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Abstract. We study the isomorphism and bi-embeddability relations on the

spaces of Kazhdan groups and finitely generated simple groups.

1. Introduction

Let ≤T be the Turing reducibility relation on 2N and let ≡T be the corresponding

Turing equivalence relation. Then a classical result of Martin [15, 16] says that if Z

is a ≡T -invariant Borel subset of 2N, then either Z or 2N rZ contains a cone with

respect to Turing reducibility; i.e. a subset of the form CA0 = {A ∈ 2N | A0 ≤T A }

for some A0 ∈ 2N. It is natural to ask whether the corresponding result holds for

the bi-embeddability relation ≈em on the Polish space Gfg of finitely generated

groups. A striking result of Friedman [7] implies that if Z is a ≈em-invariant Borel

subset of Gfg, then either Z or Gfg r Z is cofinal with respect to embeddability.

(Here a subset Z ⊆ Gfg is said to be cofinal with respect to embeddability if for

every G ∈ Gfg, there exists H ∈ Z such that G ↪→ H.) However, in this paper,

we will exhibit two natural examples Z of ≈em-invariant Borel subsets of Gfg such

that neither Z or Gfg rZ contains a cone with respect to group embedding; i.e. a

subset of the form CG0
= {G ∈ Gfg | G0 ↪→ G } for some G0 ∈ Gfg.

Remark 1.1. If G0, G1 ∈ Gfg, then CG0×G1
⊆ CG0

∩ CG1
; in other words, the

intersection of two cones contains a cone. More generally, the Higman-Neumann-

Neumann Embedding Theorem [12] implies that the intersection of countably many

cones contains a cone.

For our first example, let Gkaz = {K ∈ Gfg | K is a Kazhdan group }. Then,

by Shalom [20], Gkaz is an open subset of Gfg; and since ≈em is a countable Borel
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equivalence relation on Gfg, it follows that

K = {H ∈ Gfg | H ≈em K for some K ∈ Gkaz }

is a Borel subset of Gfg.

Theorem 1.2. Both K and Gfg rK are cofinal with respect to embeddability; and

hence neither contains a cone.

In [18], Ol’shanskii proved that the class of Kazhdan groups is cofinal with

respect to embeddability; and so if the class of Kazhdan groups was closed under

bi-embeddability, then Theorem 1.2 would follow easily. However, this is not the

case.

Theorem 1.3. The subspace Gkaz of Kazhdan groups is not closed under bi-

embeddability.

Of course, if K is a Kazhdan group which is bi-embeddable with a non-Kazhdan

group, then K is necessarily non-cohopfian. (Recall that a group G is said to be

cohopfian if G is not isomorphic to any of its proper subgroups.) The first examples

of non-cohopfian Kazhdan groups were only recently discovered by Ollivier-Wise

[17], de Cornulier [6] and Belegradek-Osin [2]. The proof of Theorem 1.3 involves

the construction of a new class of non-cohopfian Kazhdan groups, based on the

techniques of Higman-Scott [13] and Ol’shanskii [18]. During the course of proving

Theorem 1.2, we will also obtain the following result.

Theorem 1.4. The bi-embeddability relation on the space Gkaz of Kazhdan groups

is a weakly universal countable Borel equivalence relation.

Theorem 1.4 does not allow us to deduce anything about the Borel complexity

of the isomorphism relation ∼= on the space Gkaz of Kazhdan groups. (For example,

in [25], Williams constructed a subspace X of the space Gfg of finitely generated

groups such that ∼=� X is smooth and ≈em� X is countable universal.) However,

in Section 4, making use of results of Gao [8] and Shalom [21], we will prove the

following result.

Theorem 1.5. The isomorphism relation on the space Gkaz of Kazhdan groups is

a weakly universal countable Borel equivalence relation.
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Conjecture 1.6. The isomorphism and bi-embeddability relations on the space

Gkaz of Kazhdan groups are universal countable Borel equivalence relations.

For our second example, let Gsim = {K ∈ Gfg | K is a simple group }. Since the

class of simple groups is axiomatizable by an Lω1ω-sentence, it follows that Gsim is

a Borel subset of Gfg; and this implies that

S = {H ∈ Gfg | H ≈em G for some G ∈ Gsim }

is a Borel subset of Gfg.

Theorem 1.7. Both S and Gfg r S are cofinal with respect to embeddability; and

hence neither contains a cone.

It is well-known that the subspace Gsim of finitely generated simple groups is not

closed under bi-embeddability. For example, let V be Thompson’s larger finitely

presented infinite simple group. Then, regarding V as the group of dyadic homeo-

morphisms of the Cantor space, it is clear that V × V ↪→ V . (For a clear account

of the basic properties of the Thompson groups, see Cannon-Floyd-Parry [4].) In

[23], Thomas proved that the isomorphism relation on Gsim is not smooth; and,

since (∼=� Gsim ) ⊆ (≈em� Gsim ), this implies that the bi-embeddability relation on

Gsim is also not smooth. (For example, see Thomas [23, Proposition 2.1].) As we

will see in Section 3, it is not possible to modify the proof of Theorem 1.4 so that

it applies to the space Gsim of finitely generated simple groups.

Conjecture 1.8. The isomorphism and bi-embeddability relations on the space

Gsim of finitely generated simple groups are universal countable Borel equivalence

relations.

Acknowledgements: We would like to thank Ilia Kapovitch, Jesse Peterson and

Chuck Weibel for helpful discussions concerning the material in this paper. We are

especially grateful to Jesse Peterson for supplying Theorem 4.2.

2. Preliminaries

In this section, we will recall some basic notions and results from group theory,

recursion theory and the theory of countable Borel equivalence relations.
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2.1. Group Theory. Throughout this paper, Gfg denotes the Polish space of

finitely generated groups introduced by Grigorchuk [9]; i.e., the elements of Gfg
are the isomorphism types of marked groups 〈G, c 〉, where G is a finitely generated

group and c is a finite sequence of generators. (For a clear account of the basic

properties of the space Gfg, see either Champetier [5] or Grigorchuk [10].) Follow-

ing the usual convention, we will slightly abuse notation and denote the elements

of Gfg by G, H, etc. instead of the more accurate (G, c ), (H, d ), etc.

Definition 2.1. If G is a (not necessarily finitely generated) group, then the cor-

responding skeleton is Sk(G) = {H ∈ Gfg | H ↪→ G }.

Throughout this paper, by a Kazhdan group, we will always mean a countable

discrete Kazhdan group. The following result collects together the properties of

Kazhdan groups that are needed in the proofs of Theorems 1.2, 1.3 and 1.4. (A

clear account of the theory of Kazhdan groups can be found in Bekka-de la Harpe-

Valette [1].)

Theorem 2.2. Let K be a countable discrete Kazhdan group.

(i) K is finitely generated.

(ii) If N E K, then K/N is also a Kazhdan group.

(iii) If K is amenable, then K is finite.

2.2. Recursion Theory. Throughout this paper, the powerset P(N) will be iden-

tified with the Cantor space 2N by identifying each subset A ⊆ N with its charac-

teristic function χA ∈ 2N. Let Fin(N) be the collection of finite subsets of N. If A,

B ⊆ N, then A is said to be enumeration reducible to B, written A ≤e B, if there

exists a recursively enumerable subset W ⊆ N× Fin(N) such that

n ∈ A ⇐⇒ (n, F ) ∈W for some finite subset F ⊆ B.

Intuitively, A is enumeration reducible to B if there is an effective procedure which

produces an enumeration of A from any enumeration of B. Let ≡e be the corre-

sponding countable Borel equivalence relation on 2N defined by

A ≡e B ⇐⇒ A ≤e B and B ≤e A.

Then for each A ∈ 2N, the corresponding e-degree is a = {B ∈ 2N | B ≡e A }.
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For the basic theory of enumeration reducibility and a clear account of its many

group theoretic connections, see Higman-Scott [13]. Here we will just review a few

basic notions and results that will play a key role in the followings sections. For

each n ≥ 1, let {wk(x1, · · · , xn) | k ∈ N } be a fixed effective enumeration of the

(not necessarily reduced) words in x1, · · · , xn, x−11 , · · · , x−1n . If G = 〈 a1, · · · , an 〉

is a finitely generated group, then we define

Rel(G) = { k ∈ N | wk(a1, · · · , an) = 1 }.

Of course, there is a slight abuse of notation here, since the set Rel(G) clearly

depends on the sequence of generators a1, · · · , an. However, if b1, · · · , bm is any

other sequence of generators of G, then it is easily seen that

{ k ∈ N | wk(a1, · · · , an) = 1 } ≡e { ` ∈ N | w`(b1, · · · , bm) = 1 }.

In other words, the e-degree of Rel(G) is independent of the choice of generating

set of G. It is well-known that if R is a set of defining relations for the group

G = 〈 a1, · · · , an 〉, then Rel(G) ≤e R; and that if G ↪→ H, then Rel(G) ≤e Rel(H).

Furthermore, for each S ∈ 2N, there exists a finitely generated group AS such that

Rel(AS) ≡e S; and, in fact, the group AS can be chosen to be solvable. (For

example, see the proof of Higman-Scott [13, Corollary 4.24].)

Definition 2.3. Let S ∈ 2N and let s be the corresponding e-degree. Then the

finitely generated group Gs is said to be relatively universal of degree s if

Sk(Gs) = {H ∈ Gfg | Rel(H) ≤e S }.

By Higman-Scott [13, Corollary 6.4], there exists a relatively universal group Gs

of each e-degree s; and in Section 3, we will prove that Gs can be chosen to be a

Kazhdan group. Of course, it is clear that if Gs, G
′
s are both relatively universal of

degree s, then Gs, G
′
s are bi-embeddable.

Remark 2.4. It is interesting to note that the analogous result fails for Turing

reducibility; namely, for each S ∈ 2N, there does not exist a finitely generated group

G such that Sk(G) = {H ∈ Gfg | Rel(H) ≤T S }. To see this, it is enough to show

that if G is any finitely generated group, then there exists a finitely generated group

H such that:
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(a) H does not embed into G; and

(b) Rel(H) ≤T Rel(G).

As we have not been able to find a reference for this result, we will sketch the proof.

Let G = 〈 a1, · · · , an 〉 and let { 〈uk(x1, · · · , xn), vk(x1, · · · , xn) 〉 | k ∈ N } be an

effective enumeration of the ordered pairs of words in x1, · · · , xn, x−11 , · · · , x−1n . For

each k ∈ N, let rk(x, y) be the word (xk+1yk+1 )7. Consider the finitely generated

group H with presentation 〈 b, c | { rk(b, c) | k ∈ I } 〉, where

I = { k ∈ N | rk(uk(a1, · · · , an), vk(a1, · · · , an)) 6= 1 }.

Clearly H satisfies the C ′(1/6) cancellation property; and since I ≤T Rel(G), it

follows that Rel(H) ≤T Rel(G). (See Lyndon-Schupp [14, Section V.4].) If ϕ is an

embedding of H into G, then there exists k ∈ N such that ϕ(b) = uk(a1, · · · , an) and

ϕ(c) = vk(a1, · · · , an). Clearly k /∈ I and so rk(uk(a1, · · · , an), vk(a1, · · · , an)) = 1.

But since k /∈ I, the C ′(1/6) cancellation property implies that rk(b, c) 6= 1, which

is a contradiction.

2.3. Countable Borel Equivalence Relations. Let X be a Polish space. Then

a Borel equivalence relation on X is an equivalence relation E ⊆ X2 which is a

Borel subset of X2. If E, F are Borel equivalence relations on the Polish spaces X,

Y respectively, then a Borel map f : X → Y is said to be a homomorphism from

E to F if for all x, y ∈ X,

x E y =⇒ f(x) F f(y).

If f satisfies the stronger property that for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y),

then f is said to be a Borel reduction and we write E ≤B F .

The Borel equivalence relation E on the Polish space X is said to be countable

if every E-class is countable. The least complex countable Borel equivalence re-

lations with respect to Borel reducibility are those which are smooth; i.e. those

countable Borel equivalence relations E such that E is Borel reducible to the iden-

tity relation IdY on some (equivalently every) uncountable Polish space Y . On the

other hand, the most complex are those countable Borel equivalence relations E
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which are universal in the sense that F ≤B E for every countable Borel equiva-

lence relation F . For example, as we mentioned earlier, Williams [25] has shown

that the bi-embeddability relation ≈em on Gfg is a universal countable Borel equiv-

alence relation. Finally, a countable Borel equivalence relation E is said to be

weakly universal if for every countable Borel equivalence relation F , there exists a

countable-to-one Borel homomorphism from F to E. For example, it is well-known

that the Turing equivalence relation ≡T is weakly universal. Furthermore, applying

Rogers [19, Theorem XXIV], it follows that ≡T ≤B ≡e and hence ≡e is also weakly

universal. It is currently not known whether either ≡T or ≡e is universal; and, in

fact, it is remains an open question whether every weakly universal countable Borel

equivalence relation is universal.

3. Relatively universal Kazhdan groups

In this section, we will prove all of the results mentioned in the Introduction,

except for Theorem 1.5 which will be proved in Section 4. Our approach is based

upon the following strengthening of Higman-Scott [13, Corollary 6.4].

Theorem 3.1. Let S ∈ 2N and let s be the corresponding e-degree. Then there

exists a relatively universal Kazhdan group Ks of degree s.

Before proving Theorem 3.1, we will first derive two easy consequences.

Corollary 3.2. If G is any finitely generated group, then there exists a Kazhdan

group K such that G ↪→ K.

Proof. Let S = Rel(G) and let K = Ks be a relatively universal Kazhdan group of

degree s. �

Corollary 3.3. The class of Kazhdan groups is not closed under bi-embeddability.

Proof. Fix some S ∈ 2N and let Ks be a relatively universal Kazhdan group of

degree s. Then clearly

Rel(Ks × Z) ≤e Rel(Ks) ≡e S.

Thus Ks × Z ↪→ Ks and so Ks × Z ≈em Ks. However, since the infinite abelian

group Z is a homomorphic image of Ks×Z, it follows that Ks×Z is not a Kazhdan

group. �
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Proof of Theorem 3.1. By Higman-Scott [13, Corollary 6.4], there exists a finitely

generated relatively universal group L of degree s. Hence it is enough to show that

there exists a Kazhdan group Ks such that L 6 Ks and Rel(Ks) ≤e S.

Let H be an infinite hyperbolic Kazhdan group. (For example, we can let H

be a co-compact lattice in Sp(n, 1) for some n ≥ 2. See de la Harpe-Valette [11].)

Suppose that L is an n-generator group. Applying Ol’shanskii [18], there exists a

free group

F = 〈 a1, · · · , an 〉 6 H

of rank n such that for every normal subgroup N E F , there exists a normal

subgroup M E H such that N = M ∩ F . Equivalently, for any subset R ⊆ F , the

corresponding normal closures 〈RF 〉, 〈RH 〉 satisfy 〈RF 〉 = 〈RH 〉 ∩ F .

Since H is hyperbolic, it follows that H is finitely presentable. (For example, see

Bridson-Haefliger [3, Proposition III.Γ.2.2].) Let H = 〈x1, · · · , xm | T 〉 be a finite

presentation; and for each 1 ≤ i ≤ n, express ai = ui(x̄) as a word in the generators

x1, · · · , xm. Let Ks be the group with presentation 〈x1, · · · , xm | R 〉, where

R = T ∪ {w(u1(x̄), · · · , un(x̄) ) | w(a1, · · · , an) ∈ Rel(L) }.

Then clearly Rel(Ks) ≤e R ≤e Rel(L) ≤e S. Furthermore, letting M be the normal

closure of {w(u1(x̄), · · · , un(x̄) ) | w(a1, · · · , an) ∈ Rel(L) } in H, it follows that

Ks = H/M and L ∼= F/(M ∩F ). Since the class of Kazhdan groups is closed under

taking quotients, it follows that Ks = H/M satisfies our requirements. �

It is natural to ask which other group theoretic properties can realized by rela-

tively universal groups. Of course, the proof of Corollary 3.3 shows that relatively

universal groups cannot be cohopfian. More interestingly, the next result shows

that relatively universal groups cannot be simple. (In the proof of Theorem 3.4,

Nonrel(G) = Nr Rel(G).)

Theorem 3.4. Let S ∈ 2N and let s be the corresponding e-degree. If the finitely

generated group Gs is relatively universal of degree s, then Gs is not simple.

Proof. Suppose that Gs is a simple relatively universal group of degree s. Then,

arguing as in the proof of Kuznetsov’s Theorem, it follows that Nonrel(Gs) ≤e S.

(The proof of Kuznetsov’s Theorem can be found in Lyndon-Schupp [14, IV.3.6].)
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By Higman-Scott [13, Lemma 6.7], there exists a finitely generated group H such

that Rel(H) ≤e S and Nonrel(H) �e S. But then H ↪→ Gs and this implies that

Nonrel(H) ≤e Nonrel(Gs), which is a contradiction. �

It is well-known that every countable group embeds into a finitely generated

simple group. (For example, see Lyndon-Schupp [14, IV.3.5].) Thus Theorem 1.7

is an immediate consequence of the following result.

Corollary 3.5. If G is any finitely generated group, then there exists a finitely

generated group H such that:

(i) G ↪→ H; and

(ii) H is not bi-embeddable with a finitely generated simple group.

Proof. Let S = Rel(G) and let s be the corresponding e-degree. If H = Gs is

relatively universal of degree s, then H satisfies our requirements. �

Next note that Theorem 1.2 is an immediate consequence of Corollary 3.2 and

the following result.

Proposition 3.6. If G is any finitely generated group, then there exists a finitely

generated group H such that:

(i) G ↪→ H; and

(ii) H is not bi-embeddable with a Kazhdan group.

Proof. Let S ∈ 2N be such that Rel(G) <e S and let AS ∈ Gfg be a solvable

group such that Rel(AS) ≡e S. We claim that the direct product H = G × AS

satisfies our requirements. If not, then there exists a Kazhdan group K such that

K ≈em H. In particular, it follows that Rel(K) ≡e Rel(H). Clearly we can suppose

that K 6 H = G × AS . Let π : G × AS → AS be the canonical projection. Since

K/(K ∩kerπ) is an amenable Kazhdan group, it follows that [K : K ∩kerπ ] <∞;

and this easily implies that Rel(K ∩ kerπ) ≡e Rel(K). Since K ∩ kerπ 6 G, it

follows that Rel(K ∩ kerπ) ≤e Rel(G) and hence Rel(K) ≤e Rel(G), which is a

contradiction. �

Finally we will sketch the proof of Theorem 1.4. For each S ∈ 2N, let s be the

corresponding e-degree. Then, examining the proofs of Corollary 4.24 and Theorem
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6.3 of Higman-Scott [13], together with the proof of Theorem 3.1, we see that there

exist Borel maps S 7→ AS 7→ GS 7→ KS such that:

(i) AS is a finitely generated group such that Rel(AS) ≡e S.

(ii) GS is a relatively universal group of degree s such that AS 6 GS .

(iii) KS is a relatively universal Kazhdan group of degree s such that GS 6 KS .

It follows that the map S 7→ KS is a Borel reduction from ≡e to ≈em and hence

the bi-embeddability relation on the space Gkaz is weakly universal.

Remark 3.7. Alternatively, notice that since (∼=� Gkaz ) ⊆ (≈em Gkaz ), the iden-

tity map K 7→ K is a weak Borel reduction from ∼=� Gkaz to ≈em Gkaz; and hence

Theorem 1.4 is also an immediate consequence of Theorem 1.5.

4. The isomorphism relation for Kazhdan groups

In this section, making use of results of Gao [8] and Shalom [21], we will prove

that the isomorphism relation on the space Gkaz of Kazhdan groups is weakly

universal. It should be pointed out that the basic strategy of our proof is based on

that of Champetier [5, Théorème 1.1].

First note that the canonical action of SL2(Z) on Z2, defined bya b

c d

 ·
r
s

 =

ar + bs

cr + ds

 ,

induces an associated Borel action on the powerset P(Z2), defined by

γ ·A = { γ · v | v ∈ A }

for γ ∈ SL2(Z) and A ∈ P(Z2). Let E′∞ be the corresponding orbit equivalence

relation.

Theorem 4.1 (Gao [8]). The orbit equivalence relation E′∞ of the action of SL(2,Z)

on the powerset P(Z2) is a universal countable Borel equivalence relation.

Next let x, y be indeterminates and let R = Z[x, y, x−1, y−1]. Then SL2(Z) also

acts as a group of automorphisms of the ring R viaa b

c d

 · xrys = xar+bsycr+ds.

We are grateful to Jesse Peterson for providing us with the following key result.
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Theorem 4.2. There exists a Kazhdan group K such that:

(i) the center Z(K) is the additive group of R; and

(ii) there is an embedding of SL2(Z) into Aut(K) which extends the above ac-

tion of SL2(Z) on R.

Before proving Theorem 4.2, we will complete the proof that the isomorphism

relation on the space Gkaz of Kazhdan groups is weakly universal. Consider the

Borel map f : P(Z2) → Gkaz defined by A 7→ K/NA, where NA is the central

subgroup of K generated by SA = {xayb | ( a
b ) ∈ A }. Since the central elements

{xayb | ( a
b ) ∈ Z2 } freely generate Z(K) as an abelian group, it follows that f is

injective. Furthermore, if A, B ∈ P(Z2) and γ ∈ SL2(Z) satisfies γ ·A = B, then the

corresponding automorphism γ ∈ Aut(K) satisfies γ[NA] = NB and so KA
∼= KB .

Thus f is an injective Borel homomorphism from the countable universal Borel

equivalence relation E′∞ to ∼=� Gkaz; and it follows that ∼=� Gkaz is weakly universal.

The remainder of this section will be devoted to the proof of Theorem 4.2.

(Here we need to assume that the reader is familiar with the algebraic approach

to Kazhdan groups developed by Shalom [21].) Let R = Z[x, y, x−1, y−1] and let

ELn(R) 6 GLn(R) be the subgroup generated by the elementary matrices over R.1

Then it is easily checked that R has Krull dimension 3. Hence, applying Shalom

[21, Theorem 1.1], it follows that if n ≥ 5, then ELn(R) is a Kazhdan group. Let

K be the subgroup of GL7(R) consisting of the matrices of the form
1 k1 z

0 A k2

0 0 1


where A ∈ EL5(R), k1 is a 1 × 5 matrix, k2 is a 5 × 1 matrix and z ∈ R. Let K1

and K2 be the subgroups consisting of the matrices of the form
1 k1 0

0 I5 0

0 0 1

 ,


1 0 0

0 I5 k2

0 0 1


1Although it is not needed in the following argument, it is perhaps worth mention that if n ≥ 5,

then ELn(R) = SLn(R). (See Suslin [22] and Weibel [24, Chapter 3].)
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respectively; and let Γ be the subgroup consisting of the matrices of the form
1 0 0

0 A 0

0 0 1

 .

Then Γ normalizes K1 and K2; and for each i = 1, 2, we have

Ki o Γ ∼= R5 o EL5(R).

Hence, by Shalom [21, Theorem 2.4], for each i = 1, 2, the pair (KioΓ,Ki ) has the

relative Kazhdan property; and, as mentioned above, Γ ∼= EL5(R) is a Kazhdan

group. Furthermore, K is boundedly generated by {K1,K2,Γ }; in fact, it is easily

checked that each g ∈ K can be expressed as a product

g = γ a1 b1 a2 b2 a
−1
2 b−12

for some γ ∈ Γ, a1, a2 ∈ K1 and b1, b2 ∈ K2. Applying Shalom [21, Lemma 2.2], it

follows that K is a Kazhdan group. It is easily checked that that the center Z(K)

of K consists of the matrices of the form

z =


1 0 z

0 I5 0

0 0 1


for some z ∈ R = Z[x, y, x−1, y−1]. Since each automorphism ϕ ∈ Aut(R) induces

a corresponding automorphism ( aij ) 7→ (ϕ(aij) ) of K, it is clear that K satisfies

our requirements.

Remark 4.3. It seems reasonable to expect that a more detailed analysis might

show that the map f : P(Z2)→ Gkaz (or perhaps some slight variant of f) is a Borel

reduction from E′∞ to ∼=� Gkaz; and hence that ∼=� Gkaz is a universal countable

Borel equivalence relation.
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