
ar
X

iv
:1

41
1.

33
04

v1
 [

cs
.L

O
]

 1
2

N
ov

 2
01

4

On the complexity of finding falsifying assignments for

Herbrand disjunctions

Pavel Pudlák ∗

July 7, 2018

Abstract

Suppose that Φ is a consistent sentence. Then there is no Herbrand proof of ¬Φ,
which means that any Herbrand disjunction made from the prenex form of ¬Φ is
falsifiable. We show that the problem of finding such a falsifying assignment is hard
in the following sense. For every total polynomial search problem R, there exists a
consistent Φ such that finding solutions to R can be reduced to finding a falsifying
assignment to an Herbrand disjunction made from ¬Φ. It has been conjectured that
there are no complete total polynomial search problems. If this conjecture is true, then
for every consistent sentence Φ, there exists a consistence sentence Ψ, such that the
search problem associated with Ψ cannot be reduced to the search problem associated
with Φ.

1 Introduction

Let Φ := ∀x1 . . . ∀xkφ(x1, . . . , xk) be a universal sentence (where φ is an open formula).
According to Herbrand’s theorem, Φ is inconsistent if and only if, for some terms τij , the
disjunction

∨n

i=1 ¬φ(τi1, . . . , τik) is a propositional tautology. Thus if Φ is consistent, every
conjunction

∧n

i=1 φ(τi1, . . . , τik) is a satisfiable proposition. In this paper we study the com-
putational problem of finding satisfying assignments for such conjunctions assuming that Φ
is consistent. We call this problem the Herbrand consistency search for Φ. This problem can
be viewed from three different perspectives:

1. We ask how difficult it is to verify that Φ is consistent; more precisely, how difficult
it is to verify that a given disjunction is not a Herbrand proof of ¬Φ. This is somewhat
similar to the well-known problem about finitistic consistency statements, where we ask
how difficult it is to find a proof that there is no proof of ¬Φ of length n, see [7]. The
two problems are, however, of essentially different nature. For one thing, we consider all

∗The author is supported by the ERC Advanced Grant 339691 (FEALORA) and the institute grant RVO:
67985840

1

http://arxiv.org/abs/1411.3304v1

proofs of length n when we talk about finitistic consistency. For another, transforming the
usual proofs (Hilbert style, sequent calculus with cuts, etc.) into Herbrand proofs results in
nonelementary blowup of size.

2. A model of a consistent sentence can be built on the Herbrand universe (the set of all
terms in the language of Φ). To this end we have to decide the truth of all atomic formulas
so that the resulting structure is a model of Φ. Herbrand consistency search can be then
viewed as the problem of deciding the truth values of atomic formulas in order to obtain a
partial model of Φ.

3. It is important to fully understand the complexity of special cases of the NP-complete
problem SAT (satisfiability of CNF formulas). Each consistent universal sentence whose
matrix is a CNF gives us a natural class of CNFs in the way described above. For some
sentences, we can show that the problem is solvable in polynomial time. For some other
sentences, we believe that this is not the case, but it is unlikely that we can prove that they
are NP-hard problems, because the CNFs are all satisfiable. Instead, we can argue that for
strong sentences their Herbrand consistency search problems are not solvable in polynomial
time, because these problems capture the complexity of all total polynomial search problems,
as we explain below.

A polynomial search problem is given by a binary relation R(x, y) decidable in polynomial
time and a polynomial bound on the length of y in terms of the length of x. The task is, for
a given x, to find y such that the relation holds true and the polynomial bound is satisfied, if
there is any such y. A total polynomial search problem is a polynomial search problem that
has a solution for every x. While there are polynomial search problems that are NP-hard,
it seems unlikely that we could prove NP-hardness of a total polynomial search problem.
The additional condition of totality prevents us to use any know techniques for showing
NP-hardness, which suggest that it may actually be impossible.

There are naturally defined reductions of one total polynomial search problem to another.
This enables us to study classes of these problems closed under reductions and a number
of important classes have been defined [6]. These classes are useful for classification of
specific search problems. In proof complexity such classes are used to characterize certain
sentences provable in fragments of Bounded Arithmetic (see, e.g., [4, 9]). The structure
of the quasiorder of polynomial reducibility has not been much studied, except for specific
classes of problems. One can easily show that for every finite set of total polynomial search
problem there is another one to which all are reducible. Since the condition of totality is not
syntactical, we are not able to prove that there is a greatest element in this quasiorder, i.e.,
that there is a complete total polynomial search problem. We conjecture that there is none.

In this paper we prove that every total polynomial search problem is reducible to the
Herbrand consistency search for some consistent sentence Φ. This means that Herbrand
consistency search problems can have arbitrary high complexity in the hierarchy of total
polynomial search problems. We also prove that polynomial reducibility reflects the strength
of consistent sentences in the sense that if a universal sentence Ψ logically follows from Φ, then
the Herbrand consistency search for Ψ is reducible to Herbrand consistency search for Φ. This
is in line of our project to find connections between provability and computational complexity,

2

see Section 6.4 of [8]. We will also define Herbrand consistency search for general sentences
in prenex form, but the relation between provability and reducibility of the corresponding
Herbrand consistency search problems is not clear for sentences that are not universal.

The conjecture that there are no complete total polynomial search problems can be
partially justified by showing an oracle with respect to which it holds true. Since we have
not found this result in the literature, we present it in the last section.

2 Preliminaries

We will consider first order logic without equality, but constants and function symbols will
play an important role. Let Σ := ∃x1, . . . , xkσ(x1, . . . , xk) be an existential sentence (where
x1, . . . , xk are all variables in σ). Herbrand’s Theorem states that Σ is provable (logically
valid) if and only if there exist terms τij , i = 1, . . . , n, for some n, j = 1, . . . , k such that

n∨

i=1

σ(τi1, . . . , τik)

is a propositional tautology (see, e.g., [3, 2]). We will study the dual version of this statement:
a universal sentence Φ := ∀x1, . . . , xkφ(x1, . . . , xk) is consistent if and only if for all families
of terms τij , i = 1, . . . , n, j = 1, . . . , k,

n∧

i=1

φ(τi1, . . . , τik)

is satisfiable as a propositional formula (i.e., we can assign truth values to the atomic formulas
so that the truth value of the conjunction is truth). A general sentence in a prenex form can
be transformed into a universal sentence by skolemization, which we denote by

Sk(∀x̄∃ȳ∀z̄∃ū . . . φ(x̄, ȳ, z̄, ū . . .)) := ∀x̄∀z̄ . . . φ(x̄, f̄(x̄), z̄, ḡ(x̄, z̄) . . .),

where we use bars to denote strings of symbols and f, g, . . . are new function symbols. If Φ
is

∧
i Φi, where the sentences Φi are in prenex form, then we define Sk(Φ) to be

∧
i Sk(Φi)

(where each term uses different function symbols). Clearly, Sk(Φ) ⊢ Φ, but the opposite
is not true in general. For the sake of simplicity, we will only define Herbrand consistency
search for conjunctions of prenex sentences, although Herbrand’s theorem has been proved
for general sentences.

Definition 1 Let Φ be a consistent sentence which is a conjunction of sentences in prenex
form. Let φ(x1, . . . , xk) be the matrix (the quantifier-free part) of the skolemization of Φ.
Then HCS(Φ), the Herbrand Consistency Search for Φ, is the following total polynomial
search problem:

• given terms τij in the language of φ, i = 1, . . . , n, j = 1, . . . , k, find a truth assignment
to the atomic subformulas occurring in φ(τi1, . . . , τik), for i = 1, . . . , n, that makes∧n

i=1 φ(τi1, . . . , τik) true.

3

Example 1. Consider an axiomatization of the theory of dense linear orderings. Using
a Skolem function f(x, y), we can present it as a universal theory with the axioms (stated
without the universal quantifiers)

0 < 1,
¬x < x,
x < y ∨ x = y ∨ y < x,
x < y ∧ y < z → x < z,
x < f(x, y) ∧ f(x, y) < y,

plus the identity and equality axioms. Let φ(x, y, z) be the conjunction of these axioms.
Given terms τi,j, i = 1, . . . , m, j = 1, 2, 3, we can easily (certainly in polynomial time)
find truth assignments to the atomic formulas τi,j = τi′,j′ and τi,j < τi′,j′ such that the
conjunction

∧
i φ(τi,1, τi,2, τi,3) becomes true. To find such an assignment we need only to

find an interpretation of the terms in a finite linear ordering and then to assign the truth
values according to this interpretation. To find such an interpretation, we start by ordering
the variables of the terms τi,j in an arbitrary way. Then we gradually extend the ordering
to more complex subterms of the terms τi,j. Specifically, having an interpretation of terms τ
and σ and a non-interpreted term f(τ, σ), we place f(τ, σ) on an arbitrary position strictly
between τ and σ.

Example 2. Let Φ be a prenex form sentence axiomatizing a fragment of Peano Arith-
metic. Consider a skolemization of Φ. If Φ is sufficiently complex, some Skolem functions
may be difficult to compute, or they even may be non-computable. Then finding interpre-
tation in a finite part of the natural numbers may also be difficult. Note, however, that this
does not imply that finding a satisfying truth assignment must be difficult. In particular,
finding such an assignment is always doable in nondeterministic polynomial time whatever
the complexity of the Skolem functions is.

Definition 2 A total polynomial search problem is defined by a binary relation R(x, y)
computable in polynomial time and a polynomial p such that for every x there exists y such
that |y| ≤ p(|x|) and R(x, y). The task is, for a given x, to find a y satisfying the two
conditions above.

Here we use |x| to denote the length of x, i.e., the number of bits in an encoding of x. In the
following definition we will omit polynomial bounds on ys and assume that they are implicit
in R and S.

Definition 3 Let R and S be total polynomial search problems. We say that R is polynomi-
ally reducible to S if R can be solved in polynomial time using an oracle that gives solutions
to S. We say that R is many-one polynomially reducible to S, if it is polynomially reducible
using one query to the oracle for S.

Clearly, both relations are reflexive and transitive. Note that if P=NP, then every search
problem is reducible to every other one. Hence we can only prove non-reducibility assuming
some conjectures in computational complexity.

4

3 Main result

Theorem 3.1 For every total polynomial search problem R, there exist a consistent univer-
sal sentence Φ such that the problem R is many-one polynomially reducible to HCS(Φ).

Proof. Given a total polynomial search problem R, the sentence Φ will express that R is
total. This can, certainly, be done in various ways, but it does not automatically guarantee
that we can reduce R to HCS(Φ). Therefore we have to describe the formalization in more
detail.

We start with a brief high-level overview of the proof. We will take a Turing machine M
that decides in polynomial time the relation R and express that for a given x there exists
y and an accepting computation of M on the inputs x and y. Thus the first step is to
define terms that will represent an input word x. Then we need to ensure that the bits
of x are encoded into the truth values of some atomic formulas. To this end we use an
elementary theory of the successor function S and use terms (numerals) Si(0) as indices of
a one dimensional array. Specifically, we use atomic formulas P (x, Si(0)) to determine the
bits of x (P (x, Si(0)) false means xi = 0, P (x, Si(0)) true means xi = 1). A computation
of M can be represented by a two-dimensional array with entries in a finite alphabet. The
elements of the alphabet can be encoded by bit strings of length d for some constant d.
So we represent the computation by d ternary relations Qk(z, s, t). The second part of the
input y will be implicitly encoded in the array. Given a term τ representing an input word
x, the term F (τ), where F is a function symbol, will denote the object representing the
computation. Thus the bits of the array corresponding to F (τ) will be defined by the truth
values of Qk(F (τ), S

i(0), Sj(0)). The matrix of Φ will be a conjunction of several formulas
which we can view as axioms of a simple theory describing computations of M . One of the
axioms says that M accepts, so the implicitly encoded y must be such that R(x, y) holds
true. It will not be hard to see that we need only a polynomial number of term instances of
the axioms in order to guarantee that the truth values encode a computation on the input
word correctly. In fact these term instances can easily be defined from the input word. The
implicitly encoded y can also be easily read from the truth values, thus the construction
gives a many-one polynomial reduction.

Now we describe the formalization in more detail, but since it is fairly routine, we leave
some parts to the reader.

Let a total polynomial search problem be given by a relation R computable in polynomial
time. So we assume that for every x there exists a y such that R(x, y) and the length of y is
bounded by a polynomial in the length of x. LetM be a (deterministic) Turing machine that
in polynomial time decides the relation R(x, y). We will also assume that M has a certain
form that will make the formalization easier. Specifically, we will assume the following
properties of M .

1. For given x, y ∈ {0, 1}∗, M always stops after p(|x|) steps, where p is some polynomial,
provided that the input word x is coded appropriately (see below). This means that
it reaches one of the two final states, one of which is the accepting state and the other
is the rejecting state.

5

2. The tape of M is infinite in one direction. The squares of the tape will be indexed
by 0, 1, 2, We will view squares as having d registers indexed 1, . . . , d; every reg-
ister contains 0 or 1. The contents of a square encode the symbol on the tape, the
presence/non-presence of the head and the state of the machine.

3. Registers 1 and 2 will be used to encode x. The content of registers 1 are the bits of
x and registers 2 determine the end of the word x (the first 1 in register 2 is in the
first square after the end of x). The input word y will be coded by registers 3 and 4 in
the same way. An occurrence of 1 in register 5 marks the position of the head of the
machine.

4. Initially all registers with numbers greater than 5 contain zeros. Registers 5 contain
only one 1 and this is in the square 0.

5. Register 6 will be used to determine that M has stopped and rejected; i.e., if 1 occurs
in any of the registers 6, then the machine rejects.

6. The machine starts by looking for the mark that determines the end of x. After that
it looks for the mark that determines the end of y. If it does not find it in the given
polynomial limit, it will stop and reject. If the mark is all right, the machine computes
the relation R(x, y), i.e., it will stop and accept iff the relation holds true.

Our sentence Φ will use relation symbols =, P (x, t), Qi(z, s, t), for i = 1, . . . , d, constants
0,Λ, and function symbols S(x), f0(x), f1(x), ℓ(x), F (x). The sentence will be a universal
closure of formulas that we present in a form of a finite number of axioms.

First we need

1. the axioms of identity and the axiom of equality for S

s = t→ S(s) = S(t).

We do not postulate the axioms of equality for other function and relation symbols, since
we only need them to derive the inequalities in Lemma 3.2. Note that these axioms can be
stated using three variables, say, r, s, t. The symbol S represents the successor function, so
we postulate the usual axioms

2. 0 6= S(t), s 6= t→ S(s) 6= S(t).

We leave the proof of the following easy fact to the reader.

Lemma 3.2 The propositions Si(0) 6= Sj(0) for all i, j ≤ n, i 6= j are derivable using
propositional logic from the term instances of axioms 1. and 2. for all terms of the form
Sk(0), k ≤ n.

Next we need some axioms in order to be able to write down terms that represent input
words x. The intended interpretation of the predicate P is: the i-th bit of x is 0 if P (x, Si(0))
is false, and 1 otherwise. The constant Λ represents the empty word and ℓ(x) represents the
length of a binary word x. Therefore our first axiom is

6

3. ℓ(Λ) = 0.

The functions f0 and f1 add bits 0 and 1 at the end of the word.

4. ℓ(f0(x)) = S(ℓ(x)) ∧
¬P (f0(x), ℓ(x)) ∧
(s 6= ℓ(x) → (P (f0(x), s) ≡ P (x, s))).

5. ℓ(f1(x)) = S(ℓ(x)) ∧
P (f1(x), ℓ(x)) ∧
(s 6= ℓ(x) → (P (f1(x), s) ≡ P (x, s))).

Thus given a word w = (w0, . . . , wn−1) ∈ {0, 1}n, the term fwn−1
. . . fw1

fw0
(Λ) represents

it in our theory. We need also to show that this fact has a propositional proof using a small
number of instances of the axioms.

Lemma 3.3 Let τ = fwn−1
. . . fw1

fw0
(Λ). The propositions

(¬)w0P (τ, 0), (¬)w1P (τ, S(0)), . . . , (¬)wn−1P (τ, Sn−1(0)),

and
ℓ(τ) 6= 0, ℓ(τ) 6= S(0), . . . , ℓ(τ) 6= Sn−1(0), ℓ(τ) = Sn(0),

are derivable using propositional logic from term instances of axioms 1.-5. for terms Sk(0),
k = 0, . . . , n, and Λ, fw0

(Λ), . . . , fwn−1
. . . fw1

fw0
(Λ). (We denote by (¬)0 the empty symbol,

and (¬)1 stands for ¬.)

Proof. By induction construct such proofs for all subterms of τ . The induction step is done
using Lemma 3.2 and axioms 4. and 5.

We represent a computation of the machine by a two dimensional array where each entry
has d registers, each register containing one bit. The first index is time, the second is a
position on the tape. The content of the k-th register in time s and position t is determined
by a predicate Qk(z, s, t). The variable z stands for the entire array. The sentence Φ will
express the fact that, for every x, there exists y such that M accepts the input (x, y). We do
not need to mention y explicitly, because it is encoded in the array z. We use skolemization
to eliminate the existential quantifier, thus the array will be represented by F (x).

The initial configuration of the machine is formalized by the following axioms.

6. Q1(F (x), 0, t) ≡ P (x, t), Q2(F (x), 0, t) ≡ ℓ(x) = t.

(Clearly, the predicate P (x, t) is dispensable and can be replaced by Q1(0, F (x), t), but
it would complicate the presentation above.) The second input is encoded in the same
way using Q3 and Q4, but we do not need any axioms about it.

7. Q5(F (x), 0, 0), ¬Q5(F (x), 0, S(t)),

7

8. ¬Qi(F (x), 0, t), for i = 6, . . . , d.

The transition function is formalized by axioms of the form:

9. Qi(F (x), S(s), 0) ≡ ρi,
Qi(F (x), S(s), S(t)) ≡ ψi,
for i = 1, . . . , d,

where ρi and ψi are propositions composed from atomic formulas of the form Qj(F (x), s, 0),
Qj(F (x), s, S(0)), repspectively, Qj(F (x), s, t), Qj(F (x), s, S(t)), Qj(F (x), s, SS(t)) for j =
1, . . . , d.

Finally, we postulate that the machine never rejects the input:

10. ¬Q6(F (x), s, t).

Let φ(x, r, s, t) be the conjunction of the axioms 1.-10., and let Φ be ∀x∀r∀s∀t φ(x, r, s, t).

To show that Φ satisfies the theorem, we have first to show that Φ is consistent. To
this end we take a function γ such that R(x, γ(x)) is true for all x. We interpret the
predicate symbols P (x, t), Qi(z, s, t), for i = 1, . . . , d, constants 0,Λ, and function symbols
S(x), f0(x), f1(x), ℓ(x) as explained above. The function symbol F (x) represents the function
that maps a given string x to the array encoding the computation of the machine M on the
input (x, γ(x)). Hence Φ is consistent.

Second, we have to construct a reduction from the search problem to finding truth as-
signments of the term instances of φ. The reduction is defined as follows. Let w ∈ {0, 1}n

be given. Let τl denote the term fwl
. . . fw1

fw0
(Λ) for l = 0, . . . , n− 1. Finding a solution u

such that R(w, u) will be reduced to finding a truth assignment to the atomic formulas of

p(n)∧

i,j,k=0

n−1∧

l=0

φ(F (τl), S
i(0), Sj(0), Sk(0))

that makes this formula true. We will denote this formula by Ψw. Note that we need the
second conjunction to run over all numbers l = 0, . . . , n − 1, because we need to derive
formulas from Lemmas 3.2 and 3.3, but the instances of the axioms 6.-10. for x = τl,
l < n− 1 will not be used.

It is clear that Ψw can be constructed in polynomial time, so we only need to show that
from any satisfying assignment A, we can construct some u in polynomial time such that
R(w, u). We start by observing that according to Lemma 3.2, A(P (τn−1, S

i(0))) = ⊤ iff wi =
1 for i = 0, . . . , n− 1. Similarly for the atomic formulas ℓ(τn−1) = Si(0) for i = 0, . . . , n, so
the truth values for these formulas represent w. By axioms 6., w is also correctly represented
by the truth values of Q1(F (τn−1), 0, S

i(0)) and Q2(F (τn−1), 0, S
i(0)). The axioms 7.-9. then

ensure that the truth values of Qk(F (τn−1), S
i(0), Sj(0)), for i, j = 0, . . . , p(n), k = 1, . . . , d

represent a computation of the Turing machine M on w and some u, where u is coded by
the truth values of Q3(F (τn−1), 0, S

i(0)) and Q4(F (τn−1), 0, S
i(0)). Since the machine must

8

stop within the limit p(n) and the instances of the axiom 10. ensure that it does not reject,
the computation must be accepting. Hence the string u is such that R(w, u). We just note
that u can easily be constructed from the truth assignment A.

4 Reductions among HCS problems

In order to show connection between provability of Φ → Ψ and polynomial reducibility
of HCS(Ψ) to HCS(Φ), we prove that provability implies polynomial reducibility if Ψ is
universal.

Proposition 4.1 Let Φ be a consistent sentence in a prenex form. Let Ψ be a universal
sentence such that Φ ⊢ Ψ. Then HCS(Ψ) is polynomially reducible to HCS(Φ).

Proof. Note that Sk(Φ) ⊢ Φ and HCS(Sk(Φ)) is the same as HCS(Φ). Hence we can
w.l.o.g. assume that Φ is universal.

Let Φ and Ψ be ∀x1 . . . xkφ(x1, . . . , xk) and ∀y1 . . . ylψ(y1, . . . , yl) and assume that Φ ⊢ Ψ.
Then we have

⊢ ∀y1 . . . yl∃x1 . . . xk(φ(x1, . . . , xk) → ψ(y1, . . . , yl)).

The herbrandization of this sentence is

⊢ ∃x1 . . . xk(φ(x1, . . . , xk) → ψ(c1, . . . , cl)),

where c1, . . . , cl are new constants. According to Herbrand’s theorem, there exist terms τij
such that ∨

i

(φ(τi1, . . . , τik) → ψ(c1, . . . , cl)) (1)

is a propositional tautology.
Let σp1, . . . , σpl, p = 1, . . . , n, be terms in the language of ψ. We substitute these terms

into (1) for c1, . . . , cl. The resulting formulas propositionally imply the following formula

∧

p

∧

i

φ(τ ∗pi1, . . . , τ
∗

pik) →
∧

p

ψ(σp1, . . . , σpl),

where τ ∗pij := τij [σp1/c1, . . . , σpl/cl]. Thus in order to satisfy
∧

p ψ(σp1, . . . , σpl), it suffices to
satisfy

∧
p

∧
i φ(τ

∗

pi1, . . . , τ
∗

pik). In general, the latter formula is not an instance of HCS(Φ)
because Ψ may use other function symbols. However, note that the role of terms is only
to determine which atomic formulas are same and which are different. Hence to get an
instance of HCS(Φ) that is essentially the same propositional formula, it suffices to replace
the maximal terms that are not in the language of Φ by variables (the same variables for the
same terms, of course).

9

We will prove a similar result for existential sentences. Note thatHCS(∃y1, . . . , ymα(y1, . . . , ym))
is trivial, because the skolemization of the sentence does not contain any variables, hence it
is a finite problem. Thus one has to state the result in a slightly different way.

Lemma 4.2 Let Φ be a consistent universal sentence, let α(y1, . . . , ym) be an open formula
withm free variables and let c1, . . . , cm be constants not occurring in Φ and α. ThenHCS(Φ∧
∀ȳ(α(ȳ) → α(c̄))) is polynomially reducible to HCS(Φ).

Proof. Let Φ be ∀x1, . . . , xnφ(x1, . . . , xk). Let an instance of HCS(Φ∧∀ȳ(α(ȳ) → α(c̄))) be
given; i.e., we want to find a satisfying assignment for

n∧

i=1

(φ(τi1, . . . , τik) ∧ (α(σi1, . . . , σim) → α(c1, . . . , cm))) (2)

for given terms τij , σil. We suppose that we have an oracle for HCS(Φ). Denote by F :=∧n

i=1 φ(τi1, . . . , τik). Let Fi denote F where we substitute c1 7→ σi1, . . . , cm 7→ σim for i =
1, . . . , n. Now we apply our oracle to F ∧

∧n

i=1 Fi. The terms in this formula may contain
constants ci, which are not in the language of Φ, but we can interpret them as variables
to satisfy the formal definition of HCS(Φ). Let A be a truth assignment for the atomic
formulas of F ∧

∧n

i=1 Fi that makes the formula true. Extend A to an arbitrary assignment
that gives truth values also to those atomic formulas of α(c1, . . . , cm) and α(σi1, . . . , σim),
i = 1, . . . , n, for which A is not defined (e.g., let they be all false). Now we consider two
cases.

1. The assignment A′ satisfies the formula (2). Then we are done.
2. Assume it does not. Then, for some i, it satisfies α(σi1, . . . , σim). We define a

truth assignment A′′ for the formula (2) using the part of A′ that assigns values to Fi and
σi1, . . . , σim. Specifically, given β(c1, . . . , cm), an atomic subformula of (2), or an atomic sub-
formula α(c1, . . . , cm), we assign to it the values that A′ gives to β(σi1, . . . , σim). Thus A

′′ sat-
isfies

∧m

i=1 φ(τi1, . . . , τik), because A
′ satisfies Fi, and it also satisfies

∧m

i=1(α(σi1, . . . , σim) →
α(c1, . . . , cm))), because A

′ satisfies α(σi1, . . . , σim). Thus A
′′ satisfies (2).

Proposition 4.3 Let Φ be a consistent sentences in a prenex form ∀x1, . . . , xkφ(x1, . . . , xk)
and let α be an an open formula with m variables. Suppose that Φ ⊢ ∃y1, . . . , ymα(y1, . . . , ym).
Then HCS(∃ȳ∀x̄(φ(x̄) ∧ α(ȳ))) is polynomially reducible to HCS(Φ).

Proof. The skolemization of the sentence ∃ȳ∀x̄(φ(x̄) ∧ α(ȳ)) is the universal sentence

Ψ := ∀x1, . . . , xk(φ(x1, . . . , xk) ∧ α(c1, . . . , cm))

where c1, . . . , cm are new constants. This sentence is provable from Φ ∧ ∀ȳ(α(ȳ) → α(c̄)),
because Φ proves ∃ȳ α(ȳ). Thus, according to Proposition 4.1, HCS(Ψ) is polynomially re-
ducible to HCS(Φ∧∀ȳ(α(ȳ) → α(c̄))). This problem in turn is reducible to Φ by Lemma 4.2.
The polynomial reducibility of HCS(Ψ), hence also of HCS(∃ȳ∀x̄(φ(x̄)∧ α(ȳ))), follows by
transitivity of reducibility.

10

5 Provably total search problems in T and HCS(T)

Since Herbrand consistency search is defined for sentences, we will only consider finitely
axiomatized theories. If T contains a sufficiently strong fragment of arithmetic, or set theory,
and T is sound, we can formalize polynomial time computations in T . Then we can associate
with T the class of all search problems that are provably total in T . These are problems that
can be defined by a formula ρ such that T ⊢ ∀x∃yρ(x, y). In order to avoid trivialization, we
have to restrict the formulas ρ to a class of formulas that define polynomial time relations in a
natural way. Some theories have symbols for every polynomial time computable relation, e.g.,
Cook’s PV [5]. We can also use formulas that define NP relations, e.g., Buss’s Σb

1 in bounded
arithmetic T2 [1]. Then the problem of characterizing provably total search problems is,
essentially, equivalent to the problem of characterizing provable sentences that are universal
closures of Σb

1 formulas. Since HCS(T) is a polynomial search problem associated with T , a
natural question arises, whether or not HCS(T) is in the class of polynomial search problems
provably total in T . (Here we assume that T is axiomatized by sentences in prenex form.)
We state this question in a slightly more general way.

Problem 1 Let T be a finitely axiomatized theory, sufficiently strong to be able to formalize
polynomial time computations. Is there a polynomial search problem R that is provably total
in T and such that HCS(T) is polynomially reducible to R?

We note that if T is sufficiently strong, then T does not prove the totality for the natural
formalization of HCS(T). Indeed, if T proves Herbrand’s theorem, then T can prove that
natural provability (in Hilbert-style calculi, sequent calculi with cuts, etc.) is equivalent to
provability in the sense of Herbrand. Hence the sentence expressing the totality of HCS(T)
is equivalent to the formal consistency of T . Thus by Gödel’s incompleteness theorem, it is
not provable.

A natural approach to solving the problem positively is to try to express HCS(T) in the
following way:

ρ(x, y) ∨ σ(z),

where ρ is the natural formalization of HCS(T) and σ(z) expresses that z is a proof of
contradiction from T . The task of this search problem is either to find a satisfying assignment
for term instances of the matrix φ of T as required by HCS(T), or a proof of contradiction.
If T is consistent, then this formula is equivalent to ρ(x, y), hence defines HCS(T). If,
moreover, T is sufficiently strong, then it does prove ∀x∃y, z(ρ(x, y) ∨ σ(z)), but this does
not suffice. We need y and z to be polynomially bounded:

∀x∃y, z(|y|, |z| ≤ p(|x|) ∧ (ρ(x, y) ∨ σ(z))),

for some polynomial p. The problem is only to bound |z|, since |y| is polynomially bounded
according to the definition of search problems. Thus we need (to be able to prove from T)
that if for some x, ρ(x, y) is unsatisfiable, then there exists z, a proof of contradiction from
T , of at most polynomial length. If ρ(x, y) is unsatisfiable, we know how to construct a

11

contradiction—we have an unsatisfiable propositional formula, hence we can derive a con-
tradiction in propositional calculus. However, we do not know if such a proof can have
polynomial length. Thus we do not see how to use this approach to solve the problem and
we tend to conjecture that the answer is negative.

6 A relativization

We conjecture that there is no complete total polynomial search problem. In order to support
this conjecture, we will construct an oracle relative to which there is no complete polynomial
search problem. We will only prove the proposition for many-one reductions, but the same
argument can surely be used for general reductions.

Proposition 6.1 There exists an oracle R such that relative to R, there is no complete total
polynomial search problem with respect to many-one polynomial reductions.

Proof. We start by observing that the condition that R has a many-one polynomial reduction
to S can be equivalently defined as follows: there exist polynomial time computable functions
f(x) and g(x, y) such that for all x and y

S(f(x), y) → R(x, g(x, y))

holds true.
The oracle that we construct will be represented by a ternary relation R(p, x, y) on binary

strings. We will view p as a parameter that specifies a binary relation Rp(x, y) that may be
a total polynomial search problem. We will construct R so that the condition

Rp(x, y) → |y| ≤ |x|

is satisfied for all x and y. Let ρ and f, g be definitions of a binary relation and two functions
by means of polynomial time oracle Turing machines. Given an oracle R, we denote by ρR
and fR, gR the corresponding relation and functions. We will assume that the conditions
ρ(x, y) → |y| ≤ |x| and |g(x, y)| ≤ |x| are ensured by the definition of ρ. We need to
construct R so that the following holds true for every ρ:

1. either ρR is not total, i.e.,
∃x∀y ¬ρR(x, y), (3)

2. or for some p, Rp is total, but not reducible to ρR, i.e., for every f, g,

∀x∃y Rp(x, y) ∧ (4)

∃x∃y (ρR(fR(x), y) ∧ ¬Rp(x, gR(x, y))). (5)

12

Our procedure will have two loops—outer and inner. In the outer loop we go over all
definitions ρ; in the inner one we go over all pairs of definitions of f, g. In the process we
will define R gradually for more and more triples p, x, y. At each stage R is defined only for
a finite number of parameters p. At the beginning of the ith outer loop we take pi such that
no value of Rpi(x, y) has been fixed so far and gradually define Rpi(x, y). At each stage of
this loop Rpi will be defined only for a finite number of pairs x, y.

The outer loop serves us to diagonalize over definitions ρ, which means that at the end of
round i the conditions 1. and 2. above will be satisfied for the ith ρ. The partial definition
of R will be denoted by Ri. Similarly, in the inner loop we diagonalize over functions f, g.
Let Rij denote the jth step of the inner loop inside of the loop i. Then we will get that
either 1. holds true and the loop stops, or 2. holds true for the jth pair f, g.

Suppose we are in the outer loop i. At the beginning of each inner loop j we assume the
following properties of Ri(j−1), the oracle so far defined. For every x for which some value
of Rpi(x, y) has been fixed, there exists some y, such that Rpi(x, y

′) (and |y′| ≤ |x|). Let
nij be a sufficiently large number and let xij , |xij | = nij be a string such that the following
conditions are satisfied.

• Rpi(xij , y) has not been fixed for any y and,

• for every y′, |y′| ≤ |f(xij)|, the Turing machines of ρ, f and g cannot query all strings y
of length nij when used on the inputs xij , y

′, f(xij) (because of the polynomial bounds
on the computations of ρ, f and g).

(The string xij can be the string of nij zeros.) First we extend the oracle so that for every
x, |x| < nij , there is some y, |y| ≤ |x|, such that (x, y) is in Rp. This is possible, because
we assume that for the strings x used in previous stages this has already been ensured. We
now consider two cases.

Case 1: The currently defined oracle can be extended so that condition (5) is satisfied
for xij and some y, (|y| ≤ |xij |). In this case we fix the minimum number of values of R
that are needed to ensure this condition. Then it is still possible to add pairs (x, y) to Rp to
ensure ∃y Rp(x, y) for all strings x so far used.

Case 2: The opposite is true. This means that for every extension of the so far specified
oracle R, and every y, |y| ≤ |xij|, the implication

ρR(fR(xij), y) → Rpi(xij , gR(xij, y))

is satisfied. In particular, the implication will be satisfied if we fix R so that for all z,
|z| ≤ |xij|, ¬Rpi(xij , z). It follows that ¬ρR(fR(xij), y) for all y, |y| ≤ |fR(xij)|. Hence (3)
holds true for all further extension of so far defined R.

7 Conclusions

We still do not fully understand the relation between provability and polynomial reducibility
of the corresponding Herbrand consistency search problems. The most important problem

13

is:

Problem 2 Let Φ and Ψ be consistent sentences in prenex forms. Suppose that Φ ⊢ Ψ. Is
then HCS(Ψ) polynomially reducible to HCS(Φ)?

We have only been able to solve the problem in two special cases: for universal sentences
Ψ and for existential sentences Ψ. If the answer is negative, then the concept of Herbrand
consistency is not well-behaved. In such a case it would be better to compare the provability
of Φ → Ψ with the reducibility of HCS(Ψ) to HCS(α) for all prenex sentences α derivable
from Φ.

Another interesting open problem is whether or not polynomial reducibility of HCS(Ψ)
to HCS(Φ) implies Φ ⊢ Ψ at least in some special cases.

Acknowledgment

I would like to thank Neil Thapen for his comments on an early draft of this paper.

References

[1] S. R. Buss: Bounded Arithmetic. Bibliopolis, Naples, 1986.

[2] S. R. Buss. On Herbrand’s Theorem. In Logic and Computational Complexity, Lecture
Notes in Computer Science 960, 1995, Springer-Verlag, pp. 195-209.

[3] S. R. Buss: An Introduction to Proof Theory, in Handbook of Proof Theory, edited by
S. R. Buss. Elsevier, Amsterdam, 1998, pp. 1-78.

[4] S.R. Buss and J. Kraj́ıček. An application of Boolean complexity to separation problems
in bounded arithmetic, Proc. of the London Math. Soc. 69(3):1-21, 1994.

[5] S. A. Cook: Feasibly Constructive Proofs and the Propositional Calculus. Proc. 7th
Annual Symp. on Theory of Computing 1975, pp. 83-97

[6] D. S. Johnson, C. Papadimitriou, and M. Yannakakis: How easy is local search? Journal
of Computer System Science, 37(1): 79-100, 1988

[7] P. Pudlák: On the length of proofs of finitistic consistency statements in first order
theories. In: Logic Colloquium 84, North Holland P.C., 1986, pp. 165-196.

[8] P. Pudlák: Logical Foundations of Mathematics and Computational Complexity.
Springer, 2013.

[9] A. Skelley and N. Thapen: The provably total search problems of bounded arithmetic.
Proceedings of the London Mathematical Society, Vol 103(1):106-138, 2011.

14

	1 Introduction
	2 Preliminaries
	3 Main result
	4 Reductions among HCS problems
	5 Provably total search problems in T and HCS(T)
	6 A relativization
	7 Conclusions

