, therefore, α
(

γ(0), γ(γ(0))
)

6= 0, that

is:
(

γ(0), γ(γ(0))
)

∈ Dα.

Conclude: ∀γ∃n[
(

n, γ(n)
)

∈ Dα].

Applying ∆0
1-
←−−−−
ACω,ω, find n such that ∀m[(n,m) ∈ Dα].

Either : βn 6= 0n and ∃j[β(j) 6= 0], or : βn = 0n. In the latter case, for each m,

βm = 0m and ∀j[β(j) = 0]. �

5.3. Axiom Scheme of Reverse Countable Binary Choice,
←−−−−
ACω,2 :

∀γ ∈ C∃n[R
(

n, γ(n)
)

]→ ∃n∀i < 2[R(i,m)].

In [32, Section 4],
←−−−−
ACω,2 has been shown to be a consequence of FT+ACω,ωω .

We introduce a restricted version:
∆0

1-Axiom of Reverse Countable Binary Choice, ∆0
1-
←−−−−
ACω,2:

∀α[∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Dα]→ ∃n∀i < 2[(n, i) ∈ Dα]].

Theorem 5.2. BIM ⊢∆0
1-
←−−−−
ACω,2.

Proof. Let α be given such that ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Dα]. Define γ in C such that

∀n[(n, 0) ∈ Dα ↔ γ(n) = 1]. Find n such that
(

n, γ(n)
)

∈ Dα. Note: γ(n) = 1 and
∀i < 2[(n, i) ∈ Dα]. �

We now introduce a less restricted version:

5.4. Σ0
1-Axiom of Reverse Countable Binary Choice, Σ0

1-
←−−−−
ACω,2:

∀α[∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα]→ ∃n∀i < 2[(n, i) ∈ Eα]].

We define a formula that we want to call its strong negation:
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5.5. ¬!(Σ0
1-
←−−−−
ACω,2):

∃α[∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα] ∧ ¬∃n∀i < 2[(n, i) ∈ Eα]].

Note: BIM proves:
∀α[¬∃n∀i < 2[(n, i) ∈ Eα]↔ ∀n∀p∀q[α(p) = (n, 0) + 1→ α(q) 6= (n, 1) + 1]].

Lemma 5.3. BIM proves the following:

(i) FT→ Σ0
1-
←−−−−
ACω,2 and ¬!(Σ0

1-
←−−−−
ACω,2)→ ¬!FT.

(ii) Σ0
1-
←−−−−
ACω,2 → FT and ¬!FT→ ¬!(Σ0

1-
←−−−−
ACω,2).

Proof. (i) We prove, in BIM: for each α, there exists β such that

(1) ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα]→ BarC(Dβ)] and

(2) ∃m[BarC(Dβm)]→ ∃n∀i < 2[(n, i) ∈ Eα].

The two promised conclusions then follow easily.

Let α be given. Define β such that

∀m∀a ∈ Binm[β(a) 6= 0↔ ∃n < m[
(

n, a(n)
)

∈ Eαm]].

(1) Assume: ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα]. Let γ in C be given.

Find n, p such that
(

n, γ(n)
)

∈ Eαp and n < p. Note: β(γp) 6= 0.
We thus see: ∀γ ∈ C∃p[β(γp) 6= 0], i.e. BarC(Dβ).

(2) Let m be given such that BarC(Dβm).

Note: ∀a ∈ Binm[m < a] and: ∀a ∈ Binm∃n ≤ m[β(an) 6= 0].
Assume ∀n < m∃i < 2[(n, i) /∈ Eαm].

Define a in Binm such that ∀n < m[(n, 0) /∈ Eαm ↔ a(n) = 0].
Then ∀n < m[

(

n, a(n)
)

/∈ Eαm] and ∀n ≤ m[β(an) = 0]. Contradiction.
Conclude: ∃n < m∀i < 2[(n, i) ∈ Eαm ⊆ Eα].

(ii)10 We prove, in BIM: for each α, there exists β such that

(1) BarC(Dα)→ ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eβ ] and

(2) ∃n∀i < 2[(n, i) ∈ Eβ ]→ ∃m[BarC(Dαm)].

The two promised conclusions then follow easily.

Let α be given. Define β such that, for all n, for every s in Bin, for all i < 2,
if either: (a) BarC(Dαn), or: (b) BarC∩s∗〈i〉(Dαn) and not BarC∩s∗〈1−i〉(Dαn),
then β(n, s∗ 〈i〉) = (s, i)+1, and, (c) if both (a) and (b) fail, then β(n, s∗ 〈i〉) = 0.
Furthermore, for all n, for all s, if s /∈ Bin \ {〈 〉}, then β(n, s) = 0.

Note: Eβ is the set of all pairs (s, i) such that s ∈ Bin and i < 2 and either
∃n[BarC(Dαn)] or ∃n[BarC∩s∗〈i〉(Dαn) ∧ ¬BarC∩s∗〈1−i〉(Dαn)].

Note that, for all s in Bin, if ∀i < 2[(s, i) ∈ Eβ ], then ∃n[BarC(Dαn)].

(1) Assume BarC(Dα). We shall prove: ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eβ ].

Let γ in C be given. Define δ in C such that ∀n[δ(n) = γ(δn)]. Find n such that
α(δn) 6= 0. Define q := δn+ 1 and note: δn ∈ Dαq.

We claim: for all j ≤ n, either ∃i ≤ n[
(

δi, γ(δi)
)

∈ Eβ ], or BarC∩δj(Dαq). We

prove this claim by backwards induction, starting from j = n. Note: BarC∩δn(Dαq).
Now assume j < n and BarC∩δ(j+1)(Dαq), that is: BarC∩δ(j)∗〈δ(j)〉(Dαp).

Find out if also BarC∩δ(j)∗〈1−δ(j)〉(Dαq).

If so, then BarC∩δ(j)(Dαq), and, if not, then β
(

q, δ(j + 1)
)

=
(

δj, δ(j)
)

+ 1, and
(

δj, δ(j)
)

=
(

δj, γ(δ(j)
)

∈ Eβ .

10The reader should compare this proof to the proof of Theorem 3.1(ii).
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We may conclude: either ∃j ≤ n[(δj, δ(j)
)

∈ Eβ ], or BarC(Dαq).
Note that, if BarC(Dαq), then ∀s ∈ Bin∀i < 2[β(q, s ∗ 〈i〉) = (s, i) + 1] and:
∀s ∈ Bin[

(

s, γ(s)
)

∈ Eβ ].

We thus see: ∀γ ∈ C∃s[
(

s, γ(s)
)

∈ Eβ ].

(2) Now assume: ∃n∀i < 2[(n, i) ∈ Eβ ]. Conclude, using the observation we
made just after the definition of β: ∃n[BarC(Dαn)]. �

Theorem 5.4. BIM proves: FT↔ Σ0
1-
←−−−−
ACω,2 and: ¬!FT↔ ¬!(Σ0

1-
←−−−−
ACω,2).

Proof. Use Lemma 5.3. �

5.6. Axiom Scheme of Reverse Countable Finite Choice,
←−−−−−
ACω,<ω:

∀β[∀γ∃n[γ(n) ≤ β(n)→ R
(

n, γ(n)
)

]→ ∃m∀n ≤ β(m)[R(n,m)]].

←−−−−−
ACω,<ω may be concluded from FT + ACωω,ω, by a slight extension of the

argument given in [32, Section 4].

The following is a restricted version:

Σ0
1-
←−−−−−
ACω,<ω:

∀α[∀γ∃n[γ(n) ≤ α↾0(n)→
(

n, γ(n)
)

∈ Eα↾1 ]→ ∃n∀i ≤ α↾0(n)[(n, i) ∈ Eα↾1 ]].

We introduce a strong negation of this restricted version:

¬!(Σ0
1-
←−−−−−
ACω,<ω):

∃α[∀γ∃n[γ(n) ≤ α↾0(n)→
(

n, γ(n)
)

∈ Eα↾1 ] ∧ ¬∃n∀i ≤ α↾0(n)[(n, i) ∈ Eα↾1 ]].

Note: BIM proves:
∀α[¬∃n∀i ≤ α↾0(n)[(n, i) ∈ Eα]↔

∀n∀t ∈ ωα
↾0(n)+1∃i ≤ α↾0(n)[α

(

t(i)
)

6= (n, i) + 1]].

Lemma 5.5. BIM proves:

(i) Σ0
1-
←−−−−−
ACω,<ω → Σ0

1-
←−−−−
ACω,2 and ¬!(Σ0

1
-
←−−−−
ACω,2)→ ¬!(Σ0

1-
←−−−−−
ACω,<ω)

(ii) FT→ Σ0
1-
←−−−−−
ACω,<ω and ¬!(Σ0

1-
←−−−−−
ACω,<ω)→ ¬!FT.

Proof. (i) We prove, in BIM: for each α, there exists β such that

(1) ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα]→ ∀γ∃n[γ(n) ≤ β
↾0(n)→

(

n, γ(n)
)

∈ Eβ↾1 ] and

(2) ∃n∀i ≤ β↾0(n)[(n, i) ∈ Eβ↾1 ]→ ∃n∀i < 2[(n, i) ∈ Eα].

The two promised conclusions then follow easily.

Let α be given. Define β such that β↾0 = 1 and β↾1 = α.

(1) Assume ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα]. Let γ be given. Define γ∗ such that

∀n[γ∗(n) = min
(

1, γ(n)
)

]. Note: γ∗ ∈ C and find n such that
(

n, γ∗(n)
)

∈ Eα. If

γ∗(n) 6= γ(n), then γ(n) > 1 = β↾0(n), and if γ∗(n) = γ(n), then
(

n, γ(n)
)

∈ Eα.

Conclude: ∀γ∃n[γ(n) ≤ β↾0(n)→
(

n, γ(n)
)

∈ Eβ↾1 ].

(2) Let n be given such that ∀i ≤ β↾0(n)[(n, i) ∈ Eβ↾1 ].
Clearly, then, ∀i < 2[(n, i) ∈ Eα].

(ii)11 We prove, in BIM: for each α, there exists β such that

(1) ∀γ∃n[γ(n) ≤ α↾0(n)→
(

n, γ(n)
)

∈ Eα↾1 ]→ BarC(Dβ) and

(2) ∃m[BarC(Dβm)]→ ∃n∀m ≤ α↾0(n)[(n,m) ∈ Eα↾1 ].

The two promised conclusions then follow easily.

11The argument extends the argument for Lemma 5.3(i).
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First, define Cod2 : ω → Bin such that
Cod2(〈 〉) = 〈 〉 and ∀s∀n[Cod2(s ∗ 〈n〉) = Cod2(s) ∗ 0n ∗ 〈1〉].
Note: ∀t ∈ Bin∃s∃i[t = Cod2(s) ∗ 0i].

Now, let α be given. Define β such that, for all s, i, β
(

Cod2(s)∗0i
)

6= 0 if and only

if ∃n < length(s)[s(n) > α↾0(n) ∨
(

n, s(n)
)

∈ E
α↾1length(s)

∨ α↾0
(

length(s)
)

< i].

(1) Assume: ∀γ∃n[γ(n) ≤ α↾0(n)→
(

n, γ(n)
)

∈ Eα↾1 ].
Assume: δ ∈ C. Define γ, by induction, such that, for each n,

if ∃i ≤ α↾0(n)[Cod2(γn ∗ 〈i〉) ⊏ δ], then Cod2
(

γ(n+ 1)
)

⊏ δ, and,
if not, then γ(n) = 0.

Note: ∀n[γ(n) ≤ α↾0(n)].
Find n, p such that

(

n, γ(n)
)

∈ E
α↾1p

. Define q := max(n, p).

Note: β
(

Cod2(γ(q + 1))
)

6= 0 and distinguish two cases.
Case (a). c := Cod2(γ(q + 1)) ⊏ δ and β(c) 6= 0.
Case (b). ∃m∀i ≤ α↾0(m)[Cod2(γm ∗ 〈i〉) ⊥ δ].
Find m0 := µm∀i ≤ α↾0(m)[Cod2(γm ∗ 〈i〉) ⊥ δ] and note:

d := Cod2(γm0) ∗ 0
(

α↾0(m0) + 1
)

⊏ δ and β(d) 6= 0.

In both cases ∃p[β(δp) 6= 0].
We thus see: ∀δ ∈ C∃p[β(δp) 6= 0], i.e. BarC(Dβ).

(2) Let m be given such that BarC(Dβm).

Suppose: ∀i < m∃j ≤ α↾0(i)[(i, j) /∈ E
α1m

]].

Find s such that length(s) = m and ∀i < m[s(i) ≤ α↾0(i) ∧
(

i, s(i)
)

/∈ E
α↾1m

].
Note: Cod2(s) > m and ∀t ⊑ Cod2(s)[β(t) = 0], so ¬BarC(Dβm).

Contradiction.
Conclude: ∃i < m∀j ≤ α↾0(i)[(i, j) ∈ E

α↾1m
⊆ Eα↾1 ]. �

Theorem 5.6. BIM proves: FT↔ Σ0
1-
←−−−−−
ACω,<ω and ¬!FT↔ ¬!(Σ0

1-
←−−−−−
ACω,<ω).

Proof. These statements follow from Lemma 5.5 and Theorem 5.4. �

5.7. No Double Negation Shift.

Assume ¬!FT. Using ¬!(Σ0
1-
←−−−−
ACω,2), find α such that ∀γ ∈ C∃n[

(

n, γ(n)
)

∈ Eα]
and: ¬∃n∀m < 2[(n,m) ∈ Eα].

Then, for each n, ¬∀m < 2[(n,m) ∈ Eα] and: ¬∀m < 2[¬¬
(

(n,m) ∈ Eα
)

] and:
¬¬∃m < 2[(n,m) /∈ Eα].

We thus see: ∀n¬¬∃m < 2[(n,m) /∈ Eα].
Also: ¬∃γ ∈ C∀n[

(

n, γ(n)
)

/∈ Eα].
Using Π0

1-ACω,2, we conclude: ¬∀n∃m < 2[(n,m) /∈ Eα].
We thus see that if we assume both ¬!FT and Π0

1-ACω,2 we can find Π0
1-subsets

P = {n | (n, 0) /∈ Eα} and Q = {n | (n, 1) /∈ Eα} of ω such that
∀n[¬¬

(

P (n) ∨Q(n)
)

] and ¬∀n[P (n) ∨Q(n)].
S. Kuroda’s scheme of Double Negation Shift

∀n[¬¬T (n)]→ ¬¬∀n[T (n)]

(see [18, page 45] and [8, page 105]) thus is refuted.
In [29, vol. I, Chapter 4, Proposition 3.4, Corollary 1], the same conclusion is

obtained in HA from CT0.

6. ACω,ωω , some special cases

6.1. Σ0
1-Second Axiom of Countable Choice, Σ0

1-ACω,ωω :

∀α[∀n∃γ[γ ∈ Gα↾n ]→ ∃γ∀n[γ↾n ∈ Gα↾n ]].

Theorem 6.1. BIM ⊢ Σ0
1-ACω,ωω .
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Proof. Assume ∀n∃γ[γ ∈ Gα↾n ]. Then ∀n∃s[α↾n(s) 6= 0].
Find δ such that ∀n[δ(n) = µs[α↾n(s) 6= 0]]. Find γ such that ∀n[γ↾n = δ(n) ∗ 0].
Note: ∀n[γ↾n ∈ Gα↾n ]. �

6.2. Π0
1-Second Axiom of Countable Choice, Π0

1-ACω,ωω :

∀α[∀n∃γ[γ /∈ Gα↾n ]→ ∃γ∀n[γ↾n /∈ Gα↾n ]].

Theorem 6.2. BIM ⊢ Π0
1-ACω,ωω → Π0

1-ACω,ω.

Proof. Let α be given such that ∀n∃m[(n,m) /∈ Eα]. Define β such that
∀n∀a[β↾n(a) 6= 0↔ ∃m∃b∃p ≤ a[α(p) = (n,m) + 1 ∧ a = 〈m〉 ∗ b]].
Note: ∀n∀m[(n,m) ∈ Eα ↔ ∀γ[〈m〉 ∗ γ ∈ Gβ↾n ]].

Conclude: ∀n∃γ[γ /∈ Gβ↾n ]. Using Π0
1-ACω,ωω , find γ such that ∀n[γ↾n /∈ Gβ↾n ].

Define δ such that ∀n[δ(n) = γ↾n(0)] and note: ∀n[
(

n, δ(n)
)

/∈ Eα]. �

One may conclude that Π0
1-ACω,ωω is unprovable in BIM, see Subsection 4.8.

Not every Π0
1 subset of ωω is a spread, see Lemma 2.11. For spreads, which are

a special kind of Π0
1 sets, countable choice is easier:

Theorem 6.3. BIM ⊢ ∀α[
(

∀n[Spr(α↾n)] ∧ ∀n∃γ[γ /∈ Gα↾n ]
)

→ ∃γ∀n[γ↾n /∈ Gα↾n ]].

Proof. Let α be given such that ∀n[Spr(α↾n)] and ∀n∃γ[γ /∈ Gα↾n ].

Define γ such that, for each n, for eachm, γ↾n(m) = µk[α↾n
(

(γ↾nm)∗〈k〉
)

= 0]. �

6.3. Axiom Scheme of Countable Compact Choice, ACω,C :

∀n∃γ ∈ C[R(n, γ)]→ ∃γ ∈ C∀n[R(n, γ↾n)].

Here is a restricted version of ACω,C :

6.4. Π0
1-Axiom of Countable Compact Choice, Π0

1-ACω,C :

∀α[∀n∃γ ∈ C[γ /∈ Gα↾n ]→ ∃γ ∈ C∀n[γ↾n /∈ Gα↾n ]]

Theorem 6.4. BIM ⊢ Π0
1-ACω,C → Π0

1-ACω,2.

Proof. The proof is almost the same as the proof of Theorem 6.2 and is left to the
reader. �

We may conclude: Π0
1-ACω,C is unprovable in BIM, see Subsection 4.8.

The treatment of real numbers in BIM is sketched in Subsection 13.7.

6.5. Π0
1-ACω,[0,1]:

∀α[∀n∃δ ∈ [0, 1][δ /∈ Hα↾n ]→ ∃δ ∈ [0, 1]ω∀n[δ↾n /∈ Hα↾n ]].

Theorem 6.5. BIM ⊢ Π0
1-ACω,C ↔ Π0

1-ACω,[0,1].

Proof. First assume Π0
1-ACω,C.

Using Lemma 13.3, find σ : C → [0, 1] and ψ : ωω → ωω such that

(1) ∀δ ∈ [0, 1]∃γ ∈ C[δ =R σ|γ] and
(2) ∀α∀γ ∈ C[γ ∈ Gψ|α ↔ σ|γ ∈ Hα].

Let α be given such that ∀n∃δ ∈ [0, 1][δ /∈ Hα↾n ]. Then ∀n∃γ ∈ C[σ|γ /∈ Hα↾n ]
and ∀n∃γ ∈ C[γ /∈ Gψ|(α↾n)]. Find γ in C such that ∀n[γ↾n /∈ Gψ|(α↾n)].

Conclude: ∀n[σ|γ↾n /∈ Hα↾n ] and ∃δ∀n[δ↾n /∈ Hα↾n ].

Now assume Π0
1-ACω,[0,1].

Using Lemma 13.4, find τ : C → [0, 1] and χ : ωω → ωω such that

(1) ∀γ ∈ C∀δ ∈ C[γ # δ → τ |γ #R τ |δ], and
(2) ∀α∀γ ∈ C[γ ∈ Gα ↔ τ |γ ∈ Hχ|α]. and

(3) ∀α∀δ ∈ [0, 1]ω∃γ ∈ C∀n[δ↾n #R τ |(γ↾n)→ δ↾n ∈ Hχ|(α↾n)].
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Let α be given such that ∀n∃γ ∈ C[γ /∈ Gα↾n ].
Conclude: ∀n∃γ ∈ C[τ |γ /∈ Hχ|(α↾n)] and: ∀n∃δ ∈ [0, 1][δ /∈ Hχ|(α↾n)].

Using Π0
1-ACω,[0,1], find δ in [0, 1]ω such that ∀n[δ↾n /∈ Hχ|(α↾n)].

Using (3), find γ in C such that ∀n[δ↾n #R τ |(γ↾n)→ δ↾n ∈ Hχ|(α↾n)].

Conclude: ∀n[δ↾n =R τ |(γ↾n)]], and, using (2): ∀n[γ↾n /∈ Gα↾n ].
Clearly, ∃γ ∈ C∀n[γ↾n /∈ Gα↾n ].

�

7. Contrapositions of some special cases of ACω,ωω

The axiom ∆0
1-
←−−−−−
ACω,ωω implies ∆0

1-
←−−−−
ACω,ω and therefore LPO. Let us consider

an Axiom Scheme of Reverse Countable Compact Choice:

7.1.
←−−−−
ACω,C: ∀γ ∈ C∃n[R(n, γ↾n)]→ ∃n∀γ ∈ C[R(n, γ)].

In [32] it is shown that
←−−−−
ACω,C is a consequence of the First Axiom of Continuous

Choice ACωω,ω and FAN.
We now require the relation R to be Σ0

1 and obtain the Σ0
1-Axiom of Reverse

Countable Compact Choice:

7.2. Σ0
1-
←−−−−
ACω,C : ∀α[∀γ ∈ C∃n[γ↾n ∈ Gα↾n ]→ ∃n[C ⊆ Gα↾n ]].

We also introduce a strong negation:

7.3. ¬!
(

Σ0
1-
←−−−−
ACω,C): ∃α[∀γ ∈ C∃n[γ↾n ∈ Gα↾n ] ∧ ¬∃n[C ⊆ Gα↾n ]].

We introduce a ‘real’ version:

7.4. Σ0
1-
←−−−−−−
ACω,[0,1]: ∀α[∀δ ∈ [0, 1]ω∃n[δ↾n ∈ Hα↾n ]→ ∃n[[0, 1] ⊆ Hα↾n ]].

and a strong negation:

7.5. ¬!(Σ0
1-
←−−−−−−
ACω,[0,1]): ∃α[∀δ ∈ [0, 1]ω∃n[δ↾n ∈ Hα↾n ] ∧ ¬∃n[[0, 1] ⊆ Hα↾n ]].

The treatment of real numbers in BIM is sketched in Subsection 13.7.

Lemma 7.1. BIM proves:

(i) FT→ Σ0
1-
←−−−−
ACω,C and ¬!(Σ0

1-
←−−−−
ACω,C)→ ¬!FT.

(ii) Σ0
1-
←−−−−
ACω,C → Σ0

1-
←−−−−−−
ACω,[0,1] and ¬!(Σ

0
1-
←−−−−−−
ACω,[0,1])→ ¬!(Σ

0
1-
←−−−−
ACω,C)

(iii) Σ0
1-
←−−−−−−
ACω,[0,1] → Σ0

1-
←−−−−
ACω,2 and ¬!(Σ0

1-
←−−−−
ACω,2)→ ¬!(Σ0

1-
←−−−−−−
ACω,[0,1])

Proof. (i)12 We prove, in BIM: for each α, there exists β such that

∀γ ∈ C∃n[γ↾n ∈ Gα↾n ]→ BarC(Dβ) and ∃m[BarC(Dβm)]→ ∃n[C ⊆ Gα↾n ].

The two promised statements then follow easily.
Let α be given. Define β such that, for every s,

β(s) 6= 0↔
(

s ∈ Bin ∧ ∃n < length(s)∃p ≤ length(s↾n)[α↾n(s↾np) 6= 0]
)

.

Assume: ∀γ ∈ C∃n∃p[α↾n(γ↾np) 6= 0].
Clearly ∀γ ∈ C∃n[β(γn) 6= 0], i.e. BarC(Dβ).

Let m be given such that BarC(Dβm). Suppose there is no n < m such that

BarC(Dα↾nm
). For each n < m, there exists u in Bin such that length(u) = m and

u does not meet Dαn . Let s be an element of Bin such that length(s) = m and, for
each n < m, sn does not meet Dα↾n . Note: s does not meet Dβ. Contradiction.
Thus we see there must exist n < m such that every s in Binm meets Dα↾n .
Conclude: ∃n[C ⊆ Gα↾n ].

12The argument may be compared to the arguments for Lemma 5.3(i) and for Lemma 5.5(ii).
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(ii)13 We prove, in BIM: for each α, there exists β such that

∀δ ∈ [0, 1]ω∃n[δ↾n ∈ Hα↾n ]→ ∀γ ∈ C∃n[γ↾n ∈ Gβ↾n ] and

∃n[C ⊆ Gβ↾n ]→ ∃n[[0, 1] ⊆ Hα↾n ].

Using Lemma 13.3, find σ : C → [0, 1] and ψ : ωω → ωω such that
∀δ ∈ [0, 1]∃γ ∈ C[σ|γ =R δ] and ∀α∀γ ∈ C[γ ∈ Gψ|α ↔ σ|γ ∈ Hα].

Let α be given. Define β such that, for every n, β↾n = ψ|(α↾n).
Assume ∀δ ∈ [0, 1]ω∃n[δ↾n ∈ Hα↾n ]. Then ∀γ ∈ C∃n[σ|(γ↾n) ∈ Hα↾n ] and

∀γ ∈ C∃n[γ↾n ∈ Gψ|(α↾n)] and: ∀γ ∈ C∃n[γ
↾n ∈ Gβ↾n ].

Let n be given such that such that C ⊆ Gβ↾n = Gψ|(α↾n).
Note: ∀γ ∈ C[σ|γ ∈ Hα↾n ] and, therefore: [0, 1] ⊆ Hα↾n .

(iii) We prove, in BIM: for each α, there exists β such that

∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα]→ ∀δ ∈ [0, 1]ω∃n[δ↾n ∈ Hβ↾n ] and

∃n[[0, 1] ⊆ Hβ↾n ]→ ∃n∀i < 2[(n, i) ∈ Eα].

Let α be given. Define β such that ∀n∀s ∈ S[β↾n(s) 6= 0↔
∃i < s[

(

α(i) = (n, 0) + 1 ∧ s′′ <Q 1Q
)

∨
(

α(i) = (n, 1) + 1 ∧ 0Q <Q s
′
)

]].

Note ∀n[
(

(n, 0) ∈ Eα ↔ [0, 1) ⊆ Hβ↾n ]
)

∧
(

(n, 1) ∈ Eα ↔ (0, 1] ⊆ Hβ↾n

)

].

Assume: ∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα], and δ ∈ [0, 1]ω.

Define ε such that ∀n[ε(n) = µm[0Q <Q

(

δn(m)
)′
∨

(

δn(m)
)′′
<Q 1Q].

Define γ in C such that ∀n[γ(n) = 0↔
(

δn(ε(n))
)′′
<Q 1Q].

Note: ∀n[γ(n) = 1→ 0R <R δn].
Find n such that

(

n, γ(n)
)

∈ Eα and conclude:

either : γ(n) = 0 and δ↾n <R 1R and [0, 1) ⊆ Hβ↾n , so δ↾n ∈ Hβ↾n ,

or : γ(n) = 1 and 0R <R δ↾n and (0, 1] ⊆ Hβ↾n , so, again, δ↾n ∈ Hβ↾n .

Conclude: ∀δ ∈ [0, 1]ω∃n[δ↾n ∈ Hβ↾n ].

Let n be given such that [0, 1] ⊆ Hβ↾n . Conclude: ∀i < 2[(n, i) ∈ Eα]. �

Theorem 7.2. (i) BIM ⊢ FT↔ Σ0
1-
←−−−−
ACω,C ↔ Σ0

1-
←−−−−−−
ACω,[0,1].

(ii) BIM ⊢ ¬!FT↔ ¬!(Σ0
1-
←−−−−
ACω,C)↔ ¬!(Σ0

1-
←−−−−−−
ACω,[0,1]).

Proof. These statements follow from Lemmas 7.1 and 5.3. �

8. On the Contraposition of Twofold Compact Choice

We introduce a limited version of Σ0
1-
←−−−−
ACω,C :

8.1. Σ0
1-
←−−−−
AC2,C : ∀α[∀γ ∈ C∃i < 2[γ↾i ∈ Gαi ]→ ∃i < 2[C ⊆ Gα↾i ]].

This statement should be called the Σ0
1-Axiom of Reverse Twofold Compact

Choice. It is a contraposition of a special case of the following scheme:

∀i < 2∃γ ∈ C[R(i, γ)]→ ∃γ ∈ C∀i < 2[R(i, γ↾i)].

and the latter scheme is provable in BIM.
For each α, we define the following statement, called LLPOα:

∀ε[∀p[2p = µm[ε(m) 6= 0]→ BarC(Dαp)] ∨

∀p[2p+ 1 = µm[ε(m) 6= 0]→ BarC(Dαp)]].

Lemma 8.1. (i) BIM ⊢ LLPO↔ ∀α[LLPOα].

(ii) BIM +Σ0
1-
←−−−−
AC2,C ⊢ ∀α[BarC(Dα)→ LLPOα].

(iii) BIM + Π0
1-ACω,2 ⊢ ∀α[BarC(Dα)→ LLPOα]→ FT.

(iv) BIM ⊢ FT→ Σ0
1-
←−−−−
AC2,C.

13The argument may be compared to the argument for the first half of Theorem 6.5.
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Proof. (i) Assume LLPO and let α, ε be given.
Either ∀p[2p 6= µn[ε(n) 6= 0]] and, therefore, ∀ε[∀p[2p = µm[ε(m) 6= 0]→ BarC(Dαp)],
or ∀p[2p+ 1 6= µn[ε(n) 6= 0]] and: ∀ε[∀p[2p+ 1 = µm[ε(m) 6= 0]→ BarC(Dαp)].
We thus see: LLPOα.

For the converse, note: LLPO↔ LLPO0.

(ii) Let α be given such that BarC(Dα).

Using Σ1
0-
←−−−−
AC2,C , we now prove: LLPOα.

Let ε be given. Define η such that, for each p,

(1) if 0(2p+ 2) ⊏ ε, then η↾0(p) = η↾1(p) = α(p), and,
(2) if 2p = µm[ε(m) 6= 0], then ∀m ≥ p[η↾0(m) = 0 ∧ η↾1(m) = α(m)], and
(3) if 2p+ 1 = µm[ε(m) 6= 0], then ∀m ≥ p[η↾1(m) = 0 ∧ η↾0(m) = α(m)].

Note: if η↾0 # α, then η↾1 = α.

Let γ in C be given. Find n such that α(γ↾0n) 6= 0.

Either: η↾0(γ↾0n) = α(γ↾0n) 6= 0,

or: η↾0 # α and η↾1 = α and ∃m[η↾1(γ↾1m) = α(γ↾1m) 6= 0].
We thus see: ∀γ ∈ C[γ↾0 ∈ Gη↾0 ∨ γ↾1 ∈ Gη↾1 ].

Use Σ1
0-
←−−−−
AC2,C and find i < 2 such that C ⊆ Gη↾i .

Assume: C ⊆ Gη↾i , i.e. BarC(Dη↾i). Assume: 2p+ i = µm[ε(m) 6= 0].

Note: ∀m ≥ p[η↾i(m) = 0]. Conclude: BarC(Dη↾ip
) and: BarC(Dαp).

We thus see: ∀p[2p+ i = µm[ε(m) 6= 0]→ BarC(Dαp)].
Conclude: ∃i < 2∀p[2p+ i = µm[ε(m) 6= 0]→ BarC(Dαp)], i.e. LLPOα.

(iii) Assume ∀α[BarC(Dα)→ LLPOα].
Using Π0

1-ACω,2, we now prove: FT.
Let α be given such that BarC(Dα) and, therefore, LLPOα.
Assume: s ∈ Bin . Define ε such that, ∀i < 2∀n[ε(2n+i) 6= 0↔ BarC∩s∗〈i〉(Dαn)].

Using LLPOα, find i < 2 such that ∀p[2p+ i = µm[ε(m) 6= 0]→ BarC(Dαp)].
Assume we find n such that BarC∩s∗〈i〉(Dαn). Then ε(2n+ i) 6= 0.

Find p := µj[ε(j) 6= 0]. Find q ≤ n such that p = 2q or p = 2q + 1.
Either p = 2q + i and BarC(Dαq), or p = 2q + 1− i and BarC∩s∗〈1−i〉(Dαq).
In both cases: BarC∩s∗〈1−i〉(Dαn).
We thus see: ∀n[BarC∩s∗〈i〉(Dαn)→ BarC∩s∗〈1−i〉(Dαn)].

Conclude: ∀s ∈ Bin∃i < 2∀n[BarC∩s∗〈i〉(Dαn)→ BarC∩s∗〈1−i〉(Dαn)].

Now use Π0
1-ACω,2 and find γ in C such that

∀s ∈ Bin∀n[BarC∩s∗〈γ(s)〉(Dαn)→ BarC∩s∗〈1−γ(s)〉(Dαn)].
Observe that, for each s in Bin , for all n, if BarC∩s∗〈γ(s)〉(Dαn), then also

BarC∩s∗〈1−γ(s)〉(Dαn), and, therefore, BarC∩s(Dαn).

Define δ in C such that, for each n, δ(n) = γ(δn). Find p such that α(δp) 6= 0 and
define n := δp+1. Note: BarC∩δp(Dαn). One may prove, by backwards induction:

for each j ≤ p, BarC∩δj(Dαn). For assume j + 1 ≤ n and BarC∩δ(j+1)(Dαn). As

δ(j+1) = δj ∗〈γ(δj)〉, one may conclude: BarC∩δ(j)(Dαn). After n steps we obtain

the conclusion: BarC(Dαn).
Conclude: ∀α[BarC(Dα)→ ∃n[BarC(Dαn)]], i.e. FT.

(iv) Assume FT. Use Theorem 7.2 and conclude: Σ0
1-
←−−−−
ACω,C and its corollary:

Σ0
1-
←−−−−
AC2,C . �

Theorem 8.2. BIM +Π0
1-ACω,2 ⊢ Σ0

1-
←−−−−
AC2,C ↔ FT.

Proof. Use Lemma 8.1. �
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8.1.1. Mark Bickford called my attention to the fact that Σ0
1-
←−−−−
AC2,C occurs in [21,

§2] and is called there the separation principle SP.

After having proven FT → Σ0
1-
←−−−−
AC2,C , see our Lemma 8.1(iv), the author of [21]

gives a proof of FT→WKL!. She does so as follows.

Assume FT.
Let α be given such that ∀n[¬BarC(Dαn)] and

∀γ ∈ C[γ↾0 ⊥ γ↾1 → ∃i < 2∃n[α(γ↾in) 6= 0]].
We intend to prove: ∃γ ∈ C∀n[α(γn) = 0].
Define α∗ such that ∀s ∈ Bin[α∗(s) = 0↔ ∀t ⊑ s[α(t) = 0]].
Using induction, we prove:
(∗): ∀n∃!s ∈ Binn∀m > n∃t ∈ Binm[s ⊏ t ∧ α∗(t) = 0]].
If n = 0, then s = 〈 〉 satisfies the requirements.
Let n be given and let s be the unique element of Binn such that
∀m ≥ n∃t ∈ Binm[s ⊑ t ∧ α∗(t) = 0].

Observe: ∀γ ∈ C∃i < 2∃n[α(s ∗ 〈i〉 ∗ γ↾in) 6= 0].

Using Σ0
1-
←−−−−
AC2,C , find j < 2 such that ∀γ ∈ C∃n[α(s∗〈j〉∗γn) 6= 0].

Using FT, find m such that ∀γ ∈ C∃n ≤ m[α(s ∗ 〈j〉 ∗ γn) 6= 0].
Define p := n+ 1 +m and note:
∀q > p∀t ∈ Binq[s ∗ 〈j〉 ⊑ t→ α∗(t) 6= 0] and:
s ∗ 〈1− j〉 is the unique element u of Binn+1 such that
∀q ≥ n+ 1∃t ∈ Binq[u ⊑ t ∧ α∗(t) = 0].
This completes our proof of (∗).
Using (∗) and Π0

1-ACω,ω!, find δ such that
∀n[δ(n) ∈ Binn ∧ ∀m ≥ n∃t ∈ Binm[δ(n) ⊑ t ∧ α∗(t) = 0]].
Note: ∀n[δ(n) ⊏ δ(n+ 1) ∧ α∗

(

δ(n)
)

= 0]].
Define γ such that ∀n[δ(n) ⊏ γ] and note: γ ∈ C and ∀n[α(γn) = 0].

The author of [21] quotes the result WKL!→ FT, see our Theorem 2.6.

She does not prove FT, or equivalently, WKL!, from Σ0
1-
←−−−−
AC2,C and Π0

1-ACω,ω!.
Our proof of Theorem 2.7 shows that no choice is needed for a proof of

FT→WKL!.

We introduce a ‘real’ version of Σ0
1-
←−−−−
AC2,C :

8.2. Σ0
1-
←−−−−−−
AC2,[0,1]:

∀α[∀δ ∈ [0, 1]2∃i < 2[δ↾i ∈ Hα↾i ]→ ∃i < 2[[0, 1] ⊆ Hα↾i ]].

Theorem 8.3. BIM ⊢ Σ0
1-
←−−−−
AC2,C ↔ Σ0

1-
←−−−−−−
AC2,[0,1].

Proof. Using Lemma 13.3, find σ : C → [0, 1] and ψ : ωω → ωω such that
∀δ ∈ [0, 1]∃γ[δ =R σ|γ] and ∀α∀γ ∈ C[γ ∈ Gψ|α ↔ σ|γ ∈ Hα].

First assume: Σ0
1-
←−−−−
AC2,C.

Let α be given such that ∀δ ∈ [0, 1]2∃i < 2[δ↾i ∈ Hα↾i ]. Define β such that,
for both i < 2, β↾i = ψ|(α↾i). Then ∀γ ∈ C∃i < 2[σ|γ↾i ∈ Hα↾i ] and, therefore:
∀γ ∈ C∃i < 2[γ↾i ∈ Gβ↾i ]. Find i < 2 such that C ⊆ Gβ↾i . Conclude: [0, 1] ⊆ Hα↾i .

We nay conclude: Σ0
1-
←−−−−−−
AC2,[0,1].

Now assume: Σ0
1-
←−−−−−−
AC2,[0,1].

Let α be given such that
Using Lemma 13.4, find τ : C → [0, 1] and χ : ωω → ωω such that

(1) ∀γ ∈ C∀δ ∈ C[γ # δ → τ |γ #R τ |δ], and
(2) ∀α∀γ ∈ C[γ ∈ Gα ↔ τ |γ ∈ Hχ|α] and
(3) ∀δ ∈ [0, 1]∃γ ∈ C[δ #R τ |γ → ∀α[δ ∈ Hχ|α]].
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Let α be given such that ∀γ ∈ C∃i < 2[γ↾i ∈ Gα↾i ].
Let δ in [0, 1]2 be given.
Find γ in C such that ∀i < 2[δ↾i #R τ |(γ↾i)→ δ↾i ∈ Hχ|(α↾i)].

Find i < 2 such that γ↾i ∈ Gα↾i .
Conclude: τ |(γ↾i) ∈ Hχ|α↾i . Find s, n such that (χ|α↾i)(s) 6= 0 and

(

τ |(γ↾i)
)

(n) ⊏S

s.
Using Lemma 13.2, find p such that either : δ↾i(p) ⊏S s, and, therefore: δ↾i ∈
Hχ|(αi),

or : δ↾i(p) #S

(

τ |(γ↾i)
)

(n), and, therefore, again: δ↾i ∈ Hχ|(αi).

We thus see: ∀δ ∈ [0, 1]2∃i < 2[δ↾i ∈ Hχ|(α↾i)].

Applying Σ0
1-
←−−−−−−
AC2,[0,1], find i < 2 such that [0, 1] ⊆ Hχ|(α↾i).

Conclude: ∀γ ∈ C[τ |γ ∈ Hχ|(α↾i)] and: C ⊆ Gα↾i .

We may conclude: Σ0
1-
←−−−−
AC2,C . �

Corollary 8.4. BIM +Π0
1-ACω,2 ⊢ FT↔ Σ0

1-
←−−−−−−
AC2,[0,1].

Proof. Use Theorems 8.2 and 8.3. �

8.3. Some logical consequences.

In this Subsection, we want to formulate the result of Theorem 8.2 in model-
theoretic terms and draw an even sharper conclusion.

For every δ, we define a proposition Prδ, as follows: Prδ := ∃n[δ(n) 6= 0].

Tarski’s truth definition makes sense intuitionistically as well as classically.
For every structure A = (A, . . .), for every sentence ϕ in the elementary language

of the structure A, we write:
A |= ϕ

if the sentence ϕ is true in the structure A.
More generally, for every structure A = (A, . . .), for every formula
ϕ = ϕ(x0, x1, . . . , xn−1) in the elementary language of the structure A,
for all a0, a1, . . . , an−1 in A, we write:

A |= ϕ[a0, a1, . . . , an−1]

if the formula ϕ is true in the structure A, provided we interpret the individual
variables x0, x1, . . . , xn−1 by a0, a1, . . . , an−1, respectively.

Theorem 8.5. The following statements are equivalent in BIM:

(i) ∀α[(C,Gα↾0 , P rα↾1) |= ∀x[P(x) ∨ A]→ (∀x[P(x)] ∨ A).
(ii) ∀α[(C,Gα↾0 ,Gα↾1) |= ∀x[P(x) ∨ Q(x)]→ (∀x[P(x)] ∨ ∃x[Q(x)]).

Proof. (i) ⇒ (ii). Let α be given such that (C,Gα↾0 ,Gα↾1) |= ∀x[P(x) ∨ Q(x)].
Note: (C,Gα↾0 ,Gα↾1) |= ∀x[P(x) ∨ ∃y[Q(y)]].
Define β such that β↾0 = α↾0 and ∀n[β↾1(n) 6= 0 ↔

(

α↾1(n) 6= 0 ∧ n ∈ Bin
)

].
Note: (C,Gβ↾0 , P rβ↾1) |= ∀x[P(x) ∨ A], and thus, according to (i):
(C,Gβ↾0 , P rβ↾1) |= ∀x[P(x)] ∨ A, and, therefore: (C,Gα↾0 ,Gα↾1) |= ∀x[P(x)] ∨ ∃x[Q(x)].

(ii) ⇒ (i). Let α be given such that (C,Gα↾0 , P rα↾1) |= ∀x[P(x) ∨ A].
Define β such that β↾0 = α↾0 and ∀n[β↾1(n) 6= 0↔

(

∃i < n[α↾1(i) 6= 0] ∧ n ∈ Bin
)

].
Note that, for each γ in C, γ ∈ Gβ↾1 if and only if Prα↾1 .
Therefore, (C,Gβ↾0 ,Gβ↾1) |= ∀x[P(x) ∨Q(x)] and, according to (ii):
(C,Gβ↾0 ,Gβ↾1) |= ∀x[P(x)] ∨ ∃x[Q(x)], and thus: (C,Gα↾0 , P rα↾1) |= ∀x[P(x)] ∨ A. �

For each α, we define the following statement:

LPOα : ∀ε[∀p[0(2p+ 2) ⊥ ε→ BarC(Dαp)] ∨ ∃n[ε(n) 6= 0]].

Lemma 8.6. (i) BIM ⊢ LPO→ ∀α[LPOα].
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(ii) BIM ⊢ ∀α[LPOα → LLPOα].

Proof. (i) Given any ε, by LPO,
either ε = 0, and, therefore: ∀p[0(2p+ 2) ⊥ ε→ BarC(Dαp)], or ∃n[ε(n) 6= 0].

(ii) Let α be given such that LPOα. We have to prove, for all ε, either
∀p[2p = µm[ε(m) 6= 0]→ BarC(Dαp)] or ∀p[2p+1 = µm[ε(m) 6= 0]→ BarC(Dαp)].

Let ε be given. Use LPOα and distinguish two cases.
Case (1). ∀p[0(2p+ 2) ⊥ ε→ BarC(Dαp)].

Then ∀p[2p = µm[ε(m) 6= 0]→ BarC(Dαp)], and also
∀p[2p+ 1 = µp[ε(m) 6= 0]→ BarC(Dαp)].

Case (2). ∃n[ε(n) 6= 0]. Define m := µn[ε(n) 6= 0].
Find q such that m = 2q or m = 2q + 1.
If m = 2q + 1, then ∀p[2p = µm[ε(m) 6= 0]→ BarC(Dαp)].
If m = 2q, then ∀p[2p+ 1 = µm[ε(m) 6= 0]→ BarC(Dαp)].

Conclude: LLPOα. �

Theorem 8.7. The following statements are equivalent in BIM + Π0
1-ACω,2:

(i) FT.
(ii) ∀α[(C,Gα↾0 ,Gα↾1) |= ∀x∀y[P(x) ∨ Q(y)]→ (∀x[P(x)] ∨ ∀y[Q(y)])].
(iii) ∀α[(C,Gα↾0 , P rα↾1) |= ∀x[P(x) ∨ A]→ (∀x[P(x)] ∨ A)].
(iv) ∀α[BarC(Dα)→ LPOα].

Proof. (i) ⇒ (ii). Note that, in BIM +Π0
1-ACω,2, FT implies Σ0

1-
←−−−−
AC2,C :

∀α[∀γ ∈ C∃i < 2[γ↾i ∈ Gα↾i ]→ ∃i < 2[C ⊆ Gα↾i ]], see Theorem 8.2.

(ii) ⇒ (iii). Let α be given such that (C,Gα↾0 , P rα↾1) |= ∀x[P(x) ∨ A], i.e.
∀γ ∈ C∃n∃i < 2[α↾0(γn) 6= 0 ∨ α↾1(n) 6= 0].
Define β such that β↾0 = α↾0 and ∀n∀s ∈ Binn[β↾1(s) = α↾1(n)].
Note (C,Gβ↾0 ,Gβ↾1) |= ∀x∀y[P(x) ∨ Q(y)] and conclude, using (i),
(C,Gβ↾0 ,Gβ↾1) |= ∀x[P(x)] ∨ ∀y[Q(y)] and (C,Gα↾0 , P rα↾1) |= ∀x[P(x)] ∨ A.

(iii) ⇒ (iv). Assume (iii).
Let α be given such that BarC(Dα). We have to prove: LPOα.

Let ε be given.
Define η in C such that η↾1 = ε, and, for each p, if 0(2p+2) ⊏ ε, then η↾0(p) = α(p),
and, if 0(2p+2) ⊥ ε, then η↾0(p) = 0. Note: if η↾0 # α, then ∃n[ε(n) = η↾1(n) 6= 0].

Let γ in C be given. Find n such that α(γn) 6= 0.
Either: η0(γn) = α(γn) 6= 0 or: η↾0 # α and ∃m[η↾ 1(m) 6= 0].
We thus see: ∀γ ∈ C[(∃n[η↾0(γn) 6= 0]) ∨ (∃m[η↾1(m) 6= 0])].
Use (iii) and conclude: ∀γ ∈ C∃n[η↾0(γn) = 1] ∨ ∃m[η↾1(m) 6= 0].

Assume: ∀γ ∈ C∃n[η↾0(γn) 6= 0], that is: BarC(Dη↾0). Let p be given such that

0(2p+2) ⊥ ε. Note ∀m ≥ p[η↾0(m) = 0]. Conclude: BarC(Dη↾0p
) and: BarC(Dαp).

We thus see: ∀p[0(2p+ 2) ⊥ ε→ BarC(Dαp)].
Assume: ∃n[η↾1(n) 6= 0], Then, of course: ∃n[ε(n) 6= 0].
We thus see: ∀ε[0(2p+ 2) ⊥ ε→ BarC(Dαp)] ∨ ∃n[ε(n) 6= 0]], i.e. LPOα.

(iv) ⇒ (i). Use Lemma 8.6(ii) and Theorem 8.2(iii). �

The sentences mentioned in Theorems 8.5 and 8.7 are true in every structure
({0, 1, . . . , n}, P,Q,A) where n is a natural number, P,Q are arbitrary subsets of
{0, 1, . . . , n} and A is an arbitrary proposition, that is, these sentences hold in every
finite structure. They sometimes fail to be true in countable structures, as appears
from the next two theorems.

Theorem 8.8. The following statements are equivalent in BIM.

(i) LLPO.
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(ii) ∀α[(ω,Dα↾0 , Dα↾1) |= ∀x∀y[P(x) ∨ Q(y)]→ (∀x[P(x)] ∨ ∀y[Q(y)]).

Proof. (i) ⇒ (ii). Let α be given.
Define β such that ∀p∀i < 2[β(2p+ i) = 0↔ α↾i(p) 6= 0].
Assume: (ω,Dα↾0 , Dα↾1) |= ∀x∀y[P(x) ∨ Q(y)]. Conclude: ∀p∀q[β(2p) = 0 ∨
β(2q + 1) = 0]. Apply LLPO and distinguish two cases.

Case (1). ∀p[2p+1 6= µm[β(m) 6= 0]]. Assume we find p such that β(2p+1) 6= 0.
Determine q such that q ≤ p and β(2q) 6= 0. Contradiction.

Conclude: ∀p[β(2p+ 1) = 0] and: Dα↾1 = ω.
Case (2). ∀p[2p 6= µm[β(m) 6= 0]]. Then, for similar reasons: Dα↾0 = ω.
In both cases: (ω,Dα↾0 , Dα↾1) |= ∀x[P(x)] ∨ ∀y[Q(y)].

(ii)⇒ (i). Let α be given. Define β such that, for each p, for both i < 2, β↾i(p) =
0 if and only if α(2p + i) = 0(2p + i) and α(2p + i) 6= 0. Note: (ω,Dβ↾0 , Dβ↾1) |=
∀x∀y[P(x) ∨ Q(y)]. Conclude: (ω,Dβ↾0 , Dβ↾1) |= ∀x[P(x)] ∨ ∀y[Q(y)].

Either: (ω,Dβ↾0 , Dβ↾1) |= ∀x[P(x)] and: ∀p[α(2p) = 0(2p)→ α(2p) = 0],

or: (ω,Dβ↾0 , Dβ↾1) |= ∀y[Q(y)] and: ∀p[α(2p+ 1) = 0(2p+ 1)→ α(2p+ 1) = 0].
We thus see: LLPO. �

Theorem 8.9. The following statements are equivalent in BIM.

(i) LPO.
(ii) ∀α[(ω,Dα↾0 , Dα↾1) |= ∀x[P(x) ∨Q(x)] → (∀x[P(x)] ∨ ∃x[Q(x)]).
(iii) ∀α[(ω,Dα↾0 , P rα↾1) |= ∀x[P(x) ∨ A]→ (∀x[P(x)] ∨ A).

Proof. (i) ⇒ (ii). Let α be given such that (ω,Dα↾0 , Dα↾1) |= ∀x[P(x) ∨Q(x)], i.e.
∀n[α↾0(n) 6= 0 ∨ α↾1(n) 6= 0]. Using LPO, distinguish two cases.
Either ∀n[α↾0(n) 6= 0] and (ω,Dα↾0 , Dα↾1) |= ∀x[P(x)],
or ∃n[α↾0(n) = 0] and ∃n[α↾1(n) 6= 0] and (ω,Dα↾0 , Dα↾1) |= ∃x[Q(x)].

(ii) ⇒ (i). Let α be given. Define β such that ∀n[β↾0(n) = 0 ↔ α(n) 6= 0] and
β↾1 = α. Note: ∀n[β↾0(n) 6= 0 ∨ β1(n) 6= 0], i.e.
(ω,Dβ↾0 , Dβ↾1) |= ∀x[P(x) ∨ Q(x)]. Use (ii) and distinguish two cases.
Either (ω,Dβ↾0 , Dβ↾1) |= ∀x[P(x)] and ∀n[α(n) = 0],
or (ω,Dβ↾0 , Dβ↾1) |= ∃x[Q(x)] and ∃n[α(n) 6= 0].
We thus see: LPO.

(i) ⇒ (iii). Let α be given such that (ω,Dα↾0 , P rα↾1) |= ∀x[P(x) ∨ A], i.e.
∀n[α↾0(n) 6= 0 ∨ ∃m[α↾1(m) 6= 0]]. Using LPO, distinguish two cases.
Either ∀n[α↾0(n) 6= 0] and (ω,Dα↾0 , P rα↾1) |= ∀x[P(x)],
or ∃n[α↾0(n) = 0] and ∃m[α↾1(m) 6= 0] and (ω,Dα↾0 , P rα↾1) |= A.

(iii) ⇒ (i). Let α be given. Define β such that ∀n[β(n) = 0↔ α(n) 6= 0].
Note: ∀n[β(n) 6= 0 ∨ α(n) 6= 0], that is, (ω,Dβ , P rα) |= ∀x[P(x) ∨ A].
Use (iii) and distinguish two cases.
Either (ω,Dβ, P rα) |= ∀x[P(x)] and ∀n[β(n) 6= 0] and ∀n[α(n) = 0],
or (ω,Dβ, P rα) |= A and ∃n[α(n) 6= 0].
We thus see: LPO. �

8.4. A note. According to Theorem 8.7(iii), BIM +Π0
1-ACω,2 proves that FT is

equivalent to:

For all α, if ∀γ ∈ C∃n[α↾0(γn) 6= 0 ∨ α↾1(n) 6= 0],
then either ∀γ ∈ C∃n[α↾0(γn) 6= 0] or ∃n[α↾1(n) 6= 0].

One might ask if BIM+Π0
1-ACω,2 proves that ¬!FT is equivalent to the following

statement:

There exists α such that ∀γ ∈ C∃n[α↾0(γn) 6= 0 ∨ α↾1(n) 6= 0] and
¬∀γ ∈ C∃n[α↾0(γn) 6= 0] and α↾1 = 0,

i.e.
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(∗): There exists α such that
∀γ ∈ C∃n[α(γn) 6= 0] and ¬∀γ ∈ C∃n[α(γn) 6= 0].

The formula (∗) is an outright contradiction!

9. The determinacy of finite and infinite games

We consider games of perfect information for players I, II. First finite games,
then games with finitely many moves where the players may choose out of infinitely
many alternatives, and then games of infinite length. In the last Subsection we
prove: in BIM, FT is an equivalent of the Intuitionistic Determinacy Theorem:
every subset of (ω × 2)ω is weakly determinate.

9.1. Finite games.

9.1.1. Finite Choice and a contraposition of Finite Choice.

Lemma 9.1. BIM proves the following scheme:

∀m[∀n < m[A(n) ∨B]→ (∀n < m[A(n)] ∨ B)]

Proof. The proof is straightforward, by induction. �

Lemma 9.2. BIM proves the following schemes:

(i) ∀k[∀n < k∃m[R(n,m)]→ ∃s∀n < k[R
(

n, s(n)
)

]].

(ii) ∀k∀l[∀s : k → l∃n < k[R
(

n, s(n)
)

]→ ∃n < k∀m < l[R(n,m)]].

Proof. (i) The proof is by induction on k and left to the reader.

(ii) The proof is by induction on k and uses Lemma 9.1. Note that there is
nothing to prove if k = 0. Now assume the statement holds for a certain k.

Assume ∀s : (k + 1)→ l∃n < k + 1[R
(

n, s(n)
)

]. Note:

∀j < l∀s : k → l[∃n < k[R
(

n, s(n)
)

] ∨ R(k, j)],

and, therefore, by Lemma 9.1:

∀j < l[R(k, j) ∨ ∀s : k → l∃n < k[R
(

n, s(n)
)

]].

Using the induction hypothesis, we conclude:

∀j < l[R(k, j)] ∨ ∃n < k∀m < l[R(n,m)],

that is: ∃n < k + 1∀m < l[R(n,m)]. �

9.1.2. Finite games. We want to study finite and infinite games for players I and
II of perfect information. We first consider finite games: there are finitely many
moves, and for each move there are only finitely many alternatives.

Assume X ⊆ ω. Let n, l be given such that l > 0.
Players I and II play the I-game for X in Seq(n, l) and the II-game for X in
Seq(n, l) in the same way, as follows. First, player I chooses i0 < l, then player II
chooses i1 < l, and they continue until a finite sequence 〈i0, i1, . . . , in−1〉 of length
n has been formed. Player I wins the play 〈i0, i1, . . . , in−1〉 in the I-game for X if
and only if 〈i0, i1, . . . , in−1〉 ∈ X . Player II wins the play 〈i0, i1, . . . , in−1〉 in the
II-game for X if and only if 〈i0, i1, . . . , in−1〉 ∈ X .

We define ϕ such that, for all n, for all l > 0,

ϕ(n, l) := µa∀i < n∀c ∈ Seq(i, l)[c < a].

Every number coding a position in Seq(n, l) that is not a final position is smaller
than ϕ(n, l).

We define ψ such that, for all n, for all l > 0,

ψ(n, l) := µa∀s ∈ Seq
(

ϕ(n, l), l
)

[s < a].
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When studying games in Seq(n, l) it suffices to consider strategies s, t for player
I, II, respectively, such that s, t < ψ(n, l).

The reader should consult Subsubsection 13.10 for some of the notations we are
going to use, like ‘∈I ’ and ‘∈II ’.

We define: X ⊆ ω is I-determinate in Seq(n, l), DetISeq(n,l)(X),

if and only if ∀t < ψ(n, l)∃c[c ∈II t ∧ c ∈ X ]→ ∃s∀c ∈ Seq(n, l)[c ∈I s→ c ∈ X ],

and: X ⊆ ω is II-determinate in Seq(n, l), DetIISeq(n,l)(X),

if and only if ∀s < ψ(n, l)∃c[c ∈I s ∧ c ∈ X ]→ ∃t∀c ∈ Seq(n, l)[c ∈II t→ c ∈ X ].

Theorem 9.3 (Determinacy of finite games). Let X ⊆ ω be given.

For every l > 0, for every n, DetISeq(n,l)(X) and DetIISeq(n,l)(X).

Proof. Let X ⊆ ω and l > 0 be given.
For every u, we define: Xu := {c ∈ ω | u ∗ c ∈ X}.
We intend to prove a statement seemingly stronger than the statement of the

theorem:

(∗): for every n, for every u, DetISeq(n,l)(Xu) and DetIISeq(n,l)(Xu).

The proof is by induction on n. If n = 0, then, for every u, the statements:
Xu is I-determinate in Seq(0, l) and: Xu is II-determinate in Seq(0, l) both assert:
if 〈 〉 ∈ Xu, then 〈 〉 ∈ Xu, and thus are obviously true.

Now assume the statement (∗) has been established for a certain n. We prove
that (∗) is also true for n+ 1.

Let u be given.

First, assume: ∀t < ψ(n+ 1, l)∃c[c ∈II t ∧ c ∈ Xu], or, equivalently
14

∀t < ψ(n+ 1, l)∃k < l∃c[c ∈I t↾k ∧ 〈k〉 ∗ c ∈ Xu].
Note: ∀k < l∀c[〈k〉 ∗ c ∈ Xu ↔ c ∈ Xu∗〈k〉].
Conclude: ∀t : l → ψ(n, l)∃k < l∃c[c ∈I t(k) ∧ c ∈ Xu∗〈k〉].
Use Lemma 9.2(ii) and find k < l such that ∀s < ψ(n, l)∃c[c ∈I s ∧ c ∈ Xu∗〈k〉].
Use the induction hypothesis and find t < ψ(n, l) such that
∀c ∈ Seq(n, l)[c ∈II t→ c ∈ Xu∗〈k〉].

Define s < ψ(n+ 1, l) such that s(〈 〉) = k and s↾k = t.
Note: ∀c ∈ Seq(n+ 1, l)[c ∈I s→ c ∈ Xu].
We thus see that Xu is I-determinate.

Next, assume: ∀s < ψ(n+ 1, l)∃c[c ∈I s ∧ c ∈ Xu], or, equivalently:
∀s < ψ(n+ 1, l)∃c[c ∈II s

↾s(〈 〉) ∧ 〈s(〈 〉)〉 ∗ c ∈ Xu].
Note: ∀k < l∀t < ψ(n, l)∃s < ψ(n+ 1, l)[s(〈 〉) = k ∧ s↾k = t].
We thus see: ∀k < l∀t < ψ(n, l)∃c[c ∈II t ∧ 〈k〉 ∗ c ∈ Xu].
Note: ∀k < l∀c[〈k〉 ∗ c ∈ Xu ↔ c ∈ Xu∗〈k〉].
Conclude: ∀k < l∀t < ψ(n, l)∃c[c ∈II t ∧ c ∈ Xu∗〈k〉].
Use the induction hypothesis and conclude:
∀k < l∃s < ψ(n, l)∀c ∈ Seq(n, l)[c ∈I s→ s ∈ Xu∗〈k〉].
Use Lemma 9.2(i) and find t < ψ(n+ 1, l) such that
∀k < l∀c ∈ Seq(n, l)[c ∈I t

↾k → c ∈ Xu∗〈k〉].
Note: ∀c ∈ Seq(n+ 1, l)[c ∈II t→ c ∈ Xu].
We thus see that Xu is II-determinate. �

9.1.3. Comparison with the classical theorem. Note that, in classical mathematics,
the I-determinacy of finite games is stated as follows:

For every X ⊆ ω, for every l > 0, for every n,

either : ∃t < ψ(n, l)∀c ∈ Seq(n, l)[c ∈II t→ c /∈ X ],
or : ∃s < ψ(n, l)∀c ∈ Seq(n, l)[c ∈I s→ c ∈ X ],

14For the notation t↾k, see Subsection 13.4.
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that is: either player II has a strategy ensuring that the result of the game will
not be in X , or player I has a strategy ensuring that it does.

Taken constructively, this statement fails to be true already in the case n = 0,
because it then implies: for every subset X of {〈 〉}, either 〈 〉 /∈ X or 〈 〉 ∈ X , and
therefore, for any proposition P , ¬P ∨ P , the principle of the excluded third.

9.2. Infinitely many alternatives.

9.2.1. Infinitely many alternatives for player II.
Let X ⊆ 2×ω be given. Players I and II play the I-game for X in 2×ω in the

following way. First, player I chooses i < 2, then player II chooses n and the play
is finished. Player I wins the play 〈i, n〉 if and only if 〈i, n〉 ∈ X .

We define: X is I-determinate in 2× ω, DetI2×ω(X), if and only if

∀t∃c ∈ 2× ω[c ∈II t ∧ c ∈ X ]→ ∃s < 2∀n[〈s, n〉 ∈ X ].

Theorem 9.4. BIM ⊢ ∀α[DetI2×ω(Dα)]↔ LLPO.

Proof. This Theorem is a reformulation of Theorem 8.8.
In order to see this, make two observations:

(i) Note that, for each α, there exists β such that
DetI2×ω(Dα)↔ (ω,Dβ↾0 , Dβ↾1) |= ∀x∀y[P(x) ∨Q(y)] → (∀x[P(x)] ∨ ∀y[Q(y)]).

Given α, define β such that, for each n, β↾0(n) = α(〈0, n〉) and β↾1(n) = α(〈1, n〉).

(ii) Note that, for each α, there exists β such that
(

(ω,Dα↾0 , Dα↾1) |= ∀x∀y[P(x) ∨ Q(y)]→ (∀x[P(x)] ∨ ∀y[Q(y)])
)

↔ DetI2×ω(Dβ).

Given α, define β such that, for each n, β(〈0, n〉) = α0(n) and β(〈1, n〉) = α1(n). �

9.2.2. Infinitely many alternatives for player I.
Let X ⊆ ω× 2 be given. Players I and II play the I-game for X in ω× 2 in the

following way. First, player I chooses a natural number n, then player II chooses
a number i from {0, 1}. Player I wins the play 〈n, i〉 if and only if 〈n, i〉 ∈ X .

Note that a strategy for player I in such a two-move-game coincides with his first
move and thus is a natural number. A strategy for player II, on the other hand, is
an infinite sequence τ in C that expresses player II’s intention to play τ(〈n〉) once
player I has brought them to the position 〈n〉.

We define: X ⊆ ω × 2 is I-determinate in ω × 2, DetIω×2(X), if and only if:

∀τ ∈ C∃c ∈ ω × 2[c ∈II τ ∧ c ∈ X ]→ ∃s∀i < 2[〈s, i〉 ∈ X ].

Theorem 9.5. BIM ⊢ ∀α[DetIω×2(Dα)].

Proof. Let α be given. Assume: ∀τ ∈ C∃n[〈n, τ(〈n〉)〉 ∈ Dα]. Find τ in C such
that ∀n[τ(〈n〉) = 1 ↔ 〈n, 0〉 ∈ Dα]. Find n such that 〈n, τ(〈n〉)〉 ∈ Dα. Note:
τ(〈n〉) = 1 and ∀i < 2[〈n, i〉 ∈ Dα]. �

We define: X ⊆ ω × ω is II-determinate in ω × ω, DetIIω×ω(X), if and only if:

∀m∃n[〈m,n〉 ∈ X ]→ ∃τ∀m[〈m, τ(〈m〉)〉 ∈ X ].

Theorem 9.6. BIM ⊢ ∀α[DetIIω×ω(Eα)].

Proof. Let α be given such that ∀m∃n[〈m,n〉 ∈ Eα], that is
∀m∃n∃p[α(p) = 〈m,n〉 + 1]. Find γ such that ∀m[α

(

γ′(m)
)

= 〈m, γ′′(m)〉 + 1].
Define τ such that ∀m[τ(〈m〉) = γ′′(m)]. �

We define: X ⊆ 2× ω is II-determinate in 2× ω, DetII2×ω(X), if and only if:

∀m < 2∃n[〈m,n〉 ∈ X ]→ ∃t∀m < 2[〈m, t(〈m〉)〉 ∈ X ].

Note: BIM proves the scheme DetII2×ω(X).
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9.2.3. Longer games. We also consider games in which players I, II make more than
one move. Which of those games are determinate from the viewpoint of Player I?
Because of Theorem 9.4, we restrict ourselves to games in which player I has, for
each one of his moves, countably many alternatives, whereas player II always has
to choose one of two possibilities.

For every n, for every X ⊆ (ω × 2)n, we define:
X is I-determinate in (ω × 2)n, Det(ω×2)n(X), if and only if

∀τ ∈ C∃c[c ∈II τ ∧ c ∈ X ]→ ∃s∀c ∈ (ω × 2)n[c ∈I s→ c ∈ X ].

This definition extends in the obvious way to subsets X of (ω × 2)n × ω.

9.3. Infinitely many moves. We also want to consider games of infinite length.
We imagine players I, II to build together an infinite sequence γ in ωω, as follows.
First, player I chooses γ(0), then player II chooses γ(1), then player I chooses
γ(2), and so on.

We define a number of notions of determinacy.
X ⊆ (ω × 2)ω is I-determinate in (ω × 2)ω, DetI(ω×2)ω (X ), if and only if

∀τ ∈ C∃γ[γ ∈II τ ∧ γ ∈ X ]→ ∃σ∀γ ∈ (ω × 2)ω[γ ∈I σ → γ ∈ X ].

X ⊆ (ω × 2)ω is finitely I-determinate in (ω × 2)ω, ∗DetI(ω×2)ω(X ) if and only if

∀τ ∈ C∃γ[γ ∈II τ ∧ γ ∈ X ]→ ∃s∀γ ∈ (ω × 2)ω[γ ∈I s→ γ ∈ X ].

X ⊆ C is I-determinate in C, DetIC(X ), if and only if

∀τ ∈ C∃γ[γ ∈II τ ∧ γ ∈ X ]→ ∃σ ∈ C∀γ ∈ C[γ ∈I σ → γ ∈ X ].

X ⊆ C is finitely I-determinate in C, ∗DetIC(X ), if and only if

∀τ ∈ C∃γ[γ ∈II τ ∧ γ ∈ X ]→ ∃s ∈ Bin∀γ ∈ C[γ ∈I s→ γ ∈ X ].

X ⊆ C is II-determinate in C, DetIIC (X ), if and only if

∀σ ∈ C∃γ[γ ∈I σ ∧ γ ∈ X ]→ ∃τ ∈ C∀γ ∈ C[γ ∈II τ → γ ∈ X ].

X ⊆ C is finitely II-determinate in C, ∗DetIIC (X ), if and only if

∀σ ∈ C∃γ[γ ∈I σ ∧ γ ∈ X ]→ ∃t ∈ Bin∀γ ∈ C[γ ∈II t→ γ ∈ X ].

We are going to study the following statements:

Σ0
1-DetIω×2: ∀α[Det

I(Eα)].

∆0
1-DetIω×2×ω: ∀α[DetIω×2×ω(Dα)].

∆0
1-DetI(ω×2)m : ∀α[DetI(ω×2)m(Dα)].

Σ0
1-DetI(ω×2)ω : ∀α[DetI(ω×2)ω (Gα)].

Σ0
1-

∗DetI(ω×2)ω : ∀α[
∗DetI(ω×2)ω(Gα)].

Σ0
1-DetIC : ∀α[DetIC(Gα)].

Σ0
1-

∗DetIC : ∀α[
∗DetIC(Gα)].

Σ0
1-DetIC : ∀α[DetIIC (Gα)].

Σ0
1-

∗DetIIC : ∀α[∗DetIIC (Gα)].

Each of the above formulas X has the form: ∀α[P (α) → Q(α)]. For each of
these nine formulas X , we define the statement ¬!X , the strong negation of X , as
follows:

¬!X := ¬!
(

∀α[P (α)→ Q(α)]
)

:= ∃α[P (α) ∧ ¬Q(α)].

Note that these strong negations contain the negation symbol ¬, a possibility we
mentioned in Subsection 1.4.
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Note that the symbol ¬! is used as a metamathematical notation, not as part of
the language of BIM. One should also not consider ¬! as the name of a syntactical
operation on formulas.

9.4. Simulating a game in (ω × 2)ω by a game in C. From the point of view
of player I, a game in (ω × 2)ω may be simulated by a game in Cantor space C.
Where player I would play n in (ω × 2)ω, he will play n times 0 and one time 1 in
C. So he plays the finite sequence 0n ∗ 〈1〉. Every time he plays 0, he makes what
we call a postponing move. Player II has to react, in C, to these postponing moves
of player I, but these reactions do not matter. As soon as player I plays 1 and
completes 0n ∗ 〈1〉, player II gives, in the play in C, the answer he would give to
player I’s move n in (ω × 2)ω. The reader should keep this in mind when reading
the following definitions.

Define Halfbin := (ω × 2)<ω ∪
(

(ω × 2)<ω × ω
)

=
⋃

n{γn | γ ∈ (ω × 2)ω}.
Define πbin such that

1. πbin(〈 〉) = 〈 〉, and,
2. for each c, if length(c) is even, then, for each n, πbin(c∗〈n〉) = πbin(c)∗02n∗〈1〉,

and, for both i < 2, πbin(c ∗ 〈n, i〉) = πbin(c ∗ 〈n〉) ∗ 〈i〉.

The function πbin associates to every position in Halfbin a position in Bin.
Note that, for each c, length(πbin(c)) ≥ length(c).

Define ρbin in ωω such that

1. ρbin(〈 〉) = 〈 〉, and,
2. for each d in Bin, if length(d) is even, then
ρbin(d ∗ 〈0〉) = ρbin(d ∗ 〈0, 0〉) = ρbin(d ∗ 〈0, 1〉) = ρbin(d), and

3. for each d in Bin, if length(d) is even, then ρbin(d ∗ 〈1〉) = ρbin(d) ∗ 〈n〉, and,
for both i < 2, ρbin(d ∗ 〈1, i〉) = ρbin(d) ∗ 〈n, i〉, where n satisfies:
either : 2n = length(d) and ∀i < n[d(2i) = 0], or :
for some k > 0, length(d) = 2k+2n and d(2k−2) = 1 and ∀i < n[d(2k+2i) = 0].

The function ρbin associates to every position in Bin a position in Halfbin.
Note that, for every c in Halfbin, ρbin ◦ πbin(c) = c.
Note that, for each c in Halfbin, length(c) is even if and only if length

(

πbin(c)
)

is even.

Lemma 9.7. The following is provable in BIM.
For each α, there exists β such that

∀τ ∈ C∃γ ∈ (ω × 2)ω[γ ∈II τ ∧ γ ∈ Gα]→ ∀τ ∈ C∃δ ∈ C[δ ∈II τ ∧ δ ∈ Gβ ] and

∃σ∀δ ∈ C[δ ∈I σ → δ ∈ Gβ ]→ ∃σ∀γ ∈ (ω × 2)ω[γ ∈I σ → γ ∈ Gα] and

∃s∀δ ∈ C[δ ∈I s→ δ ∈ Gβ ]→ ∃s∀γ ∈ (ω × 2)ω[γ ∈I s→ γ ∈ Gα].

Proof. Let α be given. Define β := α ◦ ρbin.

Assume ∀τ ∈ C∃γ ∈ (ω × 2)ω[γ ∈II τ ∧ γ ∈ Gα].
Let τ be given as a strategy for player II in C.
We want to prove: ∃δ ∈ C[δ ∈II τ ∧ δ ∈ Gβ ].
To this end, we define τ† as a strategy for player II in (ω×2)ω. We define τ† on

all positions in Halfbin of odd length, by induction on the length of the position.
It suffices to define τ† on positions c satisfying the condition: c ∈II τ

†.
We shall take care that, for each c in Halfbin, if c ∈II τ†, then there exists d in

Bin such that ρbin(d) = c and d ∈II τ .

We first define τ† on positions of length 1.
Let n be given. We have to define τ†(〈n〉).
Find d in Bin such that length(d) = 2n + 1 and d ∈II τ and d(2n) = 1 and

∀i < n[d(2i) = 0]. Define τ†(〈n〉) := τ(d).
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Note: ρbin(d) = 〈n〉 and ρbin
(

d ∗ 〈τ(d)〉
)

= 〈n, τ†(〈n〉)〉.

Now assume k > 0. Let c in (ω × 2)k be given such that c ∈II τ†.
Let n be given. We have to define τ†(c ∗ 〈n〉).
First find d in Bin such that d ∈II τ and ρbin(d) = c. Find l := length(d). Find

e in Bin such that d ⊏ e and length(e) = l+ 2n+ 1 and e ∈II τ and e(l+ 2n) = 1
and ∀i < n[e(l+ 2i) = 0]. Note: ρbin(e) = c ∗ 〈n〉. Define τ†(c ∗ 〈n〉) := τ(e).

Note: ρbin(e) = c ∗ 〈n〉 and ρbin
(

e ∗ 〈τ(e)〉
)

= c ∗ 〈τ†(c)〉.

This completes the definition of τ†.

Now find γ in (ω × 2)ω such that γ ∈II τ† ∧ γ ∈ Gα.
Note: ∀n∃d ∈ Bin[d ∈II τ ∧ ρbin(d) = γn].
Note: ∀d ∈ Bin∀e ∈ Bin[(d ∈II τ ∧ e ∈II τ)→

(

d ⊏ e↔ ρbin(d) ⊏ ρbin(e)
)

].

Using this fact, construct δ in C such that δ ∈II τ and ∀n∃m[γn = ρbin(δm)].
Find n such that γn ∈ Dα.
Find m such that γn = ρbin(δm).
Note: γn = ρbin(δm) ∈ Dα and: δm ∈ Gβ and: δ ∈ Gβ .

We thus see: ∀τ ∈ C∃δ ∈ C[δ ∈II τ ∧ δ ∈ Gβ ].

Now assume ∃σ∀δ ∈ C[δ ∈I σ → δ ∈ Gβ ].
Find σ such that ∀δ ∈ C[δ ∈I σ → δ ∈ Gβ ].
We define σ∗ as a strategy for player I in (ω × 2)ω such that, for each c in

Halfbin, if c ∈I σ∗, then either πbin(c) ∈I σ or ∃e ⊏ c[e ∈ Dα].

We first define σ∗(〈 〉).
Define δ in C such that δ ∈I σ and ∀i[δ(2i+1) = 0]. Find m such that β(δm) 6= 0

and distinguish two cases.
Case (a). ∃n[2n < m ∧ δ(2n) = 1]. Define: n0 := µn[δ(2n) = 1] and

σ∗(〈 〉) := n0. Note 〈n0〉 ∈I σ∗ and πbin(〈n0〉) = 0(2n0) ∗ 〈1〉 = δ(2n0 + 1) ∈I σ.
Case (b). ∀n[2n < m → δ(2n) = 0]. Conclude: ρbin(δm) = 〈 〉 and β(〈 〉) 6= 0

and also α(〈 〉) 6= 0. Define: σ∗(〈 〉) := 0. Note: 〈0〉 ∈I σ∗ and ∃e ⊏ 〈0〉[e ∈ Dα].

Now assume k > 0. Let c in (ω × 2)k be given such that c ∈I σ∗. We have to
define σ∗(c).

We distinguish two cases.
Case 1. ∃e ⊏ c[e ∈ Dα]. We then define σ∗(c) := 0. Note: ∃e ⊏ c ∗ 〈0〉[e ∈ Dα].
Case 2. ¬∃e ⊏ c[e ∈ Dα]. Then πbin(c) ∈I σ.
Note: length

(

πbin(c)
)

is even and find l such that 2l := length
(

πbin(c)
)

.
Define δ in C such that δ ∈I σ and πbin(c) ⊏ δ and ∀i[2i+1 > 2l→ δ(2i+1) = 0].

Find m such that β(δm) 6= 0 and distinguish two cases.
Case (2a). ∃n[2l ≤ 2n < m ∧ δ(2n) = 1].
Define: n0 := µn[2l ≤ 2n < m ∧ δ(2n) = 1] and σ∗(c) := n0 − l.
Note c ∗ 〈n0 − l〉 ∈I σ∗ and πbin(c ∗ 〈n0 − l〉) = πbin(c) ∗ 0(2n0 − 2l) ∗ 〈1〉 =

δ(2n0 + 1) ∈I σ.
Case (2b). ∀n[2n < m → δ(2n) = 0]. Conclude: ρbin(δm) = c and β(δm) 6= 0

and α(c) = β(δm) 6= 0. Define: σ∗(〈 〉) := 0. Note: c∗〈0〉 ∈I σ∗ and ∃e ⊏ c∗〈0〉[e ∈
Dα].

This completes the definition of σ∗.

Now assume γ ∈ (ω × 2)ω and γ ∈I σ∗. Find δ ∈ C such that ∀n[πbin(γn) ⊏ δ].
Find ε in C such that such that ε ∈I σ and, for each n, if δn ∈I σ, then εn = δn.
Find m such that εm ∈ Dβ and distinguish two cases.

Case (∗). δm = εm. Conclude: δm ∈ Dβ and ρbin(δm) ∈ Dα and γ ∈ Gα.
Case (∗∗). δm 6= εm. Then δm /∈I σ and πbin(γm) /∈I σ and ∃e ⊏ γm[e ∈ Dα].

Conclude: γ ∈ Gα.
We thus see: ∀γ ∈ (ω × 2)ω[γ ∈I σ∗ → γ ∈ Gα].
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Assume ∃s∀δ ∈ C[δ ∈I s→ δ ∈ Gβ ].
Find s such that ∀δ ∈ C[δ ∈I s → δ ∈ Gβ ]. Consider p := length(s). Find q

such that, for all c in Halfbin, if c ≥ q, then πbin(c) ≥ p. Define s∗ such that
length(s∗) = q, inductively. For each c < q in

⋃

k(ω × 2)k such that c ∈I s
∗, s∗(c)

is defined just as, in the previous paragraph, where we were given σ ∈ C, σ∗(c) was
defined, for each c in

⋃

(ω × 2)k such that c ∈I σ∗.
One then may prove: ∀γ ∈ (ω × 2)ω[γ ∈ s∗ → γ ∈ Gα]. �

Lemma 9.8. One may prove the following statements in BIM.

(i) Σ0
1-DetIω×2 → Σ0

1-
←−−−−
ACω,2 and ¬!(Σ0

1-
←−−−−
ACω,2)→ ¬!(Σ

0
1-DetIω×2).

(ii) ∆0
1-DetIω×2×ω → Σ0

1-DetIω×2 and ¬!
(

Σ0
1-DetIω×2

)

→ ¬!
(

∆0
1-DetIω×2×ω

)

.

(iii) ∀m[∆0
1-DetI(ω×2)m ]→∆0

1-DetIω×2×ω and

¬!(∆0
1-DetIω×2×ω

)

→ ∃m[¬!(∆0
1-DetI(ω×2)m)].

(iv) ∀m[Σ0
1-DetI(ω×2)ω →∆0

1-DetI(ω×2)m ∧

¬!(∆0
1-DetI(ω×2)m)→ ¬!(Σ0

1-DetI(ω×2)ω)].

(v) Σ0
1-DetIC → Σ0

1-DetI(ω×2)ω and ¬!(Σ0
1-DetI(ω×2)ω)→ ¬!(Σ

0
1-DetIC), and

Σ0
1-

∗DetIC → Σ0
1-

∗DetI(ω×2)ω and ¬!(Σ0
1-

∗DetI(ω×2)ω)→ ¬!(Σ
0
1-

∗DetIC).

(vi) Σ0
1-DetIIC → Σ0

1-DetIC and ¬!(Σ0
1-DetIC)→ ¬!(Σ

0
1-DetIIC ), and

Σ0
1-

∗DetIIC → Σ0
1-

∗DetIC and ¬!(Σ0
1-

∗DetIC)→ ¬!(Σ
0
1-

∗DetIIC ).

(vii) FT→ Σ0
1-

∗DetIIC and ¬!(Σ0
1-

∗DetIIC )→ ¬!FT.

Proof. (i) We prove: given any α, one may construct β such that

∀γ ∈ C∃n[
(

n, γ(n)
)

∈ Eα]→ ∀τ ∈ C∃n[〈n, τ(n)〉 ∈ Eβ ] and

∃n[〈n, 0〉 ∈ Eβ ∧ 〈n, 1〉 ∈ Eβ ]→ ∃n[(n, 0) ∈ Eα ∧ (n, 1) ∈ Eα].

The two promised conclusions then follow easily.
Given α, define β such that ∀n∀i < 2[α(p) = (n, i) + 1↔ β(p) = 〈n, i〉+ 1] and

∀p[¬∃n∃i < 2[α(p) = (n, i) + 1]→ β(p) = 0].

Clearly, β satisfies the requirements.

(ii) We prove: given any α, one may construct β such that

∀τ ∈ C∃n[〈n, γ(n)〉 ∈ Eα]→ ∀τ ∈ C∃n∃p[〈n, τ(n), p〉 ∈ Dβ ] and

∃n∀i < 2∃p[〈n, i, p〉 ∈ Dβ ]→ ∃n∀i < 2[〈n, i〉 ∈ Eα].

The two promised conclusions then follow easily.
Given α, define β such that ∀n∀i < 2∀p[β(〈n, i, p〉) 6= 0↔ α(p) = 〈n, i〉+ 1].

Note: ∀n∀i < 2[〈n, i〉 ∈ Eα ↔ ∃p[〈n, i, p〉 ∈ Dβ]].

Clearly, β satisfies the requirements.

(iii) Note: ∆0
1-DetI(ω×2)2 →∆0

1-DetIω×2×ω and

¬!(∆0
1-DetIω×2×ω

)

→ ¬!(∆0
1-DetI(ω×2)2).

(iv) Let m be given. We prove: given any α one may construct β such that

∀τ ∈ C∃c ∈ (ω×2)m[c ∈II τ ∧ c ∈ Dα]→ ∀τ ∈ C∃γ ∈ (ω×2)ω[γ ∈II τ ∧ γ ∈ Gβ ] and

∃σ∀γ ∈ (ω × 2)ω[γ ∈I σ → γ ∈ Gβ ]→ ∃s∀c ∈ (ω × 2)m[c ∈I s→ c ∈ Dα].

The two promised conclusions then follow easily.
Given α, define β such that ∀s[β(s) 6= 0↔

(

s ∈ (ω × 2)m ∧ α(s) 6= 0
)

].

Observe that, if ∀τ ∈ C∃c ∈ (ω × 2)m[c ∈II τ ∧ c ∈ Dα], then
∀τ ∈ C∃γ ∈ C[γ ∈II τ ∧ β

(

γ(2m)
)

6= 0], that is: ∀τ ∈ C∃γ ∈ C[γ ∈II τ ∧ γ ∈ Gβ ].

Let σ in C be given such that ∀γ ∈ (ω × 2)ω[γ ∈I σ → ∃n[β(γn) 6= 0]].

Conclude: ∀γ ∈ (ω × 2)ω[γ ∈I σ → α
(

δ(2m)
)

6= 0].
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Find N such that ∀c ∈
⋃

n≤2m ω
n[c ∈I γ → c < N ] and define s := σN .

Conclude: ∀c ∈ (ω × 2)m[c ∈I s→ c ∈ Dα].

We thus see that β satisfies the requirements.

(v) For each α, one may construct β such that

∀τ ∈ C∃γ ∈ (ω × 2)ω[γ ∈II τ ∧ γ ∈ Gα]→ ∀τ ∈ C∃δ ∈ C[δ ∈II τ ∧ δ ∈ Gβ ] and

∃σ∀δ ∈ C[δ ∈I σ → δ ∈ Gβ ]→ ∃σ∀γ ∈ (ω × 2)ω[γ ∈I σ → γ ∈ Gα] and

∃s∀δ ∈ C[δ ∈I s→ δ ∈ Gβ ]→ ∃s∀γ ∈ (ω × 2)ω[γ ∈I s→ γ ∈ Gα].

The proof has been given in Lemma 9.7.
The promised conclusions follow easily.

(vi) We prove: given any α, one may construct β such that

∀σ ∈ C∃c ∈ Bin [c ∈I σ ∧ α(c) 6= 0]→ ∀τ ∈ C∃d ∈ Bin [d ∈II τ ∧ β(d) 6= 0] and

∃τ ∈ C∀δ ∈ C[δ ∈II τ → ∃n[β(δn) 6= 0]]→ ∃σ ∈ C∀δ ∈ C[δ ∈I σ → ∃n[α(δn) 6= 0]]

and ∃t∀δ ∈ C[δ ∈II t→ ∃n[β(δn) 6= 0]]→ ∃t∀δ ∈ C[δ ∈I t→ ∃n[α(δn) 6= 0]].

The promised conclusions then follow easily.
Given α, define β such that β(0) = 0 and ∀c ∈ Bin[β(〈0〉∗c) = β(〈1〉∗c) = α(c)].

Assume: ∀σ ∈ C∃c ∈ Bin [c ∈I σ ∧ α(c) 6= 0].
Let τ in C be given.

Define σ such that ∀c ∈ Bin [σ(c) = τ
(

〈0〉 ∗ c
)

].
Find c in Bin such that c ∈I σ and α(c) 6= 0.
Define d := 〈0〉 ∗ c and note d ∈II τ and β(d) 6= 0.

We thus see: ∀τ ∈ C∃d ∈ Bin [d ∈II τ ∧ β(d) 6= 0].

Let τ in C be given such that ∀δ ∈ C[δ ∈II τ → ∃n[β(δn) 6= 0]].
Define σ such that ∀c ∈ Bin∀i < 2[σ(〈i〉 ∗ c) = τ(c)].

Note: ∀δ ∈ C[δ ∈I σ → 〈0〉 ∗ δ ∈II τ ], so ∀δ ∈ C[δ ∈I σ → ∃n[β(〈0〉 ∗ δn) 6= 0]]
and: ∀δ ∈ C[δ ∈I σ → ∃n[α(δn) 6= 0]].

Let t be given such that ∀δ ∈ C[δ ∈II t → ∃n[β(δn) 6= 0]]. Define s such that,
∀c ∈ Bin [〈0〉 ∗ c < length(t)→ s(c) = t(〈0〉 ∗ c)].

Conclude, as above: ∀δ ∈ C[δ ∈I s→ ∃n[α(δn) 6= 0]].

We thus see that β satisfies the requirements.

(vii) We prove: for each α, there exists β such that

∀γ ∈ C∃s[s ∈I γ ∧ α(s) 6= 0]→ BarC(Dβ) and

∃m[BarC(Dβm)]→ ∃c∀δ ∈ C[δ ∈II c→ ∃n[α(δn) 6= 0]].

The two promised conclusions then follow easily.
Given α, define β such that ∀c ∈ Bin [β(c) 6= 0↔ ∃s < c[s ∈I c ∧ α(s) 6= 0]].
Assume ∀γ ∈ C∃s[s ∈I γ ∧ α(s) 6= 0].
Clearly, ∀γ ∈ C∃n[β(γn) 6= 0], that is: BarC(Dβ).

Let m be given such that BarC(Dβm).

Define X := {s ∈ Binm | ∃n ≤ m[α(sn) 6= 0]}. Note: ∀b∃s[s ∈I b ∧ s ∈ X ].

According to Theorem 9.3, DetIIBinm
(X).

Find c such that ∀s ∈ Binm[s ∈II c→ s ∈ X ].
Conclude: ∀δ ∈ C[δ ∈II c→ δm ∈ X ] and: ∀δ ∈ C[δ ∈II c→ ∃n[α(δn) 6= 0]].

We thus see that β satisfies the requirements. �

Theorem 9.9. (i) BIM ⊢ Σ0
1-
←−−−−
ACω,2 ↔ Σ0

1-DetIω×2 ↔∆0
1-DetIω×2×ω ↔

∀m[∆0
1-DetI(ω×2)m ]↔ Σ0

1-DetI(ω×2)ω ↔ Σ0
1-

∗DetI(ω×2)ω ↔ Σ0
1-DetIC ↔

Σ0
1-

∗DetIC ↔ Σ0
1-DetIIC ↔ Σ0

1-
∗DetIIC ↔ FT.
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(ii) BIM ⊢ ¬!(Σ0
1-
←−−−−
ACω,2)↔ ¬!(Σ0

1-DetIω×2)↔ ¬!(∆
0
1-DetIω×2×ω)↔

∃m[¬!(∆0
1-DetI(ω×2)m)]↔ ¬!(Σ0

1-DetI(ω×2)ω)↔ ¬!(Σ
0
1-

∗DetI(ω×2)ω)↔

¬!(Σ0
1-DetIC)↔ ¬!(Σ

0
1-

∗DetIC)↔ ¬!(Σ
0
1-DetIIC )↔ ¬!(Σ0

1-
∗DetIIC )↔ ¬!FT.

Proof. Use Lemmas 5.3 and 9.8. �

9.5. The Intuitionistic Determinacy Theorem. Recall that X ⊆ (ω × 2)ω is
I-determinate in (ω × 2)ω if and only if

∀τ ∈ C∃γ[γ ∈II τ ∧ γ ∈ X ]→ ∃σ∀γ ∈ (ω × 2)ω[γ ∈I σ → γ ∈ X ].

We now define: X ⊆ (ω × 2)ω is weakly I-determinate in (ω × 2)ω if and only if

∀ϕ : C → (ω×2)ω[∀τ ∈ C[ϕ|τ ∈II τ ∧ ϕ|τ ∈ X ]→ ∃σ∀γ ∈ (ω×2)ω[γ ∈I σ → γ ∈ X ]].

A (continuous) function ϕ : C → (ω×2)ω such that ∀τ ∈ C[ϕ|τ ∈II τ ] will be called
an anti-strategy for player I in (ω × 2)ω.

Note that the Second Axiom of Continuous Choice, ACωω ,ωω = AC1,1, implies,
for every subset X ⊆ (ω × 2)ω: if ∀τ ∈ C∃γ ∈ (ω × 2)ω[γ ∈II τ ∧ γ ∈ X ], then
∃ϕ : C → (ω × 2)ω∀τ ∈ C[ϕ|τ ∈II τ ∧ ϕ|τ ∈ X ].

ACωω,ωω thus implies: if X ⊆ (ω×2)ω is weakly I-determinate in (ω×2)ω, then
X is I-determinate in (ω × 2)ω.

Earlier versions of the next Theorem may be found in [31, Chapter 16] and [41].

Theorem 9.10 (Intuitionistic Determinacy Theorem). The following statements
are equivalent in BIM:

(i) FT.
(ii) For every anti-strategy ϕ for player I in (ω× 2)ω there exists a strategy σ for

player I in (ω × 2)ω such that ∀γ ∈ (ω × 2)ω[γ ∈I σ → ∃τ ∈ C[γ = ϕ|τ ]].

Proof. (i) ⇒ (ii). Let ϕ : C → (ω × 2)ω satisfy: ∀τ ∈ C[ϕ|τ ∈II τ ].
We intend to develop a strategy σ for player I in (ω × 2)ω such that Player I,

whenever he uses σ and develops, together with player II, γ in (ω × 2)ω, will be
able to construct, simultaneously, a strategy τ for player II in (ω × 2)ω such that
γ = ϕ|τ . The infinite sequence γ must be the answer given by the anti-strategy
ϕ to player II’s strategy τ . So, while playing γ, player I conjectures a strategy τ
that player II may be assumed to follow during this very play.

Let c, t be given such that c ∈
⋃

k(ω × 2)k and t ∈ Bin. We define: with respect
to the given anti-strategy ϕ, t is, at the position c, a safe (partial) conjecture by
player I about the strategy followed by player II, notation: Safe(c, t), if and only
if15

∀ρ ∈ C∃u ∈ Bin [t ⊏ u ∧ cu ⊏ ρ ∧ c ⊑ ϕ|u].

Note16: Safe(c, t)↔ ∀ρ ∈ C∃τ ∈ C[t ⊏ τ ∧ cτ = ρ ∧ c ⊏ ϕ|τ ].
If Safe(c, t), then player I, at the position c, may extend every strategy ρ of

player II ‘above c’, that is, on positions d in (ω × 2)<ω × ω such that c ⊑ d, to a
strategy τ of player II on the whole of (ω × 2)<ω ×ω such that t ⊏ τ and c ⊏ ϕ|τ .

We now prove the following important observation:

∀c ∈
⋃

k

(ω × 2)k∀t ∈ Bin[Safe(c, t) ∨ ¬Safe(c, t)].

Let c in
⋃

k(ω × 2)k and t in Bin be given.

Define β such that ∀u[β(u) 6= 0↔
(

u ∈ Bin ∧ (c ⊑ ϕ|u ∨ c ⊥ ϕ|u)
)

].
Note: BarC(Dβ), and: ∀u[u ∈ Dβ → ∀i < 2[u ∗ 〈i〉 ∈ Dβ]].
Using FT, find n > length(t) such that Binn ⊆ Dβ .

15For the notation cu, see Subsection 13.4.
16For the notation cτ , see Subsection 13.4.
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Note: ∀u ∈ Binn[length(
cu) ≤ length(u) ≤ n] and

Safe(c, t)↔ ∀r ∈ Binn∃u ∈ Binn[t ⊑ u ∧ cu ⊑ r ∧ c ⊑ ϕ|u].
We thus see that one may prove: Safe(c, t) ∨ ¬Safe(c, t).

Going one step further, we want to define σ such that

∀c ∈
⋃

k

(ω × 2)k∀t ∈ Bin[σ(c, t) 6= 0↔ Safe(c, t)].

To this end, we first define ψ such that,
for all c in

⋃

k(ω × 2)k, for all t in Bin ,

ψ(c, t) := µn[n > length(t) ∧ ∀u ∈ Binn[c ⊑ ϕ|u ∨ c ⊥ ϕ|u]],

and then define σ such that, for all c in
⋃

k(ω × 2)k, for all t in Bin,
σ(c, t) 6= 0↔ ∀r ∈ Binψ(c,t)∃u ∈ Binψ(c,t)[t ⊑ u ∧

cu ⊑ r ∧ c ⊑ ϕ|u].

We also define χ such that, for all c in
⋃

k(ω × 2)k, for all t in Bin,
if σ(c, t) = 0, then
χ(c, t) = µr[r ∈ Binψ(c,t) ∧ ¬∃u ∈ Binψ(c,t)[t ⊑ u ∧

cu ⊏ r ∧ c ⊑ ϕ|u]].
Note that, if σ(c, t) = 0, then

∀ρ ∈ C[χ(c, t) ⊏ ρ→ ¬∃u ∈ Bin[t ⊑ u ∧ cu ⊏ ρ ∧ c ⊑ ϕ|u]].

Let n, c, t be given such that c ∈ (ω × 2)n and t in Bin and Safe(c, t).
We prove:

∀ρ ∈ C∃d ∈
⋃

k>0

(ω × 2)k[d ∈II ρ ∧ ∃i < 2[Safe(c ∗ d, t ∗ 〈i〉)]].

Let ρ in C be given. Find u in Bin such that t ⊏ u ∧ cu ⊏ ρ ∧ c ⊑ ϕ|u.
Find i < 2 such that t ∗ 〈i〉 ⊑ u.
Find p such that, for all d in

⋃

k(ω × 2)k × ω,
if d < length(cu), then length(d) < 2p.
Define D := {d ∈ (ω × 2)p | d ∈II ρ ∧ ∃τ ∈ C[c ∗ d ⊏ ϕ|τ ]}.

It follows from FT that E := {φ|τ (2n + 2p) | τ ∈ C} is a finite17 subset of ω.
Note that, for all d in (ω× 2)p, d ∈ D if and only if ∃b ∈ E[c ∗ d = b] and conclude:
also D is a finite subset of ω.

Assume ∀d ∈ D[¬Safe(c ∗ d, t ∗ 〈i〉)].
Define ρ∗ in C such that cu ⊏ ρ∗ and ∀d ∈ D[d ∈II ρ∗] and

∀d ∈ D[χ(c ∗ d, t ∗ 〈i〉) ⊏ d(ρ∗)].
Find τ in C such that u ⊏ τ and cτ = ρ∗ and consider ϕ|τ .
Note: c ⊑ ϕ|u ⊏ ϕ|τ .
Find d in D such that c ∗ d ⊏ ϕ|τ .
Note: c∗dτ = d(ρ∗) and χ(c ∗ d, t ∗ 〈i〉) ⊏ d(ρ∗).
Conclude: ¬∃v ∈ Bin[t ∗ 〈i〉 ⊑ v ∧ c∗dv ⊑ d(ρ∗) ∧ c ∗ d ⊑ ϕ|v].
On the other hand, t ∗ 〈i〉 ⊑ u ⊏ τ and ∃m[c ∗ d ⊑ ϕ|τm].
Note that cτ = ρ∗ and, therefore, c∗dτm ⊏ d(ρ∗).
Conclude: ∃m[t ∗ 〈i〉 ⊏ τm ∧ c∗dτm ⊏ d(ρ∗) ∧ c ∗ d ⊑ ϕ|τm].
Contradiction.

We thus see: ¬∀d ∈ D[¬Safe(c ∗ d, t ∗ 〈i〉)].
As D is finite, conclude: ∃d ∈ D[Safe(c ∗ d, t ∗ 〈i〉)].

We thus see: ∀ρ ∈ C∃d ∈
⋃

k>0(ω × 2)k[d ∈II ρ ∧ Safe(c ∗ d, t ∗ 〈i〉)].

Using Σ0
1- DetI(ω×2)ω , an equivalent of FT, see Theorem 9.9(i), find σ such that

∀δ[δ ∈I σ → ∃k[Safe(c ∗ δ(2k + 2), t ∗ 〈i〉)]].
Note that the set {δ ∈ (ω × 2)ω | δ ∈I σ} is an explicit fan.

17D ⊆ ω is finite if and only if there exists a such that D = Da = {n < length(a) | a(n) 6= 0},
see Subsection 13.2.
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Using FT, find m such that ∀δ[δ ∈I σ → ∃k ≤ m[Safe(c ∗ δ(2k + 2), t ∗ 〈i〉)]].
Find p such that ∀δ[δ ∈I σ → δ(2m+ 2) < p] and define s := σp.
Note: for all d in (ω × 2)<ω, if d > length(s) and d ∈I s, then

∃n[0 < 2n ≤ length(d) ∧ Safe(c ∗ d(2n), t ∗ 〈i〉)].

Note that, for all s, the set of all d in (ω × 2)<ω such that d > length(s) and
∀n[2n < length(d)→ d(2n) < length(s)] and d ∈I s is a finite subset of ω.

Define α such that for all c in (ω × 2)<ω, for all t in Bin, for all s,
α(c, t, s) 6= 0 if and only if, for all d in (ω × 2)<ω,
if d > length(s) and ∀n[2n < length(d)→ d(2n) < length(s)] and d ∈I s, then
∃n[0 < 2n ≤ length(d) ∧ ∃i < 2[Safe(c ∗ d(2n), t ∗ 〈i〉)]].

We have proven: ∀c ∈ (ω × 2)<ω∀t ∈ Bin[Safe(c, t)→ ∃s[α(c, t, s) 6= 0]].

Define η such that

∀c ∈ (ω × 2)<ω∀t ∈ Bin [Safe(c, t)→ η(c, t) = µs[α(c, t, s) 6= 0]].

Define λ such that λ(〈 〉) = 〈 〉, and, for all c in (ω×2)<ω, for all 〈p, i〉 in ω×2, if
there exists j < 2 such that Safe

(

c ∗ 〈p, i〉, λ(c) ∗ 〈j〉
)

, then λ(c ∗ 〈p, i〉) = λ(c) ∗ 〈j0〉,
where j0 is the least such j, and, if not, then λ(c ∗ 〈p, i〉) = λ(c).

Note: ∀c ∈ (ω × 2)<ω[Safe
(

c, λ(c)
)

].
Note: ∀c ∈ (ω × 2)<ω∀d ∈ (ω × 2)<ω[c ⊑ d→ λ(c) ⊑ λ(d)].

Define σ as a strategy for player I in (ω × 2)ω as follows.
Let c in (ω × 2)<ω be given.
Find n0 := µn[Safe(c(2n), λ(c))].
Find d such that c = c(2n0) ∗ d.
Define σ(c) :=

(

η(c(2n0), λ(c))
)

(d).

Let γ be an element of (ω × 2)ω such that γ ∈I σ.

We claim: ∀n∃m ≥ n[λ
(

γ(2m)
)

⊏ λ
(

γ(2m+ 2)
)

].
We prove this claim as follows.
Let n be given. Find n0 := µk[Safe

(

γ(2k), λ(γ(2n)
)

].
Define c := γ(2n0) and t := λ(c).
Consider s := η(c, t).
Find δ such that δ ∈I s and ∀k[δ(2k + 1) = γ(2n0 + 2k + 1)].
Find k0 := µk[∃i < 2[Safe

(

c ∗ δ(2k + 2), t ∗ 〈i〉
)

].

Note: c ∗ δ(2k0 + 2) ⊏ γ.
Note: λ(c) = λ

(

γ(2n)
)

= λ
(

γ(2n0 + 2k0)
)

⊏ λ
(

γ(2n0 + 2k0 + 2)
)

.

Defining m := n0 + k0, we see: m ≥ n and λ
(

γ(2m)
)

⊏ λ
(

γ(2m+ 2)
)

.
This ends the proof of our claim.

Find τ in C such that ∀n[λ
(

γ(2n)
)

⊏ τ ].
Note: ∀n∃ζ ∈ C[τn ⊏ ζ ∧ γ(2n) ⊏ ϕ|ζ]. Conclude: ϕ|τ = γ.
We thus see: ∀γ ∈ (ω × 2)ω[γ ∈I σ → ∃τ ∈ C[ϕ|τ = γ]].

(ii) ⇒ (i). Assume (ii). We prove: Σ0
1-DetIω×2.

Using Theorem 9.9(i), we then may conclude: FT.
Let α be given such that ∀τ ∈ C∃n[〈n, τ(〈n〉)〉 ∈ Eα], i.e.

∀τ ∈ C∃n∃p[α(p) = 〈n, τ(〈n〉)〉 + 1], i.e. ∀τ ∈ C∃p[α(p′) = 〈p′′, τ(〈p′′〉)〉 + 1].
Define ψ : C → ω such that ∀τ ∈ C[ψ(τ) = µp[α(p′) = 〈p′′, τ(〈p′′〉)〉+ 1].
Define ϕ : C → (ω × 2)ω such that ∀τ ∈ C[ϕ|τ = 〈ψ′′(τ), τ(〈ψ′′(τ)〉)〉 ∗ 0].
Find σ such that ∀γ ∈ (ω × 2)ω[γ ∈I σ → ∃τ ∈ C[γ = ϕ|τ ]], and, therefore,
∀γ ∈ (ω × 2)ω[γ ∈I σ → ∃q[α(q) = γ2 + 1]] and ∀γ ∈ (ω × 2)ω[γ ∈I σ → γ2 ∈ Eα].
Define n := σ(〈 〉) and note: ∀i < 2[〈n, i〉 ∈I σ] and, therefore: ∀i < 2[〈n, i〉 ∈ Eα].

We thus see: ∀α[∀τ ∈ C∃n[〈n, τ(〈n〉)〉 ∈ Eα] → ∃n∀i < 2[〈n, i〉 ∈ Eα]], i.e.
Σ0

1-Det
I
ω×2. �
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Corollary 9.11. BIM+ FT proves the following scheme:
Every X ⊆ (ω × 2)ω is weakly I-determinate.

The theorem and its corollary may be generalized. One may replace (ω× 2)ω by
any spread F satisfying the condition: ∃ζ∀α ∈ F∀n[α(2n+ 1) ≤ ζ(n)].

Let ϕ : C → (ω × 2)ω be an anti-strategy for player I in (ω × 2)ω. We define: ϕ
fails to translate into a strategy for player I if and only if

¬∃σ∀γ ∈ (ω × 2)ω[γ ∈I σ → ∃τ ∈ C[γ = ϕ|τ ]].

¬!FT implies the existence of an anti-strategy for player I in (ω× 2)ω that fails to
translate into a strategy for player I in (ω× 2)ω: using ¬!FT and Theorem 9.9(ii),
find α such that ∀τ ∈ C∃n[〈n, τ(〈n〉)〉 ∈ Eα] and ¬∃n∀i < 2[〈n, i〉 ∈ Eα]. As in the
proof of Theorem 9.10(ii) ⇒ (i), find an anti-strategy ϕ for player I in (ω × 2)ω

such that ∀τ ∈ C[(ϕ|τ)2 ∈ Eα]. Assume σ is a strategy for player I in (ω×2)ω such
that ∀γ ∈ (ω × 2)ω[γ ∈I σ → ∃τ ∈ C[γ = ϕ|τ ]]. Consider n := σ(〈 〉) and conclude:
∀i < 2[〈n, i〉 ∈ Eα]. Contradiction.

We did not find an argument proving ¬!FT from the assumption of the existence
of an anti-strategy for player I in (ω× 2)ω that fails to translate into a strategy for
player I in (ω × 2)ω.

10. The (uniform) intermediate value theorem

10.1. The Intermediate Value Theorem, IVT18

For all ϕ in R[0,1],
if ∃γ ∈ [0, 1]2[ ϕ‘R(γ↾0) ≤R 0R ≤R ϕ‘R(γ↾1)], then ∃γ ∈ [0, 1][ϕ‘R(γ) =R 0R].

IVT fails constructively. The next two theorems are similar to [3, Chapter 3,
Theorem 2.4] and [27, Theorem 6(iv) and (iii)].

Theorem 10.1. BIM ⊢ IVT→ LLPO.

Proof. Assume IVT. Let β be given.
Define δ in R such that, for each n,

if 0n ⊏ β, then δ(n) = (− 1
2n ,

1
2n ), and, if 0n ⊥ β and p0 := µp[β(p) 6= 0],

then δ(n) =
(

(−1)p0 1
2p0+1 −

1
2n+3 , (−1)p0

1
2p0+1 + 1

2n+3

)

. Note:
δ >R 0R ↔ ∃p[2p = µn[β(n) 6= 0]] and δ <R 0R ↔ ∃p[2p+ 1 = µn[β(n) 6= 0]].
Find ϕ in R[0,1] such that ϕ‘R(0R) =R (−1)R, and ϕ‘R(13 ) =R ϕ‘R(23 ) =R δ and

ϕ‘R(1R) =R 1R and ϕ is linear on [0, 13 ], on [ 13 ,
2
3 ] and on [ 23 , 1].

Note: ϕ‘R(0R) ≤R 0R ≤R ϕ‘R(1R).
Using IVT, find γ in [0, 1] such that ϕ‘R(γ) =R 0R.
Either γ >R

1
3 or γ <R

2
3 .

If γ >R
1
3 , then ¬(δ >R 0) and: ∀p[2p 6= µn[β(n) 6= 0]], and,

if γ <R
2
3 , then ¬(δ <R 0) and: ∀p[2p+ 1 6= µn[β(n) 6= 0]].

We thus see: ∀β[∀p[2p 6= µn[β(n) 6= 0]] ∨ ∀p[2p + 1 6= µn[β(n) 6= 0]], i.e.
LLPO. �

Theorem 10.2. BIM +Π0
1-ACω,2 ⊢ LLPO→ IVT.

Proof. Let ϕ in R[0,1] and γ in [0, 1]2 be given such that
ϕ‘R(γ↾0) ≤R 0R ≤R ϕ‘R(γ↾1). Define β such that, for all n,
β(2n) 6= 0↔ γ↾0(n) <S γ

↾1(n) and: β(2n+ 1) 6= 0↔ γ↾1(n) <S γ
↾0(n).

By LLPO,
either: ∀p[2p+ 1 6= µn[β(n) 6= 0]] and ∀n[γ↾0(n) ≤S γ

↾1(n)] and γ↾0 ≤R γ↾1,
or: ∀p[2p 6= µn[β(n) 6= 0]] and ∀n[γ↾1(n) ≤S γ

↾0(n)] and γ↾1 ≤R γ↾0.

18For some notation used in this Section, see Subsection 13.9.
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Assume γ↾0 ≤R γ↾1. Using LLPO like we used it just now, conclude:
for all n, for all m ≤ 2n, either: ϕ‘R(2

n−m
2n ·R γ↾0 +R

m
2n ·R γ↾1) ≤R 0R,

or: 0R ≤R ϕ‘R(2
n−m
2n ·R γ↾0 +R

m
2n ·R γ↾1).

Using Π0
1-ACω,2, find β such that β0(0) = 0 and β0(1) 6= 0 and

∀n∀m ≤ 2n[βn(m) = 0→ ϕ‘R(2
n−m
2n ·R γ↾0 +R

m
2n ·R γ↾1) ≤R 0R], and

∀n∀m ≤ 2n[βn(m) 6= 0→ 0R ≤R ϕ‘R(2
n−m
2n ·R γ↾0 +R

m
2n ·R γ↾1)].

Now define δ such that δ(0) = 0 and
∀n[βn+1

(

2δ(n) + 1
)

6= 0→ δ(n+ 1) = 2δ(n)], and

∀n[βn+1
(

2δ(n) + 1
)

= 0→ δ(n+ 1) = 2δ(n) + 1].

Note: ∀n[δ(n) < 2n ∧ βn
(

δ(n)
)

= 0 ∧ βn
(

δ(n) + 1
)

6= 0] and

∀n[ϕ‘R( δ(n)2n ) ≤R 0R ≤R ϕ‘R( δ(n)+1
2n )].

Define ε such that, for each n, ε(n) = ( δ(n)2n , δ(n)+1
2n ) and define ρ such that, for

each n, ρ(n) = doubleS
(

ε(n)
)

. Note: ρ ∈ [0, 1].

Assume ϕ‘R(ρ) >R 0R.
Find n, p such that p ∈ Eϕ and ρ(n) ⊑S p

′ and (p′′)′ >Q 0Q.

Note ρ′(n) <Q
δ(n)
2n <Q ρ

′′(n) and ϕ‘R( δ(n)2n ) ≤R 0R. Contradiction.

Conclude: ϕ‘R(ρ) ≤R 0R.
For a similar reason, 0R ≤R ϕ‘R(ρ) and, therefore, ϕ‘R(ρ) =R 0R.

The case γ↾1 ≥R γ↾0 is treated similarly. �

Corollary 10.3. BIM+Π0
1-ACω,2 ⊢ IVT↔ LLPO↔WKL.

Proof. Use Theorems 4.3, 10.1 and 10.2. �

10.2. A contraposition of the Intermediate Value Theorem,
←−−
IVT:

For each ϕ in R[0,1], if ∀γ ∈ [0, 1][ϕ‘R(γ) #R 0R], then
either ∀γ ∈ [0, 1][ϕ‘R(γ) >R 0R] or ∀γ ∈ [0, 1][ϕ‘R(γ) <R 0R].

Theorem 10.4. BIM ⊢
←−−
IVT.

Proof. Assume ϕ ∈ R[0.1] and ∀γ ∈ [0, 1][ϕ‘R(γ) #R 0R].
Assume: ϕ‘R(0R) <R 0R.
Suppose: γ ∈ [0, 1] and ϕ‘R(γ) >R 0R.
We will find a contradiction by the method of successive bisection.
Find q in Q such that ϕ‘R(qR) >R 0Q. Define δ as follows, by induction.
We define δ(0) := (0, q). Now, let n, s be given such that δ(n) = s.

Note: ϕ‘R(( s
′+Qs

′′

2 )R) # 0R. Find (r, t) in Eϕ such that r′ <Q
1
2 (s

′ +Q s
′′) <Q r′′

and either : 0Q <Q t
′ or : t′′ <Q 0Q. If 0Q <Q t

′, define δ(n+ 1) = (s′,
s′+Qs

′′

2 ), and,

if t′′ <Q 0Q, define δ(n+ 1) = ( s
′+s′′

2 , s′′).

Note: for each n, δ(n+ 1) ⊑S δ(n), and ϕ
‘R
(

(δ′(n))R
)

<R 0R <R ϕ‘R
(

(δ′′(n))R
)

.

Note: δ ∈ [0, 1] and ϕ‘R(δ) #R 0R. Determine (r, s) in Eϕ and n in ω such that
δ(n) ⊑S r and either s′′ <Q 0 or 0 <Q s′, that is, either ϕ‘R

(

(δ′′(n))R
)

<R 0R or

0R <R ϕ‘R
(

(δ′(n))R
)

. Contradiction. Clearly, then, ¬
(

ϕ‘R(γ) >R 0R
)

.

From ¬
(

ϕ‘R(γ) >R 0R
)

and ϕ‘R(γ) #R 0R, we conclude: ϕ‘R(γ) <R 0R.

We thus see: if ϕ‘R(0R) <R 0R, then ∀γ ∈ [0, 1][ϕ‘R(γ) <R 0R].
In the same way, one proves: if ϕ‘R(0R) >R 0R, then ∀γ ∈ [0, 1][ϕ‘R(γ) >R 0R].

We thus see: either ∀γ ∈ [0, 1][ϕ‘R(γ) >R 0R] or ∀γ ∈ [0, 1][ϕ‘R(γ) <R 0R]. �

10.3. FT is unprovable in BIM+ IVT. As we observed in Subsection 4.8, BIM+

CT+X∨¬X is consistent. According to Theorem 10.4, BIM ⊢
←−−
IVT, and, therefore:

BIM+X ∨ ¬X ⊢ IVT. Assume BIM ⊢ IVT→ FT. Then BIM+X ∨ ¬X ⊢ FT.
As we know from Theorem 2.4, BIM +CT ⊢ ¬!FT, and, therefore,
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BIM+CT ⊢ ¬FT. Conclude: BIM+ IVT 0 FT, and also, in view of Theorem 2.5,
BIM+ IVT 0 WKL.
Note that, in view of Corollary 10.3, this gives another proof of BIM 0 Π0

1-ACω,2,
a fact established in Subsection 4.8.
One may even conclude: BIM+ IVT 0 Π0

1-ACω,2.
One may ask if BIM+LLPO ⊢ IVT, i.e. if the proof of Theorem 10.2 can be given
without recourse to Π0

1-ACω,2, but we do not know the answer to this question.

10.4. The Uniform Intermediate Value Theorem, UIVT:
For each ϕ such that ∀n[ϕn ∈ R[0,1]],

if ∀n∃γ ∈ [0, 1]2[ (ϕn)‘R(γ0) ≤R 0R ≤R (ϕn)‘R(γ1)],
then ∃γ ∈ [0, 1]ω∀n[(ϕn)‘R(γn) =R 0R].

In [26, Exercise IV.2.12, page 137], the reader is asked to prove that, in the
classical system RCA0, UIVT is an equivalent of WKL. As RCA0 ⊢ IVT, RCA0

proves the equivalence of UIVT and:

10.5. Uzero:
For all ϕ such that ∀n[ϕn ∈ R[0,1]],
if ∀n∃γ ∈ [0, 1][ (ϕn)‘R(γ) =R 0R], then ∃γ ∈ [0, 1]ω∀n[(ϕn)‘R(γn) =R 0R].

We want to study Uzero in BIM. We need the following Lemma.

Lemma 10.5. BIM proves:

(i) ∃ψ : ωω → ωω∀ϕ ∈ R[0,1][Hψ|ϕ = {γ ∈ [0, 1] | ϕ‘R(γ) #R 0R}], and

(ii) ∃τ : ωω → ωω∀α[τ |α ∈ R[0,1] ∧ Hα = {γ ∈ [0, 1] | (τ |α)‘R(γ) #R 0R}].

Proof. Define ψ : ωω → ωω such that, for each ϕ, for each s,

(ψ|ϕ)(s) 6= 0↔ ∃p ∈ Eϕs[s ⊏S p
′ ∧

(

0Q <Q (p′′)′ ∨ (p′′)′′ <Q 0Q
)

].

Note: ∀ϕ ∈ R[0,1]∀γ ∈ [0, 1][ϕ‘R(γ) #R 0R ↔ γ ∈ Hψ|ϕ].

Now define ρ such that, for each s in S, ρs ∈ R[0,1] and,
if not (−1)Q ≤Q s

′ ≤Q s
′′ ≤Q (2)Q, then, for all γ in [0, 1], (ρs)‘R(γ) =R 0R, and,

if (−1)Q ≤Q s
′ ≤Q s

′′ ≤Q (2)Q, then, for all γ in [0, 1],

(1) if γ ≤R (s′)R or (s′′)R ≤R γ, then ρs(γ) =R 0R, and,
(2) if (s′)R ≤R γ ≤R (s′′)R, then ρs(γ) =R inf(γ −R (s′)R, (s

′′)R −R γ).

(Note that ρs codes the restriction to [0, 1] of the ‘tent’ function from R tot R

that is zero outside of [s′, s′′], linear on both [s′, s
′+s′′

2 ] and [ s
′+s′′

2 , s′′] and takes

the values 0R,
s′′−s′

2 , 0R at s′, s
′+s′′

2 , s′′, respectively.

Note that, for all s in S, for all γ in [0, 1], (ρs)‘R(γ) ≤R (32 )R. )

Define τ : ωω → ωω such that, for all α, τ |α ∈ R[0,1] and, for each γ in [0, 1],
(τ |α)‘R(γ) =R

∑

s,α(s) 6=0(
1
2s )R ·R (ρs)‘R(γ).

Note: ∀γ ∈ [0, 1][γ ∈ Hα ↔ (τ |α)‘R(γ) #R 0R], and:
∀γ ∈ [0, 1][γ /∈ Hα ↔ (τ |α)‘R(γ) =R 0R]. �

Theorem 10.6. BIM ⊢ Π0
1-ACω,[0,1] ↔ Uzero.

Proof. First, assume Π0
1-ACω,[0,1].

Let ϕ be given such that ∀n[ϕn ∈ R[0,1] ∧ ∃γ ∈ [0, 1][(ϕn)‘R(γ) =R 0R]].
Using Lemma 10.5(i), find α such that, ∀n[Hαn = {γ ∈ [0, 1] | (ϕn)‘R(γ) #R 0R}].
Conclude: ∀n∃γ ∈ [0, 1][γ /∈ Hαn ] and, by Π0

1-ACω,[0,1]: ∃γ ∈ [0, 1]ω∀n[γn /∈ Hαn ]

and: ∃γ ∈ [0, 1]ω∀n[(ϕn)‘R(γn) =R 0R].
Conclude: Uzero.

Secondly, assume Uzero.
40



Let α be given such that ∀n∃γ ∈ [0, 1][γ /∈ Hαn ]. Using Lemma 10.5(ii), find ϕ
such that ∀n[ϕn ∈ R[0,1]] and ∀n[Hαn = {γ ∈ [0, 1] | (ϕn)‘R(γ) #R 0R}].
Conclude: ∀n∃γ ∈ [0, 1][(ϕn)‘R(γ) =R 0R], and ∃γ ∈ [0, 1]ω∀n[(ϕn)‘R(γn) =R 0R],
and ∃γ ∈ [0, 1]ω∀n[γn /∈ Hαn ].

Conclude: Π0
1-ACω,[0,1]. �

10.6. A uniform contrapositive Intermediate Value Theorem
←−−−−
UIVT :

For each ϕ such that ∀n[ϕn ∈ R[0,1]], if ∀γ ∈ [0, 1]ω∃n[(ϕn)‘R(γn) #R 0R],
then ∃n[∀γ ∈ [0, 1][(ϕn)‘R(γ) >R 0R] ∨ ∀γ ∈ [0, 1][(ϕn)‘R(γ) <R 0R]].

As BIM ⊢
←−−
IVT, BIM proves the equivalence of

←−−−−
UIVT and:

10.7.
←−−−−
Uzero:

For all ϕ such that ∀n[ϕn ∈ R[0,1]],
if ∀γ ∈ [0, 1]ω∃n[(ϕn)‘R(γn) #R 0R], then ∃n∀γ ∈ [0, 1][(ϕn)‘R(γ) #R 0R].

We define a strong negation of this statement. This strong negation itself contains
a negation sign, a possibility mentioned in Subsection 1.4.

10.8. ¬!
←−−−−
Uzero:

There exists ϕ such that ∀n[ϕn ∈ R[0,1]] and ∀γ ∈ [0, 1]ω∃n[(ϕn)‘R(γn) #R 0R]
and ¬∃n∀γ ∈ [0, 1][(ϕn)‘R(γ) #R 0R].

Lemma 10.7. One may prove in BIM:

(i) Σ0
1-
←−−−−−−
ACω,[0,1] →

←−−−−
Uzero and ¬!

←−−−−
Uzero → ¬!Σ0

1-
←−−−−−−
ACω,[0,1].

(ii)
←−−−−
Uzero→ Σ0

1-
←−−−−−−
ACω,[0,1] and ¬!Σ

0
1-
←−−−−−−
ACω,[0,1] → ¬!

←−−−−
Uzero

Proof. (i) We prove, in BIM: for all ϕ such that ∀n[ϕn ∈ R[0,1]], there exists β such
that

∀γ ∈ [0, 1]ω∃n[(ϕn)‘R(γn) #R 0R]→ ∀γ ∈ [0, 1]ω∃n[γn ∈ Hβn ] and

∃n[[0, 1] ⊆ Hβn ]→ ∃n∀γ ∈ [0, 1][(ϕn)‘R(γ) #R 0R].

The two promised conclusions then follow easily.

Let ϕ be given such that ∀n[ϕn ∈ R[0,1]]. Using Lemma 10.5(i) find β such that
∀n[Hβn = {γ ∈ [0, 1] | (ϕn)‘R(γ) #R 0R}].

Assume ∀γ ∈ [0, 1]ω∃n[(ϕn)‘R(γn) #R 0R]].
Conclude: ∀γ ∈ [0, 1]ω∃n[γn ∈ Hβn ].

Now let n be given such that [0, 1] ⊆ Hβn . Clearly, ∀γ ∈ [0, 1][(ϕn)‘R(γ) #R 0R].

(ii) We prove, in BIM: for each α, there exists ϕ such that ∀n[ϕn ∈ R[0,1]] and

∀γ ∈ [0, 1]ω∃n[γn ∈ Hαn ]→ ∀γ ∈ [0, 1]ω∃n[(ϕn)‘R(γn) #R 0R] and

∃n∀γ ∈ [0, 1][(ϕn)‘R(γ) #R 0R])→ ∃n[[0, 1] ⊆ Hαn ].

The two promised conclusions then follow easily.
Let α be given. Using Lemma 10.5(ii), find ϕ such that

∀n[ϕn ∈ R[0,1] ∧ Hαn = {γ ∈ [0, 1] | (ϕn)‘R(γ) #R 0R}].
Assume: ∀γ ∈ [0, 1]ω∃n[γn ∈ Hαn ]. Conclude: ∀γ ∈ [0, 1]ω∃n[(ϕn)‘R(γn) #R 0R].
Now assume: ∃n∀γ ∈ [0, 1][(ϕn)‘R(γ) #R 0R]. Conclude: ∃n[[0, 1] ⊆ Hαn ]. �

Theorem 10.8. BIM proves
←−−−−
Uzero↔

←−−−−
UIVT↔ FT and

¬!
←−−−−
Uzero↔ ¬!

←−−−−
UIVT↔ ¬!FT.

Proof. Use Lemma 10.7 and Theorem 7.2. �
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11. The compactness of classical propositional logic

In this Section, we prove that FT is equivalent to a contraposition of a restricted
version of the compactness theorem for classical propositional logic. We prove also
the corresponding result for ¬!FT.

We introduce the symbols ¬,
∧

and
∨

as natural numbers: ¬ := 1,
∧

:= 2
and

∨

:= 3. We define (the characteristic function of) Form ⊆ ω, as follows, by
recursion: for each n, n ∈ Form if and only if

n′ = 0 ∨ (n′ = ¬ ∧ n′′ ∈ Form) ∨
(

(n′ =
∧

∨ n′ =
∨

) ∧ ∀i < length(n′′)[n′′(i) ∈ Form ]
)

.

We define ⊤ := (
∧

, 〈 〉) and ⊥:= (
∨

, 〈 〉).
Assume γ ∈ C. We define γ̃ in C such that, for every n in Form,

(i) if n /∈ Form , then γ̃(n) = 0, and,
(ii) if n ∈ Form and n′ = 0, then γ̃(n) = γ(n′′), and,
(iii) if n ∈ Form and n′ = ¬, then γ̃(n) = 1− γ̃(n′′), and,
(iv) if n ∈ Form and n′ =

∧

, then γ̃(n) = min{γ̃
(

n′′(i)
)

|i < length(n′′)}, and

(v) if n ∈ Form and n′ =
∨

, then γ̃(n) = max{γ̃
(

n′′(i)
)

|i < length(n′′)}.

Note: 0 = 〈 〉. We define min(∅) = 1 and max(∅) = 0.
Note: γ̃(⊤) = γ̃

(

(
∧

, 0)
)

= 1 and γ̃(⊥) = γ̃
(

(
∨

, 0)
)

= 0.

For all m,n in Form, we define: m ≡ n if and only if ∀γ ∈ C[γ̃(m) = γ̃(n)].

Assume c ∈ Bin . We define c̃ in Bin such that length(c) = length(c̃), as follows.
First, define γ = c ∗ 0. Then define, for all m < length(c), c̃(m) := γ̃(m).

X ⊆ ω is realizable, Real(X), if and only if ∃γ ∈ C∀n ∈ X [γ̃(n) = 1], and
positively unrealizable, Unreal(X), if and only if ∀γ ∈ C∃n ∈ X [γ̃(n) = 0].

We define a mapping Fm from Bin to Form, as follows. Assume a ∈ Bin . Find
s such that length(s) = length(a), and, for all i < length(a), if a(i) = 0, then
s(i) = (¬, (0, i)), and, if a(i) = 1, then s(i) = (0, i). Define Fm(a) = (

∧

, s).

Lemma 11.1.

(i) ∀a ∈ Bin∀γ ∈ C[γ̃
(

Fm(a)
)

= 1↔ a ⊏ γ].
(ii) There exists β such that
∀m ∈ Form∀p[β

(

m, p)
)

> p ∧ β
(

(m, p)
)

∈ Form ∧ β
(

(m, p)
)

≡ m].

(iii) 19 For all α in C, there exists δ in [ω]ω such that
∀m[δ(m) ∈ Form ∧ ∀γ ∈ C[γ̃

(

δ(m)
)

= 1↔ ∀n ≤ m[α(γn) = 0]]].

Proof. (i) We prove, by induction:
for each n, ∀a ∈ Binn∀γ ∈ C[γ̃

(

Fm(a)
)

= 1↔ a ⊏ γ].
First, note Fm(〈 〉) = ⊤ and: ∀γ ∈ C[γ̃(⊤) = 1] and ∀γ ∈ C[〈 〉 ⊏ γ].
Then, let a, n be given such that a ∈ Binn and ∀γ ∈ C[γ̃

(

Fm(a)
)

= 1↔ a ⊏ γ].
Note that for each γ in C, for each i < 2,
γ̃
(

Fm(a ∗ 〈i〉)
)

= 1↔
(

γ̃
(

Fm(a)
)

= 1 ∧ γ(n) = i
)

↔ a ∗ 〈i〉 ⊏ γ.
(ii) The proof is an exercise in calculating codes of formulas. Given m in Form

and p, one might first find q := max(m, p) and then s in ωq+1 such that s(0) = m
and ∀j < q[s(j) = ⊤] and then define β

(

(m, p)
)

:= (
∧

, s).

(iii) Let α be given. We define the promised α by induction.
If α(〈 〉) = 0, define δ(0) := ⊤, and, if α(〈 〉) 6= 0, define δ(0) :=⊥.
Note that δ(0) satisfies the requirements.
Let m be given such that δ(m) has been defined and satisfies the requirements.
Find t such that {t(i) | i < length(t)} = {a ∈ Binm+1 | ∀n ≤ m+ 1[α(an) = 0]}.

Then find s such that length(s) = length(t) and ∀i < length(s)[s(i) = Fm
(

t(i)
)

].

19[ω]ω = {ζ | ∀n[ζ(n) < ζ(n+ 1)]}, see Subsection 13.1.
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Note that, for each γ in C, γ̃
(

(
∨

, s)
)

= 1↔

∃a ∈ Binm+1[∀n ≤ m[α(an) = 0] ∧ γ̃
(

Fm(a)
)

= 1]↔
∃a ∈ Binm+1[∀n ≤ m[α(an) = 0] ∧ a ⊏ γ]↔ ∀n ≤ m[α(γn) = 0].

Define δ(m+ 1) = β
(

(
∨

, s), δ(m)
)

, where β is the function we found in (ii).
Note that δ(m+ 1) satisfies the requirements. �

Lemma 11.2. The following statements are provable in BIM.

(i) FT→ ∀α[Unreal(Eα)→ ∃n[Unreal(Eαn)]].
(ii) ∃α[Unreal(Eα) ∧ ∀n[Real(Eαn)]]→ ¬!FT.
(iii) WKL→ ∀α[∀n[Real(Eαn)]→ Real(Eα)]].
(iv) ∀α[Unreal(Dα)→ ∃n[Unreal(Dαn)]]→ FT.
(v) ¬!FT→ ∃α[Unreal(Dα) ∧ ∀n[Real(Dαn)]].
(vi) ∀α[∀n[Real(Dαn)]→ Real(Dα)]]→WKL.

Proof. (i), (ii) and (iii). We argue in BIM.
Let α be given. Define β such that, for all m, for all c in Binm,

β(c) 6= 0↔ ∃n < m[n ∈ Eαm ∧ c̃(n) = 0]]. We shall prove:

Unreal(Eα)→ BarC(Dβ) and

∃m[BarC(Dβm)]→ ∃n[Unreal(Eαn)].

Assume: Unreal(Eα). Let γ in C be given. Find n, p such that n ∈ Eαp and
γ̃(n) = 0. Define m := max{n, p}+ 1 and note: β(γm) 6= 0. Conclude: BarC(Dβ).

Let m be given such that BarC(Dβm). For all c in Binm, ∃n ≤ m[β(cn) 6= 0],

and, therefore: ∃n < length(c)[n ∈ Eαm ∧ c̃(n) = 0]. Conclude: Unreal(Eαm) and
∃n[Unreal(Eαn)].

Note: if Unreal(Eα), then BarC(Dβ), and by FT, there exist m such that
BarC(Dβm) and n such that Unreal(Eαn). This establishes (i).

Note: if Unreal(Eα) ∧ ∀n[Real(Eαn], then BarC(Dβ) and ∀m[¬Bar(Dβm)],

i.e. ¬!FT. This establishes (ii).

Note: if ∀n[Real(Eαn)], then ∀m[¬Bar(Dβm)], and, by WKL, there exists γ

such that ∀n[β(γn) = 0]. Conclude: ∀m∀n < m[n ∈ Eαm → γ̃(n) = 1], i.e. γ
realizes Eα and Real(Eα). This establishes (iii).

(iv), (v) and (vi). We argue in BIM.
Let α be given. Using Lemma 11.1(iii), find δ in [ω]ω such that

∀m[δ(m) ∈ Form ∧ ∀γ ∈ C[γ̃
(

δ(m)
)

= 1]↔ ∀n ≤ m[α(γn) = 0]]].
Note: δ is strictly increasing and, therefore,

∀m[∃n[m = δ(n)]↔ ∃n ≤ m[m = δ(n)]].
Define β such that ∀m[β(m) 6= 0↔ ∃n[m = δ(n)]]. We shall prove:

BarC(Dα)→ Unreal(Dβ) and

∃n[Unreal(Dβn)]→ ∃m[BarC(Dαm)].

Assume: BarC(Dα). Given any γ ∈ C, find m such that α(γm) 6= 0 and,
therefore, γ̃

(

δ(m)
)

= 0 and: ∃n ∈ Dβ[γ̃(n) 6= 1]. Conclude: Unreal(Dβ).

Let n be given such that Unreal(Dβn). Let m0 be the largest m such that

δ(m) < n. Note: ¬∃γ ∈ C[γ̃
(

δ(m0)
)

= 1], and, therefore,
∀a ∈ Binm0+1∃n ≤ m0[α(an) 6= 0]. Find k such that ∀a ∈ Binm0+1[a ≤ k] and
conclude: BarC(Dαk) and ∃m[BarC(Dαm)].

Note: if BarC(Dα) and Unreal(Dβ)→ ∃n[Unreal(Dβn)], then ∃m[BarC(Dαm)].

This establishes (iv).

Note: if BarC(Dα) and ¬∃n[BarC(Dαn], then Unreal(Dβ) and ∀n[Real(Dβn)].

This establishes (v).
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Note: if ∀n[¬BarC(Dαn] and ∀n[Real(Dβn)]→ Real(Dβ), then there exists γ in

C realizing Dβ , so ∀m[γ̃
(

δ(m)
)

= 1] and ∀m∀n ≤ m[α(γn) = 0], i.e. ∀n[α(γn) = 0].
This establishes (vi). �

Theorem 11.3. (i) BIM ⊢ FT↔ ∀α[Unreal(Eα)→ ∃n[Unreal(Eαn)]]↔
∀α[Unreal(Dα)→ ∃n[Unreal(Dαn)]].

(ii) BIM ⊢ ¬!FT↔ ∃α[Unreal(Eα) ∧ ∀n[Real(Eαn)]]↔
∃α[Unreal(Dα) ∧ ∀n[Real(Dαn)]].

(iii) BIM ⊢WKL↔ ∀α[∀n[Real(Eαn)]→ Real(Eα)]↔
∀α[∀n[Real(Dαn)]→ Real(Dα)].

Proof. Use Lemma 11.2 and: ∀α∃β[Dα = Eβ ]. �

Theorem 11.3(i) also is a consequence of [19, Theorem 6.5].
V.N. Krivtsov has shown, among other things, that FT is an equivalent of an

intuitionistic (generalized) completeness theorem for intuitionistic first-order pred-
icate logic, see [17].

12. Stronger ‘Fan Theorems’?

In this Section, we indicate what, on our opinion, should be the subject of the
next chapter in intuitionistic reverse mathematics. The Fan Theorem may be seen
as a replacement, for tne intuitionistic mathematician, of that enviable tool of the
classical mathematician: (Weak) König’s Lemma. We hope to make clear that the
greater subtlety of the language of the intuitionistic mathematician allows for many
other possible replacements.

12.1. Notions of finiteness. Let α be given.
We consider the set Dα := {n | α(n) 6= 0}, the subset of ω decided by α.

We define: Dα is finite if and only if ∃n∀m ≥ n[α(m) = 0].

We define: Dα is bounded-in-number if and only if
∃n∀t ∈ [ω]n+1∃i < n+ 1[α ◦ t(i) = 0].

We define: Dα is almost-finite if and only if ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0].

We define: Dα is not-not-finite if and only if ¬¬∃n∀m ≥ n[α(m) = 0].

We define: Dα is not-infinite20 if and only if ¬∀n∃m ≥ n[α(m) 6= 0].
Note that Dα is infinite if and only if ∃ζ ∈ [ω]ω∀n[α ◦ ζ(n) 6= 0], and that
Dα is not-infinite if and only if ¬∃ζ ∈ [ω]ω∀n[α ◦ ζ(n) 6= 0].

Decidable subsets of ω that are bounded-in-number are introduced and discussed
in [33].

Almost-finite decidable subsets of ω were introduced in [33] and [34], and are
also studied in [38].

Lemma 12.1. (i) BIM ⊢ ∀α[Dα is finite → Dα is bounded-in-number].
(ii) BIM ⊢ ∀α[Dα is bounded-in-number → Dα is finite]→ LPO.
(iii) BIM ⊢ ∀α[Dα is bounded-in-number→ Dα is almost-finite].
(iv) BIM ⊢ ∀α[Dα is almost-finite → Dα is bounded-in-number]→ LPO.
(v) BIM ⊢ ∀α[Dα is almost-finite → Dα is not-infinite].
(vi) BIM+BARIND21 ⊢ ∀α[Dα is almost-finite → Dα is not-not-finite].

Proof. (i) Let α, n be given such that ∀m ≥ n[α(m) = 0].
Note: ∀t ∈ [ω]n+1[t(n) ≥ n] and conclude: ∀t ∈ [ω]n+1[α ◦ t(n) = 0].

(ii) Let α be given. Define α∗ such that ∀n[α∗(n) 6= 0↔ n = µm[α(m) 6= 0]].

20A referee suggested to consider this notion too.
21See 2.2.6. We do not know if the use of this priniple here is unavoidable.
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Note: ∀t ∈ [ω]2∃i < 2[α∗ ◦ t(i) = 0], so Dα∗ is bounded-in-number.
Assuming that Dα∗ is finite, find n such that ∀m ≥ n[α∗(m) = 0].
Either ∃m < n[α∗(m) 6= 0] or ∀m[α∗(m) = 0], and, therefore,
either ∃m[α(m) 6= 0] or ∀m[α(m) = 0].
We thus see how, starting from the assumption:

∀α[Dα is bounded-in-number → Dα is finite], one obtains the conclusion:
∀α[∃m[α(m) 6= 0] ∨ ∀m[α(m) = 0]], i.e. LPO.

(iii) Let α, n be given such that ∀t ∈ [ω]n+1∃i < n+ 1[α ◦ t(i) = 0].
Conclude: ∀ζ ∈ [ω]ω∃i < n+ 1[α ◦ ζ(i) = 0].

(iv) Let α be given. Define α∗ such that
∀n[α∗(n) 6= 0↔ µm[α(m) 6= 0] ≤ n < 2 · µm[α(m) 6= 0]].

Observe: for all k, if k = µ[α(m) 6= 0], then ∀n[k ≤ n < 2 · k ↔ α∗(n) 6= 0] and
∃t ∈ [ω]k∀i < k[α∗ ◦ t(i) 6= 0] and ∀t ∈ [ω]k+1∃i < k + 1[α∗ ◦ t(i) = 0]

Let ζ in [ω]ω be given.
We want to prove; ∃n[α∗ ◦ ζ(n) = 0] and and distinguish two cases.
Case (a). α∗ ◦ ζ(0) = 0. Then we are done.
Case (b). α∗ ◦ ζ(0) 6= 0. Then ∃m[α(m) 6= 0]. Define k := µm[α(m) 6= 0] and note:
∀m ≥ 2 · k[α∗(m) = 0], and, in particular, α∗ ◦ ζ(2 · k) = 0.

We thus see: ∀ζ ∈ [ω]ω∃n[α∗ ◦ ζ(n) = 0], i.e. Dα∗ is almost-finite.
Assuming that Dα∗ is bounded-in-number, find n such that

∀t ∈ [ω]n+1∃i < n+ 1[α∗ ◦ t(i) = 0].
Conclude: for all k, if k = µm[α(m) 6= 0], then k < n+ 1.

Either ∃k < n+ 1[α 6= 0] or ∀k < n+ 1[α(k) = 0], and, therefore,
either ∃k[α(k) 6= 0] or ∀k[α(k) = 0].
We thus see how, starting from the assumption:

∀α[Dα is almost-finite → Dα is bounded-in-number], one obtains the conclusion:
∀α[∃k[α(k) 6= 0] ∨ ∀k[α(k) = 0]], i.e. LPO.

(v) Let α be given such that ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0].
Define B :=

⋃

n{s ∈ ω
n | s /∈ [ω]n ∨ ∃i < n[α ◦ s(i) = 0]}.

We prove: Barωω (B).
Let γ be given. Define γ∗ such that γ∗(0) = γ(0), and, for each n, if γ(n+2) ∈ [ω]<ω,
then γ∗(n+1) = γ(n+1), and, if not, then γ∗(n+1) = γ∗(n)+ 1. Note: γ∗ ∈ [ω]ω

and find n such that γ∗n ∈ B. Either γn = γ∗n or γn /∈ [ω]n.
In both cases; γn ∈ B.
Define C :=

⋃

n{s ∈ ω
n | s /∈ [ω]n ∨ ∃i < n[α ◦ s(i) = 0] ∨ Dα is not-not-finite]}.

Note: B ⊆ C.

Let s, n be given such that s ∈ ωn and ∀m[s ∗ 〈m〉 ∈ C].
We intend to prove: s ∈ C.

We may assume: s ∈ [ω]n ∧ ¬∃i < n[α ◦ s(i) = 0], and distinguish two cases.
Case(a). ∃m[s ∗ 〈m〉 ∈ [ω]n+1 ∧ α(m) 6= 0]. Finding such m, we consider s ∗ 〈m〉
and conclude: s ∗ 〈m〉 ∈ C and, therefore: Dα is not-not-finite.
Case (b). ¬∃m[s ∗ 〈m〉 ∈ [ω]n+1 ∧ α(m) 6= 0], and, therefore,
∀m[s ∗ 〈m〉 ∈ [ω]n+1 → α(m) = 0]. Conclude: Dα is finite.

Defining P := ∃m[s ∗ 〈m〉 ∈ [ω]n+1 ∧ α(m) 6= 0], we thus see:
(P ∨ ¬P )→ Dα is not-not-finite.
By intuitionistic logic22, we conclude: Dα is not-not-finite and: s ∈ C.

We thus see: ∀s[∀m[s ∗ 〈m〉 ∈ C]→ s ∈ C].
Obviously: ∀s∀m[s ∈ C → s ∗ 〈m〉 ∈ C].
Using BARIND, we conclude: 〈 〉 ∈ C, and: Dα is not-not-finite.

22¬¬(P∨¬P ) is provable, and from A → B one may conclude ¬B → ¬A and also ¬¬A → ¬¬B.
Furthermore, ¬¬¬C is equivalent to ¬C and ¬¬¬¬C is equivalent to ¬¬C.

45



We thus see:
BIM+BARIND ⊢ ∀α[Dα is almost-finite → Dα is not-not-finite]. �

Lemma 12.2. BIM +MP23 proves
∀α[Dα is not-infinite ↔ Dα is not-not-finite ↔ Dα is almost-finite].

Proof. First, let α be given such that Dα is not-finite. Then ¬∃n∀m ≥ n[α(m) = 0].
Conclude ∀n¬¬∃m ≥ n[α(m) 6= 0].
Using MP, conclude: ∀n∃m ≥ n[α(m) 6= 0], i.e. Dα is infinite.

We thus see, using MP: for all α, if Dα is not-finite, then Dα is infinite, and
may conclude: for all α, if Dα is not- infinite, then Dα is not-not-finite.

Secondly, let α be given such that ¬¬(Dα is almost-finite), i.e.
¬¬∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0]. Conclude: ∀ζ ∈ [ω]ω¬¬∃n[α ◦ ζ(n) = 0], and, by
MP, ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0], i.e. Dα is almost-finite.

We thus see: for all α, if ¬¬(Dα is almost-finite), then Dα is almost-finite.
As we also know, from Lemma 12.1: for all α, if Dα is finite, then Dα is almost-

finite, we conclude: for all α, if Dα is not-not-finite, then Dα is almost-finite.

Finally, it is clear that, for all α, ifDα is almost-finite, thenDα is not-infinite. �

We now extend the notion ‘almost-finite’ from decidable subsets of ω to enumer-
able subsets of ω.

Let α be given. We consider the set
Eα := {n | ∃m[α(m) = n+ 1]}, the subset of ω enumerated by α. We define:
Eα is almost-finite if and only if ∀ζ ∈ [ω]ω∃m∃n[m < n ∧ α ◦ ζ(m) = α ◦ ζ(n)].

The first item of the next Lemma show that this definition is consistent with the
definition given earlier for decidable subsets of ω.

The second item shows that the definition is a good definition indeed as it does
not depend on the enumeration α of Eα.

The fifth item shows that an almost-finite union of almost-finite enumerable
subsets of ω is almost-finite and enumerable.

Lemma 12.3. BIM proves the following.

(i) ∀α∀β[Dα = Eβ →
(

∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0]↔ ∀ζ ∈ [ω]ω∃m∃n[m < n ∧ β(m) = β(n)]
)

.

(ii) ∀α∀β[
(

Eα = Eβ ∧ ∀ζ ∈ [ω]ω∃m∃n[m < n ∧ α ◦ ζ(m) = α ◦ ζ(n)]
)

→
∀ζ ∈ [ω]ω∃m∃n[m < n ∧ β ◦ ζ(m) = β ◦ ζ(n)]].

(iii) ∀α[∀i < 2[Eαi is almost-finite]→
⋃

i<2Eαi is almost-finite].
(iv) ∀α∀n[∀i < n[Eαi is almost-finite]→

⋃

i<nEαi is almost-finite].

(v) ∀α[(∀n[Eαn is almost-finite] ∧ ∀ζ ∈ [ω]ω∃n[αζ(n) = 0])→
⋃

nEαn is almost-finite].

Proof. (i) The proof is left to the reader.

(ii) The proof is left to the reader.

(iii) Let α be given such that Eα0 , Eα1 are almost- finite. Define α∗ such that,
for each n, α∗(2n) = α0(n) and α∗(2n+ 1) = α1(n). Note: Eα∗ = Eα0 ∪ Eα1 .

Let ζ in [ω]ω be given. Define QED := ∃m∃n[m < n ∧ α∗ ◦ ζ(m) = α∗ ◦ ζ(n)].

We prove: ∀k∃l > k[∃p[ζ(l) = 2p+ 1] ∨ QED].
Let k be given. Define ζ∗ such that, for each i, if ∀j ≤ i∃p[ζ(k+1+j) = 2p], then

ζ∗(i) = ζ(k+1+ i), and, if not, then ζ∗(i) = 2 · ζ(k+1+ i). Note: ∀i∃p[ζ∗(i) = 2p].
Define ζ∗∗ such that ∀i[ζ∗(i) = 2 ·ζ∗∗(i)] and note: ∀i[α∗ ◦ζ∗(i) = α0 ◦ζ∗∗(i)]. Find
m,n such that m < n and α0 ◦ ζ∗∗(m) = α0 ◦ ζ∗∗(n) and note:

23For Markov’s Principle MP, see Subsubsection 2.2.16.
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either ζ∗(m) = ζ(k + 1 +m) and ζ∗(n) = ζ(k + 1 + n) and: QED
or ∃j ≤ n∃p[ζ(k + 1 + j) = 2p+ 1].

Using Theorem 4.3, find δ such that ∀k[δ(k) > k ∧ (∃p[ζ◦δ(k) = 2p+1] ∨ QED)].
Define ζ† such that ζ†(0) = δ(0) and, for each k, ζ†(k + 1) = δ

(

ζ†(k)
)

.

Note: for each k, if ∃p[ζ†(k) = 2p], then QED.
Define ζ†∗ such that, for each i, if ∀j ≤ i∃p[ζ†(j) = 2p+ 1], then ζ†∗(i) = ζ†(i),

and, if not, then ζ†∗(i) = 2 · ζ†(i)+ 1. Note: ∀i∃p[ζ†
∗

(i) = 2p+1]. Define ζ†∗∗ such
that ∀i[ζ†∗(i) = 2 · ζ†∗∗(i) + 1] and note: ∀i[α∗ ◦ ζ†∗(i) = α1 ◦ ζ†∗∗(i)]. Find m,n
such that m < n and α1 ◦ ζ†∗∗(m) = α1 ◦ ζ†∗∗(n) and note:
either ζ†∗(m) = ζ†(m) and ζ†∗(n) = ζ†(n) and: QED
or ∃j∃p[ζ†(j) = 2p] and QED, so in any case QED.

We thus see: ∀ζ ∈ [ω]ω∃m∃n[m < n ∧ α∗ ◦ ζ(m) = α∗ ◦ ζ(n)], i.e.
Eα∗ = Eα0 ∪ Eα1 is almost-finite.

(iv) Use (iii) and induction.

(v) Let α be given such that, for all n, Eαn is almost-finite, and
∀ζ ∈ [ω]ω∃n[αζ(n) = 0]. We are going to prove:

⋃

nEαn is almost-finite.
Define α∗ such that, for all n,m, α∗(n,m) = αn(m) and note: Eα∗ =

⋃

nEαn .
Let ζ in [ω]ω be given. Define QED := ∃m∃n[m < n ∧ α∗ ◦ ζ(m) = α∗ ◦ ζ(n)].

We first prove: ∀k∀n∃l[l > k ∧
(

QED ∨
(

ζ(l)
)′
> n

)

].
Let k, n be given.

If
(

ζ(k + 1)
)′
> n, there is nothing to prove, so we assume

(

ζ(k + 1)
)′
≤ n.

Define ζ∗ such that ζ∗(0) = ζ(k+1) and, for all i, if ∀j ≤ i+1[
(

ζ(k+1+ j)
)′
≤ n],

then ζ∗(i+ 1) = ζ(k + 2 + i), and, if not, then ζ∗(i+ 1) = µp[p > ζ∗(i) ∧ p′ = n].

Note: ∀i[
(

ζ∗(i)
)′
≤ n].

Using (iii), find p, q such that p < q and α∗ ◦ ζ∗(p) = α∗ ◦ ζ∗(q) and note:
either ζ∗(p) = ζ(k + 1 + p) and ζ∗(q) = ζ(k + 1 + q) and QED,

or ∃j ≤ q[
(

ζ(k + 1 + j)
)′
> n].

We thus see: ∀k∀n∃l[l > k ∧
(

QED ∨
(

ζ(l)
)′
> n

)

].

Using Theorem 4.3, find δ such that

∀k∀n[δ(k, n) > k ∧
(

QED ∨
(

ζ ◦ δ(k, n)
)′
> n

)

].

Now define η such that η(0) = δ(0, 0), and, for each n, η(n+ 1) = δ
(

η(n), n
)

.

Note: η ∈ [ω]ω and ∀n[
(

ζ ◦ η(n)
)′
> n ∨ QED].

Find ρ in [ω]ω such that ∀n[((ζ ◦ η ◦ ρ(n+ 1)
)′
> ((ζ ◦ η ◦ ρ(n)

)′
∨ QED].

Find p such that α

(

ζ◦η◦ρ(p)
)

′

= 0.
Conclude: either QED, or

α∗ ◦ ζ ◦ η ◦ ρ(〈p, 0〉) = α∗ ◦ ζ ◦ η ◦ ρ(〈p, 1〉) = 0, and again: QED.

We thus see: ∀ζ ∈ [ω]ω∃m∃n[m < n ∧ α∗ ◦ ζ(m) = α∗ ◦ ζ(n)], i.e.
Eα∗ =

⋃

nEαn is almost-finite.
�

12.2. Fans, approximate fans and almost-fans.

Let β be given. We define: Fβ := {α | ∀n[β(αn) = 0]}.

We define: β is a spread-law, Spr(β), if and only if
∀s[β(s) = 0↔ ∃n[β(s ∗ 〈n〉) = 0]].

If β is a spread-law, then Fβ is a spread.

We define: β is a fan-law, Fan(β), if and only if
Spr(β) and ∀s∃n∀m[β(s ∗ 〈m〉) = 0→ m ≤ n].

If β is a fan-law, then Fβ is a fan.
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We define: β is an explicit fan-law if and only if
Fan(β) and ∃γ∀s∀m[β(s ∗ 〈m〉) = 0→ m ≤ γ(s)].

If β is an explicit fan-law, then Fβ is an explicit fan.

One may prove in BIM, see Lemma 13.1:
Explfan(β)↔

(

Spr(β) ∧ ∃γ∀n∀s ∈ [ω]n[β(s) = 0→ s ≤ γ(n)]
)

.

We define: β is an approximate-fan-law, Appfan(β), if and only if
Spr(β) and ∀n∃k∀t ∈ [ω]k+1∃i < k + 1[t(i) /∈ ωn ∨ β

(

t(i)
)

6= 0].
If β is an approximate-fan-law, then Fβ is an approximate fan.

We define: β is an almost-fan-law, Almfan(β), if and only if
Spr(β) and ∀s∀ζ ∈ [ω]ω∃m[β

(

s ∗ 〈ζ(m)〉
)

6= 0].
If β is an almost-fan-law, then Fβ is an almost-fan.

12.3. The Almost-fan Theorem as a Scheme, ALMFAN:
∀β[

(

Almfan(β) ∧ BarFβ
(B)

)

→
∃α[Eα ⊆ B ∧ Eα is almost-finite ∧ BarFβ

(Eα)]].
The following theorem may be compared to Theorem 2.3.

Theorem 12.4. BIM +BARIND+ACω,ωω ⊢ ALMFAN. 24

Proof. Let β be given such that Almfan(β) and β(〈 〉) = 0.25 Assume BarFβ
(B).

Define B′ := B ∪ {s | β(s) 6= 0}.
We claim: Barωω (B′). In the proof of Theorem 2.3 we have seen how to prove

this claim.

Let C be the set of all s such that either: β(s) 6= 0 or:
β(s) = 0 and ∃α[Eα ⊆ B ∧ Eα is almost-finite ∧ BarFβ∩s(Eα)].

One easily sees: B ⊆ C: for every s, if β(s) = 0 and s ∈ B, define α such that
∀n[α(n) = s+ 1] and note: {s} = Eα ⊆ B and Eα is finite and BarFβ∩s(Eα).

Now let s be given such that ∀m[s ∗ 〈m〉 ∈ C]. Using ACω,ωω , find α such
that, for all m, if β(s ∗ 〈m〉) = 0, then Eαm ⊆ B and Eαm is almost-finite and
BarFβ∩s∗〈m〉(Eαm), and, if β(s ∗ 〈m〉) 6= 0, then αm = 0 and Eαm = ∅.

Note: Almfan(β) and, therefore, ∀ζ ∈ [ω]ω∃m[αζ(m) = 0].
Use Lemma 12.3(iv) and conclude:

⋃

mEαm is almost-finite.
Also: BarFβ∩s(

⋃

nEαn). Conclude: s ∈ C.
We thus see: ∀s[∀m[s ∗ 〈m〉 ∈ C]→ s ∈ C].
Obviously: ∀s∀m[s ∈ C → s ∗ 〈m〉 ∈ C].
Using BARIND, we conclude: 〈 〉 ∈ C, i.e.

∃α[Eα ⊆ B ∧ Eα is almost-finite ∧ BarFβ
(Eα)]. �

12.4. The Almost-fan Theorem, AlmFT:

∀β[Almfan(β)→ ∀α[
(

ThinbarFβ
(Dα) ∧ ∀s ∈ Dα[β(s) = 0]

)

→

∀ζ ∈ [ω]ω∃n[ζ(n) /∈ Dα]]],

i.e.: every decidable subet of ω that is a thin bar in some almost-fan is almost-finite.

Theorem 12.5. BIM +ALMFAN ⊢ AlmFT.

Proof. Let β, α be given such that Appfan(β) and ThinbarFβ
(Dα) and

∀s ∈ Dα[β(s) = 0]. Applying Theorem 12.4, find γ such that Eγ ⊆ Dα and
BarFβ

(Eγ) and Eγ is almost-finite. As ∀s ∈ Dα∀t ∈ Dα[s ⊑ t → s = t], conclude:
Eγ = Dα and, by Lemma 12.1(i), ∀ζ ∈ [ω]ω∃n[ζ(n) /∈ Dα]. �

The Almost-fan Theorem occurs in [36] and [37].

24We do not know id the use of the Axiom ACω,ωω is avoidable.
25If β(〈 〉) 6= 0, then Fβ = ∅ and there is nothing to prove.
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12.5. The Approximate-fan Theorem, AppFT:

∀β∀α[
(

Appfan(β) ∧ ThinbarFβ
(Dα) ∧ ∀s ∈ Dα[β(s) = 0]

)

→

∀ζ ∈ [ω]ω∃n[ζ(n) /∈ Dα]],

i.e.: every decidable subet of ω that is a thin bar in some approximate fan is almost-
finite.

Theorem 12.6. BIM +AlmFT ⊢ AppFT.

Proof. Obvious, as every approximate fan is an almost-fan. �

I do not know if BIM proves AppFT→ AlmFT.

Theorem 12.7. BIM +AppFT ⊢ FT.

Proof. Assume AppFT. We want to prove FT and use Theorem 2.1.
Let α be given such that ThinbarC(Dα).

Using AppFT, conclude: Dα is almost-finite.
Define ζ in [ω]ω such that, for each n,
if ¬∀γ ∈ C∃i < n[ζ(i) ⊏ γ], then ζ(n) = µp[p ∈ Dα ∧ ∀i < n[p 6= ζ(i)]].
Find p such that ζ(p) /∈ Dα.
Conclude: ∀n > ζ(p)[n /∈ Dα].

We thus see: ∀α[ThinbarC(Dα)→ ∃m∀n > m[n /∈ Dα]].
Using Theorem 2.1, we conclude: FT. �

BIM does not prove FT→ AppFT, see [44, Corollary 10.6].
In BIM, AppFT has a number of important equivalents, see [44]. One of them

is the following principle of Open Induction:

OI([0, 1]) : ∀α[∀δ ∈ [0, 1][[0, δ) ⊆ Hα → δ ∈ Hα]→ [0, 1] ⊆ Hα].

The relation between FT and AppFT in BIM may be compared to the relation
between WKL and KL in RCA0.

In the classical context of RCA0, one studies two extensions of WKL,
Bounded König’s Lemma BKL, that (for a classical reader) would coincide with
(a contraposition of) the second formulation of FT 2.2.4 and König’s Lemma KL,
that, similarly, would coincide with FT+ 2.2.5.

BKL is, in RCA0, equivalent to WKL, see [26, Lemma IV.1.4], just as, in BIM,
the first and second formulation of FT are equivalent.

KL, on the other hand, is definitely stronger than WKL, as RCA0 + KL is
equivalent to ACA0.

As we observed before, see Theorem 4.2, BIM+Weak-Π0
1-ACω,ω ⊢ FT↔ FT+.26

From a constructive point of view, the axiomWeak-Π0
1-ACω,ω is weak indeed, as

the antecedent is read constructively. Also note: BIM+ACω,ω! ⊢Weak-Π0
1-ACω,ω.

In a classical context, the rôle of a countable axiom of choice is very different
from the rôle of such an axiom in a constructive context, see [9, Appendix 1].

It seems to us that FT+ is still too close to FT for being a good candidate
for playing, in the intuitionistic context, a rôle like the rôle played by KL in the
classical context.

Note that our ‘axiom’ AppFT is a possibly better candidate, as, for a classical
reader, AppFT is still indistinguishable from KL.

Some authors have called our FT the Weak Fan Theorem WFT, see for instance
[19], but we decided not to follow them.

26One may learn from [16, Theorem 9.20] that, using countable choice, in fact only Weak -
Π

0

1
-ACω,ω , one may constructively derive KL from WKL. On the problem of treating non-

constructive assumptions in a constructive context, see the end of Section 2.
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There is a constructive version of Weak Weak König’s Lemma WWKL, see [26,
Definition X.1.7], that is called WWFT, see [23].

13. Notation and conventions

In this Section we explain how, in BIM, some useful notation is introduced and
some elementary results are proven.

13.1. Finite and infinite sequences of natural numbers.

BIM contains a constant p denoting the function enumerating the prime numbers:
p(0) = 2, p(1) = 3, . . .

We code finite sequences of natural numbers by natural numbers:
〈 〉 := 0 and, for each k > 0, for all m0,m1, . . .mk−1,

〈m0, . . . ,mk−1〉 = p(k − 1) ·
∏

i<k

p(i)mi − 1

length(0) := 0 and,
for each s > 0, length(s) := 1 + the largest k such that p(k) divides s+ 1.
If i < length(s)− 1, then s(i) := the largest m such that p(i)m divides s+1, and,

if i = length(s)− 1, then s(i) := the largest m such that p(i)m+1 divides s+1, and,
if i ≥ length(s) then s(i) := 0.

Note: if length(s) = k, then s = 〈s(0), s(1), . . . , s(k − 1)〉.
Also note: ∀s[s ≥ length(s)].

a ∗ b is the number s satisfying: length(s) = length(a) + length(b) and,
for each n, if n < length(a), then s(n) = a(n) and,
if length(a) ≤ n < length(s), then s(n) = b

(

n− length(a)
)

.
a ∗ α is the element β of ωω satisfying: for each n, if n < length(a),

then β(n) = a(n), and, if length(a) ≤ n, then β(n) = α
(

n− length(a)
)

.
For n ≤ length(a), a(n) := 〈a(0), . . . , a(n− 1)〉.

If confusion seems unlikely, we sometimes write: “an” and not: “a(n)”.

a ⊑ b↔ ∃n ≤ length(b)[a = bn], and: a ⊏ b↔ (a ⊑ b ∧ a 6= b).
s ≤lex t↔ ∀m < length(s)[sm = tm→ s(m) ≤ t(m)].
a ⊥ b↔ ¬(a ⊑ b ∨ b ⊑ a).
α(n) := αn := 〈α(0), . . . α(n− 1)〉.
a ⊏ α↔ ∃n[αn = a].

a ⊥ α↔ α ⊥ a↔ ¬(a ⊏ α).

α # β ↔ α ⊥ β ↔ ∃n[α(n) 6= β(n)].

For each p, p is the element of ωω satisfying ∀n[p(n) = p].

∀α∀n[α′(n) =
(

α(n)
)′
∧ α′′(n) =

(

α(n)
)′′
].

We extend the language of BIM by introducing ∈ and terms denoting subsets of
ω. This is not a real extension of the language of BIM. Formulas in which the new
symbols occur are abbreviations of formulas in which they do not occur.

Given a formula ϕ = ϕ(n) we may introduce a ‘set term’ Tϕ. The basic formula
‘t ∈ Xϕ’ is an abbreviation of ‘ϕ(t)’.

Here is a first example.
Bin := {a | ∀n < length(a)[a(n) = 0 ∨ a(n) = 1]}.
‘a ∈ Bin’ is an abbreviation of ‘∀n < length(a)[a(n) = 0 ∨ a(n) = 1]’.

Binm := {s ∈ Bin | length(s) = m)}.

ωm := {s | length(s) = m}.

Given terms A,B denoting subsets of ω,
‘A ⊆ B’ is an abbreviation of ‘∀n[n ∈ A→ n ∈ B]’.

We also introduce terms denoting subsets of ωω, for instance:
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C := {γ | ∀n[γ(n) = 0 ∨ γ(n) = 1]}.
‘α ∈ C’ is ean abbreviation of ‘∀n < length(a)[α(n) = 0 ∨ α(n) = 1]’.

[ω]ω := {ζ | ∀n[ζ(n) < ζ(n+ 1)]}.

Given terms X ,Y denoting subsets of ωω,
‘X ⊆ Y’ abbreviates ‘∀α[α ∈ X → α ∈ Y]’.

Given a term X denoting a subset of ωω, we introduce, for all s,
X ∩ s := {α ∈ X | s ⊏ α}.

Given a term X denoting a subset of ωω, and a term B denoting a subset of ω,
we let ‘BarX (B)’ be an abbreviation of ‘∀α ∈ X∃n[αn ∈ B]’.

Note that BarX (B) is a formula scheme, that becomes a formula if one substi-
tutes formulas defining X , B, respectively.

From now on, we will express ourselves more informally, as in the following
example:

For each X ⊆ ωω, for each B ⊆ ω,
ThinbarX (B)↔

(

BarX (B) ∧ ∀s ∈ B∀t ∈ B[s ⊑ t→ s = t]
)

.
Note that we are not extending the language of BIM by second-order variables.

13.2. Decidable and enumerable subsets of ω.
Dα := {i | α(i) 6= 0}. Dα is the subset of ω decided by α.
The expression ‘i ∈ Dα’ is an abbreviation of ‘α(i) 6= 0’.
X ⊆ ω is decidable or ∆0

1 if and only if ∃α[X = Dα].

Da := {i | i < length(a) | a(i) 6= 0}.

X ⊆ ω is finite if and only if ∃a[X = Da].

Note: for each α, Dα =
⋃

n∈ω
Dαn.

Eα := {n | ∃p[α(p) = n+ 1]}. Eα is the subset of ω enumerated by α.
X ⊆ ω is enumerable or Σ0

1 if and only if ∃α[X = Eα].

Ea := {n | ∃p < length(a)[a(p) = n+ 1]}.
Note: for each α, Eα =

⋃

n∈ω
Eαn.

X ⊆ ω is co-enumerable or Π0
1 if and only if

∃α[X = ω \ Eα = {n | ∀p[α(p) 6= n+ 1]}].
Given any α, define β such that

∀n[α(n) = β(n) = 0 ∨
(

α(n) 6= 0 ∧ β(n) = n+ 1
)

], and note: Dα = Eβ .
We thus see: BIM ⊢ ∀α∃β[Dα = Eβ ].

13.3. Open and closed subsets of ωω, spreads and fans.

Gβ := {γ | ∃n[β(γn) 6= 0]}.
G ⊆ ωω is open or Σ0

1 if and only if ∃β[G = Gβ ].
Fβ := ωω \ Gβ = {γ | ∀n[β(γn) = 0]}.
F ⊆ ωω is closed or Π0

1 if and only if ∃β[F = Fβ ].
Spr(β)↔ ∀s[β(s) = 0↔ ∃n[β(s ∗ 〈n〉) = 0]].

X ⊆ ωω is a spread if and only if ∃β[Spr(β) ∧ X = Fβ ].

In intuitionistic mathematics, not every closed subset of ωω is a spread, see
Lemma 2.11.

Fan(β)↔
(

Spr(β) ∧ ∀s∃n∀m[β(s ∗ 〈m〉) = 0→ m ≤ n]
)

and

Explfan(β)↔
(

Spr(β) ∧ ∃γ∀s∀m[β(s ∗ 〈m〉) = 0→ m ≤ γ(s)]
)

.
X ⊆ ωω is a fan if and only if ∃β[Fan(β) ∧ X = Fβ].

X ⊆ ωω is an explicit fan if and only if ∃β[Explfan(β) ∧ X = Fβ ].

Lemma 13.1. One may prove in BIM:
∀β[Explfan(β)↔

(

Spr(β) ∧ ∃γ∀n∀s ∈ ωn[β(s) = 0→ s ≤ γ(n)]
)

].
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Proof. Let β be given such that Explfan(β).
Find γ such that ∀s∀m[β(s ∗ 〈m〉) = 0→ m ≤ γ(s)].
Define δ such that δ(0) = 0 = 〈 〉, and, for each n,
δ(n+ 1) = max({s ∗ 〈m〉 | β

(

{s ∗ 〈m〉) = 0 ∧ s ≤ δ(n) ∧ m ≤ γ(s)}
)

.
One proves by induction: ∀n∀s ∈ ωn[β(s) = 0→ s ≤ δ(n)].

Conversely, let β, γ be given such that ∀n∀s ∈ ωn[β(s) = 0→ s ≤ γ(n)].
Define δ such that, for each n, for each s in ωn such that β(s) = 0,
δ(s) = max

(

{m | β(s ∗ 〈m〉) = 0 ∧ s ∗ 〈m〉 ≤ γ(n+ 1)}
)

.
Note: ∀s∀m[β(s ∗ 〈m〉) = 0→ m ≤ δ(s)] and conclude: Explfan(β). �

13.4. Subsequences.

∀n∀m[α↾n(m) := α(〈n〉 ∗m)].
α↾n is called the n-th subsequence of the infinite sequence α.

length(s↾n) := µp ≤ s[〈n〉 ∗ p ≥ length(s)] and
∀m < length(s↾n)[s↾n(m) = s(〈n〉 ∗m)].

Note: ∀α∀m∀n[(αm)↾n ⊏ α↾n].

∀m[aα(m) := α(a ∗m)].
Note: ∀n[〈n〉α = α↾n].

length(as) := µp ≤ s[a ∗ p ≥ length(s)] and ∀m < length(as)[as(m) = s(a ∗m)].

Note: ∀α∀m∀a[a(αm) ⊏ aα].

13.5. Partial continuous functions from ωω to ω and from ωω to ωω. 27

Fun0(ϕ)↔ ∀a ∈ Eϕ∀b ∈ Eϕ[a
′ ⊑ b′ → a′′ = b′′].

Dom0(ϕ) := {α | ∀α∃a ∈ Eϕ[a′ ⊏ α]}.

Assume: Fun0(ϕ) and α ∈ Dom0(ϕ).
Then ϕ(α) := the number c such that ∃n(αn, c) ∈ Eϕ].

For every X ⊆ ωω, for every ϕ, ϕ : X → ω ↔
(

Fun0(ϕ) ∧ X ⊆ Dom0(ϕ)
)

.

Fun1(ϕ)↔ ∀a ∈ Eϕ∀b ∈ Eϕ[a
′ ⊑ b′ → a′′ ⊑ b′′].

Dom1(ϕ) := {α | ∀n∃a ∈ Eϕ[a′ ⊏ α ∧ length(a′′) ≥ n]}.
ϕ|a := max({t | ∃b ∈ Eϕa[b′ ⊑ a ∧ b′′ = t]}).
ϕ : α 7→ γ ↔ ∀n∃m[γn ⊑ ϕ|αm]].

Assume: Fun1(ϕ) and α ∈ Dom1(ϕ).
Then ϕ|α := the element γ of ωω such that ϕ : α 7→ γ.

For every X ⊆ ωω, for every ϕ, ϕ : X → ωω ↔
(

Fun1(ϕ) ∧ X ⊆ Dom1(ϕ)
)

.

13.6. Integers and rationals.

m =Z n↔ m′ + n′′ = m′′ + n′.
m <Z n↔ m′ + n′′ < m′′ + n′.
0Z := (0, 0)
m+Z n = (m′ + n′,m′′ + n′′).
m−Z n = (m′ + n′′,m′′ + n′).
m ·Z n := (m′ · n′ +m′′ · n′′,m′ · n′′ +m′′ · n′).

Q := {n | n′′ >Z 0Z}.
m =Q n↔ m′ ·Z n′′ =Z m

′′ ·Z n′.
m <Q n↔ m′ ·Z n′′ <Z m

′′ ·Z n′.
m ≤Q n↔ m′ ·Z n′′ ≤Z m

′′ ·Z n′.
m ≤Q n↔ maxQ(m,n) =Q n↔ minQ(m,n) =Q m.
m+Q n = (m′ ·Z n

′′ +Z m
′′ ·Z n

′,m′′ ·Z n
′′).

m−Q n = (m′ ·Z n′′ −Z m
′′ ·Z n′,m′′ ·Z n′′).

m ·Q n = (m′ ·Z n′,m′′ ·Z n′′).

27See [43, Subsections 7.2 and 7.5]
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S := {s | s′ ∈ Q ∧ s′′ ∈ Q ∧ s′ <Q s
′′}.

s ⊏S t↔ (t′ <Q s
′ ∧ s′′ <Q t

′′).
s ⊑S t↔ (t′ ≤Q s

′ ∧ s′′ ≤Q t
′′).

s <S t↔ s′′ <Q t
′.

s ≤S t↔ s′ ≤Q t
′′.

s #S t↔ (s <S t ∨ t <S s).

For each n, we define nQ in Q by: nQ =
(

(n, 0), (1, 0)
)

.

For all s in S, doubleS(s) is the element u of S satisfying:
u′ +Q u

′′ =Q s
′ +Q s

′′ and u′′ −Q u
′ =Q 2Q ·Q (s′′ −Q s

′).
Note: ∀s ∈ S∀t ∈ S[s ⊑S t→ doubleS(s) ⊑S doubleS(t)].

s+S t := (s′ +Q t
′, s′′ +Q t

′′).
s ·S t :=

(

minQ(s
′ ·Q t′, s′′ ·Q t′, s′ ·Q t′′, s′′ ·Q t′′),maxQ(s

′ ·Q t′, s′′ ·Q t′, s′ ·Q t′′, s′′ ·Q t′′)
)

.

13.7. Real numbers.

R := {α | ∀n[α(n) ∈ S ∧ α(n+1) ⊑S α(n)] ∧ ∀m∃n[α′′(n)−Q α
′(n) <Q

1
2m ]}.28

α <R β ↔ ∃n[α(n) <S β(n)].
α ≤R β ↔ ∀n[α(n) ≤S β(n)].

∀n[inf(α, β)(n) :=
(

minQ(α
′(n), β′(n)),minQ(α

′′(n), β′′(n))
)

].

∀n[sup(α, β)(n) :=
(

maxQ(α
′(n), β′(n)),maxQ(α

′′(n), β′′(n))
)

].

α #R β ↔ (α <R β ∨ β <R α).
α =R β ↔ (α ≤R β ∧ β ≤R α).

∀n[(α+R β)(n) := α(n) +S β(n)].
∀n[(α ·R β)(n) := α(n) ·S β(n)].
For each q in Q, we define qR in R by: for each n, qR(n) = (q −Q

1
2n , q +Q

1
2n ).

0R := (0Q)R and 1R := (1Q)R.

Lemma 13.2. One may prove in BIM:
∀s ∈ S∀t ∈ S[s ⊏S t→ ∀α ∈ R∃n[s #S α(n) ∨ α(n) ⊏S t]].

Proof. The proof is left to the reader. �

13.8. [0, 1] and C.
[0, 1] := {α ∈ R | 0R ≤R α ≤R 1R}.

(0, 1] := {α ∈ R | 0R <R α ≤R 1R}, and [0, 1) := {α ∈ R | 0R ≤R α <R 1R}.

For all α, β in R, [α, β) := {γ ∈ R | α ≤R γ <R β}.

[0, 1]2 := {γ | ∀i < 2[γ↾i ∈ [0, 1]]} and [0, 1]ω := {γ | ∀n[γ↾n ∈ [0, 1]]}.

Hα := {γ ∈ [0, 1] | ∃n∃s ∈ S[α(s) 6= 0 ∧ γ(n) ⊏S s]}.

H ⊆ R is open if and only if ∃α[H = Hα].

Lemma 13.3. One may prove in BIM:
There exist σ, ψ such that

(i) σ : C → [0, 1] and ∀δ ∈ [0, 1]∃γ ∈ C[σ|γ =R δ].
(ii) ψ : ωω → ωω and ∀α∀γ ∈ C[γ ∈ Gψ|α ↔ σ|γ ∈ Hα].

Proof. (i) Define λ and ρ such that, for each s in S, λ(s) = (s′, 13s
′ +Q

2
3s

′′) and

ρ(s) = (23s
′ +Q

1
3s

′′, s′′).
For each s in S, λ(s) is the left-two-third part of s and ρ(s) is the right-two-third

part of s.
Define ν such that ν(〈 〉) = (0Q, 1Q) and, for all s in Bin, ν(s ∗ 〈0〉) = λ

(

ν(s)
)

and ν(s ∗ 〈1〉) = ρ
(

ν(s)
)

.

28This is not the same definition as in [43, Subsubsection 8.1.4]. We replaced ‘⊏S’ by ‘⊑S’ .
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Define σ : C → [0, 1] such that ∀γ ∈ C[(σ|γ)(n) = ν(γn)].
One may prove: ∀δ ∈ [0, 1]∃γ ∈ C[σ|γ =R δ].

(ii) Define ψ : ωω → ωω such that
∀α∀s[(ψ|α)(s) 6= 0↔

(

s ∈ Bin ∧ ∃t < s[ν(s) ⊏S t ∧ α(t) 6= 0]
)

].
One may prove: ∀α∀γ ∈ C[γ ∈ Gψ|α ↔ σ|γ ∈ Hα]. �

Lemma 13.4. One may prove in BIM:
There exist τ, χ such that

(i) τ : C → [0, 1] and ∀γ ∈ C∀δ ∈ C[γ # δ → τ |γ #R τ |δ].
(ii) χ : ωω → ωω and ∀α∀γ ∈ C[γ ∈ Gα ↔ τ |γ ∈ Hχ|α].
(iii) ∀δ ∈ [0, 1]∃γ ∈ C[τ |γ #R δ → ∀α[δ ∈ Hχ|α]].
(iv) ∀δ ∈ [0, 1]ω∃γ ∈ C∀n[τ |γn #R δn → ∀α[δn ∈ Hχ|α]].

Proof. (i) Define π0, π1, π2, π3 and π4 such that, for each s in S, for each i < 5,
πi(s) := (5−i5 s′ +Q

i
5s

′′, 5−i−1
5 s′ +Q

i+1
5 s′′).

For each s in S, for each i < 5, πi(s) is the i-th fifth part of s.
Define ε such that ε(〈 〉) = (0Q, 1Q) and, for all a in Bin,

ε(a ∗ 〈0〉) = π1
(

ε(a)
)

and ε(s ∗ 〈1〉) = π3
(

ε(a)
)

.
Define τ : C → [0, 1] such that ∀γ ∈ C[(τ |γ)(n) = ε(γn)].

One may prove: ∀γ ∈ C∀δ ∈ C[γ # δ → τ |γ #R τ |δ].

(ii) Define χ : ωω → ωω such that, for all α, for all s, (χ|α)(s) 6= 0 if and only if
∃t < s[t ∈ Bin ∧ s ⊏S ε(t) ∧ α(t) 6= 0] ∨ ∃n < s∀t ∈ Binn[s #S ε(t)].
We now prove: ∀α∀γ ∈ C[γ ∈ Gα ↔ τ |γ ∈ Hχ|α]

Let α be given and assume: γ ∈ C.
Assume: γ ∈ Gα. Find n such that α(γn) 6= 0.

Find k > n such that ε(γk) > γn.
Note ε(γk) ⊏S ε(γn) and conclude: (χ|α)

(

ε(γk)
)

6= 0.
As (τ |γ)(k + 1) ⊏S (τ |γ)(k) = ε(γk), conclude: τ |γ ∈ Hχ|α.

Conversely, assume τ |γ ∈ Hχ|α. Note: ∀n[ε(γn) ⊏ τ |γ].
Conclude: ¬∃s[s ⊏ τ |γ ∧ ∃n∀t ∈ Binn[s #S ε(t)]].
Find n, s such that (τ |γ)(n) ⊏S s and (χ|α)(s) 6= 0.
Find t in Bin such that s ⊏ ε(t) and α(t) 6= 0.
Note: t ⊏ γ and conclude: γ ∈ Gα.

We thus see: ∀γ ∈ C[γ ∈ Gα ↔ τ |γ ∈ Hχ|α].

(iii) Assume δ ∈ [0, 1].
Note: ∀a ∈ Bin [ε′′(a ∗ 〈0〉) <Q ε

′(a ∗ 〈1〉)].
Define γ in C such that, for all m, p,

if p = µq[ε′′(γm ∗ 〈0〉) <Q δ
′(q) ∨ δ′′(q) <Q ε

′(γm ∗ 〈1〉)],
then γ(m) = 0↔ δ′′(p) <Q ε

′(γm ∗ 〈1〉).
One may prove, by induction on n:

for each n, there exists p such that ∀t ∈ Binn[t ⊥ γn→ δ(p) #S ε(t)].
Assume: δ #R τ |γ. Find n such that δ(n) #S (τ |γ)(n) = ε(γ(n)).
Find p > n such that ∀t ∈ Binn[t ⊥ γn→ δ(p) #S ε(t)].
Conclude: ∀t ∈ Binn[δ(p) #S ε(t)] and, for each α, δ ∈ Hχ|α.
We thus see: if δ #R τ |γ, then ∀α[δ ∈ Hχ|α].

(iv) Assume: δ ∈ [0, 1]ω.
Define γ in C such that, for all n,m, p,

if p = µq[ε′′(γnm ∗ 〈0〉) <Q (δn)′(q) ∨ (δn)′′(q) <Q ε
′(γnm ∗ 〈1〉)],

then γn(m) = 0↔ δ′′(p) <Q ε
′((γn)m ∗ 〈1〉).

Conclude, following the argument for (iii): ∀n[δn #R τ |(γn)→ δn ∈ Hαn ]. �

13.9. Real functions from [0, 1] to R. 29

29The definition slightly deviates from the one used in [43, Subsection 8.4].
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ϕ : [0, 1]→R R if and only if

(1) ∀n ∈ Eϕ[n′ ∈ S ∧ n′′ ∈ S], and
(2) ∀m ∈ Eϕ∀n ∈ Eϕ[m′ ⊑S n

′ → m′′ ⊑S n
′′], and

(3) ∀α ∈ [0, 1]∀n∃m∃s[(α(m), s) ∈ Eϕ ∧ s′′ −Q s
′ <Q

1
2n ].

R[0,1] := {ϕ | ϕ : [0, 1]→R R}.

Assume: ϕ : [0, 1]→R R.
We define, for each α in [0, 1], for each β in R,

ϕ : α 7→R β if and only if ∀n∃m∃p ∈ Eϕ[|α(m) ⊑S p
′ ∧ p′′ ⊑S β(n)].

For each α in [0, 1], we let ϕ‘R(α) be the element β of R such that, for each n,
β(n) = doubleS(s

′′), where s is the least t such that t ∈ S and t′′ −Q t
′ =Q

1
2n and

∃p ≤ t∃r ≤ t∃m ≤ t[ϕ(r) = p+ 1 ∧ α(m) ⊑S p
′ ∧ p′′ ⊑S t].

Note: ϕ : α 7→R ϕ‘R(α).

13.10. Game-theoretic terminology.

s : n→ k ↔
(

length(s) = n ∧ ∀j < n[s(j) < k]
)

.

Seq(n, l) := {s | s : n→ l}. Note: Binn = Seq(n, 2).

c ∈I s↔ ∀i[2i < length(c)→
(

c(2i) < length(s) ∧ c(2i) = s
(

c(2i)
))

].

c ∈II t↔ ∀i[2i+ 1 < length(c)→
(

c(2i+ 1) < length(t) ∧ c(2i+ 1) = t
(

c(2i+ 1)
))

].

(The numbers s, t should be thought of as strategies for player I, II, respectively.)

c ∈I σ ↔ ∀i[2i < length(c)→ c(2i) = σ
(

c(2i)
)

].

c ∈II τ ↔ ∀i[2i+ 1 < length(c)→ c(2i+ 1) = τ
(

c(2i+ 1)
)

].

γ ∈I σ ↔ ∀i[γ(2i) = σ
(

γ(2i)
)

].

γ ∈II τ ↔ ∀i[γ(2i+ 1) = τ
(

γ(2i+ 1)
)

].

γ ∈I s↔ ∀i[γ(2i) < length(s)→ γ(2i) = s
(

γ(2i)
)

].

γ ∈II t↔ ∀i[γ(2i+ 1) < length(t)→ γ(2i+ 1) = t
(

γ(2i+ 1)
)

].

ω × ω := {s | length(s) = 2}.

2× ω := {s | length(s) = 2 ∧ s(0) < 2}.

ω × 2 := {s | length(s) = 2 ∧ s(1) < 2}.

For each n > 0, (ω × 2)n := {s | length(s) = 2n ∧ ∀i < n[s(2i+ 1) < 2]} and
(ω × 2)n × ω := {s | length(s) = 2n+ 1 ∧ ∀i < n[s(2i+ 1) < 2]}.

(ω × 2)<ω :=
⋃

n(ω × 2)n.

(ω × 2)ω := {δ | ∀n[δ(2n+ 1) < 2]}.

Halfbin := (ω × 2)<ω ∪
(

(ω × 2)<ω × ω
)

=
⋃

n{γn | γ ∈ (ω × 2)ω}.

For every δ, δI , δII satisfy: ∀n[δI(n) = δ(2n)] and ∀n[δII(n) = δ(2n+ 1)].

For every s, length(sI) = µn[length(s) ≤ 2n] and ∀n < length(sI)[sI(n) = s(2n)],
and length(sII) = µn[length(s) ≤ 2n+1] and ∀n < length(sII)[sII(n) = s(2n+1)].
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