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SYMMETRY IN ABSTRACT ELEMENTARY CLASSES

WITH AMALGAMATION

MONICA M. VANDIEREN AND SEBASTIEN VASEY

Abstract. This paper is part of a program initiated by Saharon
Shelah to extend the model theory of first order logic to the non-
elementary setting of abstract elementary classes (AECs). An ab-
stract elementary class is a semantic generalization of the class of
models of a complete first order theory with the elementary sub-
structure relation. We examine the symmetry property of splitting
(previously isolated by the first author) in AECs with amalgama-
tion that satisfy a local definition of superstability.

The key results are a downward transfer of symmetry and a
deduction of symmetry from failure of the order property. These
results are then used to prove several structural properties in cat-
egorical AECs, improving classical results of Shelah who focused
on the special case of categoricity in a successor cardinal.

We also study the interaction of symmetry with tameness, a
locality property for Galois (orbital) types. We show that super-
stability and tameness together imply symmetry. This sharpens
previous work of Boney and the second author.
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1. Introduction

The guiding conjecture for the classification of abstract elementary
classes (AECs) is Shelah’s categoricity conjecture. For an introduction
to AECs and Shelah’s cateogicity conjecture, see [Bal09].

Although most progress towards Shelah’s categoricity conjecture has
been made under the assumption that the categoricity cardinal is a
successor, e.g. [She99, GV06a, Bon14b], recently, the second author
has proved a categoricity transfer theorem without assuming that the
categoricity cardinal is a successor, but assuming that the class is uni-
versal [Vasa, Vasb] (other partial results not assuming categoricity in
a successor cardinal are in [Vas16a] and [She09, Chapter IV]). In this
paper, we work in a more general framework than [Vasa, Vasb]. We as-
sume the amalgamation property and no maximal models and deduce
new structural results without having to assume that the categoricity
cardinal is a successor, or even has “high-enough” cofinality.

Beyond Shelah’s categoricity conjecture, a major focus in developing a
classification theory for AECs has been to find an appropriate general-
ization of first-order superstability. Approximations isolated in [She99]
and [SV99] have provided a mechanism for proving categoricity trans-
fer results (see also [GV06a], [Vasa, Vasb]). In Chapter IV of [She09],
Shelah introduced solvability and claims it should be the true defi-
nition of superstability in AECs (see Discussion 2.9 in the introduc-
tion to [She09]). It seems, however, that under the assumption that
the class has amalgamation, a more natural definition is a version of
“κ(T ) = ℵ0”, first considered without the assumption of categoricity in
[GVV16]. In [GV], it is shown that this definition is equivalent to many
others (including solvability and the existence of a good frame, a local
notion of independence), provided that the AEC satisfies a locality
property for types called tameness [GV06b].

Without tameness, progress has been made in the study of structural
consequences of the Shelah-Villaveces definition of superstability such
as the uniqueness of limit models (e.g. [GVV16]) or the property that
the union of saturated models is saturated ([BVa, Van16b]). Recently
in [Van16a], the first author isolated a symmetry property for splitting
that turns out to be closely related to the uniqueness of limit models.
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1.1. Transferring symmetry. In this paper we prove a downward
transfer theorem for this symmetry property. This allows us to gain
insight into all of the aspects of superstability mentioned above.

Theorem 1.1. Let K be an AEC. Suppose λ and µ are cardinals so
that λ > µ ≥ LS(K) and K is superstable in every χ ∈ [µ, λ]. Then
λ-symmetry implies µ-symmetry.

Theorem 1.1 (proven at the end of Section 3) improves Theorem 2 of
[Van16b] which transfers symmetry from µ+ to µ. We also clarify the
relationship between µ-symmetry (as a property of µ-splitting) and the
symmetry property in good frames (see Section 4). The latter is older
and has been studied in the literature: the work of Shelah in [She01]
led to [She09, Theorem 3.7], which gives conditions under which a good
frame (satisfying a version of symmetry) exists (but uses set-theoretic
axioms beyond ZFC and categoricity in two successive cardinals). One
should also mention [She09, Theorem IV.4.10] which builds a good
frame (in ZFC) from categoricity in a high-enough cardinal. Note,
however, the cardinal is very high and the underlying class of the frame
is a smaller class of Ehrenfeucht-Mostowski models, although this can
be fixed by taking an even larger cardinal.

It was observed in [BGKV16, Theorem 5.14] that Shelah’s proof of
symmetry of first-order forking generalizes naturally to give that the
symmetry property of any reasonable global independence notion fol-
lows from the assumption of no order property. This is used in [Vas16b]
to build a good frame from tameness and categoricity (the results there
are improved in [Vas16a, BVa]). As for symmetry transfers, Boney
[Bon14a] has shown how to transfer symmetry of a good frame up-
ward using tameness for types of length two. This was later improved
to tameness for types of length one with a more conceptual proof in
[BVb].

Theorem 1.1 differs from these works in a few ways. First, we do not
assume tameness nor set-theoretic assumptions, and we do not work
within the full strength of a frame or with categoricity (only with su-
perstability). Also, we obtain a downward and not an upward transfer.
The arguments of this paper use towers whereas the aforementioned
result of Boney and the second author use independent sequences to
transfer symmetry upward.

1.2. Symmetry and superstability. Another consequence of our
work is a better understanding of the relationship between superstabil-
ity and symmetry. It was claimed in an early version of [GVV16] that
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µ-superstability directly implies the uniqueness of limit models of size
µ but an error was later found in the proof. Here we show that this is
true provided we have enough instances of superstability:

Theorem 5.8. Let K be an AEC and let µ ≥ LS(K). If K is super-
stable in all µ′ ∈ [µ,i(2µ)+), then K has µ-symmetry.

The main idea is to imitate the proof of the aforementioned [BGKV16,
Theorem 5.14] to get the order property from failure of symmetry.
However we do not have as much global independence as there so the
proof here is quite technical.

1.3. Implications in categorical AECs. As a corollary of Theorem
5.8, we obtain several applications to categorical AECs. A notable
contribution of this paper is an improvement on a 1999 result of Shelah
(see [She99, Theorem 6.5]):

Fact 1.2. Let K be an AEC with amalgamation and no maximal mod-
els. Let λ and µ be cardinals such that cf(λ) > µ > LS(K). If K is
categorical in λ, then any limit model of size µ is saturated.

Shelah claims in a remark immediately following his result that this
can be generalized to show that for M0,M1,M2 ∈ Kµ, if M1 and M2

are limit over M0, then M1
∼=M0 M2 (that is, the isomorphism also

fixes M0). This is however not what his proof gives (see the discussion
after Theorem 10.17 in [Bal09]). Here we finally prove this stronger
statement. Moreover, we can replace the hypothesis that cf(λ) > µ by
λ ≥ i(2µ)+ . That is, it is enough to ask for λ to be high-enough (but

of arbitrary cofinality):

Corollary 7.3. Let K be an AEC with amalgamation and no maximal
models. Let λ and µ are cardinals so that λ > µ ≥ LS(K) and assume
that K is categorical in λ. If either cf(λ) > µ or λ ≥ i(2µ)+, then
whenever M0,M1,M2 ∈ Kµ are such that both M1 and M2 are limit
models over M0, we have that M1

∼=M0 M2.

This gives a proof (assuming amalgamation, no maximal models, and
a high-enough categoricity cardinal) of the (in)famous [SV99, Theorem
3.3.7], where a gap was identified in the first author’s Ph.D. thesis. The
gap was fixed assuming categoricity in µ+ in [Van06, Van13] (see also
the exposition in [GVV16]). In [BG, Corollary 6.18], this was improved
to categoricity in an arbitrary λ > µ provided that µ is big-enough
and the class satisfies strong locality assumptions (full tameness and
shortness and the extension property for coheir). In [Vas16b, Theorem
7.11], only tameness was required but the categoricity had to be in a λ
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with cf(λ) > µ. Still assuming tameness, this is shown for categoricity
in any λ ≥ i(2µ)+ in [BVa, Theorem 7.1]. Here assuming tameness we
will improve this to categoricity in any λ > LS(K) (see Corollary 7.10).

In general, we obtain that an AEC with amalgamation categorical in
a high-enough cardinal has several structural properties that were pre-
viously only known for AECs categorical in a cardinal of high-enough
cofinality, or even just in a successor.

Corollary 1.3. Let K be an AEC with amalgamation. Let λ > µ ≥
LS(K) and assume that K is categorical in λ. Let µ ≥ LS(K). If K is
categorical in a λ > µ, then:

(1) (see Corollary 7.4) If λ ≥ i(2µ)+ and µ > LS(K), then the
model of size λ is µ-saturated.

(2) (see Corollary 7.9) If µ ≥ i(2LS(K))+ and the model of size λ
is µ+-saturated, then there exists a type-full good µ-frame with
underlying class the saturated models in Kµ.

This improves several classical results from Shelah’s milestone study of
categorical AECs with amalgamation [She99]:

• Corollay 1.3.(1) partially answers Baldwin [Bal09, Problem D.1.(2)]
which asked if in any AEC with amalgamation categorical in a
high-enough cardinal, then the model in the categoricity cardi-
nal is saturated.

• Corollay 1.3.(2) partially answers the question in [She99, Re-
mark 4.9.(1)] of whether there is a parallel to forking in cate-
gorical AECs with amalgamation. It also improves on [Vas16b,
Theorem 7.4], which assumed categoricity in a successor (and
a higher Hanf number bound).

• As part of the proof of Corollay 1.3.(2), we derive weak tameness
(i.e. tameness over saturated models) from categoricity in a big-
enough cardinal (this is Corollary 7.5). It was previously only
known how to do so assuming that the categoricity cardinal has
high-enough cofinality [She99, Main Claim II.2.3].

We deduce a downward categoricity transfer in AECs with amalgama-
tion (see also Corollary 7.7):

Corollary 7.8. Let K be an AEC with amalgamation. Let LS(K) <
µ = iµ < λ. If K is categorical in λ, then K is categorical in µ.

This improves on [Vas16a, Theorem 10.16] where the result is stated
with the additional assumption of (< µ)-tameness.
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1.4. Implications in tame AECs. This paper also combines our re-
sults with tameness: in Section 6, we improve Hanf number bounds
for several consequences of superstability. With Will Boney, the sec-
ond author has shown [BVa, Theorem 7.1] that µ-superstability and
µ-tameness imply that for all high-enough λ, limit models of size λ
are unique (in the strong sense discussed above), unions of chains of
λ-saturated models are saturated, and there exists a type-full good
λ-frame. We transfer this behavior downward using our symmetry
transfer theorem to get that the latter result is actually true starting
from λ = µ+, and the former starting from λ = µ:

Corollary 1.4. Let µ ≥ LS(K). If K is µ-superstable and µ-tame,
then:

(1) (see Corollary 6.9) If M0,M1,M2 ∈ Kµ are such that both M1

and M2 are limit models over M0, then M1
∼=M0 M2.

(2) (see Corollary 6.10) For any λ > µ, the union of an increasing
chain of λ-saturated models is λ-saturated.

(3) (see Corollary 6.14) There exists a type-full good µ+-frame with
underlying class the saturated models in Kµ+.

In fact, µ-tameness along with µ-superstability already implies µ-symmetry.
Many assumptions weaker than tameness (such as the existence of a
good µ+-frame, see Theorem 4.14) suffice to obtain such a conclusion.

1.5. Notes. A word on the background needed to read this paper: It is
assumed that the reader has a solid knowledge of AECs (including the
material in [Bal09]). Some familiarity with good frames, in particular
the material of [Vas16b] would be very helpful. In addition to classical
results, e.g. in [She99], the paper uses heavily the results of [Van16a,
Van16b] on limit models and the symmetry property of splitting. It
also relies on the construction of a good frame in [Vas16b]. At one point
we also use the canonicity theorem for good frames [Vas16a, Theorem
9.7].

This paper was written while the second author was working on a Ph.D.
thesis under the direction of Rami Grossberg at Carnegie Mellon Uni-
versity and he would like to thank Professor Grossberg for his guidance
and assistance in his research in general and in this work specifically.
We also thank the referees for reports which helped improve the pre-
sentation of this paper.
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2. Background

All throughout this paper, we assume the amalgamation property:

Hypothesis 2.1. K is an AEC with amalgamation.

For convenience, we fix a big-enough monster model C and work inside
C. This is possible since by Remark 2.9, we will have the joint embed-
ding property in addition to the amalgamation property for models of
the relevant cardinalities. At some point, we will also use the following
fact whose proof is folklore (see e.g. [Vas16a, Proposition 10.13])

Fact 2.2. Assume that K has joint embedding in some λ ≥ LS(K).
Then there exists χ < i

(2LS(K))
+ and an AEC K∗ such that:

(1) K∗ ⊆ K and K∗ has the same strong substructure relation as K.
(2) LS(K∗) = LS(K).
(3) K∗ has amalgamation, joint embedding, and no maximal mod-

els.
(4) K≥min(λ,χ) = (K∗)≥min(λ,χ).

Many of the pre-requisite definitions and notations used in this paper
can be found in [GVV16]. Here we recall the more specialized concepts
that we will be using explicitly.

We write ga-tp(ā/M) for the Galois type of the sequence ā over M
(and we write ga-S(M) for the set of all Galois types over M). While
the reader can think of ga-tp(ā/M) as the orbit of ā under the action of
AutM(C), ga-tp(ā/M) is really defined as the equivalence class of the
triple (ā,M,C) under a certain equivalence relation (see for example
[Gro02, Definition 6.4]). This allows us to define the restriction of
a Galois type to any strong substructure of its domain, as well as
its image under any automorphism of C (and by extension any K-
embedding whose domain contains the domain of the type).

With that remark in mind, we can state the definition of non-splitting,
a notion of independence from [She99, Definition 3.2].

Definition 2.3. A type p ∈ ga-S(N) does not µ-split over M if and
only if for any N1, N2 ∈ Kµ such that M ≤ Nℓ ≤ N for ℓ = 1, 2, and
any f : N1

∼=M N2, we have f(p ↾ N1) = p ↾ N2

We will use the definition of universality from [Van06, Definition I.2.1]:

Definition 2.4. Let M,N ∈ K be such that M ≤ N . We say that
N is µ-universal over M if for any M ′ ≥ M with ‖M ′‖ ≤ µ, there
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exists f : M ′ −→
M

N . We say that N is universal over M if N is

‖M‖-universal over M .

A fundamental concept in the study of superstable AECs is the notion
of a limit model, first introduced in [She99]. We only give the definition
here and refer the reader to [GVV16] for more history and motivation.

Definition 2.5. Let µ ≥ LS(K) and let α < µ+ be a limit ordinal.
Let M ∈ Kµ. We say that N is (µ, α)-limit over M (or a (µ, α)-limit
model over M) if there exists a strictly increasing continuous chain
〈Mi : i ≤ α〉 in Kµ such that M0 = M , Mα = N , and Mi+1 is universal
over Mi for all i < α. We say that N is limit over M (or a limit model
over M) if it is (µ, β)-limit over M for some β < µ+. Finally, we say
that N is limit if it is limit over N0 for some N0 ∈ K‖N‖.

Towers were introduced in Shelah and Villaveces [SV99] as a tool to
prove the uniqueness of limit models. A tower is an increasing sequence
of length α of limit models, denoted by M̄ = 〈Mi ∈ Kµ | i < α〉, along
with a sequence of designated elements ā = 〈ai ∈ Mi+1\Mi | i+1 < α〉
and a sequence of designated submodels N̄ = 〈Ni | i+1 < α〉 for which
Ni ≤ Mi, ga-tp(ai/Mi) does not µ-split over Ni, and Mi is universal
over Ni (see Definition I.5.1 of [Van06]).

Now we recall a bit of terminology regarding towers. The collection of
all towers (M̄, ā, N̄) made up of models of cardinality µ and sequences
indexed by α is denoted by K∗

µ,α. For (M̄, ā, N̄) ∈ K∗
µ,α, if β < α then

we write (M̄, ā, N̄) ↾ β for the tower made of the subseqences M̄ ↾ β =
〈Mi | i < β〉, ā ↾ β = 〈ai | i + 1 < β〉, and N̄ ↾ β = 〈Ni | i + 1 < β〉.
We sometimes abbreviate the tower (M̄, ā, N̄) by T .

Definition 2.6. For towers (M̄, ā, N̄) and (M̄ ′, ā′, N̄ ′) in K∗
µ,α, we say

(M̄, ā, N̄) ≤ (M̄ ′, ā′, N̄ ′)

if for all i < α, Mi ≤ M ′
i , ā = ā′, N̄ = N̄ ′ and whenever M ′

i is a proper
extension of Mi, then M ′

i is universal over Mi. If for each i < α, M ′
i

is universal over Mi we will write (M̄, ā, N̄) < (M̄ ′, ā′, N̄ ′).

In order to transfer symmetry from λ to µ we will need to consider a
generalization of these towers where the models Mi and Ni may have
different cardinalities. Fix λ ≥ µ ≥ LS(K) and α a limit ordinal < µ+.
We will write K∗

λ,α,µ for the collection of towers of the form (M̄, ā, N̄)

where M̄ = 〈Mi | i < α〉 is a sequence of models each of cardinality λ
and N̄ = 〈Ni | i+ 1 < α〉 is a sequence of models of cardinality µ. We
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require that for i < α, Mi is µ-universal over Ni and ga-tp(ai/Mi) does
not µ-split over Ni.

In a natural way we order these towers by the following adaptation of
Definition 2.6.

Definition 2.7. Let λ ≥ χ ≥ µ ≥ LS(K) be cardinals and fix α < µ+

an ordinal. For towers (M̄, ā, N̄) ∈ K∗
λ,α,µ and (M̄ ′, ā′, N̄ ′) ∈ K∗

χ,α,µ,
we say

(M̄, ā, N̄) <µ (M̄ ′, ā′, N̄ ′)

if for all i < α, Mi ≤ M ′
i , ā = ā′, N̄ = N̄ ′, and there is θ < λ+ so that

M ′
i is a (λ, θ)-limit model witnessed by a sequence 〈Mγ

i | γ < θ〉 with
Mi < Mγ

0 .

Note that Definition 2.6 is defined only on towers in K∗
µ,α and is slightly

weaker from the ordering <µ when restricted to K∗
µ,α. In particular,

the models M ′
i in the tower (M̄ ′, ā, N̄) <-extending (M̄, ā, N̄) are only

required to be universal over Mi and limit. It is not necessary that M ′
i

is limit over Mi as we require if (M̄ ′, ā, N̄) <µ (M̄, ā, N̄).

Towers are particularly suited for superstable abstract elementary classes,
in which they are known to exist and in which the union of an increas-
ing chain of towers will be a tower. The definition below is already
implicit in [SV99] and has since then been studied in many papers, e.g.
[Van06, GVV16, Vas16a, BVa, GV]. We will use the definition from
[Vas16a, Definition 10.1]:

Definition 2.8. K is µ-superstable (or superstable in µ) if:

(1) µ ≥ LS(K).
(2) Kµ is nonempty, has joint embedding, and no maximal models.
(3) K is stable in µ. That is, | ga-S(M)| ≤ µ for all M ∈ Kµ. Some

authors call this “Galois-stable,” and:
(4) µ-splitting in K satisfies the “no long splitting chains” property:

For any limit ordinal α < µ+, for every sequence 〈Mi | i < α〉
of models of cardinality µ with Mi+1 universal over Mi and for
every p ∈ ga-S(

⋃
i<αMi), there exists i < α such that p does

not µ-split over Mi.

Remark 2.9. By our global hypothesis of amalgamation (Hypothesis
2.1), if K is µ-superstable, then K≥µ has joint embedding.

Remark 2.10. By the weak transitivity property of µ-splitting [Vas16b,
Proposition 3.7], µ-superstability implies the following continuity prop-
erty (which is sometimes also stated as part of the definition): For any
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limit ordinal α < µ+, for every sequence 〈Mi | i < α〉 of models of cardi-
nality µ with Mi+1 universal over Mi and for every p ∈ ga-S(

⋃
i<αMi),

if p ↾ Mi does not µ-split over M0 for all i < α, then p does not µ-split
over M0. We will use this freely.

The main results of this paper involve the concept of symmetry over
limit models and its equivalent formulation involving towers which was
identified in [Van16a]:

Definition 2.11. We say that an abstract elementary class exhibits
symmetry for non-µ-splitting if whenever models M,M0, N ∈ Kµ and
elements a and b satisfy the conditions 1-4 below, then there exists M b a
limit model over M0, containing b, so that ga-tp(a/M b) does not µ-split
over N . See Figure 1.

(1) M is universal over M0 and M0 is a limit model over N .
(2) a ∈ M\M0.
(3) ga-tp(a/M0) is non-algebraic and does not µ-split over N .
(4) ga-tp(b/M) is non-algebraic and does not µ-split over M0.

N

M0 M

b

a

M b

Figure 1. A diagram of the models and elements in the
definition of symmetry. We assume the type ga-tp(b/M)
does not µ-split over M0 and ga-tp(a/M0) does not µ-
split over N . Symmetry implies the existence of M b a
limit model over M0 containing b, so that ga-tp(a/M b)
does not µ-split over N .

We end by recalling a few results of the first author showing the im-
portance of the symmetry property:

Fact 2.12 (Theorem 2 in [Van16a]). If K is µ-superstable and the union
of any chain (of length less than µ++) of saturated models of size µ+

is saturated, then K has µ-symmetry.
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Many of the results on symmetry rely on the equivalent formulation of
µ-symmetry in terms of reduced towers.

Definition 2.13. A tower (M̄, ā, N̄) ∈ K∗
µ,α is reduced if it satisfies

the condition that for every <-extension (M̄ ′, ā, N̄) ∈ K∗
µ,α of (M̄, ā, N̄)

and for every i < α, M ′
i

⋂
(
⋃

j<αMj) = Mi.

Definition 2.14. A tower (M̄, ā, N̄) ∈ K∗
µ,α is continuous if for any

limit i < α, Mi =
⋃

j<iMj.

Fact 2.15 (Theorem 3 in [Van16a]). Assume K is µ-superstable. The
following are equivalent:

(1) K has µ-symmetry.
(2) Any reduced tower in K∗

µ,α is continuous.

In [SV99], Shelah and Villaveces attempt to show that that the con-
tinuity of reduced towers gives the uniqueness of limit models using
full towers. Later Grossberg, VanDieren, and Villaveces verified this
statement through the introduction of relatively full towers [GVV16]:

Fact 2.16. Assume K is µ-superstable. If any reduced tower in K∗
µ,α is

continuous (or equivalently by Fact 2.15 if K has µ-symmetry), then for
any M0,M1,M2 ∈ Kµ, if M1 and M2 are limit over M0, then M1

∼=M0

M2.

Symmetry also has implications to chains of saturated models. For
λ > LS(K), write Kλ-sat for the class of λ-saturated models in K≥λ. We
also define K0-sat := K. Using this notation, we have:

Fact 2.17 (Theorem 22 in [Van16b]). Assume K is µ-superstable, µ+-

superstable, and every limit model in Kµ+ is saturated. Then Kµ+-sat is

an AEC with LS(Kµ+-sat) = µ+.

Remark 2.18. By Fact 2.16, the hypotheses of Fact 2.17 hold if K is
µ-superstable, µ+-superstable, and has µ+-symmetry.

We will also use the following easy lemma:

Lemma 2.19. Let λ be a limit cardinal and let λ0 < λ. Assume that
for all µ ∈ [λ0, λ), K

µ-sat is an AEC with LS(Kµ-sat) = µ. Then Kλ-sat

is an AEC with LS(Kλ-sat) = λ.

Proof. That Kλ-sat is closed under chains is easy to check. To see
LS(Kλ-sat) = λ, let M ∈ Kλ-sat and let A ⊆ |M |. Without loss of gener-
ality, χ := |A| ≥ λ. Let δ := cf(λ) and let 〈λi : i < δ〉 be an increasing
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sequence of cardinals with limit λ. Build 〈Mi : i ≤ δ〉 increasing contin-
uous in Kχ such that for all i < δ, Mi+1 is λ

+
i -saturated and A ⊆ |M0|.

This is possible by assumption. Then Mδ is λ
+
i -saturated for all i < δ,

hence is λ-saturated. Thus it is as needed. �

3. Transferring symmetry

In this section we prove Theorem 1.1 which is key to the results in the
following sections. We start with a few observations which will allow us
to extend the tower machinery from [GVV16] and [Van16b] to include
towers composed of models of different cardinalities. In particular,
we derive an extension property for towers of different cardinalities,
Lemma 3.7. This will allow us to adapt the arguments from [Van16b]
to prove Theorem 1.1.

We start with a study of chains where each model indexed by a suc-
cessor is universal over its predecessor:

Proposition 3.1. Suppose that λ ≥ LS(K) is a cardinal. Assume that
K is stable in λ with no maximal models of cardinality λ. Let θ be a limit
ordinal. Assume 〈Mi ∈ K≥LS(K) | i < θ〉 is a strictly increasing and
continuous sequence of models so that for all i < θ, Mi+1 is universal
over Mi. If M :=

⋃
i<θ Mi has size λ, then M is a (λ, θ)-limit model

over some model containing M0.

Proof. By cardinality considerations, θ < λ+. Replacing θ by cf(θ) if
necessary, we can assume without loss of generality that θ is regular.
By λ-stability and the assumption that K has no maximal models of
cardinality λ, we can fix a (λ, θ)-limit model M∗ witnessed by 〈M∗

i |
i < θ〉 with M0 ≤ M∗

0 . If there exists i < θ such that Mi ∈ Kλ,
then the sequence 〈Mj | j ∈ [i, θ)〉 witnesses that M is (λ, θ)-limit and
M0 ≤ Mi; so assume that λ > LS(K) and Mi ∈ K<λ for all i < θ.
Then we must have that θ = cf(λ). If λ is a successor, we must have
that θ = λ and we obtain the result from [Van16b, Proposition 14]; so
assume λ is limit. For i < θ, let λi := ‖Mi‖.

Fix 〈aα | α < λ〉 an enumeration of M∗. Using the facts that Mi+1

is universal over Mi and that M∗
i+1 is universal over M∗

i , we can build
an isomorphism f : M ∼= M∗ inductively by defining an increasing
and continuous sequence of K-embeddings fi so that fi : Mi → M∗

i ,
f0 = idM0, and {aα | α < λi} ⊆ rg(fi+1). �
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We will use the following generalization of the weak transitivity prop-
erty of µ-splitting proven in [Vas16b, Proposition 3.7]. The difference
here is that the models are allowed to be of size bigger than µ.

Proposition 3.2. Let µ ≥ LS(K) be such that K is stable in µ. Let
M0 ≤ M1 < M ′

1 ≤ M2 all be in K≥µ. Assume that M ′
1 is universal over

M1. Let p ∈ ga-S(M2). If p ↾ M ′
1 does not µ-split over M0 and p does

not µ-split over some N ∈ Kµ with N ≤ M1, then p does not µ-split
over M0.

Proof. Note that by definition of µ-splitting,M0 ∈ Kµ. Thus by making
N larger if necessary we can assume that M0 ≤ N . By basic properties
of universality we have that M ′

1 is universal over N , hence without
loss of generality M1 = N . In particular, M1 ∈ Kµ. By stability,
build M ′′

1 ∈ Kµ universal over M1 such that M1 < M ′′
1 ≤ M ′

1. By
monotonicity, p ↾ M ′′

1 does not µ-split over M0. Thus without loss
of generality also M ′

1 ∈ Kµ. By definition of µ-splitting, it is enough
to check that p ↾ M ′

2 does not µ-split over M0 for all M ′
2 ∈ Kµ with

M ′
2 ≤ M2. Thus without loss of generality againM2 ∈ Kµ. Now use the

weak transitivity property of µ-splitting [Vas16b, Proposition 3.7]. �

We use the previous proposition to extend the continuity property of
µ-splitting to models of size bigger than µ. This is very similar to the
argument in [She09, Claim II.2.11].

Proposition 3.3. Let µ ≥ LS(K) and assume that K is µ-superstable.

Suppose 〈Mi ∈ K≥µ | i < δ〉 is an increasing sequence of models so that,
for all i < δ, Mi+1 is universal over Mi. Let p ∈ ga-S(

⋃
i<δ Mi). If

p ↾ Mi does not µ-split over M0 for each i < δ, then p does not µ-split
over M0.

Proof. Without loss of generality, δ = cf(δ). Let Mδ :=
⋃

i<δ Mi. There
are two cases to check. If δ > µ, then by [She99, Claim 3.3], there exists
N ∈ Kµ with N ≤ Mδ such that p does not µ-split over N . Pick i < δ
such that N ≤ Mi. Then p does not µ-split over Mi. By Proposition
3.2 (where (M0,M1,M

′
1,M2, N) there stand for (M0,Mi,Mi+1,Mδ, N)

here), p does not µ-split over M0.

Suppose then that δ ≤ µ and for sake of contradiction that M∗ of
cardinality µ witnesses the splitting of p over M0, i.e. p ↾ M∗ µ-splits
over M0. We can find 〈M∗

i ∈ Kµ | i < δ〉 an increasing resolution
of M∗ so that M∗

i ≤ Mi for all i < δ. By monotonicity of splitting,
stability in µ, and the fact that each Mi+1 is universal over Mi, we can
increase M∗, if necessary, to arrange that M∗

i+1 is universal over M∗
i .
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Since p ↾ Mi does not µ-split over M0, monotonicity of non-splitting
implies that p ↾ M∗

i does not µ-split over M0. Then, by µ-superstability
p ↾ M∗-does not µ-split over M0. This contradicts our choice of M∗.

�

We adapt the proof of the extension property for non-µ-splitting ([Van06,
Theorem I.4.10]) to handle models of different sizes under the addi-
tional assumption of superstability in the size of the bigger model.
The conclusion can also be achieved using the assumption of tameness
instead of superstability (since µ-splitting and λ-splitting coincide if K
is µ-tame and µ ≤ λ, see [BGKV16, Proposition 3.12]).

Proposition 3.4. Fix cardinals λ > µ ≥ LS(K). Suppose that K is
µ-stable and λ-superstable.

Let M ∈ Kµ and Mλ,M ′ ∈ Kλ be such that M ≤ Mλ ≤ M ′ and Mλ is
limit over some model containing M . Let p ∈ ga-S(Mλ) be such that p
does not µ-split over M . Then there exists q ∈ ga-S(M ′) extending p
so that q does not µ-split over M . Moreover q is algebraic if and only
if p is.

Proof. Let θ < λ+ and 〈Mλ
i | i < θ〉 witness that Mλ is (λ, θ)-limit

with M ≤ Mλ
0 . Write p := ga-tp(a/Mλ). By λ-superstability there

exists i < θ so that p does not λ-split over Mλ
i . Since M

λ
i+2 is universal

over Mλ
i+1 there exists f : M ′ →

Mλ
i+1

Mλ
i+2. Extend f to g ∈ AutMλ

i+1
(C).

Let q := g−1(p) ↾ M ′ = ga-tp(g−1(a)/M ′). Note that q is nonalgebraic
if p is nonalgebraic (the converse will follow once we have shown that
q extends p). By monotonicity, invariance, and our assumption that
p does not µ-split over M , we can conclude that q does not µ-split
over M . By similar reasoning also q does not λ-split over Mλ

i . In
particular ga-tp(g−1(a)/Mλ) = q ↾ Mλ does not λ-split over Mλ

i . Since
g fixes Mλ

i+1, we know that g−1(a) realizes p ↾ Mλ
i+1. Therefore, we

get by the uniqueness of non-λ-splitting extensions that q ↾ Mλ =
ga-tp(f−1(a)/Mλ) = ga-tp(a/Mλ) = p. This shows that q extends p,
as desired. �

We can now prove an extension property for towers in K∗
λ,α,µ.

Lemma 3.5. Let λ and µ be cardinals satisfying λ ≥ µ ≥ LS(K).
Assume that K is superstable in µ and in λ. For any (M̄, ā, N̄) ∈
K∗

λ,α,µ, there exists (M̄ ′, ā, N̄) ∈ K∗
λ,α,µ so that:

(M̄, ā, N̄) <µ (M̄ ′, ā, N̄)
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Proof. If λ = µ, the result follows from infinitely many (for example
cf(λ) many) applications of [GVV16, Lemma 5.3] which is the extension
property for towers. If λ > µ, the result follows similarly from the proof
of the extension property for towers using Proposition 3.4. �

We also have a continuity property:

Lemma 3.6. Let µ ≥ LS(K) be such that K is µ-superstable. Let
〈λi : i < δ〉 be an increasing sequence of cardinals with λ0 ≥ µ.
Let 〈(M̄ i, ā, N̄) ∈ K∗

λi,α,µ
| i < δ〉 be a sequence of towers such that

(M̄ i, ā, N̄) <µ (M̄ i+1, ā, N̄) for all i < δ.

Let M̄ δ be the sequence composed of models of the form M δ
β :=

⋃
i<δ M

i
β

for β < α. Let λ :=
∑

i<δ λi.

Then (M̄ δ, ā, N̄) ∈ Kλ,α,µ∗ and (M̄ i, ā, N̄) <µ (M̄ δ, ā, N̄) for all i < δ.

Proof. Working by induction on δ, we can assume without loss of gen-
erality that the sequence of tower is continuous. That is, for each β < α
and limit i < δ, M i

β =
⋃

j<iM
j
β. Of course, it is enough to show that

(M̄0, ā, N̄) <µ (M̄ δ, ā, N̄). Let β < α. There are two things to check:
Mλ

β is a limit model over a model that contains M0
β , and ga-tp(aβ/M

λ
β )

does not µ-split over Nβ . Proposition 3.1 confirms that Mλ
β is a (λ, δ)-

limit model over some model containing M0
β . Because each (M̄ i, ā, N̄)

is a tower, we know that ga-tp(aβ/M
i
β) does not µ-split over Nβ. This

allows us to apply Proposition 3.3 to conclude that ga-tp(aβ/M
λ
β ) does

not µ-split over Nβ. �

We conclude an extension property for towers of different sizes

Lemma 3.7. Let κ, λ and µ be cardinals satisfying λ ≥ κ ≥ µ ≥
LS(K). Assume that K is superstable in µ and in every χ ∈ [κ,max(κ+, λ)).

Let (M̄κ, ā, N̄) ∈ K∗
κ,α,µ.

(1) There exists (M̄, ā, N̄) ∈ K∗
λ,α,µ so that

(M̄κ, ā, N̄) <µ (M̄, ā, N̄).

(2) If in addition K is λ-superstable, then there exists a sequence
〈Nλ

β | β < α〉 so that Nβ ≤ Nλ
β for all β < α and (M̄, ā, N̄λ) ∈

K∗
λ,α (so ‖Nλ

β ‖ = λ for all β < α).

Proof. We prove the first statement in the lemma by induction on λ.
If λ = κ, this is given by Lemma 3.5. Now assume that λ > κ. Fix
an increasing continuous sequence 〈λi | i < cf(λ)〉 which is cofinal in λ
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and so that λ0 = κ (if λ = χ+ is a successor we can take λi = χ for all
i < λ). We build a sequence 〈(M̄λi , ā, N̄) ∈ K∗

λi,α,µ
| i < cf(λ)〉 which is

increasing (that is, (M̄λi , ā, N̄) <µ (M̄λi+1 , ā, N̄) for all i < cf(λ)) and
continuous (in the obvious sense, see Lemma 3.6). This is possible by
the induction hypothesis. Now by Lemma 3.6, the union of the chain
of towers (defined there) is as desired.

For part (2), recall from Definition 2.7 that for each β < α, Mβ is a
limit model over some model containing Mκ

β . Let 〈M
∗
β,i ∈ Kλ | i < θβ〉

witness this. By λ-superstability, for each β < α, there exists iβ < θβ
so that ga-tp(aβ/M

λ
β ) does not λ-split over M

∗
β,iβ

. By our choice ofM∗
β,0

containing Mκ
β , and consequently Nβ , we can take Nλ

β := M∗
β,iβ

. �

We now begin the proof of Theorem 1.1. The structure of the proof is
similar to the proof of Theorem 2 of [Van16b]; only here we work with
towers in K∗

λ,α,µ as opposed to only towers in K∗
µ,α.

Proof of Theorem 1.1. Suppose for the sake of contradiction that K
does not have symmetry for µ-non-splitting. By Fact 2.15 and our
µ-superstability assumption, K has a reduced discontinuous tower in
K∗

µ,α for some α < µ+. Let α be the minimal ordinal for which
there is a reduced, discontinuous tower in K∗

µ,α. By Lemma 5.7 of
[GVV16], we may assume that α = δ + 1 for some limit ordinal
δ. Fix T = (M̄, ā, N̄) ∈ K∗

µ,α a reduced discontinuous tower with
b ∈ Mδ\

⋃
β<αMβ.

Let I := cf(λ). By Lemma 3.7, we can build an increasing and continu-
ous chain of towers 〈T i | i ∈ I〉 extending T ↾ δ. If λ = κ+ for some κ,
then select each T i ∈ K∗

κ,δ,µ. If λ is a limit cardinal, fix 〈λi | i < cf(λ)〉
to be an increasing and continuous sequence of cardinals cofinal in λ,
with λ0 > µ and choose T i ∈ K∗

λi,δ,µ
. Let T λ :=

⋃
i∈I T

i.

Notice that by Lemma 3.6, and our assumptions on the towers T i, we
can conclude that T λ ∈ K∗

λ,δ,µ and T λ extends T ↾ δ. In particular, for
each β < α,

(1) ga-tp(aβ/M
λ
β ) does not µ-split over Nβ.

Furthermore by the second part of Lemma 3.7 we can find Nλ
β so that

the tower defined by (M̄λ, ā, N̄λ) is in K∗
λ,δ and each Mλ

β is a limit over

Nλ
β . We can extend this to a tower of length δ + 1 by appending to

(M̄λ, ā, N̄λ) a model Mλ
δ of cardinality λ containing

⋃
β<δ M

λ
β and M δ.

Call this tower T b, since it contains b.
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By λ-symmetry and Fact 2.15, we know that all reduced towers in
K∗

λ,α are continuous. Therefore T b is not reduced. However, by the
density of reduced towers [GVV16, Theorem 5.6], we can find a reduced,
continuous extension of T b in K∗

λ,δ+1. By λ-many applications of this
theorem, we may assume that for each β < α, the model indexed by β
in this reduced tower is a (λ, cf(λ))-limit over Mλ

β . Refer to this tower
as T ∗. See Fig. 2.

N0

Nβ

Nλ
β

M0 M1 . . .Mβ Mβ+1 . . .
⋃

k<δ

Mk MδT ∈ K∗
µ,α

M i
0 . . .M i

β M i
β+1M i

1
. . .

⋃

l<δ

M i
lT i ∈ K∗

λi,δ,µ

...
...

...
...

...

Mλ
0 Mλ

β Mλ
β+1Mλ

1
. . .

⋃

l<δ

Mλ
lT b ∈ K∗

λ,α

T ∗ ∈ K∗
λ,α M∗

0 M∗
1 M∗

β M∗
β+1

b

aβa1

Mλ
δ

. . .
⋃

β<δ

M∗
β = M∗

δ

Figure 2. The towers in the proof of Theorem 1.1

Claim 3.8. For every β < α, ga-tp(aβ/M
∗
β) does not µ-split over Nβ.

Proof. SinceMλ
β andM∗

β are both limit models overNλ
β , by λ-symmetry

and Fact 2.16, there exists f : Mλ
β
∼=Nλ

β
M∗

β . Since T
∗ is a tower extend-

ing T b, we know ga-tp(aβ/M
∗
β) does not λ-split over N

λ
β . Therefore by

the definition of non-splitting, it must be the case that ga-tp(f(aβ)/M
∗
β) =

ga-tp(aβ/M
∗
β). From this equality of types we can fix g ∈ AutM∗

β
(C)

with g(f(aβ)) = aβ. An application of g ◦ f to (1) yields the statement
of the claim. �
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We can now complete the proof of Theorem 1.1. By the continuity of
T ∗ there exists β < δ so that b ∈ M∗

β . We can then use T ∗ to con-

struct a tower T̀ in K∗
µ,δ+1 extending T so that b ∈ M̀β contradicting

our assumption that T was reduced. This is possible by the downward
Löwenheim property of abstract elementary classes, µ-stability, univer-
sality of the models in T ∗, monotonicity of non-µ-splitting, and Claim
3.8.

�

Similar to the proof of [Van16a, Theorem 2] we can use Lemma 3.7
to derive symmetry from categoricity. More precisely, it is enough to
assume that all the models in the top cardinal have enough saturation.

Theorem 3.9. Suppose λ and µ are cardinals so that λ > µ ≥ LS(K).

If K is superstable in every χ ∈ [µ, λ), and all the models of size λ are
µ+-saturated, then K has µ-symmetry.

Proof. Suppose that K does not satisfy µ-symmetry. Then by Fact
2.15 there is a reduced discontinuous tower in K∗

µ,α. As in the proof
of Theorem 1.1, we can find a discontinuous reduced tower T ∈ K∗

µ,α

with α = δ + 1 with the witness of discontinuity b ∈ Mδ\
⋃

β<δ Mβ .

As in the proof of Theorem 1.1, we can use Lemma 3.7 (note that we
only use the first part so not assuming λ-superstability is okay) to find
a tower T λ ∈ K∗

λ,µ,δ extending T ↾ δ.

By our assumption that all the models of size λ are µ+-saturated,
ga-tp(b/

⋃
β<δ Mβ) is realized in

⋃
β<δ M

λ
β . Let b′ and β ′ < δ be such

that b′ |= ga-tp(b/
⋃

β<δ Mβ) and b′ ∈ Mλ
β′. Fix f ∈ Aut⋃

β<δ Mβ
(C) so

that f(b′) = b. Notice that T b := f(T λ) is a tower in K∗
λ,δ,µ extending

T ↾ δ with b ∈ M b
β′ .

We can now use the downward Löwenheim-Skolem property of abstract
elementary classes, stability in µ, µ+-saturation of models of cardinal-
ity λ, and monotonicity of non-µ-splitting to construct from T b a dis-
continuous tower in K∗

µ,α extending T so that b appears in the model
indexed by β ′ in the tower. This will contradict our choice of T being
reduced. �

Remark 3.10. Instead of assuming that all the models of size λ are
µ+-saturated, it is enough to assume the following weaker property.
For any δ < µ+ and any increasing chain 〈Mi : i < δ〉 in Kλ of
(< λ, cf(λ))-limit models (i.e. for each i < δ, there exists a resolution
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of Mi 〈M
j
i ∈ K<λ : j < cf(λ)〉 such that M j+1

i is universal over M j
i for

each j < cf(λ)),
⋃

i<δ Mi is µ+-saturated.

4. A hierarchy of symmetry properties

We discuss the relationship between the symmetry property of Defini-
tion 2.11 and other symmetry properties previously defined in the liter-
ature, especially the symmetry property in the definition of a good µ-
frame. This expands on the short remark after Definition 3 of [Van16a]
and on Corollary 2 there. It will be convenient to use the following
terminology. This appears already in [Vas16b, Definition 3.8].

Definition 4.1. Let M0 ≤ M ≤ N be models in Kµ. We say a type
p ∈ ga-S(N) explicitly does not µ-fork over (M0,M) if:

(1) M is universal over M0.
(2) p does not µ-split over M0.

We say that p does not µ-fork over M if there exists M0 so that p
explicitly does not µ-fork over (M0,M).

Remark 4.2. Assuming µ-superstability, the relation “p does not µ-
fork over M” is very close to defining an independence notion with the
properties of forking in a first-order superstable theory (i.e. a good µ-
frame, see below). In fact using tameness it can be used to do precisely
that, see [Vas16b] or Theorem 6.4. Moreover forking in any categorical
good µ-frame has to be µ-forking, see Fact 4.10.

We now give several variations on µ-symmetry. We will show that
variation (1) is equivalent to (2) which implies (3) which implies (4).
Moreover variation (1) is equivalent to the µ-symmetry of Definition
2.11 and variation (4) is equivalent to the symmetry property of good
frames. We do not know if any of the implications can be reversed, or
even if all the variations already follow from superstability (see Ques-
tion 4.13).

For clarity, we have highlighted the differences between each property.

Definition 4.3. Let µ ≥ LS(K).

(1) K has uniform µ-symmetry if for any limit models N,M0,M
in Kµ where M is limit over M0 and M0 is limit over N , if
ga-tp(b/M) does not µ-split over M0, a ∈ |M |, and ga-tp(a/M0)

explicitly does not µ-fork over (N,M0), there exists Mb ∈ Kµ

containing b and limit over M0 so that ga-tp(a/Mb) explicitly

does not µ-fork over (N,M0).
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(2) K has weak uniform µ-symmetry if for any limit models N,M0,M
in Kµ where M is limit over M0 and M0 is limit over N , if
ga-tp(b/M) does not µ-fork over M0, a ∈ |M |, and ga-tp(a/M0)

explicitly does not µ-fork over (N,M0), there exists Mb ∈ Kµ

containing b and limit over M0 so that ga-tp(a/Mb) explicitly

does not µ-fork over (N,M0). See Figure 3.
(3) K has non-uniform µ-symmetry if for any limit models M0,M

in Kµ whereM is limit over M0, if ga-tp(b/M) does not µ-split over M0,

a ∈ |M |, and ga-tp(a/M0) does not µ-fork over M0, there exists
Mb ∈ Kµ containing b and limit over M0 so that ga-tp(a/Mb)
does not µ-fork over M0.

(4) K has weak non-uniform µ-symmetry if for any limit models
M0,M in Kµ where M is limit overM0, if ga-tp(b/M) does not µ-fork over M0,

a ∈ |M |, and ga-tp(a/M0) does not µ-fork over M0, there exists
Mb ∈ Kµ containing b and limit over M0 so that ga-tp(a/Mb)
does not µ-fork over M0.

N

M0
M

M ′
0

b

a

M b

Figure 3. A diagram of the models and elements in
the definition of weak uniform µ-symmetry. We require
that ga-tp(b/M) does not µ-fork over M0 in the weak
version, so there exists M ′

0 such that M0 is limit over M ′
0

and ga-tp(b/M) does not µ-split over M ′
0

The difference between the uniform and non-uniform variations is in
the conclusion: in the uniform case, we start with ga-tp(a/M0) which
explicitly does not µ-fork over (N,M0) and get ga-tp(a/Mb) explicitly
does not µ-fork over (N,M0). Thus both types do not µ-split over
N . In the non-uniform case, we start with ga-tp(a/M0) which does
not µ-fork over M0, hence explicitly does not µ-fork over (N,M0) for
some N , but we only get that ga-tp(a/Mb) does not µ-fork over M0,



SYMMETRY IN ABSTRACT ELEMENTARY CLASSES 21

so it explicitly does not µ-fork over (N ′,M0), for some N ′ potentially
different from N .

The difference between weak and non-weak is in the starting assump-
tion: in the weak case, we assume that ga-tp(b/M) does not µ-fork over
M0, hence there exists M

′
0 so that M0 is limit over M ′

0 and ga-tp(b/M)
does not µ-split over M ′

0. In the non-weak case, we assume only that
ga-tp(b/M) does not µ-split over M0. Even under µ-superstability, it
is open whether this implies that there must exist a smaller M ′

0 so that
ga-tp(b/M) does not µ-split over M ′

0. The problem is that µ-splitting
need not satisfy the transitivity property, see the discussion after Def-
inition 3.8 in [Vas16b].

Using the monotonicity property of µ-splitting, we get the easy impli-
cations:

Proposition 4.4. Let µ ≥ LS(K). If K has uniform µ-symmetry,
then it has non-uniform µ-symmetry and weak uniform µ-symmetry.
If K has non-uniform µ-symmetry, then it has weak non-uniform µ-
symmetry.

Playing with the definitions and monotonicity of µ-splitting (noting
that cases ruled out by Definition 2.11 such as a ∈ |M0| are easy to
handle), we also have:

Proposition 4.5. K has uniform µ-symmetry if and only if it has
µ-symmetry (in the sense of Definition 2.11).

Surprisingly, uniform symmetry and weak uniform symmetry are also
equivalent assuming superstability. We will use the characterization of
symmetry in terms of reduced towers provided by Fact 2.15.

Lemma 4.6. If K is µ-superstable, then weak uniform µ-symmetry is
equivalent to uniform µ-symmetry.

Proof. By Proposition 4.4, uniform symmetry implies weak uniform
symmetry. Now assuming weak uniform symmetry, the proof of (1) ⇒
(2) of Fact 2.15 still goes through. The point is that whenever we
consider ga-tp(b/M) in the proof, M =

⋃
i<δ Mi for some increasing

continuous 〈Mi : i < δ〉 with Mi+1 universal over Mi for all i < δ, and
we simply use that by superstability ga-tp(b/M) does not µ-split over
Mi for some i < δ. However we also have that ga-tp(b/M) explicitly
does not µ-fork over (Mi,Mi+1).

Therefore reduced towers are continuous, and hence by Fact 2.15 K has
µ-symmetry (and so by Proposition 4.5 uniform µ-symmetry). �
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How do these definitions compare to the symmetry property in good
µ-frames? Recall [She09, Definition II.2.1] that a good µ-frame is a
triple s = (Kµ,⌣, ga-Sbs) where:

(1) K is an AEC.
(2) For each M ∈ Kµ, ga-Sbs(M) (called the set of basic types

over M) is a set of nonalgebraic Galois types over M satisfying
(among others) the density property : if M < N are in Kµ, there
exists a ∈ |N |\|M | such that ga-tp(a/M ;N) ∈ ga-Sbs(M).

(3) ⌣ is an (abstract) independence relation on types of length one
over models in Kµ satisfying several basic properties (that we
will not list here) of first-order forking in a superstable theory.

Remark 4.7. We will not use the axiom (B) [She09, Definition II.2.1]
requiring the existence of a superlimit model of size µ. In fact many
papers (e.g. [JS13]) define good frames without this assumption.

As in [She09, Definition II.6.35], we say that a good µ-frame s is type-
full if for each M ∈ Kµ, ga-S

bs(M) consists of all the nonalgebraic
types over M . For simplicity, we focus on type-full good frames in
this paper. Given a type-full good µ-frame s = (Kµ,⌣, ga-Sbs) and
M0 ≤ M both in Kµ, we say that a nonalgebraic type p ∈ ga-S(M)
does not s-fork over M0 if it does not fork over M0 according to the
abstract independence relation ⌣ of s. We say that a good µ-frame s

is on Kµ if its underlying class is Kµ.

The existence of a good µ-frame gives quite a lot of information about
the class.

Fact 4.8. Assume there is a good µ-frame on Kλ-sat
µ , for λ ≤ µ (so

in particular, unions of chains of λ-saturated models are λ-saturated).
Then:

(1) For any M0,M1,M2 ∈ Kµ such that M1 and M2 are limit over
M0, M1

∼=M0 M2.
(2) K is µ-superstable.

Proof. The first part is [She09, Lemma II.4.8] (or see [Bon14a, Theorem
9.2]). Note that by the usual back and forth argument (as made explicit
in the proof of [BVa, Theorem 7.1]), any limit model is isomorphic to
a limit model where the models witnessing it are λ-saturated. The
second part is because:

• By definition of a good µ-frame, µ ≥ LS(K), Kµ is nonempty,
has amalgamation, joint embedding, and no maximal models.
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• By [She09, Claim II.4.2.(1)], K is stable in µ.
• By the uniqueness property of s-forking, if a type does not s-
fork over M0 (where s is a good µ-frame on Kµ), then it does not
µ-split over M0 (see [BGKV16, Lemma 4.2]). Thus we obtain
the “no long splitting chains” condition in Definition 2.8 when
the Mis are λ-saturated, and as noted above (or in [Vas16a,
Proposition 10.6]) we can do a back and forth argument to get
that no long splitting chains holds even when the members of
the chain are not saturated.

�

Among the axioms a good µ-frame must satisfy is the symmetry axiom:

Definition 4.9. The symmetry axiom for a good µ-frame s = (Kµ,⌣, ga-Sbs)
is the following statement: For any M0 ≤ M in Kµ, if ga-tp(b/M)
does not s-fork over M0 and a ∈ |M |\|M0| is so that ga-tp(a/M0) ∈
ga-Sbs(M0), there exists Mb ∈ Kµ containing b and extending M0 so
that ga-tp(a/Mb) does not s-fork over M0.

Note that the good frame axioms imply that K has amalgamation in
µ, so for this definition (and for simplicity only) we work inside a
saturated model C of size µ+.

Since the symmetry properties of Definition 4.3 are all over limit mod-
els only, we will discuss only frames whose models are the limit models.
By Fact 4.8, such frames are categorical (that is, their underlying class
has a single model up to isomorphism). This is not a big loss since
most known general constructions of a good µ-frame (e.g. [She09, The-
orem II.3.7], [Vas16b, Theorem 1.3]) assume categoricity in µ. In the
known constructions when categoricity in µ is not assumed (such as
in [Vas16a, Corollary 10.19]), it holds that the union of a chain of µ-
saturated model is µ-saturated, so we can simply restrict the frame to
the saturated models of size µ.

We will use [Vas16a, Theorem 9.7] that categorical good µ-frames are
canonical:

Fact 4.10 (The canonicity theorem for categorical good frames). Let
s = (Kµ,⌣, ga-Sbs) be a categorical good µ-frame. Let p ∈ ga-Sbs(M)
and let M0 ≤ M be in Kµ. Then p does not s-fork over M0 if and only
if p does not µ-fork over M0 (recall Definition 4.1).

Remark 4.11. The proof of the second part of Fact 4.8 and Fact 4.10
do not use the symmetry axiom (but the first part of Fact 4.8 does).
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Using the canonicity theorem, we obtain:

Theorem 4.12. Let s be a type-full categorical good µ-frame on Kµ,
except that we do not assume that it satisfies the symmetry axiom. The
following are equivalent:

(1) s satisfies the symmetry axiom (Definition 4.9).
(2) K has weak non-uniform µ-symmetry (Definition 4.3.(4)).

Proof. By Fact 4.10 (and Remark 4.11), µ-forking and s-forking coin-
cide. Now replace s-forking by µ-forking in the symmetry axiom and
expand the definition. �

One can ask whether weak non-uniform symmetry can be replaced by
the uniform version:

Question 4.13. Assume there is a type-full categorical good µ-frame on
Kµ. Does K have µ-symmetry? More generally, if K is µ-superstable,
does K have µ-symmetry?

We will show (Corollary 6.9) that the answer is positive if K is µ-tame.
Still much less suffices:

Theorem 4.14. If K is µ-superstable and has a good µ+-frame on
Kλ-sat

µ+ for some λ ≤ µ+, then K has µ-symmetry.

Proof. By Fact 4.8, all limit models in Kµ+ are saturated and K is µ+-
superstable. By Fact 2.17, the remark following it, and Fact 2.12, K
has µ-symmetry. �

We end this section with a partial answer to Question 4.13 assuming
that the good frame satisfies several additional technical properties of
frames introduced by Shelah (see [She09, Definitions III.1.1, III.1.3]).
For this result amalgamation (Hypothesis 2.1) is not necessary.

Corollary 4.15. Assume there is a successful good+ µ-frame with un-
derlying class Kµ. Then K has µ-symmetry.

Proof. Let s be a successful good+ µ-frame with underlying class Kµ.
By [She09, Claim II.6.36], we can assume without loss of generality
that s is type-full (note that by [BGKV16, Theorem 6.13] there can be
only one such type-full frame). By Fact 4.8, K is µ-superstable. By

[She09, III.1.6, III.1.7, III.1.8], there is a good µ+-frame s+ on Kµ+-sat
µ+ .

By Theorem 4.14, K has µ-symmetry. �
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5. Symmetry from no order property

In this section, we give another way to derive symmetry. The idea is
to imitate the argument from [BGKV16, Theorem 5.14], but we first
have to obtain enough properties of independence. We will work with
µ-forking (Definition 4.1). We start by improving Proposition 3.4.

Proposition 5.1 (Extension property of forking). Let LS(K) ≤ µ ≤ λ.
Let M ≤ N be in K[µ,λ]. Let p ∈ ga-S(M) be such that p explicitly does
not µ-fork over (M0,M). If K is superstable in every χ ∈ [µ, λ], then
there exists q ∈ ga-S(N) extending p and explicitly not µ-forking over
(M0,M). Moreover q is algebraic if and only if p is.

Proof. By induction on ‖N‖. Let a realize p. If ‖N‖ = ‖M‖ this is
given by Proposition 3.4 (if ‖M‖ = ‖N‖ = µ, this is [Van06, Theorem
I.4.10]). If ‖M‖ < ‖N‖, build 〈Ni ∈ K‖M‖+|i| : i ≤ ‖N‖〉 increasing
continuous such that N0 = M , Ni+1 is limit over Ni, and ga-tp(a/Ni)
explicitly does not µ-fork over (M0,M). This is possible by the induc-
tion hypothesis and the continuity property of splitting (Proposition
3.3). Now Nλ is ‖N‖-universal over N0 = M , so let f : N −→

M
Nλ. Let

q := f−1(ga-tp(a/f [N ])). It is easy to check that q is as desired. �

Next we recall the definition of the order property in AECs [She99,
Definition 4.3].

Definition 5.2. Let α and λ be cardinals. A model M ∈ K has the
α-order property of length λ if there exists 〈āi : i < λ〉 inside M with
ℓ(āi) = α for all i < λ, such that for any i0 < j0 < λ and i1 < j1 < λ,
ga-tp(āi0 āj0/∅) 6= ga-tp(āj1 āi1/∅).

We say that K has the α-order property of length λ if some M ∈ K
has it. We say that K has the α-order property if it has the α-order
property of length λ for all cardinals λ.

We will use two important facts. The first says that it is enough to
look at length up to the Hanf number. The second is that the order
property implies instability.

Definition 5.3. For λ an infinite cardinal, h(λ) := i(2λ)+.

Fact 5.4 (Claim 4.5.3 in [She99]). Let α be a cardinal. If K has the
α-order property of length λ for all λ < h(α+LS(K)), then K has the
α-order property.

Fact 5.5. If K has the α-order property and µ ≥ LS(K) is such that
µ = µα, then K is not stable in µ.
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Proof. By [She99, Claim 4.8.2] (see [BGKV16, Fact 5.13] for a proof),
there exists M ∈ Kµ such that | ga-Sα(M)| > µ. By [Bon17, Theorem
3.1], K is not stable in µ. �

The following lemma appears in some more abstract form in [BGKV16,
Lemma 5.6]. The lemma says that if we assume that p does not µ-fork
over M , then in the definition of non-splitting (Definition 2.3) we can
replace the Nℓ by arbitrary sequences in N of length at most µ. In the
proof of Lemma 5.7, this will be used for sequences of length one.

Lemma 5.6. Let µ ≥ LS(K). Let M ∈ Kµ and N ∈ K≥µ be such that
M ≤ N . Assume that K is stable in µ. If p ∈ ga-S(N) does not µ-fork
over M (Definition 4.1), a realizes p, and b̄1, b̄2 ∈

≤µ|N | are such that
ga-tp(b̄1/M) = ga-tp(b̄2/M), then ga-tp(ab̄1/M) = ga-tp(ab̄2/M).

Proof. Pick N0 ∈ Kµ containing b̄1b̄2 with M ≤ N0 ≤ N . Then p ↾ N0

does not µ-fork over M . Replacing N by N0 if necessary, we can assume
without loss of generality thatN ∈ Kµ. By definition of µ-forking, there
exists M0 ∈ Kµ such that M0 ≤ M and p does not µ-split over M0. By
the extension and uniqueness property for µ-splitting there exists N ′

extending N of cardinality µ so that N ′ is universal over both N and
M , and ga-tp(a/N ′) does not µ-split over M0. Since ga-tp(b̄1/M) =
ga-tp(b̄2/M) and since N ′ is universal over N , we can find f : N →

M
N ′

so that f(b̄1) = b̄2. Since ga-tp(a/N
′) does not µ-split over M0 we know

ga-tp(f(a)/f(N)) = ga-tp(a/f(N)). By our choice of f this implies
that there exists g ∈ Autf(N)(C) so that g(f(a)) = a, g ↾ M = idM ,
and g(b̄2) = b̄2. In other words ga-tp(f(a)b̄2/M) = ga-tp(ab̄2/M).
Moreover f−1 witnesses that ga-tp(ab̄1/M) = ga-tp(f(a)b̄2/M), which
we have seen is equal to ga-tp(ab̄2/M). �

The next lemma shows that failure of symmetry implies the order prop-
erty. The proof is similar to that of [BGKV16, Theorem 5.14], the
difference is that we use Lemma 5.6 and the equivalence between sym-
metry and weak uniform symmetry (Lemma 4.6).

Lemma 5.7. Let λ > µ ≥ LS(K). Assume that K is superstable in
every χ ∈ [µ, λ). If K does not have µ-symmetry, then it has the
µ-order property of length λ.

Proof. By Lemma 4.6, K does not have weak uniform µ-symmetry. We
first pick witnesses to that fact. Pick limit models N,M0,M ∈ Kµ

such that M is limit over M0 and M0 is limit over N . Pick b such
that ga-tp(b/M) does not µ-fork over M0, a ∈ |M |, and ga-tp(a/M0)
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explicitly does not µ-fork over (N,M0), and there does not exist Mb ∈
Kµ containing b and limit over M0 so that ga-tp(a/Mb) explicitly does
not µ-fork over (N,M0). We will show that C has the µ-order property
of length λ.

We build increasing continuous 〈Nα : α < λ〉 and 〈aα, bα, N
′
α : α < λ〉

by induction so that for all α < λ:

(1) Nα, N
′
α ∈ Kµ+|α|.

(2) N0 is limit over M and b ∈ |N0|.
(3) ga-tp(aα/M0) = ga-tp(a/M0) and aα ∈ |N ′

α|.
(4) ga-tp(bα/M) = ga-tp(b/M) and bα ∈ |Nα+1|.
(5) N ′

α is limit over Nα and Nα+1 is limit over N ′
α.

(6) ga-tp(aα/Nα) explicitly does not µ-fork over (N,M0) and ga-tp(bα/N
′
α)

does not µ-fork over M0.

This is possible. Let N0 be any model in Kµ containing b that is limit
over M . At α limits, let Nα :=

⋃
β<αNβ. Now assume inductively that

Nβ has been defined for β ≤ α, and aβ , bβ, N
′
β have been defined for

β < α. By extension for splitting, find q ∈ ga-S(Nα) that explicitly
does not µ-fork over (N,M0) and extends ga-tp(a/M0). Let aα realize q
and pick N ′

α limit over Nα containing aα. Now by extension again, find
q′ ∈ ga-S(N ′

α) that does not µ-fork over M0 and extends ga-tp(b/M).
Let bα realize q′ and pick Nα+1 limit over N ′

α containing bα.

This is enough. We show that for α, β < λ:

(1) ga-tp(aαb/M0) 6= ga-tp(ab/M0)
(2) ga-tp(abβ/M0) = ga-tp(ab/M0)
(3) If β < α, ga-tp(ab/M0) 6= ga-tp(aαbβ/M0).
(4) If β ≥ α, ga-tp(ab/M0) = ga-tp(aαbβ/M0).

For (1), observe that b ∈ |N0| ⊆ |Nα| and ga-tp(aα/Nα) explicitly
does not µ-fork over (N,M0). Therefore by monotonicity Nα wit-
nesses that there exists Nb ∈ Kµ containing b and limit over M0 so
that ga-tp(aα/Nb) explicitly does not µ-fork over (N,M0). By fail-
ure of symmetry and invariance, we must have that ga-tp(aαb/M0) 6=
ga-tp(ab/M0).

For (2), use the assumption that a ∈ |M | together with clause (4) of
the construction.

For (3), suppose β < α. We know that ga-tp(aα/Nα) does not µ-fork
over M0. Since β < α, b, bβ ∈ |Nα| and ga-tp(b/M) = ga-tp(bβ/M),
we must have by Lemma 5.6 that ga-tp(aαb/M0) = ga-tp(aαbβ/M0).
Together with (1), this implies ga-tp(ab/M0) 6= ga-tp(aαbβ/M0). This
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is really where we use the equivalence between uniform µ-symmetry
and weak uniform µ-symmetry: if we only had failure of uniform µ-
symmetry, then we would only know that ga-tp(b/M) does not µ-split
over M0, so would be unable to use Lemma 5.6.

To see (4), suppose β ≥ α and recall that (by (2)) ga-tp(ab/M0) =
ga-tp(abβ/M0). We also have that ga-tp(bβ/N

′
β) does not µ-fork over

M0. Moreover ga-tp(a/M0) = ga-tp(aα/M0), and a, aα ∈ N ′
β . By

Lemma 5.6 again, ga-tp(abβ/M0) = ga-tp(aαbβ/M0). This gives us
that ga-tp(ab/M0) = ga-tp(aαbβ/M0).

Now let d̄ be an enumeration of M0 and for α < λ, let c̄α := aαbαd̄.
Then (3) and (4) together tell us that the sequence 〈c̄α | α < λ〉
witnesses the µ-order property of length λ. �

We conclude that symmetry follows from enough instances of super-
stability.

Theorem 5.8. Let µ ≥ LS(K). Then there exists λ < h(µ) such that
if K is superstable in every χ ∈ [µ, λ), then K has µ-symmetry.

Proof. If K is unstable in 2µ, then we can set λ := (2µ)+ and get a
vacuously true statement; so assume that K is stable in 2µ. By Fact
5.5, K does not have the µ-order property. By Fact 5.4, there exists
λ < h(µ) such that K does not have the µ-order property of length λ.
By Lemma 5.7, it is as desired. �

Remark 5.9. How can one obtain many instances of superstability as
in the hypothesis of Theorem 5.8? One way is categoricity, see Fact
7.1. Another way is to start with one instance of superstability and
transfer it up using tameness, see Fact 6.7.

6. Symmetry and tameness

Tameness is a locality property for types introduced by Grossberg and
VanDieren in [GV06b] and used to prove Shelah’s eventual categoricity
conjecture from a successor in [GV06c]. It has also played a key roles in
the proof of several other categoricity transfers, for example [Bon14b,
Vasa, Vasb].

Definition 6.1 (Tameness). Let µ ≥ LS(K). K is µ-tame if for every
M ∈ K and every p, q ∈ ga-S(M), if p 6= q, then there exists M0 ∈ K≤µ

with M0 ≤ M such that p ↾ M0 6= q ↾ M0.
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In this section, we study the combination of tameness (and its relatives,
see below) with superstability. In Section 7, we will combine tameness
and categoricity.

6.1. Weak tameness. We will start by studying a weaker, more lo-
cal, variation that appears already in [She99]. We use the notation in
[Bal09, Definition 11.6].

Definition 6.2 (Weak tameness). Let χ, µ be cardinals with LS(K) ≤
χ ≤ µ. K is (χ, µ)-weakly tame if for any saturated M ∈ Kµ, any
p, q ∈ ga-S(M), if p 6= q, there exists M0 ∈ Kχ with M0 ≤ M and
p ↾ M0 6= q ↾ M0.

Tameness says that types over any models are determined by their
small restrictions. Weak tameness says that only types over saturated
models have this property.

While there is no known example of an AEC that is weakly tame but
not tame, it is known that weak tameness follows from categoricity in a
suitable cardinal (but the corresponding result for non-weak tameness
is open, see [GV06a, Conjecture 1.5]): this appears as [She99, Main
Claim II.2.3] and a simplified argument is in [Bal09, Theorem 11.15].

Fact 6.3. Let λ > µ ≥ h(LS(K)). Assume that K is categorical in
λ, and the model of cardinality λ is µ+-saturated. Then there exists
χ < h(LS(K)) such that K is (χ, µ)-weakly tame.

It was shown in [Vas16b] (and further improvements in [Vas16a, Section
10] and [BVa]) that tameness can be combined with superstability to
build a good frame at a high-enough cardinal. At a meeting in the
winter of 2015 in San Antonio, the first author asked whether weak
tameness could be used instead. This is not a generalization for the
sake of generalization because weak tameness (but not tameness) is
known to follow from categoricity. We can answer in the affirmative:

Theorem 6.4. Let λ > µ ≥ LS(K). Assume that K is superstable in
every χ ∈ [µ, λ] and has λ-symmetry.

If K is (µ, λ)-weakly tame, then there exists a type-full good λ-frame
with underlying class Kλ-sat

λ .

Proof. First observe that limit models in Kλ are unique (by Fact 2.16),
hence saturated. By Theorem 1.1, K has χ-symmetry for every χ ∈
[µ, λ]. By Fact 2.17, for every χ ∈ [µ, λ), Kχ+-sat (the class of χ+-

saturated models in K≥χ+) is an AEC with LS(Kχ+-sat) = χ+. There-
fore by Lemma 2.19 Kλ-sat is an AEC with LS(Kλ-sat) = λ. By the
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λ-superstability assumption, Kλ-sat
λ is nonempty, has amalgamation, no

maximal models, and joint embedding. It is also stable in λ. We want
to define a type-full good λ-frame s on Kλ-sat

λ . We define forking in
the sense of s (s-forking) as follows: For M ≤ N saturated of size λ, a
non-algebraic p ∈ ga-S(N) does not s-fork over M if and only if there
exists M0 ∈ Kµ such that for all N0 ∈ Kµ, if M0 ≤ N0 ≤ N , then
p ↾ N0 does not µ-fork over M0.

Now most of the axioms of good frames are verified in Section 4 of
[Vas16b], the only properties that remain to be checked are exten-
sion, uniqueness, and symmetry. Extension is by Proposition 5.1, and
uniqueness is by uniqueness of splitting in µ ([Van06, I.4.12]) and
the weak tameness assumption. As for symmetry, we know that λ-
symmetry holds, hence by Proposition 4.4, Proposition 4.5, and Theo-
rem 4.12 the symmetry property of good frame follows. �

Remark 6.5. If λ = µ+ above, then the hypotheses reduce to “K is
superstable in µ and µ+ and K has µ+-symmetry”.

We can combine this construction with the results of Section 5:

Corollary 6.6. Let λ > µ ≥ LS(K). Assume that K is superstable
in every χ ∈ [µ, h(λ)). If K is (µ, λ)-weakly tame, then there exists a
type-full good λ-frame with underlying class Kλ-sat

λ .

Proof. Combine Theorem 6.4 and Theorem 5.8. �

6.2. Global tameness. For the rest of this section, we will work with
global non-weak tameness. Superstability has been studied together
with amalgamation and tameness in works from the second author
[Vas16b, Vas16a, BVa, GV]. We will use the following upward transfer
of superstability:

Fact 6.7 (Proposition 10.10 in [Vas16a]). Assume K is µ-superstable
and µ-tame. Then for all µ′ ≥ µ, K is µ′-superstable. In particular,
K≥µ has no maximal models and is stable in all cardinals.

Recall from Section 4 thatKλ-sat denotes the class of λ-saturated models
in K≥λ. We would like to give conditions under which Kλ-sat is an
AEC – in particular unions of chains of λ-saturated models are λ-
saturated. From superstability and tameness, it is known that one
eventually obtains this behavior:

Fact 6.8 (Theorem 7.1 in [BVa]). Assume K is µ-superstable and µ-
tame. Then there exists λ0 < i(2µ+ )+ such that for any λ ≥ λ0, K

λ-sat

is an AEC with LS(Kλ-sat) = λ.
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We can use this to show that superstability implies symmetry in tame
AECs (obtaining another partial answer to Question 4.13). We also
give another, more self-contained proof that does not rely on Fact 6.8.

Corollary 6.9. If K is µ-superstable and µ-tame, then K has µ-symmetry.

First proof. First observe that by Fact 6.7, K is superstable in every

µ′ ≥ µ. By Fact 6.8, there exists λ0 ≥ µ such that Kλ+
0 -sat is an

AEC. Therefore the hypotheses of Fact 2.12 are satisfied, so K has
λ0-symmetry. By Theorem 1.1, K has µ-symmetry. �

Second proof. As in the first proof, K is superstable in every µ′ ≥ µ.
By Theorem 5.8, K has µ-symmetry. �

Thus we obtain an improvement on the Hanf number of Fact 6.8:

Corollary 6.10. Assume K is µ-superstable and µ-tame. For every
λ > µ, Kλ-sat is an AEC with LS(Kλ-sat) = λ.

Proof. By Fact 6.7 and Corollary 6.9, K is λ-superstable and has λ-
symmetry for any λ > µ. By Fact 2.17, Kµ+-sat is an AEC with
LS(Kµ+-sat) = µ+. We can replace µ+ with any successor λ > µ.
To take care of limit cardinals λ, use Lemma 2.19. �

Note that Corollary 6.10 is an improvement on Fact 6.8 and the second
proof of Corollary 6.9 does not rely on Fact 6.8. However beyond Fact
6.8, the arguments of [BVa] (in particular the use of averages) have
other applications (see for example the proof of solvability in [GV,
Theorem 4.9]).

We can also say more on another result of Boney and the second author:
[BVa, Lemma 6.9.(2)] implies that, assuming µ-superstability and µ-
tameness, there is a λ0 ≥ µ such that if 〈Mi : i < δ〉 is a chain of
λ0-saturated models where δ ≥ λ0 and Mi+1 is universal over Mi, then⋃

i<δ Mi is saturated. We can improve this too:

Corollary 6.11. Assume K is µ-superstable and µ-tame. Let δ be
a limit ordinal and 〈Mi : i < δ〉 is increasing in K≥µ and Mi+1 is
universal over Mi for all i < δ. Let Mδ :=

⋃
i<δ Mi. If ‖Mδ‖ > LS(K),

then Mδ is saturated.

Proof. By Proposition 3.1, Mδ is a (λ, cf(δ))-limit model, where λ =
‖Mδ‖. By Fact 6.7, K is λ-superstable. By Corollary 6.9, K has λ-
symmetry. By Fact 2.16, Mδ is saturated. �
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One can ask whether Corollary 6.10 can be improved further by also
getting the conclusion for λ = µ. If µ = LS(K), it is not clear that
LS(K)-saturated models are the right notion so perhaps the right ques-
tion is to be framed in terms of a superlimit. Recall from [She09, Def-
inition N.2.2.4] that a superlimit model is a universal model M with
a proper extension so that if 〈Mi : i < δ〉 is an increasing chain with
M ∼= Mi for all i < δ, then (if δ < ‖M‖+), M ∼=

⋃
i<δ Mi. Note that,

assuming µ-superstability and uniqueness of limit models of size µ, it
is easy to see that the existence of a superlimit of size µ is equivalent
to the statement that the union of an increasing chain of limit models
in µ (of length less than µ+) is limit.

Question 6.12. Assume K is µ-tame and there is a type-full good µ-
frame on Kµ (or just that K is µ-superstable). Is there a superlimit
model of size µ?

We now turn to good frames and show that, assuming tameness, the
statement of Theorem 6.4 can be simplified. Recall that previous work
of the second author gives a condition under which good frames can be
constructed from tameness:

Fact 6.13 (Theorem 10.8 in [Vas16a]). Assume K is µ-superstable and
µ-tame. If for any δ < µ+, any chain of length δ of saturated models
in Kµ+ has a saturated union, then there is a type-full good µ+-frame

with underlying class Kµ+-sat

µ+ .

Combining this with Fact 6.8 it was proven in [BVa] that µ-superstability
and µ-tameness implies the existence of a good λ-frame on the satu-
rated models of size λ, for some high-enough λ > µ. Now we show that
we can take λ = µ+. We again give two proofs: one uses Theorem 6.4
and the other relies on Fact 6.13.

Corollary 6.14. If K is µ-superstable and µ-tame, then there is a

type-full good µ+-frame with underlying class Kµ+
-sat

µ+ .

First proof. Combine Fact 6.13 and Corollary 6.10. �

Second proof. By Fact 6.7, K is superstable in every µ′ ≥ µ. Now apply
Corollary 6.6 (with λ there standing for µ+ here). �

Remark 6.15. To obtain a type-full good λ-frame for λ > µ+, we can
either make a slight change to the second proof of Corollary 6.14, or
use the upward frame transfer of Boney and the second author [Bon14a,
BVb].
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7. Symmetry and categoricity

Theorem 1.1 has several applications to categorical AECs. We will
use the following result, an adaptation of an argument of Shelah and
Villaveces [SV99, Theorem 2.2.1], to settings with amalgamation:

Fact 7.1 (The Shelah-Villaveces theorem, see in [BGVV]). Assume
that K has no maximal models. Let µ ≥ LS(K). If K is categorical in
a λ > µ, then K is µ-superstable.

Corollary 7.2. Assume that K has no maximal models. Suppose λ
and µ are cardinals so that λ > µ ≥ LS(K) and assume that K is
categorical in λ. Then K is µ-superstable and it has µ-symmetry if at
least one of the following conditions hold:

(1) The model of size λ is µ+-saturated.
(2) λ ≥ h(µ).

Proof. By Fact 7.1, K is χ-superstable in every χ ∈ [µ, λ). Now:

(1) If the model of size λ is µ+-saturated, then by Theorem 3.9, K
has µ-symmetry.

(2) If λ ≥ h(µ), then by Theorem 5.8, K has µ-symmetry.

�

As announced in the introduction, we can combine Corollary 7.2 with
Fact 2.16 to improve on [She99, Theorem 6.5]. The following result
also improves on Corollary 18 of [Van16b], by removing the successor
assumption in the categoricity cardinal and obtaining uniqueness of
limit models in much smaller cardinalities as well.

Corollary 7.3. Assume that K has no maximal models. Suppose λ and
µ are cardinals so that λ > µ ≥ LS(K) and assume that K is categorical
in λ. If either cf(λ) > µ or λ ≥ h(µ), then K has uniqueness of limit
models of cardinality µ. That is, if M0,M1,M2 ∈ Kµ are such that both
M1 and M2 are limit models over M0, then M1

∼=M0 M2.

Proof. Categoricity in λ, the assumption that cf(λ) > µ, and Fact
7.1 imply that the model of cardinality λ is µ+-saturated. We can now
apply Corollary 7.2, to get that K is µ-superstable and has µ-symmetry.
Then Fact 2.16 finishes the proof. �

Once we have obtained symmetry from a high-enough categoricity car-
dinal, we can deduce that the model in the categoricity cardinal has
some saturation:
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Corollary 7.4. Let µ > LS(K). Assume that K is categorical in a
λ ≥ supµ0<µ h(µ

+
0 ). Then the model of size λ is µ-saturated.

Proof. By Fact 2.2, we can assume without loss of generality that K
has no maximal models. We check that the model of size λ is µ+

0 -
saturated for every µ0 ∈ [LS(K), µ). Fix such a µ0. By Corollary 7.2,
K is µ0-superstable, µ

+
0 -superstable, and has µ+

0 -symmetry. By Fact

2.17 Kµ+
0 -sat, the class of µ+

0 -saturated models in K≥µ+
0
, is an AEC with

Löwenheim-Skolem number µ+
0 . Since it has arbitrarily large models,

it must have a model of size λ, which is unique by categoricity. �

We conclude that categoricity in a high-enough cardinal implies some
amount of weak tameness (a stronger result has been conjectured by
Grossberg and the first author, see [GV06a, Conjecture 1.5]). We will
use the notation from Chapter 14 of [Bal09]: we write H1 for h(LS(K))
(see Definition 5.3) and H2 for h(H1) = h(h(LS(K))).

Corollary 7.5. Let µ ≥ LS(K). Let λ ≥ h(µ+). If K is categorical in
λ, then there exists χ < H1 such that K is (χ, µ)-weakly tame.

Proof. By Corollary 7.4, the model of size λ is µ+-saturated. Now
apply Fact 6.3. �

We can derive a downward categoricity transfer. We will use the fol-
lowing fact, given by the proof of [Bal09, Theorem 14.9] (originally
[She99, II.1.6]):

Fact 7.6. If K is categorical in a λ > H2, K is (χ,H2)-weakly tame
for some χ < H1, and the model of size λ is χ-saturated, then K is
categorical in H2.

Corollary 7.7. If K is categorical in a λ ≥ h(H+
2 ), then K is categor-

ical in H2.

Proof. By Corollary 7.5, there exists χ < H1 such that K is (χ,H2)-
weakly tame. By Corollary 7.4, the model of size λ is χ-saturated. Now
apply Fact 7.6. �

We obtain in particular:

Corollary 7.8. Let µ = iµ > LS(K). If K is categorical in some
λ > µ, then K is categorical in µ.

Proof. Without loss of generality (Fact 2.2), K has no maximal models.
Applying Corollary 7.7 to K≥µ0 for each µ0 < µ, we get that K is
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categorical in unboundedly many µ0 < µ. By (for example) Fact 7.1,
K is stable in every µ0 < µ. Now let M ∈ Kµ. We show that M is
saturated, and this will imply categoricity in µ. Let N0 ∈ K<µ be such
that N0 ≤ M . We want to show that every Galois type over N0 is
realized in M . Fix a categoricity cardinal µ0 < µ such that ‖N0‖ < µ0.
Let N ′

0 ∈ Kµ0 be such that N0 ≤ N ′
0 ≤ M . Then N ′

0 is saturated (use
stability in µ0 to build a θ+-saturated model of size µ0 for each θ < µ0,
then use categoricity in µ0). Thus N ′

0 (and therefore M) realizes all
Galois types over N0, as desired. �

We can also build a good frame assuming categoricity in a high-enough
cardinal (of arbitrary cofinality).

Corollary 7.9. Let µ ≥ H1. Assume that K is categorical in a λ >
µ. If the model of size λ is µ+-saturated (e.g. if cf(λ) > µ or by
Corollary 7.4 if λ ≥ h(µ+)), then there exists a type-full good µ-frame
with underlying class Kµ-sat

µ .

Proof. By Fact 2.2, we can assume without loss of generality that K has
no maximal models. By Fact 6.3, there exists χ < H1 such that K is
(χ, µ)-weakly tame. By Corollary 7.2, K has is χ′-superstable and has
χ′-symmetry for every χ′ ∈ [χ, µ]. In particular, K has µ-symmetry.
Now apply Theorem 6.4 with (µ, λ) there standing for (χ, µ)-here. �

The Hanf number of Corollary 7.9 can be improved if we assume that
the AEC is tame. We state a more general corollary summing up our
results in tame categorical AECs:

Corollary 7.10. Assume that K has no maximal models and is LS(K)-
tame. If K is categorical in a λ > LS(K), then:

(1) For any µ ≥ LS(K), K has uniqueness of limit models in µ: if
M0,M1,M2 ∈ Kµ are such that both M1 and M2 are limit over
models M0, then M1

∼=M0 M2.
(2) For any µ > LS(K), Kµ-sat is an AEC with LS(Kµ-sat) = µ

and there exists a type-full good µ-frame with underlying class
Kµ-sat

µ .

Proof. By Fact 7.1, K is superstable in LS(K). By Fact 6.7, K is
superstable in every µ ≥ LS(K). By Corollary 6.9, K has symmetry in
every µ ≥ LS(K). The first part now follows from Fact 2.16 and the
second from Corollary 6.10 and Corollary 6.14 (together with Remark
6.15). �
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Remark 7.11. By [BVb], we can transfer the type-full good LS(K)+-

frame on KLS(K)+-sat

LS(K)+ given by the previous corollary to a type-full good

(≥ LS(K)+)-frame with underlying class KLS(K)+-sat. That is, the non-
forking relation of the frame can be extended to types over all LS(K)+-
saturated models.
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