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Martin’s maximum revisited

Matteo Viale

Abstract

We present several results relating the general theory of the stationary
tower forcing developed by Woodin with forcing axioms. In particular we
show that, in combination with strong large cardinals, the forcing axiom
MM++ makes theΠ2-fragment of the theory ofHℵ2 invariant with respect to
stationary set preserving forcings that preserveBMM. We argue that this is a
close to optimal generalization toHℵ2 of Woodin’s absoluteness results for
L(�). In due course of proving this we shall give a new proof of some of
Woodin’s results.

1 Introduction

In this introduction we shall take a long detour to motivate the results we want to
present and to show how they stem out of Woodin’s work onΩ-logic. We tried to
make this introduction comprehensible to any person acquainted with the theory
of forcing as presented for example in [7]. The reader may refer to subsection 1.1
for unexplained notions.

Since its discovery in the early sixties by Paul Cohen [2], forcing has played a
central role in the development of modern set theory. It was soon realized its fun-
damental role to establish the undecidability inZFC of all the classical problems
of set theory, among which Cantor’s continuum problem. Moreover, up to date,
forcing (or class forcing) is the unique efficient method to obtain independence
results overZFC. This method has found applications in virtually all fields of
pure mathematics: in the last forty years natural problems of group theory, func-
tional analysis, operator algebras, general topology, andmany other subjects were
shown to be undecidable by means of forcing (see [4, 13] amongothers). Perhaps
driven by these observations Woodin introducedΩ-logic, a non-constructive se-
mantics forZFC which rules out the independence results obtained by means of
forcing.
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Definition 1.1. Given a modelV of ZFC and a familyΓ of partial orders inV, we
say thatV models thatφ is Γ-consistent ifV� |= φ for some� ∈ Γ.

The notions ofΓ-validity and ofΓ-logical consequence|=Γ are defined accord-
ingly. Woodin’sΩ-logic is theΓ-logic obtained by lettingΓ be the class of all
partial orders1. Prima facieΓ-logics appear to be even more intractable thanβ-
logic (the logic given by the class of well founded models ofZFC). However this
is a misleading point of view, and, as we shall see below, it ismore correct to view
these logics as means to radically change our point of view onforcing:

Γ-logics transform forcing in a tool to prove theorems over certain
natural theoriesT which extendZFC.

The following corollary of Cohen’s forcing theorem (which we dare to call Co-
hen’s Absoluteness Lemma) is an illuminating example:

Lemma 1.2 (Cohen’s Absoluteness).Assume T⊃ ZFC andφ(x, r) is aΣ0-formula
in the parameter r such that T⊢ r ⊂ ω. Then the following are equivalent:

1There is a slight twist between Woodin’s original definitionof Ω-consistency and our defi-
nition of Γ-consistency whenΓ is the class of all posets. We shall explain in this footnote why
we decided to modify Woodin’s original definition. On a first reading the reader may skip it over.
Woodin states thatφ isΩ-consistent inV if there is someα and some� ∈ Vα such thatV�α |= φ.
The advantage of our definition (with respect to Woodin’s) isthat it allows for a simpler formu-
lation of the forcing absoluteness results which are the motivation and the purpose of this paper
and which assert that over any modelV of some theoryT which extendsZFC any statementφ of
a certain form whichV models to beΓ-consistent actually holds inV. To appreciate the difference
between Woodin’s definition ofΩ-consistency and the current definition, assume thatφ is aΠ2-
formula and thatφ isΩ-consistent inV in the sense of Woodin: this means that there existα and
� such thatV�α |= φ, nonetheless it is well possible thatV� 6|= φ and thus that� does not witness
thatφ is Ω-consistent according to our definition. Now ifV modelsZFC+there are class many
Woodin cardinals which are a limit of Woodin cardinalsandφL(�) isΩ-consistent inV in the sense
of Woodin, this can be reflected in the assertion that∃α ∈ V, Vα |= φ

L(�), but not in the statement
thatφL(�) holds inV. On the other hand ifV modelsZFC+there are class many Woodin cardinals
which are a limit of Woodin cardinalsandφL(�) is Ω-consistent inV according to our definition,
we can actually reflect this fact in the assertion thatV |= φL(�). There is no real discrepancy on
the two definitions because for eachn we can find aΣn formulaφn such that ifV is any model
of ZF, Vα |= φn if and only if Vα ≺Σn V. Thus, if we want to prove that a certainΣn-formulaφ
isΩ-consistent according to our definition, we just have to prove thatφn ∧ φ isΩ-consistent inV
according to Woodin’s definition. On the other hand the set ofΓ-valid statements (according to
Woodin’s definition) is definable inV in the parameters used to defineΓ, while (unless we sub-
sume that there is someδ such thatVδ ≺ V and all the parameters used to defineΓ belong toVδ)
we shall encounter the same problems to define inV the class ofΓ-valid statements (according to
our definition) as we do have troubles to define inV the set ofV-truths.
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• T ⊢ [Hω1 |= ∃xφ(x, r)].

• T ⊢ ∃xφ(x, r) isΩ-consistent2.

Observe that for any modelV of ZFC, HV
ω1
≺Σ1 V and that for any theoryT ⊇

ZFC there is a recursive translation ofΣ1
2-properties (provablyΣ1

2 over T) into
Σ1-properties overHω1 (provablyΣ1 over the same theoryT) [6, Lemma 25.25].
Summing up we get that aΣ1

2-statement is provable in some theoryT ⊇ ZFC iff
the correspondingΣ1-statement overHω1 is provablyΩ-consistent over the same
theoryT. This shows that already inZFC forcing is an extremely powerful tool
to prove theorems. Moreover compare Lemma 1.2 with Shoenfield’s absoluteness
theorem stating that the truth value of aΣ1

2-property is the same in all transitive
modelsM of ZFC to whichω1 belongs [6, Theorem 25.20]. These two results are
very similar in nature but the first one is more constructive.For example a proof
that aΣ1

2-property holds inL does not yield automatically that this property is
provable inZFC but just that it holds in all uncountable transitive models of ZFC
to whichω1 belongs; yet this property could fail in some non-transitive model of
ZFC or in some transitive model ofZFC whose ordinals have order type at most
ω1.

We briefly sketch why Lemma 1.2 holds since this will outline many of the
ideas we are heading for:

Proof. We shall actually prove the following slightly stronger formulation3 of the
non-trivial direction in the equivalence:

AssumeV is a model ofT. Then Hω1 |= ∃xφ(x, r) if and only if
V |= ∃xφ(x, r) isΩ-consistent.

To simplify the exposition we prove it with the further assumption thatV is a
transitivemodel. With the obvious care in details essentially the sameargument
works for any first order model ofT. So assumeφ(x, ~y) is a Σ0-formula and
∃xφ(x,~r) isΩ-consistent inV with parameters~r ∈ �V. Let� ∈ V be a partial order
that witnesses it. Pick a modelM ∈ V such thatM ≺ (H|�|+)V, M is countable in
V, and�,~r ∈ M. Let πM : M → N be its transitive collapse and� = πM(�).
Notice also thatπ(~r) = ~r. SinceπM is an isomorphism ofM with N,

N |= (� ∃xφ(x,~r)).

2I.e. T ⊢ There is a partial order� such that� ∃xφ(x, r).
3In the statement below we do not require that the existence ofa partial order witnessing the

Ω-consistency of∃xφ(x, r) in V is provable inT.
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Now let G ∈ V be N-generic for� (G exists sinceN is countable), then, by
Cohen’s fundamental theorem of forcing applied inV to N, we have thatN[G] |=
∃xφ(x,~r). So we can picka ∈ N[G] such thatN[G] |= φ(a,~r). SinceN,G ∈
(Hℵ1)

V, we have thatV models thatN[G] ∈ HV
ω1

and thusV models thata as well
belongs toHV

ω1
. Sinceφ(x, ~y) is aΣ0-formula, V models thatφ(a,~r) is absolute

between the transitive setsN[G] ⊂ Hω1 to which a,~r belong. In particulara
witnesses inV thatHV

ω1
|= ∃xφ(x,~r). �

If we analyze the proof of this Lemma, we immediately realizethat a key obser-
vation is the fact that for any poset� there is some countableM ≺ H|�|+ such
that� ∈ M and there is anM-generic filter for�. The latter statement is an easy
outcome of Baire’s category theorem and is provable inZFC. For a given regular
cardinalλ and a partial order�, let Sλ

�
be the set consisting ofM ≺ Hmax(|�|+ ,λ)

such that there is anM-generic filter for� andM ∩ λ ∈ λ > |M|. Then an easy
outcome of Baire’s category theorem is thatSℵ1

�
is a club subset ofPω1(H|�|+) for

every partial order�. If we analyze the above proof what we actually needed was
just the stationarity ofSℵ1

�
to infer the existence of the desired countable model

M ≺ H|�|+ such thatr ∈ M and there is anM-generic filter for�. For any regualr
cardinalλ, letΓλ be the class of posets such thatSλ

�
is stationary. In particular we

can generalize Cohen’s absoluteness Lemma as follows:

Lemma 1.3 (Generalized Cohen Absoluteness).Assume V is a model ofZFC
andλ is regular and uncountable in V. Then HV

λ ≺Σ1 VP if P ∈ Γλ.

Let FAν(�) assert that:P is a partial order such that for every collection ofν-
many dense subsets of P there is a filter G⊂ P meeting all the dense sets in this
collection.Let BFAν(�) assert thatHV

ν+
≺Σ1 VP.

Given a class of posetsΓ, let FAν(Γ) (BFAν(Γ)) hold if FAν(P) (BFAν(P)) holds
for all P ∈ Γ. Then Baire’s category theorem just says thatFAℵ0(Ω) holds where
Ω is the class of all posets. It is not hard to check that ifSλ

P is stationary, then
FAγ(P) holds for allγ < λ. Woodin [18, Theorem2.53] proved that ifλ = ν+

is a successor cardinalP ∈ Γλ if and only if FAν(P) holds(see for more details
subsection 2.2 and Lemma 2.9). In particular for all cardinals ν we get thatΓν+
is the class of partial ordersP such thatFAν(P) holds or (equivalently) such that
Sν+

P is stationary. With this terminology Cohen’s absolutenessLemma states that
FAν(P) impliesBFAν(P) for all infinite cardinalsν.

Observe that many interesting problems of set theory can be formulated asΠ2-
properties ofHν+ for some cardinalν (an example is Suslin’s hypothesis, which
can be formulated as aΠ2-property ofHℵ2). Lemma 1.3 gives a very powerful
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general framework to prove in any given modelV of ZFC whether aΠ2-property
∀x∃yφ(x, y, z) (whereφ is Σ0) holds for someHV

ν+
with p ∈ HV

ν+
replacingz: It

suffices to prove that for anya ∈ HV
ν+

, V models that∃yφ(a, y, p) is Γν+-consistent.
This shows that if we are in a modelV of ZFC whereΓV

ν+
contains interesting

and manageable families of partial ordersΓV
ν+

-logic is a powerful tool to study the
Π2-theory ofHV

ν+
. In particular this is always the case forν = ℵ0 in any model

of ZFC, sinceΓℵ1 is the class of all posets. Moreover this is certainly one of the
reasons of the success the forcing axiom Martin’s MaximumMM and its bounded
versionBMM have had in settling many relevant problems of set theory which can
be formulated asΠ2-properties of the structureHℵ2 and that boosted the study of
bounded versions of forcing axioms4.

For any set theorist willing to accept large cardinal axioms, Woodin has been
able to show thatΩ-logic gives a natural non-constructive semantics for the full
first order theory ofL(�) and not just for theΣ1-fragment ofHℵ1 ⊂ L(�) which is
given by Cohen’s absoluteness Lemma. Woodin [10, Theorem 2.5.10] has proved
that assuming large cardinalsΩ-truth isΩ-invariant i.e.:

Let V be any model ofZFC+there are class many Woodin cardinals.
Then for any statementφ with parameters in�V,

V |= (φ isΩ-consistent)

if and only if there is� ∈ V such that

V� |= (φ isΩ-consistent).

ThusΩ-logic, the logic of forcing, has a notion of truth which forcing itself can-
not change. Woodin [10, Theorem 3.1.7] also proved that the theoryZFC+large
cardinalsdecides inΩ-logic the theory ofL(�), i.e.:

For any modelV of ZFC+there are class many Woodin cardinals
which are a limit of Woodin cardinalsand any first order formulaφ,
L(Pω1Ord)V |= φ if and only if

V |= [L(Pω1Ord) |= φ] is Ω-consistent.

4Bagaria [1] and Stavi, Väänänen [14] are the first who realize that bounded forcing axioms
are powerful tools to describe theΠ2-theory ofHℵ2 exactly for the reasons we are pointing out.
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He pushed further these result and showed that ifT extendsZFC+ There are class
many measurable Woodin cardinals, thenT decides inΩ-logic any mathematical
problem expressible as a (provably inT) ∆2

1-statement. These are optimal and
sharp results: it is well known that the Continuum hypothesisCH (which is prov-
ably not a∆2

1-statement) and the first order theory ofL(P(ω1)) cannot be decided
by ZFC+ large cardinal axiomsin Ω-logic. Martin and Steel’s result that pro-
jective determinacy holds inZFC∗ complements the fully satisfactory description
Ω-logic and large cardinals give of the first order theory of the structureL(�)
in models ofZFC∗. Moreover we can make these results meaningful also for a
non-platonist, for example we can reformulate the statement thatZFC∗ decides in
Ω-logic the theory ofL(�) as follows:

AssumeT extendsZFC+there are class many Woodin cardinals which
are a limit of Woodin cardinals. Letφ(r) be a formula in the parameter
r such thatT ⊢ r ⊆ ω. Then the following are equivalent:

• T ⊢ [L(Pω1Ord) |= φ(r)].

• T ⊢ φ(r)L(Pω1Ord) isΩ-consistent.

The next natural stage is to determine to what extent Woodin’s results onΩ-
logic and the theory ofHℵ1 andL(�) can be reproduced forHℵ2 andL(P(ω1)).
There is also for these theories a fundamental result of Woodin: he introduced an
axiom (∗) which is a strengthened version ofBMM with the property that the the-
ory of Hℵ2 with parameters is invariant with respect toall forcings which preserve
this axiom5. The (∗)-axiom is usually formulated [9, Definition 7.9] as the asser-
tion thatL(�) is a model of the axiom of determinacy andL(P(ω1)) is a generic
extension ofL(�) by an homogeneous forcing�max ∈ L(�).

There are two distinctive features of (∗):

1. It asserts a smallness principle forL(P(ω1)): on the one hand the homo-
geneity of�max entails that the first order theory ofL(P(ω1)) is essentially
determined by the theory of the underlyingL(�). On the other hand (∗)
implies thatL(P(ω1)) = L(�)[A] for any A ∈ P(ω1) \ L(�).

2. (∗) entails thatHV
ω2
≺ HVP

ω2
for any notion of forcingP ∈ V which preserves

(∗) even ifFAℵ2(P) may be false for such aP.

5We refer the reader to [9] for a thorough development of the properties of models of the
(∗)-axiom.
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In this paper we propose a different approach to the analysis of the theory of
Hℵ2 then the one given by (∗). We do not seek for an axiom systemT ⊇ ZFC
which makes the theory ofHℵ2 invariant with respect toall forcing notions which
preserve a suitable fragment ofT. Our aim is to show that the strongest forcing
axioms in combination with large cardinals give an axiom systemT which extends
ZFC and makes the theory ofHℵ2 invariant with respect to all forcing notionsP
which preserve a suitable fragment ofT and for which we can predicateFAℵ1(P)
(i.e. forcingsP which are in the classΓℵ2).

This leads us to analyze the properties of the classΓℵ2 in models ofZFC∗. This
is a delicate matter, first of all Shelah proved thatFAℵ1(P) fails for anyP which
does not preserve stationary subsets ofω1. Nonetheless it cannot be decided in
ZFC whether this is a necessary condition for a posetP in order to have the failure
of FAℵ1(P). For example letP be Namba forcing: it is provable inZFC that P
preserve stationary subsets ofω1, however inL FAℵ1(P) fails while in a model of
Martin’s maximumMM FAℵ1(P) holds. This shows that we cannot hope to prove
general theorems aboutHℵ2 in ZFC∗ alone using forcing, but just theorems about
the properties ofHℵ2 for particular theoriesT which extendZFC∗ and for which
we have a nice description of the classΓℵ2.

In this respect it is well known that the study of the properties ofHℵ2 in models
of Martin’s maximumMM, of the proper forcing axiomPFA, or of their bounded
versionsBMM andBPFA has been particularly successful. Moreover it is well
known that the strongest such theories (MM and PFA) are able to settle many
relevant questions about the whole universeV and to show that many properties
of the universe reflect toHℵ2

6. The reason is at least two-fold:

• First of all there is a manageable description of the classΓℵ2 in models of
MM (PFA,MA): this is the class of stationary set preserving posets forMM
(respectively contains the class of proper forcings forPFA, and the class of
CCC partial orders forMA).

• MM realizes the slogan thatFAℵ1(P) holds for any partial orderP for which
we cannot prove thatFAℵ1(P) fails, thusMM substantiates a natural maxi-
mality principle for the classΓℵ2.

6The literature is vast, we mention just a sample of the most recent results with no hope of
being exhaustive: [11, 15, 18] present different examples of well-ordering of the reals definable
in Hℵ2 (with parameters inHℵ2) in models ofBMM (BPFA), [3, 16, 17] present several differ-
ent reflection properties between the universe andHℵ2 in models ofMM++ (PFA,MM), [4, 12]
present applications ofPFA to the solution of problems coming from operator algebra andgeneral
topology and which can be formulated as (second order) properties of the structureHℵ2.
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We believe that the arguments we presented so far already show that for any
model V of ZFC and any successor cardinalλ ∈ V it is of central interest to
analyze what is the classΓλ in V, since this gives a powerful tool to ivestigate the
Π2-theory ofHV

λ . Moreover in this respectZFC + MM is particularly appealing
since it asserts the maximality of the classΓℵ2. The main result of this paper is to
show that a natural strengthening ofMM (denoted byMM++) which holds in the
standard models ofMM, in combination with Woodin cardinals, makesΓℵ2-logic
the correct semantics to describe completely theΠ2-theory ofHℵ2 in models of
MM++. In particular we shall prove the following theorem:

Theorem 1.4. AssumeMM++ holds and there are class many Woodin cardinals.
Then

HV
ℵ2
≺Σ2 HVP

ℵ2

for all stationary set preserving posets P which preserveBMM

Notice that we can reformulate the theorem in the same fashion of Woodin’s and
Cohen’s results as follows:

Theorem 1.5. Assume T extendsZFC + MM+++ There are class many Woodin
cardinals. Then for everyΠ2-formulaφ(x) in the free variable x and every param-
eter p such that T⊢ p ∈ Hω2 the following are equivalent:

• T ⊢ [Hℵ2 |= φ(p)]

• T ⊢ There is a stationary set preserving partial orderP such thatP φ
Hℵ2(p)

andP BMM.

The rest of this paper is organized as follows: Section 2 presents background
material on forcing (Subsection 2.1), forcing axioms (Subsection 2.2), the sta-
tionary tower forcing (Subsection 2.3), the relation between the stationary tower
forcing and forcing axioms (Subsection 2.4), and a new characterization of the
forcing axiomMM++ in terms of complete embeddings of stationary set preserv-
ing posets into stationary tower forcings (Subsection 2.5). Section 3 presents the
proof of the main result, while Section 4 gives a proof of the invariance of the
theory ofHℵ1 with respect to set forcing in the presence of class many Woodin
cardinals. We end the paper with some comments and open questions (Section 5).

While the paper is meant to be as much self-contained as possible, we presume
that familiarity with forcing axioms (in particular with Martin’s maximum) and
with the stationary tower forcing are of valuable help for the reader. A good
reference for background material on Martin’s maximum is [6, Chapter 37]. For
the stationary tower forcing a reference text is [10].
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1.1 Notation and prerequisites

We adopt standard notation which is customary in the subject, our reference text
is [6].

For models (M,E) of ZFC, we say that (M,E) ≺Σn (M′,E′) if M ⊂ M′, E =
E′ ∩ M2 and for anyΣn-formulaφ(p) with p ∈ M, (M,E) |= φ(p) if and only if
(M′,E′) |= φ(p). We usually writeM ≺Σn M instead of (M,E) ≺Σn (M′,E′) when
E,E′ is clear from the context. We let (M,E) ≺ (M′,E′) if ( M,E) ≺Σn (M′,E′)
for all n.

We let Ord denote the class of ordinals. For any cardinalκ PκX denote the
subsets ofX of size less thanκ. Given f : X → Y andA ⊂ X, B ⊂ Y, f [A] is the
pointwise image ofA under f and f −1[B] is the preimage ofB under f . A setS
is stationary if for allf : Pω(∪S) → ∪S there isX ∈ S such thatf [X] ⊆ X (such
an X is called a closure point forf ). A setC is a club subset ofS if it meets all
stationary subsets ofS or, equivalently, if it contains all the closure points inS of
some f : Pω(∪S) → ∪S. Notice thatPκX is always stationary ifκ is a cardinal
andX, κ are both uncountable.

If V is a transitive model ofZFC and (P,≤P) ∈ V is a partial order with a
top element 1P, VP denotes the class ofP-names, and ˙a or τ denote an arbitrary
element ofVP, if ǎ ∈ VP is the canonical name for a seta in V we drop the
superscript and confuse ˇa with a. We also feel free to confuse the approach to
forcing via boolean valued models as done by Scott and othersor via the forcing
relation. Thus we shall write for exampleVP |= φ as an abbreviation for

V |= [1P  φ].

If M ∈ V is such that (M, ∈) is a model of a sufficient fragment ofZFC and
(P,≤P) in M is a partial order, anM-generic filter forP is a filter G ⊂ P such
that G ∩ A ∩ M is non-empty for all maximal antichainsA ∈ M (notice that if
M is non-transitive,A * M is well possible). IfN is a transitivemodel of a
large enough fragment ofZFC, P ∈ N andG is an N-generic filter forP, let
σG : N ∩ VP→ N[G] denote the evaluation map induced byG of theP-names in
N.

We say that (M,E) ≺Σn (Ṅ, Ė) for someṄ ∈ VP if

VP |= Ė ∩ M2
= E

and for anyΣn-formulaφ(p) with p ∈ M, (M,E) |= φ(p) if and only if

VP |= [(Ṅ, Ė) |= φ(p)].

9



We will write M ≺Σn Ṅ if ( M,E) ≺Σn (Ṅ, Ė) andE, Ė are clear from the context.
We shall also frequently refer to Woodin cardinals, howeverfor our purposes

we won’t need to recall the definition of a Woodin cardinal butjust its effects on
the properties of the stationary tower forcing. This is donein subsection 2.3.

2 Preliminaries

We shall briefly outline some general results on the theory offorcing which we
shall need for our exposition. The reader may skip Subsections 2.1, 2.2, 2.3 and
eventually refer back to them.

2.1 Preliminaries I: complete embeddings and projections

For a posetQ andq ∈ Q, letQ ↾ qdenote the posetQ restricted to conditionsr ∈ Q
which are belowq and�(Q) denote its boolean completion, i.e. the complete
boolean algebra of regular open subsets ofQ, so thatQ is naturally identified with
a dense subset of�(Q). We say that:

• P completely embeds intoQ if there is an homomorphismi : P → �(Q)
which preseves the order relation and maps maximal antichains of P into
maximal antichains of�(Q). With abuse of notation we shall call a com-
plete embedding ofP into Q any such homomorphismi : P→ �(Q).

• i : P → �(Q) is locally complete if for someq ∈ Q, i : P → �(Q ↾ q) is
a complete embedding (with a slight abuse of the current terminology, we
shall also call any locally complete embedding aregular embedding).

• P projects toQ if there is an order preserving mapπ : P→ Q whose image
is dense inQ.

Lemma 2.1. The following are equivalent:

1. P completely embeds into Q,

2. for any V-generic filter G for Q there is in V[G] a V-generic filter H for P,

3. For some p∈ P there is a homomorphism i: �(P ↾ p)→ �(Q) of complete
boolean algebras.

Proof. We proceed as follows:

10



1 implies 2

Observe that ifi : P→ �(Q) is a complete embedding andG is aV-generic
filter for �(Q), thenH = i−1[G] is aV-generic filter forP.

2 implies 1

Let Ḣ ∈ V�(Q) be a name such that

�(Q) Ḣ is aV-generic filter forP.

The mapp 7→ ‖p̌ ∈ Ḣ‖�(Q) is the desired complete embedding ofP into Q.

1 implies 3

Let i : P→ �(Q) be a complete embedding anḋH ∈ V�(Q) be a name for
theV-generic filter for�(Q). Then there is somep ∈ P such that

‖i(q) ∈ Ḣ‖�(Q) > 0�(Q)

for all q ≤ p. Then for such ap the mapi can naturally be extended to a
complete homomorphismi : �(P ↾ p)→ �(Q).

3 implies 1

Immediate. �

Remark 2.2. Observe that ifi : P→ �(Q) is a complete embedding then for all
q ∈ Q such thati(p)∧q > 0�, the mapiq : P→ �(Q ↾ q) which mapsp to q∧ i(p)
is also a complete embedding. Moreover ifq Q p̌ ∈ Ḣ whereḢ = i−1[Ġ] ∈ VQ

andĠ is the canonical�(Q)-name for aV-generic filter for�(Q), we have that
iq(r) = 0�(Q) for all r ∈ P incompatible withp.

Thus in general a complete embeddingi : P→ �(Q) may map a large portion
of P to 0�(Q).

Lemma 2.3. The following are equivalent:

1. There is a projectionπ : P→ �(Q) \ {0�(Q)}.

2. There isḢ in VP such thatP Ḣ is aV generic filter forQ.

11



Proof. 1 implies 2

Let Ḣ ∈ VP be aP-name such thatP Ḣ = π[Ġ]. Then since the image
of π is a dense subset of�(Q) it is easy to check thatP Ḣ generates a
V-generic filter for�(Q).

2 implies 1Assume 2 holds for theP-nameḢ and letπ : P→ �(Q) be defined
by π(p) =

∧
{q ∈ Q : p P q ∈ Ḣ}. We claim thatπ is a projection. First

of all we claim thatπ(p) > 0�(Q) for all p ∈ P. This uses the following
observation:

Fact 2.4. AssumeG is V-generic forP and H = σG(Ḣ) ∈ V[G] is V-
generic forQ. If A ∈ V is such thatA ⊂ H, then

∧
A > 0�(Q).

Proof. Assume not, then there is somer ∈ G such thatr P
∧

A = 0�(Q).
Now let A = {ai : i ∈ I }. SinceA ⊂ G all theai are compatible. LetB ⊂ A
B ∈ V be a non-empty subset ofA of least size such that

∧
B = 0�(Q) but

for no E ⊂ B such that|E| < |B|,
∧

E = 0�(Q). Then we can arrange that
B = {aα : α < γ} for some cardinalγ and thatbβ =

∧
{aα : α < β} > 0�(Q)

for all β < γ. By refining the sequence{bβ : β < γ} (if necessary) we can
further suppose thatbα < bβ for all α < β.

Now letcβ = b0 ∧ ¬bβ. We claim that

C = {c : ∃β < γ such thatc ≤ cβ} �

(which belongs toV) is a dense subset of�(Q) ↾ b0. To see this, leṫH0 be a
P-name which is forced byP to be theV-generic filter for�(Q) generated
by Ḣ which is aP-name for aV-generic filter forQ. Observe that sincer P

Ḣ0 is a V-generic filter for�(Q) containingḢ, we get thatr P bβ ∈ Ḣ0 for
all β < γ. Now given somec ≤ b0, we have that

∧
{c∧ bβ : β < γ} = 0�(Q).

There are two cases:

• There is someβ < γ such thatc∧ bδ = c∧ bβ for all δ ∈ [β, γ).

In this case we have thatc∧ bβ = 0�(Q) andc is already an element of
C.

• For allβ < γ there isαβ < γ such thatc∧ bαβ < c∧ bβ.

In this case we get thatc ∧ bα0 < c. Thusd = c ∧ ¬bα0 > 0�(Q) and
d ≤ c is an element ofC.

12



ThusC is dense. Sincer P C ∩ Ḣ0 , ∅ we can findr ′ ≤ r andd ∈ C such
thatr ′ P d ∈ C ∩ Ḣ0. Now there is someβ such thatd ∧ bβ = 0�(Q). Then
r ′ P d ∧ bβ = 0�(Q) ∈ Ḣ0, which is the desired contradiction which proves
the fact.

Now for all p ∈ P, Ap = {q ∈ Q : p  q ∈ Ḣ} is in V and is forced byp to
be a subset oḟH. In particular we get that

∧
Ap = π(p) > 0�(Q). iI is now

easy to check thatπ[P] is a dense subset of�(Q) \ {0�(Q)}. �

Given a complete embeddingi : � → � of complete boolean algebras, let
π : � → � mapa to inf{q ∈ � : i(q) ≥ a}, thenπ is a projection andπ ◦ i(b) = b
for all b ∈ � while i ◦ π(q) ≥ q for all q ∈ �.

The quotient forcing�/i[�] is the object belonging toV� such that

• � �/i[�] is a partial order with the order relation≤i.

• �/i[�] ∈ V� is the set of�-names ˙r of least rank among those that satisfy
the following requirements:

– ~ṙ ∈ (�̌ \ {0�})�� = 1�.

– For all ṙ ∈ �/i[�] if there arer ∈ � andq ∈ � such thatq � ṙ = r,
thenπ(r) ≥ q.

• For ṙ , ṡ ∈ �/i[�] q � ṙ ≤i ṡ if and only if the following holds:

For all q′ ≤ q, if there arer, s ∈ � such thatq′ � ṙ = r ∧ ṡ= s,
thenr ∧ i(q′) ≤� s∧ i(q′).

Lemma 2.5. If i : �→ � is a complete embedding of complete boolean algebras,
then� ∗ (�/i[�]) is forcing equivalent to�.

Proof. Let π : �→ � be the projection map associated toi. The map

i∗ : (� \ {0�})→ �(� ∗ (�/i[�]))

which mapsr 7→ (π(r), ř) is a complete embedding such thati∗[� \ {0�}] is dense
in � ∗ (�/i(�)).

The conclusion follows. �
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Remark 2.6. There might be a variety of locally complete embeddings of a poset
P into a posetQ. These embeddings greatly affect the properties the generic
extensions byQ attributes to elements of the generic extensions byP. For example
the following can occur:

There is aP-nameṠ which is forced byP to be a stationary subset of
ω1 and there arei0 : P→ �(Q), i1 : P→ �(Q) distinct locally com-
plete embeddings ofP into Q such that ifG is V-generic for�(Q) and
H j = i−1

j [G], thenσH0(Ṡ) is stationary inV[G], σH1(Ṡ) is stationary
in V[H1] but non-stationary inV[G].

If i : P→ �(Q) is a locally complete embedding andp ∈ P, q ∈ Q are such
that i can be extended to a complete homomorphism of�(P ↾ p) into �(Q ↾ q)
we shall also denote�(Q ↾ q)/i[�(P ↾ p)] by Q/i[P], if i is clear from the context
we shall even denote such quotient forcing asQ/P.

2.2 Preliminaries II: forcing axioms

Definition 2.7. Given a cardinalλ and a partial orderP, FAλ(P) holds if:

For all p ∈ P, P ↾ p is a partial order such that for every collection of
λ-many dense subsets ofP ↾ p there is a filterG ⊂ P ↾ p meeting all
the dense set in this collection.

FA<λ(P) holds ifFAν(P) holds for allν < λ.
BFAλ(P) holds if Hλ ≺Σ1 VP.
If Γ is a family of partial orders,FAλ(Γ) (FA<λ(Γ), BFA(Γ)) asserts thatFAλ(P)

(FA<λ(P), BFA(P)) holds for allP ∈ Γ.

For any partial orderP

Sλ
P = {M ≺ H|P|+ : M ∩ λ ∈ λ > |M| and there is anM-generic filter forP}

For any regular uncountable cardinalλ, we letΓλ be the family ofP such that
Sλ

P is stationary.
In the introduction we already showed:

Lemma 2.8. Assumeλ is a regular cardinal. Then P∈ Γλ impliesBFAλ(P).

14



MM asserts thatFAℵ1(SSP) holds, whereSSP is the family of posets which
preserve stationary subsets ofω1. BMM asserts thatBFAℵ1(SSP) holds. It is not
hard to see that ifSλ

P is stationary, thenFA<λ(P) holds. It is not clear whether the
converse holds ifλ is inaccessible. However the converse holds ifλ is a successor
cardinal and Woodin’s [18, Theorem 2.53] gives a special case of the following
Lemma forλ = ω2.

Lemma 2.9. Let λ = ν+ be a successor cardinal. Then the following are equiva-
lent:

1. FAν(P) holds.

2. SλP is stationary.

Proof. Only one direction is non trivial. We assume thatFAν(P) holds inV and
we prove thatV models thatSλ

P is stationary. We leave to the reader to prove the
other implication.

First of all we leave the reader to check that ifFAν(P) holds, then all cardinals
less or equal toν are preserved byP. Let P ∈ Hθ with θ regular larger thanλ.

Pick M0 ≺ Hθ such thatP ∈ M0 and M0 ∩ λ ∈ λ > |M0| = ν. Now since
|M0| = ν, there is a filterH which meets all the dense sets inM0. The proof is
completed once we prove the following:

Claim 2.9.1.

M1 = {a ∈ Hθ : ∃τ ∈ M0 ∩ VP∃q ∈ H such that qP a = τ} ≺ Hθ,

H is an M1-generic filter for P,|M1| = ν and M1 ∩ λ ∈ λ.

Proof. We prove each item as follows:

• M1 ≺ Hθ:

Given a first order formulaφ(x0, . . . , xn), anda1, . . .an ∈ M1 such thatHθ

models∃xφ(x, a1 . . . , an) we want to finda0 ∈ M1 such thatHθ models
φ(a0, a1 . . . , an). Let τ1, . . . , τn ∈ M0 ∩ VP be such that for someqi ∈ H,
qi  τi = ai and

P ∃x ∈ HV
θ φ(x, τ1, . . . τn)

HV
θ .

SinceP ∈ Hθ we can findτ ∈ Hθ such that

P φ(τ, τ1, . . . τn)
HV
θ ∧ τ ∈ V.
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In particular we get that

Hθ |= [P τ ∈ V ∧ φ(τ, τ1, . . . , τn)
HV
θ ].

SinceM0 ≺ Hθ, we can actually find such aτ ∈ M0 ∩ VP. Then the set of
q ∈ P which force the value ofτ to be some element ofHθ is open dense
and belongs toM0. Thus there isq ∈ H which belongs to this open dense
set and refines all theqi, anda ∈ Hθ such thatq  a = τ. Thena ∈ M1 and
Hθ models thatφ(a, a1 . . . , an), as was to be shown.

• H is an M1-generic filter for P:

Pick D ∈ M1 dense subset ofP and Ḋ ∈ M0 such thatP τ is a dense
subset of P which belongs to Vand such that for someq ∈ H, q P Ḋ = D.
Then we get thatP τ ∩ Ġ , ∅, thus there is someτ′ ∈ M0 such that
P τ

′ ∈ Ḋ ∩ Ġ, sinceM0 ≺ Hθ. Now we can findr ≤ q, r ∈ H andp ∈ P
such thatr P τ

′
= p. Since

r P p = τ′ ∈ Ġ∩ Ḋ = Ġ∩ D,

we get thatp ≥ r is also inH and thus thatH ∩ D , ∅.

• M1 ∩ λ ∈ λ > |M1| = ν:

First of all M1 has size|M0| = ν since it is the surjective image ofM0 ∩ VP

and containsM0. Thus sup(M1∩λ) < λ. Now pickβ ∈ M1∩λ. Findτ ∈ M0

such thatP τ ∈ λ and for someq ∈ H, q P τ = β. Let φτ ∈ VP ∩ M0 be
a P-name such thatP φτ : ν → τ is a bijection which belongs to V. Find
r ≤ q r ∈ H such thatr  φτ = φ for someφ ∈ V bijection of ν with β.
Sinceν ⊂ M0 ⊂ M1 we get thatφ[ν] = β ⊂ M1. �

The Claim and thus the Lemma are proved (Notice that the unique part of the
proof in which we used thatλ is a successor cardinal is to get thatM1 ∩ λ ∈ λ).�

2.3 Preliminaries III: stationary sets and the stationary tower
forcing

S is stationary if for all f : Pω(∪S) → (∪S) there is anX ∈ S such that
f [Pω(X)] ⊂ X.
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For a stationary setS and a setX, if ∪S ⊆ X we let SX
= {M ∈ P(X) :

M ∩ ∪S ∈ S}, if ∪S ⊇ X we letS ↾ X = {M ∩ X : M ∈ S}.
If S andT are stationary sets we say thatS andT are compatible if

S(
⋃

S)∪(
⋃

T) ∩ T(
⋃

S)∪(
⋃

T)

is stationary.
We letS ∧ T denote the set ofX ∈ P(∪S ∪ ∪T) such thatX ∩ ∪S ∈ S and

X ∩ ∪T ∈ T and for allη
∧
{Sα : α < η} is the set ofM ∈ P(

⋃
α<η Sα) such that

M ∩ ∪Sα ∈ Sα for all α ∈ M ∩ η.
For a setM we letπM : M → V denote the transitive collapse of the structure

(M, ∈) onto a transitive setπM[M] and we letjM = π
−1
M .

For any regular cardinalλ

Rλ = {X : X ∩ λ ∈ λ and|X| < λ}.

and�λδ is the stationary tower whose elements are stationary setsS ∈ Vδ such that
S ⊂ Rλ with order given byS ≤ T if, letting X = ∪(T) ∪ ∪(S), SX is contained in
TX modulo a club.
�δ will denote�ℵ2

δ .
We recall that ifG is V-generic for�λδ , thenG induces in a natural way a direct

limit ultrapower embeddingjG : V → MG where [f ]G ∈ MG if f : P(Xf ) → V in
V and [f ]G RG [h]G iff for someα < δ such thatXf ,Xh ∈ Vα we have that

{M ≺ Vα : f (M ∩ Xf ) R h(M ∩ Xh)} ∈ G.

If MG is well founded it is customary to identifyMG with its transitive collapse.
We recall the following results about the stationary tower (see [10, Chapter

2]):

Theorem 2.10 (Woodin). Assumeδ is a Woodin cardinal,λ < δ is regular and G
is V-generic for�λδ. Then

1. MG is a definable class in V[G] and

V[G] |= (MG)<δ ⊆ MG.

2. Vδ,G ⊆ MG and jG(λ) = δ.
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3. MG |= φ([ f1]G, . . . , [ fn]G) if and only for someα < δ such that fi : P(Xi) →
V are such that Xi ∈ Vα for all i ≤ n:

{M ≺ Vα : V |= φ( f1(M ∩ X1), . . . , fn(M ∩ Xn))} ∈ G.

Moreover by 1 MG is well founded and thus can be identified with its transitive
collapse. With this identifications we have that for everyα < δ and every set
X ∈ Vα, X = [〈πM(X) : M ≺ Vα,X ∈ M〉]G. In particular with this identification
we get that

(H jG(λ))
M[G]
= Vδ[G] = (Hδ)

V[G] .

and that jG ↾ HV
λ is the identity and witnesses that HV

λ ≺ HV[G]
jG(λ).

2.4 Preliminaries IV: Woodin cardinals are forcing axioms

The following is an outcome of Woodin’s work on the stationary tower [18, The-
orem 2.53].

Lemma 2.11 (Woodin). Assume there are class many Woodin cardinals. andλ

is a regular cardinal. Then the following are equivalent:

1. Sλ
�

is stationary, where

Sλ
� = {M ≺ H|�|+ : M ∈ Rλ and there is an M-generic filter for�}

2. � completely embeds into�λδ ↾ T for some Woodin cardinalδ and some
stationary T∈ �λδ.

Proof. The proof of this Lemma can be worked out along the same lines of the
proof of Theorem 2.16 in the next subsection. Thus we refer the reader to that
proof. �

By Woodin’s equivalence above and Lemma 2.9 we get the following:

Theorem 2.12. Woodin [18, Theorem 2.53]
Assume V is a model ofZFC+ there are class many Woodin cardinals, and

λ = ν+ is a successor cardinal in V.
Then the following are equivalent for any partial order P∈ V:

1. SλP is stationary.
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2. FAν(P) holds.

3. There is a locally complete embedding of P into�λδ for some Woodin cardi-
nal δ > |P|.

SSP denote the class of posets which preserve stationary subsets ofω1. Mar-
tin’s maximumMM asserts thatFAℵ1(P) holds for allP ∈ SSP.

The following sums up the current state of affair regarding the classesΓλ for
λ ≤ ℵ2.

Theorem 2.13. Assume there are class many Woodin cardinals. Then:

1. Γℵ1 is the class of all posets which regularly embeds into some�
ℵ1
δ .

2. �ℵ2
δ ∈ SSP for any Woodin cardinalδ.

3. MM holds if and only ifSSP is the class of all posets which regularly em-
beds into�ℵ2

δ for some Woodin cardinalδ. (Foreman, Magidor, Shelah [5]).

Proof. We sketch a proof.

1 Trivial by Theorem 2.12.

2 Let S ∈ V be a stationary subset ofω1, G beV-generic for�ℵ2
δ andĊ be a�ℵ2

δ -
name for a club subset ofω1. ThenσG(Ċ) ∈ (Hω2)

V[G]
= Vδ[G] = (Hω2)

MG
.

In particular there is somef : P(Vα)→ P(ω1) in Vδ such that [f ]G = σG(Ċ).
By Theorem 2.10.3 the set ofM ≺ Vα such thatf (M) is a club subset ofω1

in V belongs toG. Thus f (M)∩S is non empty for all suchM, in particular
MG |= [ f ]G ∩ jG(S) , ∅. Now, sincejG(ω1) = ω1, we have thatjG(S) = S.
The conclusion follows.

3 ℵ2 is a a successor cardinal. For this reason, ifMM holds, we can use the equiv-
alence given by Theorem 2.12 to get that anyP ∈ SSP regularly embeds
into some�ℵ2

δ . We can then use 2 to argue that ifP regularly embeds into
some�ℵ2

δ with δ a Woodin cardinal, thenP ∈ SSP. �
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2.5 PreliminariesV: MM++

The ordinary proof ofMM actually gives more information than what is captured
by Theorem 2.13.3: the latter asserts that any stationary set preserving poset�
can be completely embedded into�ℵ2

δ ↾ Sℵ2
�

for any Woodin cardinalδ > |�| via
some complete embeddingi. HoweverMM doesn’t give much information on the
nature of the complete embeddingi. On the other hand the standard model ofMM
provided by Foreman, Shelah and Magidor’s consistency proof actually show that
for any stationary set preserving poset� and any Woodin cardinalδ > |�| we can
get a complete embeddingi : � → �(�ℵ2

δ ↾ T) with a ”nice” quotient forcing
(�ℵ2

δ ↾ T)/i[�]. For this reason we introduce the following well known variation
of Martin’s maximum:

Definition 2.14. MM++ holds if T� is stationary for all� ∈ SSP, whereM ∈ T�
iff

• M ≺ H|�|+ is in Rℵ2,

• there is anM-generic filterH for � such that, ifG = πM[H], Q = πM(�)
andN = πM[M], thenσG : NQ → N[G] is an evaluation map such that
σG(πM(Ṡ)) is stationary for allṠ ∈ M �-name for a stationary subset ofω1.

The following is a well-known by-product of the ordinary consistency proofs
of MM which to my knowledge is seldom explicitly stated:

Theorem 2.15 (Foreman, Magidor, Shelah).Assumeκ is supercompact in V,
f : κ→ Vκ is a Laver function and

{(Pα, Q̇α) : α ≤ κ}

is a revised countable support iteration such that

• Pα  Q̇α is semiproper,

• Pα+1  |Pα| = ℵ1,

• Q̇α = f (α) if Pα  f (α) is semiproper.

Let G be V-generic for Pκ. ThenMM++ holds in V[G].

Theorem 2.16. Assume there are class many Woodin cardinals. Then the follow-
ing are equivalent:
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1. MM++ holds.

2. For every Woodin cardinalδ and every stationary set preserving poset� ∈
Vδ there is a complete embedding i: � → � where� = �(�ℵ2

δ ↾ T) for
some stationary set T∈ Vδ such that

� �/i[�] is stationary set preserving.

The rest of this section is devoted to the proof of the above theorem.

Proof. We prove both implications as follows:

1 implies 2 We will show that ifG is V-generic for�δ with T� ∈ G there is in
V[G] a V-generic filterH for � such thatσH(Ṡ) is stationary inV[G] for
all �-namesṠ for stationary subsets ofω1. Assume this is the case and
let Ḣ be a�δ-name forH such thatT� force the above property oḟH and
� = �(�ℵ2

δ ↾ T�). Then it is easy to check that the map

i : �→ �

p 7→ ‖p ∈ Ḣ‖�

is a complete embedding such that

� �/i[�] is stationary set preserving.

To defineḢ we proceed as follows: for eachM ∈ T� let HM ∈ V beπM[M]-
generic forπM(�) and such thatσHM (πM(Ṡ)) = SM ∈ V is a stationary
subset ofω1 for all �-nameṠ ∈ M for a stationary subset ofω1. Thus
[〈HM : M ∈ T�〉]G is V-generic for�. Let Ċ be a�δ-name for a club subset
of ω1. As in the proof that�δ is stationary set preserving we can argue that
σG(Ċ) = [〈CM : M ≺ Vα〉]G ∈ MG is such thatCM ∈ V is a club subset of
ω1 for someα < δ and for allM ≺ Vα. Then

σG(Ċ) ∩ σH(Ṡ) = [〈CM ∩ SM : M ∈ TVα
�
〉]G , ∅

This shows that [〈HM : M ∈ T�〉]Ġ is the desired�δ-nameḢ, given thatĠ
is the canonical�δ-name for aV-generic filter for�δ.

2 implies 1.
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Let Ġ be the canonical�δ-name for aV-generic filter for�δ. LetT ∈ �δ be
a condition such that� completely embeds into� = �(�δ ↾ T) via i and

� �/i[�] is stationary set preserving

Let Ġ be the canonical name for the�δ-generic filter andḢ = i−1[Ġ]. Then
i(p) = ‖p ∈ Ḣ‖�.

Now notice that� ∈ Vδ and each�-nameṠ for a stationary subset ofω1 is
in Vδ since it is given byω1-many maximal antichains of�.

Thus ifG is V-generic for�δ with T ∈ G, H = σG(Ḣ) ∈ Vδ[G] is V-generic
for � and is such thatσH(Ṡ) ∈ Vδ[G] is stationary inV[G] for all names
Ṡ ∈ V� for stationary subsets ofω1. SinceVδ[G] = (Hω2)

MG
, H ∈ MG, so

H = [ f ]G for somef : P(Vα) → P(�). It is possible to check that for some
α < δ

S ={M ≺ Vα : f (M) = HM is aπM[M]-generic filter forπM(�) such that

σHM (πM(Ṡ)) is stationary for all nameṡS ∈ V� ∩ M

for stationary subsets ofω1} ∈ G

In particularS ≤ T� is stationary and we are done. �

3 Absoluteness of the theory ofHℵ2 in models ofMM++

In this section we prove Theorem 1.4. We leave to the reader toconvert it into a
proof of Theorem 1.5

Theorem 3.1. AssumeMM++ holds in V and there are class many Woodin cardi-
nals. Then theΠ2-theory of Hℵ2 with parameters cannot be changed by stationary
set preserving forcings which preserveBMM.

Proof. AssumeV modelsMM++ and letP ∈ M be such thatVP modelsBMM.
Let δ be a Woodin cardinal larger than|P|. By Theorem 2.16 there is a com-

plete embeddingi : P → Q = �δ ↾ TP for some stationary setTP ∈ Vδ such
that

P Q/i[P] is stationary set preserving.
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Now let G be V-generic forQ and H = i−1[G] be V generic forP. Then
V ⊂ V[H] ⊂ V[G] andV[G] is a generic extension ofV[H] by a forcing which is
stationary set preserving inV[H]. Moreover by Woodin’s theorem on stationary
tower forcing 2.10, we have thatHV

ℵ2
≺ HV[G]

ℵ2
.

We show that
HV
ℵ2
≺Σ2 HV[H]

ℵ2
.

This will prove the Theorem, modulo standard forcing arguments.
We have to prove the following for anyΣ0-formulaφ(x, y, z):

1. If
HV
ℵ2
|= ∃y∀xφ(x, y, p)

for somep ∈ HV
ℵ2

, then also

HV[H]
ℵ2
|= ∃y∀xφ(x, y, p).

2. If
HV
ℵ2
|= ∀y∃xφ(x, y, p)

for somep ∈ HV
ℵ2

, then also

HV[H]
ℵ2
|= ∀y∃xφ(x, y, p).

To prove 1 we note that for someq ∈ HV
ℵ2

we have that

HV
ℵ2
|= ∀xφ(x, q, p).

Then, since
HV
ℵ2
≺ HV[G]

ℵ2
,

we have that
HV[G]
ℵ2
|= ∀xφ(x, q, p).

In particular, sinceq, p ∈ HV[H]
ℵ2

andHV[H]
ℵ2

is a transitive substructure ofHV[G]
ℵ2

, we
get that

HV[H]
ℵ2
|= ∀xφ(x, q, p)

as well. The conclusion now follows.
To prove 2 we note that, since

HV
ℵ2
≺ HV[G]

ℵ2
,
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we have that
HV[G]
ℵ2
|= ∀y∃xφ(x, y, p).

In particular we have that for anyq ∈ HV[H]
ℵ2

we have that

HV[G]
ℵ2
|= ∃xφ(x, q, p).

Now, sinceV[H] modelsBMM andV[G] is an extension ofV[H] by a stationary
set preserving forcing, we get that

HV[H]
ℵ2
≺Σ1 HV[G]

ℵ2
.

In particular we can conclude that

HV[H]
ℵ2
|= ∃xφ(x, q, p)

for all q ∈ HV[H]
ℵ2

, from which the desired conclusion follows.
The proof of the theorem is completed. �

4 Woodin’s absoluteness results forHℵ1

Motivated by the results of the previous section we prove thefollowing theorem:

Theorem 4.1. Assume there are class many Woodin cardinals. Then the theory
of Hℵ1 is invariant with respect to set forcing.

Proof. We prove by induction onn the following Lemma, of which the Theorem
is an immediate consequence:

Lemma 4.2. Assume V is a model ofZFC in which there are class many Woodin
cardinals. Let P∈ V be a forcing notion.

Then for all n, HV
ℵ1
≺Σn HVP

ℵ1
.

Proof. By Cohen’s absoluteness Lemma 1.2, we already know that for all models
M of ZFC and all forcingP ∈ M

HM
ℵ1
≺Σ1 HMP

ℵ1
.

Now assume that for all modelsM of ZFC+there are class many Woodin cardinals
and allP ∈ M we have shown that

HM
ℵ1
≺Σn HMP

ℵ1
.

24



First observe thatMP is still a model ofZFC+there are class many Woodin car-
dinals. Now pick V an arbitrary model ofZFC+there are class many Woodin
cardinalsandP ∈ V a forcing notion.

Let δ ∈ V be a Woodin cardinal inV such thatP ∈ Vδ.
To simplify the argument we assumeV is transitive and there is aV-generic

filter G for�ℵ1
δ (we leave to the reader to remove these unnecessary assumptions).

Then, sinceFAℵ0(P) holds inV and P ∈ Vδ, by Theorem 2.13.1 there is in
V a complete embeddingi : P → �ℵ1

δ . Let H = i−1[G]. Then by our inductive
assumptions applied toV (with respect toV[H]) and toV[H] (with respect to
V[G]) we have that:

HV
ℵ1
≺Σn HV[H]

ℵ1
≺Σn HV[G]

ℵ1
.

By Woodin’s work on the stationary tower forcing we also knowthat

HV
ℵ1
≺ HV[G]

ℵ1
.

Now we prove that
HV
ℵ1
≺Σn+1 HV[H]

ℵ1
.

Since this argument holds for anyV, P andG, the proof will be completed.
We have to prove the following for anyΣn-formulaφ(x, z) and anyΠn-formula

ψ(x, z):

1. If
HV
ℵ1
|= ∀xφ(x, p)

for somep ∈ �V, then also

HV[H]
ℵ1
|= ∀xφ(x, p).

2. If
HV
ℵ1
|= ∃xψ(x, p)

for somep ∈ �V, then also

HV[H]
ℵ1
|= ∃xψ(x, p).

To prove 1 we note that, sinceHV
ℵ1
≺ HV[G]

ℵ1
, we have that

HV[G]
ℵ1
|= ∀xφ(x, p).
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In particular we have that for anyq ∈ HV[H]
ℵ1

we have thatHV[G]
ℵ1

models thatφ(q, p).
Now, since by inductive assumptions

HV[H]
ℵ1
≺Σn HV[G]

ℵ1
,

we get that
HV[H]
ℵ1
|= φ(q, p)

for all q ∈ HV[H]
ℵ1

, from which the desired conclusion follows.
To prove 2 we note that for someq ∈ HV

ℵ1
we have that

HV
ℵ1
|= ψ(q, p).

Then, since by inductive assumptions we have that

HV
ℵ1
≺Σn HV[H]

ℵ1
,

we conclude that
HV[H]
ℵ1
|= ψ(q, p).

The conclusion now follows.
The lemma is now completely proved. �

The Theorem is proved. �

Remark 4.3. Theorem 4.1 has a weaker conclusion than [10, Theorem 3.1.7]
where it is shown that in the presence of class many inaccessible limits of Woodin
cardinals, the first order theory ofL(Pω1Ord) is invariant with respect to set forc-
ing. However in Theorem 4.1 we have slightly weakened the large cardinal hy-
pothesis with respect to Woodin’s [10, Theorem 3.1.7].

We had to weaken the conclusion of Theorem 4.1 with respect to[10, Theorem
3.1.7] since we cannot replaceHℵ1 with L(�) (or L(Pω1Ord)) in the proof of the
above Lemma. The reason is that any element ofL(�) is defined by an arbitrarily
large ordinal and a real and the ordinal may be moved byjG, where jG : V → MG

is the ultarpower embedding living inV[G] and induced byG. In particular we
have thatjG ↾ HV

ω1
is the identity and witnesses that

HV
ℵ1
≺ HV[G]

ℵ1
,

but jG may not witness that

L(�)V ≺ L(�)V[G] ,

which is what we would need in order to perform the type of argument we per-
formed in the proof of the Lemma.
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5 Questions and open problems

5.1 A conjecture onMM++ and Γℵ2-logic.

We conjecture the following:

Conjecture 5.1. Assume V is a model ofMM+++large cardinals. Then for every
P ∈ V which preservesMM++

HV
ℵ2
≺ HVP

ℵ2
,

There is a major obstacle in performing the arguments of Lemma 4.2 in combina-
tion with the proof of Theorem 3.1 to prove this conjecture.

AssumeH is V-generic forP andG is V-generic for�ℵ2
δ so that:

• V |= MM++,

• V[H] |= MM++,

• V[G] is an extension ofV and ofV[H] by a stationary set preserving forcing,

• HV
ℵ2
≺Σ1 HV[H]

ℵ2
≺Σ1 HV[G]

ℵ2
,

• HV
ℵ2
≺ HV[G]

ℵ2
,

From these data following the proof of Theorem 3.1 we can infer HV
ℵ2
≺Σ2 HV[H]

ℵ2
,

but we cannot inferHV[H]
ℵ2
≺Σ2 HV[G]

ℵ2
(which is what allows us to perform the next

step in Lemma 4.2) because we cannot prove thatV[G] is a model ofBMM (and
we do not expect this to be the case).

Thus some new idea is required to prove (or disprove) this conjecture.

5.2 What is the relation betweenMM++ and axiom (∗)?

It is well known that Woodin’s (∗)-axiom is not compatible with the existence of a
well order ofP(ω1) definable inHℵ2 without parameters. On the other hand Larson
has shown thatMM+ω is compatible with the existence of a well-order ofP(ω1)
definable inHω2 without parameters [8]. If we inspect Larson’s result, we see
that Larson’s well order is neitherΠ2-definable norΣ2-definable overHω2. Thus
Theorem 1.5 does not prove that Larson’s well-order can be defined in all models
of MM++. WhetherMM++ can imply or deny axiom (∗) is an interesting open
problem. Larson’s result already shows that any version ofMM+α strictly weaker
thanMM++ neither denies nor implies axiom (∗). However for our absoluteness
results it seems to be crucial that the ground model satisfyMM++.
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Question 5.2. DoesMM+++large cardinalsdenies or implies Woodin’s(∗)-axiom?

5.3 A conjecture onΓℵ3-logic

The results of this paper suggest the following definitions.
Let Γ be a class of partial orders defined by some parameterλ which is a

regular cardinal definable in some theoryT extendingZFC. Natural examples
of such classesΓ for λ = ℵ2 are the family of stationary set preserving posets,
semiproper posets, proper posets, CCC posets. . . .

φ(Γ, λ) asserts that

For all � ∈ Γ and all Woodin cardinalδ > |�| there is a complete
embeddingi : �→ �λδ ↾ S for some stationary setS ∈ Vδ such that

� (�λδ ↾ S)/i[�] ∈ (Γ)V�

Notice thatφ(Γ, λ) entails thatΓ = Γλ by Woodin’s theorem 2.11.

Definition 5.3. A definable class of posetsΓ is maximal forλ with respect to the
theoryT if T models the following:

1. Γλ ⊆ Γ.

2. Con(T)→ Con(T + φ(Γ, λ)).

3. �λδ ∈ Γ for all Woodin cardinalsδ > λ.

4. If i : � → � is a locally complete embedding and� ∈ Γ, then� ∈ Γ as
well.

5. If for some definable classΓ′, Con(T + Γ′ \ Γ , ∅) thenΓ′ = Γλ is not
consistent withT.

Remark 5.4. Notice that ifδ1 < δ2 are Woodin cardinals, then�λδ1
↾ T com-

pletely embeds into�λδ2
↾ T for all regular cardinalsλ < δ1 and all stationary

setsT ∈ P(Rλ) ∩ Vδ1 (see [10, Exercise 2.7.15] and [10, Lemma 2.7.14, Lemma
2.7.16]).

Remark 5.5. The following holds:

28



1. The class of all posets is maximal forℵ1 relative toZFC+ there are class
many Woodin cardinals.

2. SSP is maximal forℵ2 relative toZFC+ there are class many supercompact
cardinals.

Conjecture 5.6. There is a classΓℵ3 which is maximal with respect to the theory
ZFC +MM+++ large cardinals.

Notice that if the above conjecture stands, one should expect to be able to
prove the analogue of Theorem 3.1 forHℵ3.

If the above approach is successful atℵ3, is there a cardinal for which it cannot
work? I.e.:

Question 5.7. What about maximal classesΓλ for larger cardinalsλ?

5.4 What about the effects ofMM++ on the theory ofL(Pω2Ord)?

Can the methods presented in this paper be of some use in the study of L(Pω2Ord)
and not just ofHℵ2?

Question 5.8. CanMM+++large cardinalsdecide inSSP-logic the theory of L(Pω2Ord)?

While we can effectively compute many of the consequencesMM++ has on
the theory ofHℵ2, this is not the case forL(Pω2Ord), for example: by [10, Remark
1.1.28]ZFC fails in L(PκOrd) for all cardinalsκ if there areκ+-many measurable
cardinals inV.

Question 5.9. AssumeMM++ holds. What is the least ordinalλ for which

H
L(Pω2Ord)
λ 6|= ZFC?

It is not hard to see that in models ofMM++ the several examples of definable (with
parameter inHω2) well-orders ofP(ω1) provided by results of Aspero, Caicedo,
Larson, Moore, Todorčević, Veličković, Woodin and others show thatλ is larger
thanℵ2 and is at most theω2 + 1-th measurable cardinal ofV.
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29



References

[1] J. Bagaria,Bounded forcing axioms as principles of generic absoluteness,
Arch. Math. Logic39 (2000), no. 6, 393–401. MR 1773776 (2001i:03103)

[2] P. J. Cohen,The independence of the continuum hypothesis, Proc. Nat. Acad.
Sci. U.S.A.50 (1963), 1143–1148. MR 0157890 (28 #1118)

[3] S. Cox,The diagonal reflection principle, (to appear in the Proceedings of
the AMS).

[4] I. Farah,All automorphisms of the Calkin algebra are inner, Ann. of Math.
(2) 173(2011), no. 2, 619–661. MR 2776359

[5] M. Foreman, M. Magidor, and S. Shelah,Martin’s maximum, saturated ide-
als, and nonregular ultrafilters. I, Ann. of Math. (2)127(1988), no. 1, 1–47.
MR 924672

[6] T. Jech,Set theory, Springer Monographs in Mathematics, Springer, Berlin,
2003, The third millennium edition, revised and expanded. MR 1940513

[7] K. Kunen, Set theory, Studies in Logic and the Foundations of Mathemat-
ics, vol. 102, North-Holland, Amsterdam, 1980, An introduction to indepen-
dence proofs. MR 597342

[8] P. B. Larson,Martin’s maximum and definability in H(ℵ2), Ann. Pure Appl.
Logic 156(2008), no. 1, 110–122. MR 2474445 (2009k:03085)

[9] , Forcing over models of determinacy, Handbook of set theory. Vols.
1, 2, 3, Springer, Dordrecht, 2010, pp. 2121–2177. MR 2768703

[10] Paul B. Larson,The stationary tower, University Lecture Series, vol. 32,
American Mathematical Society, Providence, RI, 2004, Notes on a course
by W. Hugh Woodin. MR 2069032

[11] J. T. Moore,Set mapping reflection, J. Math. Log.5 (2005), no. 1, 87–97.
MR 2151584 (2006c:03076)

[12] J. T. Moore,A five element basis for the uncountable linear orders, Ann. of
Math. (2)163(2006), no. 2, 669–688. MR 2199228

30



[13] S. Shelah,Infinite abelian groups, Whitehead problem and some construc-
tions, Israel J. Math.18 (1974), 243–256. MR 0357114 (50 #9582)

[14] J. Stavi and J. Väänänen,Reflection principles for the continuum, Logic and
algebra, Contemp. Math., vol. 302, Amer. Math. Soc., Providence, RI, 2002,
pp. 59–84. MR 1928384 (2003h:03082)

[15] S. Todorcevic,Generic absoluteness and the continuum, Math. Res. Lett.9
(2002), no. 4, 465–471. MR 1928866 (2003f:03067)

[16] M. Viale, Guessing models and generalized laver’s diamond, (to appear in
APAL, 31 pages, (arXiv:1012.2212v3)).

[17] M. Viale and C. Weiß,On the consistency strength of the proper forcing
axiom, Adv. in Math.228(5)(2011), 2672–2687.

[18] W. H. Woodin,The axiom of determinacy, forcing axioms, and the nonsta-
tionary ideal, de Gruyter Series in Logic and its Applications, vol. 1, Walter
de Gruyter & Co., Berlin, 1999. MR 1713438

31


	1 Introduction
	1.1 Notation and prerequisites

	2 Preliminaries
	2.1 Preliminaries I: complete embeddings and projections
	2.2 Preliminaries II: forcing axioms
	2.3 Preliminaries III: stationary sets and the stationary tower forcing
	2.4 Preliminaries IV: Woodin cardinals are forcing axioms
	2.5 Preliminaries V: MM++

	3 Absoluteness of the theory of H2 in models of MM++
	4 Woodin's absoluteness results for H1
	5 Questions and open problems
	5.1 A conjecture on MM++ and 2-logic.
	5.2 What is the relation between MM++ and axiom (*)?
	5.3 A conjecture on 3-logic
	5.4 What about the effects of MM++ on the theory of L(P2Ord)?


