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Note on s0 nonmeasurable unions

Robert Ra lowski

Abstract. In this note we consider an arbitrary families of sets
of s0 ideal introduced by Marczewski-Szpilrajn. We show that in
any uncountable Polish space X and under some combinatorial and
set theoretical assumptions (cov(s0) = c for example), that for any
familyA ⊆ s0 with

⋃
A = X , we can find a some subfamilyA′ ⊆ A

such that the union
⋃
A′ is not s-measurable. We have shown a

consistency of the cov(s0) = ω1 < c and existence a partition of
the size ω1 A ∈ [s0]ω of the real line R, such that there exists a
subfamily A′ ⊆ A for which

⋃
A′ is s-nonmeasurable. We also

showed that it is relatively consistent with ZFC theory that ω1 < c

and existence of m.a.d. family A such that
⋃
A is s-nonmeasurable

in Cantor space 2ω or Baire space ω
ω. The consistency of a <

cov(s0) and cov(s0) < a is proved also.

1. Definitions

Let X be any uncountable Polish space and consider an arbitrary
σ-ideal I ⊂ P (X) then let us recall the cardinal coefficients

• non(I) = min{|F | : F ⊆ X ∧ F /∈ I},
• add(I) = min{|A| : A ⊆ I ∧

⋃
A /∈ I},

• cov(I) = min{|A| : A ⊆ I ∧
⋃
A = X},

• covh(I) = min{|A| : A ⊆ I ∧ (∃P ∈ Perf(X)) P ⊆
⋃
A}.

Marczewski introduced the notion s measurability and s0-ideal now
we recall these definitions, see [Marcz].

Definition 1.1 (s0 Marczewski ideal). Let X be any fixed uncount-
able Polish space. Then we say that A ∈ P (X) is in s0 Marczewski ideal
iff

(∀P ∈ Perf(X))(∃Q ∈ Perf(X)) Q ⊆ P ∧Q ∩ A = ∅.

Definition 1.2 (s measurable set). Let X be any fixed uncountable
Polish space. Then we say that A ∈ P (X) is s-measurable iff

(∀P ∈ Perf(X))(∃Q ∈ Perf(X)) (Q ⊆ A) ∨ (Q ⊆ P ∧Q ∩ A = ∅).

The work has been partially financed by NCN means granted by decision DEC-
2011/01/B/ST1/01439.
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Moreover, the set A ∈ P (X) is completely s-nonmeasurable if

(∀P ∈ Perf(X)) P ∩A 6= ∅ ∧ P ∩Ac 6= ∅,

where Ac denotes completion of the set A in space X.

It is well known by Judach Miller Shelah see [JuMiSh] and Repicki
see [Repicki] that add(s0) ≤ cov(s0) ≤ cof(c) ≤ non(s0) = c <
cof(s0) ≤ 2c.

Definition 1.3. We say that the familyA ⊂ P (X) is s-summable

in the uncountable Polish space X iff for every subfamily B ⊆ A
⋃
B

is s-measurable set.

Definition 1.4. Let X be any uncountable Polish space and let us
consider a cardinal κ. We say that the family A ⊆ P (X) is κ-point
family iff for any x ∈ X |{A ∈ A : x ∈ A}| < κ.

2. Results on nonmeasurability respect to s0-ideal

We start this section with the simple observations in the sequel
Propositions.

Proposition 2.1. Let X be any uncountable Polish space and let
c be regular. Then there exists a s-summable family A ⊆ s0 s.t.

⋃
A =

X.

Proof. Let us enumerate X = {xξ : ξ < c} and let us define
Aα = {xξ : ξ < α} ∈ s0 for any α < c. The family A = {Aα : α < c}
fulfills the assertion of the Theorem. �

Fact 2.1. Every Luzin and Sierpiński set is in s0.

Proposition 2.2. Let c be regular and let us assume that A ⊂
{A ∈ P (X) : X is a  Luzin set} s.t.

⋃
A /∈ s0 and is c-point family

then there exists B ⊆ A s.t.
⋃
B is not s-measurable set.

Proof. First we show that add(A, s0) = min{|B| : B ⊆ A∧
⋃
B /∈

s0} = c. Let observe that for any perfect set P ∈ Perf(X) there exists
meager perfect subset of P . Then we can consider the family of the
perfect sets which are meager only. Consider the subfamily B ∈ [A]<c

of the size less than c. Observe that any member A ∈ B has the
countable intersection with the P but we can decompose P onto c

many disjoint perfect sets Qξ : ξ < c then we can find c many Qξ such
that Qξ ∩

⋃
B = set what witness that

⋃
B is in s0.

We can assume that
⋃
A is s-measurable, then one can find P0 ∈

Perf(X)∩M with P0 ⊆
⋃
A. Now let us enumerate Perf(X ∩P0) =

{Pξ : ξ < c}. Then by transfinite induction we can build te following
sequence:

〈(Aξ, dξ) ∈ A×X : ξ < c〉 with the following properties:

• Aξ ∩ Pξ 6= ∅ and dξ ∈ Pξ for every ξ < c and
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• {dξ : ξ < c} ∩
⋃
{Aξ : ξ < c} = ∅.

In the α step of induction by the fact that add(A, s0) the union
⋃
{A ∈

A : (∃ξ < α) dξ ∈ A} is s0 and then one can find an A ∈ A such
that A ∩ Pα 6= ∅ and A ∪ {dξ : ξ < α} = ∅. After this, find d ∈
Pα \ (A ∪

⋃
{Aξ : ξ < α}) and put Aα = A and dα = d. �

Remark 2.1. This is also true if we replace a  Luzin set by a
Sierpiński set.

Now we show that c-point family assumption can not be committed.

Proposition 2.3 (CH). There exists s-summable family A of the
 Luzin sets such that

⋃
A = R.

Proof. Let us enumerate all reals xξ : ξ < ω1 and let us consider
family of ω1 many  Luzin sets {Cξ : ξ < ω1} such that for every ξ < ω1

xξ ∈ Cξ. Now let Aξ =
⋃
{Cη : η < ξ} for every ξ < ω1 and let

A = {Aξ : ξ < ω1}. Of course family A consists of  Luzin sets and if
η < ξ < ω1 then Aη ⊆ Aξ and

⋃
A = R, �

It is well known that it is consistent with ZFC theory that add(s0) =
c = ω2 see [JuMiSh] or [Repicki] for example. We give another way
to show consistency of this fact with existence large cardinals.

Theorem 2.1. Under existence a supercompact cardinal there exists
a generic extension in which c = ω2 and covh(s0) = c.

Proof. For simplicity let assume that X = ωω and let P , be any
compact perfect subset of X . It is well known that under existence a
supercompact cardinal there exists model in which PFA is holds (with
c = ω2). Let us consider a proper forcing P ⊆ ω<ω which consists of
all perfect trees s.t. [p] ⊆ P for any p ∈ P with ≤=⊆ relation. Now,
let us choose any family A ⊆ s0 of size ω1 and consider the family
D = {DA : A ∈ A} of dense subsets of P defined as follows

(∀A ∈ A)(∀p ∈ P) p ∈ DA ←→ p ∩ A = ∅.

Then by PFA there exists a D-generic set G ⊂ P (i.e. G ∩ DA 6= ∅
for every A ∈ A). Let us observe that for any finite family G0 =
{q0, . . . , qn−1} ∈ [G]<ω there exists condition p ∈ G which is under any
condition from G0. Then the our generic family G of forcing condition
has a finite intersection property and then

⋂
G 6= ∅ which is a Sacks

real in fact. Finally we see that
⋂

G ⊆ P \
⋃
A 6= ∅. �

Theorem 2.2. If PFA holds and c is regular then for any c-point
family A ⊆ s0 of the subsets of the Polish space X with

⋃
A /∈ s0.

Then there exists a subfamily B ⊆ A s.t.
⋃
B is not s-measurable set.

Proof. We prove this Theorem by transfinite induction. We can
assume that

⋃
A is s-measurable, then one can find P0 ∈ Perf(X)∩M
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with P0 ⊆
⋃
A. Now let us enumerate Perf(X ∩ P0) = {Pξ : ξ < c}.

Then by transfinite induction we can build te following sequence:

〈(Aξ, dξ) ∈ A×X : ξ < c〉 with the following properties:

• Aξ ∩ Pξ 6= ∅ and dξ ∈ Pξ for every ξ < c and
• {dξ : ξ < c} ∩

⋃
{Aξ : ξ < c} = ∅.

In the α step of induction by the fact that covh(s0) = c the union⋃
{A ∈ A : (∃ξ < α) dξ ∈ A} doesn’t cover Pα and then one can find

an A ∈ A such that A ∩ Pα 6= ∅ and A ∪ {dξ : ξ < α} = ∅. After this,
find d ∈ Pα \ (A ∪

⋃
{Aξ : ξ < α}) and put Aα = A and dα = d.

�

The above Theorem uses the fact that covh(s0) = c. Here we show
Theorem where we have covh(s0) < c.

Theorem 2.3. It is relatively consistent that there exists a partition
A ∈ [s0]

ω1 of the real line for which there exists a subfamily B ⊆ A such
that

⋃
B is not s-measurable and ω1 < c.

Proof. Let us start from ground model V in which GCH is hold.
Let us iterate with finite support of the Cohen forcing C, ℵω1

many
times and denote this forcing notion as P. Of course or forcing notion
is c.c.c. then every new real appears in the middle of iteration. Now,
consider the following family {Vβ ∩R

V P

: β < ℵω1
} of the real line R

V P

where V0 = V . For the reader convenience we prove the following well
known Claim.

Claim 2.1. For any forcing notion P which adds a new real c and
any perfect tree T ∈ P(2<ω) ∩ V in the ground model V there exists
a perfect subtree Sc ⊆ T such that every branch of Sc is a new i.e.
[Sc] ⊆ V P \ V .

Proof. Let T ⊆ 2<ω be any perfect tree in the ground model V .
Let c ∈ 2ω be any new real added by forcing P. For any n ∈ ω let us
define Splitn(T ) as follows:

{s ∈ T : sa0, sa1 ∈ T ∧ (∃t ⊆ s)t ∈ Splitn−1(T ) ∧ |s| is smallest}.

Now let Sc consists only those nodes of T such that if s ∈ Splitn(T )
and n = 2k + 1 is odd then sai ∈ S iff i = c(k). Let x ∈ [Sc] be any
branch of Sc. The tree Sc is a perfect tree of course. We show that
x ∈ 2ω ∩ (V P \ V ). If not then let us consider the sequence such that
for every k ∈ ω

y(k) = i←→ (∃n ∈ ω) x ↾ n ∈ Split2k+1(T ) ∧ i = x(k)

which is a set in the ground model but y = c which is impossible
because c /∈ V , contradiction. �
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In each stage of the iteration (let say α) the new real is added
(Cohen real for example) cα ∈ V ∩ R and then by above Claim 2.1 in
every perfect tree T from Vα we can find a perfect subtree S ⊆ T for
which every branch b ∈ [S] is a new real b ∈ Vα+1 \ Vα. This argument

shows that A = {RV } ∪ {(Vα+1 \ Vα) ∩ R
V P

: α < ℵω1
} ⊂ s0 forms a

partition of the real line in the generic extension. Now let us consider
the following family:

B = {(Vα+1 \ Vα) ∩ R
V P

: α < ℵω1
∧ α is odd }.

To finish the proof we show that A =
⋃
B is not s-measurable. To do

this we show the little stronger statement that for every perfect tree T
and any perfect subtree S ⊆ T such that A∩ [S] 6= ∅ and Ac ∩ [S] 6= ∅.
By c.c.c. of P every S ∈ Vα appears in a some α < ℵω1

stage of the
iteration. Then we can find a perfect subtrees S2 ⊆ S1 ⊆ S for which
which S1 ∈ Vα+1, [S1] ∩ R

V P

∩ Vα = ∅ but [S1] ∩ R
V P

∩ Vα+1 6= ∅ and

S2 ∈ Vα+2, [S2] ∩ R
V P

∩ Vα+1 = ∅ but [S2] ∩ R
V P

∩ Vα+2 6= ∅.
The standard argument shows that c = ℵVω1

= ℵV
P

ω1
. The proof is

finished. �

3. Big point s0-families and their s-nonmeasurability

In contrast with the previous section where we proved the consis-
tency result in Theorem 2.2 which deals the families with small point
property, we consider the big-point families of sets A from ideal s0 in
the following meaning:

If X be any Polish space then any family A ⊂ P(X) is a big-point

family iff

{x ∈ X : |{A ∈ A : x ∈ A|} < c} ∈ s0.

The family constructed in the proof of the Proposition 2.1 is a big-point
family. But in some additional assumption we can prove the following
Theorem.

Theorem 3.1. If cov(s0) = c and c is regular cardinal then if A ⊆
s0 is a big-point family of Marczewski null subsets of real line such that

(∀x, y ∈ R) x 6= y −→ |{A ∈ A : x, y ∈ A}| < c.

Then there exists a subfamily A′ ⊆ A such that
⋃
A′ is completely

s-nonmeasurable.

Proof. We prove this Theorem using transfinite induction. Then
let us enumerate the set of all perfect subsets Perf = {Pξ : ξ < c}
of the fixed uncountable Polish space X . We will build recursively a
sequence of the length c, {(Aξ, dξ) ∈ A×Pξ : ξ < c} such that for every
ξ < c we have

• Aξ ∩ Pξ 6= ∅ and
• {dη : η < ξ} ∩

⋃
{Aη : η < ξ} = ∅.
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Assume that we have sequence with the above properties of the fixed
length ξ < c. Choose any point x ∈ Pξ \

⋃
η<ξ{dη} then by assumption

in our Theorem there exists a some A ∈ A such that x ∈ X and dη /∈ A
for every η < ξ. Now by an assumption that cov(s0) = c choose any
d ∈ P \ (

⋃
{Aη : η < ξ} ∪ A). Finally set Aξ = A and dξ = d. Then

{(Aη, dη) ∈ A×Pη : η ≤ ξ} fulfills the analogous bullets as above. Then
by transfinite induction Theorem we can construct a sequence with the
length of c with an above properties. These properties shows that a
family A′ = {Aξ : ξ < c} fulfills an assertion of this Theorem. �

Let observe that the assertion of the above Theorem is true if PFA
is hold.

4. MAD s0-families and their s-nonmeasurability

We start this section with the definition of a.d.-family i.e any family
of sets A ⊆ [ω]ω is a.d.-family on ω if

(∀a, b ∈ A) a 6= b −→ a ∩ b ∈ [ω]<ω.

The two reals f, g ∈ ωω in Baire space are eventually different e.d. iff
f ∩ g is finite subset of ω × ω. Then let us observe that e.d. family
A ⊆ ωω is an a.d. family on ω × ω. For this reason we will call the
eventually different family as almost disjoint a.d. family also. Maximal
almost adjoint (or eventually different) families respect inclusion are
called a m.a.d. families.

We know that union over every a.d. family or eventually different
functions family is a meager in the Cantor and Baire space. But it is
well known that it is provable in ZFC that there exists a m.a.d family
which contain a some uncountable perfect set which makes this set s0
positive one. It is a natural question that it is true that there exists a
m.a.d. family which union forms s-nonmeasurable set. From the other
side it is well known that consistent is an existence a m.a.d. family
A with the cardinality is less than c see [Kunen] book for example.
Moreover, non(s0) = c then the union of such a family

⋃
A is in s0.

4.1. Consistency of s-nonmeasurable m.a.d. family. We show
the consistency of the existing a m.a.d. family A such that

⋃
A is s-

nonmeasurable in the Baire space for example. We have the following
Theorem.

Theorem 4.1. It is relatively consistent with ZFC theory that There
exists a m.a.d. family of functions A ⊆ ωω such that

⋃
A is not s-

measurable.

Proof. Let us consider the ground model V of GCH . To do we
first choose any perfect tree T ⊆ ω<ω in V such that [T ] forms an
a.d. family. Now, let us define a forcing notion (Q,≤) as follows: p =
(xp, s

g
p, s

b
p,Fp,Hp) ∈ Q iff
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• xp ∈ ω<ω and
• sgp, s

b
p ∈ [ω|xp|]<ω and

• Fp ∈ [ST ]<ω and
• Hp ∈ [ωω]<ω,

and fulfills the following conditions:

(1) |sgp| = |s
b
p| = |Fp| and

(2) if F = {Tk : k ∈ n} ∧ sgp = {sk : k ∈ n} −→ sk ∈ Tk for every
k ∈ n,

(3) if F = {Tk : k ∈ n} ∧ sbp = {sk : k ∈ n} −→ sk ∈ Tk for every
k ∈ n.

(4) (∀S ∈ F)sgp ∩ S 6= ∅ ∧ sbp ∩ S 6= ∅

Here ST stands for the family of all perfect subtrees of the tree T .
The order is defined as follows: for every p = (xp, s

g
p, s

b
p,Fp), q =

(xq, s
g
q , s

b
q,Fq) ∈ Q we have p ≤ q iff

(1) xq ⊂ xp ∧ Fq ⊆ Fp ∧ Hq ⊆ Hp and
(2) (∀s ∈ sgq)(∃t ∈ sgp)(s ⊆ t) and

(3) (∀s ∈ sbq)(∃t ∈ sbp)(s ⊆ t) and
(4) (∀s ∈ sgq)(∀t ∈ sgp)(s ⊆ t −→ xp ∩ s = xp ∩ t) and
(5) (∀h ∈ Hq)(xp ∩ h = xq ∩ h) and
(6) (∀h ∈ Hq)(∀s ∈ sgq)(∀t ∈ sgp)(s ⊆ t −→ s ∩ h = t ∩ h).

From the definition of the our forcing notion we have the following
Claims.

Claim 4.1. Q is c.c.c.

Proof. The proof goes in traditional way. First choose any two
conditions p, q ∈ Q with xp = xq = x, sgp = sgq = sg, sbp = sbq = sb. The

following forcing condition r = (x, sg, sb,Fp ∪ Fq,Hp ∪ Hq) ∈ Q is a
common extension (has more information) than p and q. Now consider
the uncountable set W ∈ [Q]ω1 of forcing conditions of the poset Q.
Then there exists an uncountable subsetW0 ∈ [W]ω1 s.t. each member
of W0 has the same first coordinate. Then there exists uncountable
W1 ∈ [W0]

ω1 with the same the second coordinate and then we can
find W2 ∈ [W1]

ω1 which is also uncountable and the third coordinate
is the same for all conditions from W2. Then by above remark all
conditions in W2 are comparable. �

Claim 4.2. Let G ⊆ Q generic filter over V . Then in V [G] the
family {xG} ∪ [{s : (∃p ∈ G)(∃t ∈ sgp)s ⊆ t}] is a.d., where xG =⋃
{xp : p ∈ G} is a generic real.

Proof. Choose any element y belongs to the set [
⋃
sgp : p ∈ G]

then for every n ∈ ω there exists a condition p ∈ G and s ∈ sgp such that
y ↾n⊆ s. Then we can find decreasing sequence (pn)n∈ω ∈ Gωsuch that
for every n ∈ ω y ↾n⊆ s for some s ∈ sgpn (here pn = (xp, s

g
p, s

b
p,Fp) ∈
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G). Then we have xpn ∩ spn = xpn ∩ sp0 and then

xpn ∩ y ↾n⊆ xpn ∩ spn = xpn ∩ Sp0 ⊆ sp0.

Then finally xG∩y ⊆ sp0. From the other side for each condition p ∈ Q
we have sgp ⊆ T but the formula ”tree has a.d. branches only” i.e.

(∀x)(∀y)(∀n ∈ ω)(x 6= y ∧ x ↾n∈ T ∧ y ↾n∈ T ) −→ (x ∩ y ∈ T )

is
∏1

1 formula then is absolute between transitive ZF models of the
set theory. Then {xG} ∪ [{s : (∃p ∈ G)(∃t ∈ sgp)s ⊆ t}] forms a.d.

family. �

For a reader convenience we give the proof of the next Claim.

Claim 4.3. Let G ⊆ Q generic filter over V . Then in V [G] the
family {xG} ∪ [{s : (∃p ∈ G)(∃t ∈ sbp)s ⊆ t}] is not a.d., where xG =⋃
{xp : p ∈ G} is a generic real.

Proof. It is easy to show that the {Dn : n ∈ ω} is family of dense
sets in Q, where

Dn = {p ∈ Q : |xp| ≥ n ∧ (∀s ∈ sbp)(∃m > n)xp(m) = s(m)}

for each n ∈ ω. �

Claim 4.4. If G ⊆ Q is Q-generic over V . Then for any perfect
subtree S ∈ ST ∩ V of T the [S] ∩ [{

⋃
sgp : p ∈ G}] 6= ∅ and [S] ∩ [{s :

(∃p ∈ G)(∃t ∈ sgp)s ⊆ t}] 6= ∅ is hold in the generic extension V [G].
Moreover, in V [G], for any old real h ∈ ωω ∩ V , xG ∩ h is finite.

Proof. Choose any perfect subtree S of the tree T from the ground
model V . Observe that Dg

n = {p ∈ Q : (∀s ∈ sgp)(n < |s|)} and

Db
n = {p ∈ Q : (∀s ∈ sbp)(n < |s|)} are dense for every n ∈ ω and

FS = {p ∈ Q : S ∈ Fp} is also dense in Q. Then by induction we can
to build the decreasing sequence (rn)n∈ω ∈ Qω, sequence (pn)n∈ω ∈ Qω

in the poset Q and (tn)n∈ω ∈ (ω<ω)ω such that

• G ∋ rn ≤ pn ∈ Dg
n for every n ∈ ω,

• tn ⊆ tn+1 ∈ S and tn ∈ sgrn for every n ∈ ω.

Then the real t =
⋃
{tn ∈ ω} whiteness the fact that t ∈ [S]∪[{s : (∃p ∈

G)(∃t ∈ sgp)s ⊆ t}]. The same argument provide us to the existence a
real s ∈ ωω such that s ∈ [S] ∪ [{s : (∃p ∈ G)(∃t ∈ sgp)s ⊆ t}].

Consider the following families {Dn : n ∈ ω}, {Eh : h ∈ ωω} of
subsets of Q defined as follows:

Dn = {p ∈ Q : n < |xp|}, Eh = {p ∈ Q : h ∈ Hp}

It is easy to see that Eh is dense in Q for each h ∈ 2ω∩V . Then choose
any condition p ∈ G ∩ Eh and any positive integer n ∈ ω then there
exists a condition q ∈ G∩Dn then one can find an extension pn of p, r
which is in generic filter G. Then xpn ∩h = xp∩h ⊆ xp for every n ∈ ω
then xG ∩ h ⊆ xp which is finite one. �
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Now to prove our Theorem we use the following Claim.

Claim 4.5. In V [G], for every real h ∈ ωω ∩ V in ground model
and for every y ∈ [{s : (∃p ∈ G)(∃t ∈ sgp)s ⊆ t}] |y ∩ h| is finite.

Proof. Let G ⊆ Q be fixed generic filter over V . Choose any
ground model real h ∈ ωω ∩ V and y as is stated in the Claim. Then
for every n ∈ ω there exists condition pn ∈ G such that y ↾n⊂ sn for
some sn ∈ sgp (here n ≤ |s| of course). As above the set Eh = {p ∈ Q :
h ∈ Hp} is dense in Q then find a some condition r ∈ G ∩ Eh. Now
by induction find a sequences decreasing (rn)n∈ω ∈ Qω and (tn)n∈ω ∈
(ω<ω)ω such that

• r ≥ r0 and G ∋ rn ≤ pn for all n ∈ ω and
• y ↾n⊆ sn ⊆ tn and tn ∈ sgrn for every n ∈ ω and
• h ∩ t0 = h ∩ tn and y ↾n= tn ↾n for any n ∈ ω.

Then y =
⋃
{tn ↾n: n ∈ ω} and h ∩ t0 ⊆ h ∩ y ↾n for large enough

n ∈ ω (n ≥ |t0|) and then h ∩ y = h ∩ t0 which is finite. �

Now let us consider any cardinal κ with a uncountable cofinality and
finite support iteration ((Pα : α ≤ κ), (Q̇β : β < κ)) such that for every

we have β < κ 
Pβ
Q̇β = Q̂. Assume that Gβ = {p ∈ Pβ : iβκ(p) ∈ G}

where G ⊃ Pκ generic filter over V and β < κ. Then there exists
H ⊆ Q̇βGβ

generic over universe V [Gβ] such that Gβ+1 = Gβ ∗ H .

Now let us define the following family Aβ = {xGβ+1
} ∪ [{s : (∃p ∈

Gβ+1)(∃t ∈ sgp)s ⊆ t}] and then A =
⋃
{Aβ : β < κ}. In V [G] we

show that A forms a.d. and for every B m.a.d. family containing A
S ∈ ST such that

⋃
B ∩ [S] 6= ∅ and (

⋃
B)c ∩ [S] 6= ∅ what shows

that there exists a m.a.d. family which is not s-measurable. First of
all let observe that Z =

⋃
β<κ[{s : (∃p ∈ Gβ+1)(∃t ∈ sgp)s ⊆ t}] ⊆ [T ]

but T ∈ V is almost disjoint tree, but this property is
∏1

1 and by
Shoenfield Theorem is absolute between transfinite ZFC models. Then
the last set Z consists of almost disjoint reals. Let X = {xGβ

: β < κ}.
Let α < β then by the Claim 4.4 xGα

∩ xGβ
is finite. Moreover, if

s ∈ [{s : (∃p ∈ Gα)(∃t ∈ sgp)s ⊆ t}] then once again by the Claim 4.4
xGβ
∩ s is finite. If β < α then by the Claim 4.5 xGβ

∩ s is finite for
every s ∈ [{s : (∃p ∈ Gα)(∃t ∈ sgp)s ⊆ t}]. By Claim 4.2 xGβ

∩ s is also
finite for every s ∈ [{s : (∃p ∈ Gα)(∃t ∈ sgp)s ⊆ t}] and β < κ. This
shows that A is a.d. family.

Now we show that any extension B ⊇ A to m.a.d. family is s-
nonmeasurable. Choose in V [G] any perfect subtree S ∈ ST of the our

tree T . Let Ṡ ∈ V Pκ be a nice name for a S which is countable. But Pκ

is an finite support iteration of c.c.c. forcings see Claim 4.1 then there
exists β < κ and Pα-name Ṡ ′ such that Ṡ ′

Gβ
= S = ṠG. Then by the

Claim 4.2 [S] ∩ [{s : (∃p ∈ Gβ)(∃t ∈ sgp)s ⊆ t}] 6= ∅ and by the Claim
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4.3 there exists s ∈ [{s : (∃p ∈ Gα)(∃t ∈ sbp)s ⊆ t}] ∩ [S] for which
s ∩ xGβ

is infinite so (
⋃
B)c ∩ [S] 6= ∅. �

4.2. Consistency of cov(s0) < a. In Yorioka paper [Yorioka] is
proved that starting in ground model with CH the ω2 finite support
iteration of Hehler forcing gives the model in which cov(s0) = ω1 but
this forcing adds ω2 Hechler reals and then any a.d. family A ⊆ ωω

of size ω1 can not be a maximal because the Hechler forcing is c.c.c. .
Then in this model we have ω1 = cov(s0) < a = ω2.

4.3. Consistency of a < cov(s0). We start this section with def-
inition which we use in proof of consistency mentioned in the title
above.

Definition 4.1 (Strong m.a.d. family). A family A ⊆ ωω is called
strongly m.a.d. if for every countable set {fi : i ∈ ω} of reals avoiding
a family A there exists a g ∈ A such that |h ∩ fi| = ω. Here f ∈ ωω is
avoids A iff for every finite set B ∈ [A]<ω we have |f \

⋃
B| = ω.

Kanstermans (see [Kaster]) showed that under MA the strongly

m.a.d. family exists.
To show consistency result mentioned above we will use an exis-

tence oc the supercompact cardinal. We assume that reader is familiar
with the theory of large cardinals. For details we refer to the chapters
20, 31 of the classical handbook [Jech] or to the chapter 12, written by
Cummings in [Set Theory].

Definition 4.2 (Normal ultrafilter). Let κ and λ ≥ γ are un-
countable cardinals then we say that κ-complete ultrafilter U on [λ]<κ

is normal if for every f : [λ]<κ → λ with {x ∈ [λ]<κ : f(x) ∈ x} ∈ U
implies that there exists a some γ ∈ λ such that {x : f(x) = γ} ∈ U .
Such ultrafilter we can call a normal measure on [λ]<κ.

For a fixed normal ultrafilter U on [λ]<κ let jU : V → Ult(V, U) be
elementary embedding defined by jU (x) = [cx] ∈ Ult(V, U) where [cx]
be equivalence class of the constant function cx(α) = x for any α ∈ λ.

It is well known that

Theorem 4.2. Let κ ≤ λ then there exists a normal measure on
[λ]<κ iff there exists an elementary embedding j : V → M such that

(1) (∀α < κ) j(α) = α and κ < j(κ) and
(2) Mλ ⊆M .

If κ fulfills the above two conditions then κ is called λ-supercompact
cardinal. We say that κ is supercompact if for every λ ≥ κ the κ is
a λ-supercompact cardinal.

To prove the consistency result that a < cov(s0) we will follow the
proof of the consistency of the PFA. Then we need to have a Laver
function in hands what is guaranteed by the existence of supercompact
cardinal. Here we recall the famous Laver Theorem.
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Theorem 4.3 (Laver). Let κ be supercompact then there exists a
function f : κ → Vκ (called a Laver function) such that for every
λ ≥ κ and x ∈ Hλ+ there exist a supercompact measure U on [λ]<κ and
elementary embedding jU : V →M such that jU (f)(κ) = x holds.

Theorem 4.4. Under existence a supercompact cardinal it is rela-
tively consistent with ZFC theory that ω1 = cof(N ) = a < cov(s0) =
ω2 = 2ω.

Proof. Let V � GCH and assume that κ be a supercompact
and f : κ → Vκ be a Laver function as above see Thm 4.3. Then
let us consider a forcing notion ((Pα : α ≤ κ), (Q̇α : α < κ)) with

a countable support iteration such that for every α < κ Q̇α = f(α)

whenever f(α) ∈ {Ṡ, ˙Coll(ω1, α)} ⊆ V Pα and Q̇α is a Pα-name for a
trivial forcing in the other case.

Let observe that {α < κ : Q̇α = Ṡ} is unbounded in κ and the same

for ˙Coll(ω1, α) which implies that in generic extension V [G] ω2 = κ
and κ = 2ω is hold.

Now repeating the arguments in proof of the consistency of the PFA
we show that in V [G] for any family D ∈ [S]ω1 of dense sets of the Sacks
forcing S there exists a D-filter H ⊆ S.

In generic extension V [G] now fix a family A ∈ [s0]
<κ and consider

a family D = {DA : A ∈ A} of dense subsets of Sacks forcing S defined
as follows:

DA = {p ∈ S : A ∩ [p] = ∅}.

This is easy to see that
⋂
{p ∈ H : (∃A ∈ A)p ∈ H ∩DA} is nonempty

set (consists a Sacks real) and is disjoint from
⋃
A. Moreover it is well

known that the iteration with countable support preserves the Sacks
property and thus cof(N ) = ω1 see [Miller 1981] or [Bart-Judah],
[Shelah].

Pκ is an countable support iteration of proper forcings then ω1 is
not collapsed in generic extension. Moreover the mentioned Pκ is an
iteration of the length κ (which is regular) of forcings of the size less
than κ then Pκ is κ-c.c. forcing then κ remains a cardinal in the
generic universe V [G]. Pκ adds at least κ new Sacks reals then in V [G]
ω1 < κ ≤ c.

Moreover, V � GCH and then for each α < κ we have |Pα| < κ and
for every real x in V [G there exists name ẋ for x such that supp(ẋ) < κ
what implies that c ≤ κ.

Let observe that for any α < κ and for any β < ω1 the set

Dα,β = {p ∈ Coll(ω1, α) : β ∈ range(p)}

is dense in forcing notion with a countable size of conditions Coll(ω, κ).
Then for every α < κ there exists a Dα = {Dα,β : β < ω1}-generic
filter Gα, producing a collapsing map from ω1 onto α. Thus this implies

that κ = ω
V [G]
2 and by above c = ω

V [G]
2 .
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From the other side using preservation Theorem of strongly m.a.d.-
families by countable support iteration of Sakcs forcing of arbitrary
length see [Raghavan] if A ⊆ ωω is a strongly m.a.d.-family then in
V [G] the family A ∈ [ωω]ω1 remains a m.a.d.-family of size ω1. The
proof of this Theorem is completed. �
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