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Abstract

We present a construction of a truth class (an interpretation of a compositional truth
predicate) in an arbitrary countable recursively saturated model of first-order arith-
metic. The construction is fully classical in that it employs nothing more than the
classical techniques of formal proof theory.
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1 Introduction

The goal of this paper is to sketch a fully classical construction of truth classes in models
of first-order arithmetic. The initial introductory remarks describe the background and
the motivation for this endeavor.

It is well-known that every non-standard model of arithmetic will contain nonstan-
dard arithmetical formulas. In other words, for an arbitrary nonstandard model M
there will be elements s of M such that M = ‘s is an arithmetical formula’ (all such
objects will be called here ‘formulas in the sense of the model” or ‘M -formulas’) even
though in the real world s is not a formula at all.! In this situation it is natural to

1 Thus, for example, M will think that expressions of the form ‘0 = 0 A ...0 = 0 are arithmetical
formulas no matter how many times the conjunct ‘0 = 0’ is repeated. In effect, given an arbitrary non-
standard element a of M, M will think that the expression ‘0 = 0 A ...0 = 0 with the conjunct repeated
a times is an arithmetical formula. However, since a is non-standard, the expression in question is not a
formula in the real world.

An extended abstract [4] summarizes the basic ideas presented in this paper. Here we provide both the
technical material (proofs) absent in the abstract and a more comprehensive discussion of the motivations
and the background of our approach to the semantics of truth theories.
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ask whether semantics for formulas in the sense of the model can be developed. First
attempts in this direction were made by Robinson [19] and Krajewski [16], with the
notion of a satisfaction class playing the key role. Namely, a satisfaction class in M is
characterized as an arbitrary subset of the model which can be treated as a reasonable
interpretation of the satisfaction predicate: roughly, it is a set of pairs (¢, v) which
satisfies the usual Tarski-style compositional clauses for satisfaction (the assumption
here is that ¢ is an M-formula and v is a variable assignment for ¢.)

One of the most remarkable results in the theory of satisfaction classes is that a
(non-inductive) satisfaction class can be constructed in an arbitrary countable recur-
sively saturated model of Peano arithmetic.? Since every model of arithmetic has an
elementarily equivalent recursively saturated model, it immediately follows that the
compositional axioms of satisfaction are proof-theoretically conservative over first-
order arithmetic.

Later it transpired that the conservativity of compositional satisfaction (or truth) is
an interesting property not just to the mathematical logicians but also to philosophers.
In particular, in recent philosophical debates on the so-called ‘deflationism about
truth’ conservativity has been explicitly postulated as a desirable trait of axiomatic
truth theories.* Independently of the outcome of these philosophical discussions, the
upshot is that proofs of the conservativity results became important and interesting
for a quite wide and diverse community of researchers investigating the properties of
semantic notions.

However, the original proof of the theorem using the (so-called) ‘technique of
approximations’ was difficult to follow for many readers. From the author’s expe-
rience, the machinery of approximations developed by KKL in their paper, remains
one of the main stumbling blocks in the wider dissemination of this important result.
Accordingly, the question has been asked whether the result can be proved by purely
classical methods. One successful attempt in this direction has been recently made by
Enayat and Visser [6]. In their paper, they showed how to construct a satisfaction class
using classical techniques of formal semantics, that is, compactness and the union of
elementary chain theorem.’

In the present paper I propose to prove the theorem by the classical techniques of
formal proof theory, namely, by cut elimination. Coupled with Enayat and Visser’s
construction, this makes the fascinating field of satisfaction classes accessible to the
students and the logicians, whose primary interest is either model theory or proof
theory.

2 This theorem is due to Kotlarski, Krajewski and Lachlan (KKL in short), see [14]. For an overview, see
also [13,15].

3 For the statement and the proof of this important fact about the recursively saturated models, see [11], p.
148-149.

4 See [10], where the conservativity postulate was introduced for the first time in the context of a philo-
sophical discussion of deflationary views. For further philosophical developments in this direction, see, for
example [2,12,21]. For a synthetic presentation of the conservativeness debate, see Chapters 9 and 11 of
Cieslinski [3].

5 In their proof it is assumed that arithmetic is formulated in the relational language. See [3] for extending
the result to the language with function symbols.
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2 Preliminaries
2.1 Basic notions

Axiomatic characterizations of semantic notions (that is, of truth or satisfaction) typi-
cally assume some base theory of syntax in the background. In the original construction
of KKL the role of the base theory is played by first-order Peano arithmetic (PA) for-
mulated in purely relational language, with all the usual function symbols replaced
by predicates. In contrast, here the language of first-order arithmetic (from now on
denoted as L 4,) will be assumed to contain function and constant symbols, namely
‘“+7, ‘x’, ‘0’ and ‘S’ for addition, multiplication, zero and the successor operation.
As for the base arithmetical theory, we weaken the assumption of KKL by choosing
I Ao + exp for this role—the theory obtained from PA by restricting the schema of
induction to A formulas and by adding an axiom which states that the exponential
function is total. Throughout the paper we assume that all the coding and formalization
of syntax is carried out in 7 A + exp.5

The expressions Var, Tm, Tm¢, Fmy ,, and Senty ,, will be used here in a double
role. Firstly, they will be treated as referring (respectively) to the sets of variables,
terms, constant terms, formulas and sentences of Lg4,. In addition, they will also
be used as shorthands for arithmetical predicates expressing the relevant sets in the
background arithmetical theory /Ag + exp.’” For a model M, we write Sent;, ar (M)
for the set of all objects a such thata € M and M |= Sent; ,, (a).

The perspective adopted in this paper is that of truth, not satisfaction. Accordingly,
we will consider the language L7 obtained from L 4, by adding the unary truth predi-
cate ‘T (x)’ (instead of a binary satisfaction predicate). Senty . is the set of sentences
of LT .

For the sake of avoiding cumbersome formulations, we will often eschew the nota-
tion for syntactic operations (dots, square corners) in the scope of the truth predicate.
Thus, for example, instead of ‘Ix € Sent;,, T (—x)’ (‘there is an arithmetical sentence
such that the syntactic operation of preceding it with the negation symbol produces a
true result’) we write simply: ‘Ix € Senty ,, T (—x)’.

We introduce now the basic axiomatic theory of truth, denoted as CT ™.

Definition 1 Let Ax be a set of axioms of a theory Th in L 4, containing I Ay + exp.
Then CT ™~ (Ax) is defined as the theory in the language L axiomatized by Ax together
with the following truth axioms:

Vs, t € TmC(T(s =1) =val(s) = val(t))

Vo(Senty, () = (T—¢ = =Tgp))

VoV (Sentr,, (9 v ¥) = (T(p Vv ¥) = (Te v TY)))

VoV (Sentr,, (0 A) = (T AY) = (To ATY)))

VoV (Senty,, (90 — ¥) — (T(p — ) = (To — T)))

Vv‘v’(p(x)(SentLA, Qup(v)) = (T QAvp(v)) = EIxT(<p()'c))))

6 For the detailed description of coding and formalization of syntax in / A 4-exp, see Chapter V, Section 3
of Héjek and Pudlék [9].

7 Thus, for example, given a model M of I A( + exp, the expression ‘M |= a € Var’ means that the object
a satisfies in M an arithmetical formula ‘x € Var’ expressing that x is an arithmetical variable.
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o Yu¥p(x)(Senty,, (Yop(v)) — (T (Vvg(v)) = VxT (p(x))))
o Vx[T(x) — Sentr,, (x)]

The acronym ‘C 7T stands for ‘compositional truth’. The natural truth axioms listed
above follow the familiar pattern of Tarski’s inductive truth definition. A theory Th
axiomatized by Ax is called the base theory of CT ™ (Ax). The assumption that Th
contains I/ Ag + exp ensures that 7h can play the role of a theory of syntax, strong
enough to formalize syntactic operations. The superscript in CT ~ indicates that if
Th is schematically axiomatized, we are not allowed to substitute formulas of Lt
in the schemas. Thus, for example, if T/ is axiomatized by means of some schema
of induction, then in CT~ (Ax) there will be no induction available for formulas
containing the truth predicate. With an axiomatization of Th being fixed, we will
write CT~(Th) instead of CT~(Ax).3 A ‘truth class’ in a model M of Th is a subset
T of M suchthat (M, T) = CT (Th).

Let us emphasize that the quantifier axioms of CT~ employ numerals. A numeral
is an arithmetical constant term of the form ‘S ... S(0)’; in other words, numerals
are expressions obtained by preceding the symbol ‘0’ with arbitrarily many successor
symbols.” Accordingly, the intended meaning of the existential quantifier axiom is
that ‘Jve(v)’ is true iff the result of substituting some numeral for v in ¢(v) is true
(similarly for the general quantifier truth axiom).'?

On the other hand, the first axiom of C7 ~ states the truth condition for arbitrary
atomic sentences, not just for identities between numerals. We adopt the axiom in
this form because it is simply stronger than the corresponding version for numerals,
hence we will obtain a more general conservativity result. Note that this motivation
is not applicable in the case of the quantifier axioms, since the strength of their term
and numeral versions cannot be so easily compared in the context of a theory with no
extended induction.

One of the key results in the area of axiomatic truth theories is the conservativity
theorem, stating that the truth axioms of CT ™~ are conservative over mathematical
theories realizing a sufficient amount of a theory of syntax. Conservativity is a direct
corollary of the KKL theorem, which has been originally formulated as an expand-
ability result concerning countable recursively saturated models of theories containing
Peano arithmetic.

Two definitions below introduce the notion of a recursive type and the concept of
arecursively saturated model.

Definition 2 Let Z be a set of formulas with one free variable x and with parameters
aj - - - ap from a model M. We say that:

8 The choice of axiomatization is not always innocent. Thus, for example, let Ax be a set of axioms of PA.
Is CT~ (Ax)+ ‘All elements of Ax are true’ a conservative extension of P A? As observed by Letyk [18],
the answer to this question depends on the choice of our axiomatization of Peano arithmetic.

9 Our base theory I Ag + exp proves that every number has a numeral which names it.

10" An alternative axiomatization would employ constant terms instead of numerals. In this version, the exis-
tential quantifier axiom would read: VvV(p(x)(SentLAr Aup(v)) — (T@ve(v)) = 3t € Tch(<p(t)))).
Both versions turn out to be equivalent if induction for formulas of L7 is added. This is not so without
extended induction, hence in a non-inductive setting one should be careful about choosing the shape of the
quantifier axioms.
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(a) Z isrealized in M iff there is an s € M such that every formula in Z is satisfied
in M under a valuation assigning s to x.

(b) Z is atype of M iff every finite subset of Z is realized in M.

(c) Z is arecursive type of M iff apart from being a type of M, Z is also recursive.

Definition 3 M is recursively saturated iff every recursive type of M is realized in M.

The classical KKL theorem states that every countable, recursively saturated model
of a relational version of PA'! carries a truth class. It immediately follows that com-
positional truth axioms are syntactically conservative over relational version of Peano
arithmetic. Later in an unpublished paper Enayat and Visser [5] proved conservativity
of the compositional truth axioms over weaker arithmetical theories formulated in the
relational language. In [3] it is demonstrated that Enayat and Visser conservativity
argument can be reconstructed for arithmetical theories containing / ¥ formulated in
the language with function symbols. In this paper we are going to work in the language
with function symbols obtaining the following strengthened version of KKL theorem.

Theorem 4 Let Th be a theory in L 4, containing I Ag + exp. For every M = Th,
if M is countable and recursively saturated, then there is a set T C M such that
(M, T) =CT~(Th).

2.2 Truth and satisfaction

In our presentation we take the notion of truth, and not of satisfaction, as basic.!2
In this context, let us emphasize that in a non-inductive setting the choice of the
basic semantic notion is not entirely innocent. In general, proofs of results about non-
inductive satisfaction classes do not automatically deliver corresponding results about
truth classes, nor the other way round. In order to appreciate the differences between
truth and satisfaction, let us introduce properly the basic theory of satisfaction, denoted
as CS™. This time we extend the arithmetical language with a new binary predicate
S(x, y) (the satisfaction predicate). In what follows ‘v € Asn(x)’ is an arithmetical
formula which reads ‘v is an assignment for a formulax’ (roughly, ‘v € Asn(x)’ states
that v is a finite function which assigns numbers to variables which are free in x). The
expression ‘x = val(t, v)’ reads ‘x is a value of the term ¢ under the assignment v’.

Definition 5 Let Ax be a set of axioms of an arithmetical theory Th. Then CS™ (Ax)
is defined as the theory in the language Lg axiomatized by Ax together with the
following satisfaction axioms:

' 1n the relational arithmetical language instead of saying, for example, ‘x + y = z” we would use the
ternary predicate ‘A(x, y, z)” with the intuitive reading ‘z is the result of adding y to x’. Peano arithmetic
can be formulated as a theory in this language.

12 I the discussions of the KKL theorem and related results both truth and satisfaction have been used in the
role of the basic semantic concept. Thus, in [6,11,16] satisfaction is the primary notion, with a satisfaction
class defined as an interpretation of the satisfaction predicate of (something resembling) the theory CS™
defined below. On the other hand, in [7,14,17] the discussion is carried out in terms of truth, not satisfaction.
Somewhat misleadingly, both Kotlarski et al. [14] and Engstrom [7] use the expression ‘satisfaction class’
when referring to what we called the truth classes.
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Vs, t € Tm Vv € Asn(t = s) (S(t =s,v) =val(s,v) = val(t, v))

Vo € Fmp, Yv € Asn(p) (S(—¢,v) = =S(p, v))

Vo, € Fmp,, Yv € Asn(p vV ¥) (S(p V¥, v) = (S(@,v) Vv S(¥, 1))

VoVy € Fmp,, Yv € Asn(p AY) ((S(@ A ¥, v) = (S(@, v) A S, )

YoV € Fmp,,, Yv € Asn(p — V) (S((p — Y, v) = (S(p, v) = S, v)))

Ya € Var Yo(x) € Fmp,, Yv € Asn(ﬂago(a))(S(Elaw(a), v) = dx S(e,

v[x/al)))

e Va € Var Vo(x) € Fmyp, Yv € Asn(Va(p(a))(S(Vaw(a), v)
vlx/al)))

o Vx[FvS(x,v) — Fmyp,, (x)]

Vx S(g,

As in the case of CT ~, the axioms of CS™ contain only arithmetical substitutions
of the axiom schemata of Ax (i.e., no such substitution by a formula containing ‘S’ is
an axiom of C'S™). A satisfaction class in a model M is a subset S of the model such
that (M, S) = CS™.

Below we formulate a general schematic characterization of the KKL theorem for
CS™. Concrete formulations require specifying the language and choosing a base
theory of syntax.

Theorem 6 Let Lp be the language of a base theory of syntax B. Let Th be a theory
in Lp extending B. For every countable, recursively saturated model M of T h there
is aset S € M such that (M, S) = CS™(Th).

An example of a concrete version can be found in [11], where the theorem is proved
for B being Peano arithmetic formulated in the language with the usual function
symbols.

What we want to emphasize is that it is not obvious at all how to derive Theorem 4
from a corresponding concrete version of Theorem 6. The derivation would be trivial if
CS™ permitted us to define the truth predicate of CT —, that is, if for some t(x) € Lg,
CS™ proved every formula obtained by replacing ‘T’ with 7 in some axiom of CT ™.
However, it seems implausible that C S~ can do that.!> Anyway, all the usual methods
of defining truth from satisfaction (truth as satisfaction under all assignments, under
some assignment or under the empty assignment) fail to deliver the truth predicate of
CT~ in the context of our non-inductive satisfaction theory.'*

In view of this, the transition from satisfaction to truth is sometimes made by
postulating stronger properties of a satisfaction class. A prominent example of this
strategy can be found in [6], where results are obtained about satisfaction classes
satisfying not just the usual compositional axioms of CS™, but also the so-called

13 10 my knowledge, the question whether CS™ defines the truth predicate of C7 ™ has no answer in the
literature.

14 For example, define 7(x) as the formula ¢ € Sentp , A S(p, €), with ¢ being the empty assignment.
Is 7 a CT™ truth predicate provably in CS™? If so, then CS™ should prove (among other things) the
T-version of the truth axiom for existential sentences, that is, it should prove that t (Elxrp(x)) = dxt ((p (X)),
which boils down to proving that S(3x¢(x), ) = IxS(p(x), ¢). However, given that S(Ix¢(x), ), the
appropriate satisfaction axiom delivers only JaS(¢(x), a) (the formula ¢ (x) is satisfied by a). How to prove
that then the sentence ¢(a), with the numeral for a substituted for the free variable, will be satisfied by the
empty assignment? It seems that extended induction (for formulas with the satisfaction predicate) is needed
for this.

@ Springer



Interpreting the compositional truth predicate... 755

‘extensionality condition’, guaranteeing the possibility of defining the truth predicate
of CT~ in the theory of satisfaction.!® The approach adopted in this paper is different
in that we deal directly with truth, without a detour via satisfaction.

Finally, let us mention in passing that the transition in the opposite direction, that
is, from results about truth to results about satisfaction, can also be problematic and
it might depend on the choice of the quantifier truth axioms. In the version of CT~
adopted here, with the quantifier axiom employing numerals, the satisfaction predicate
of CS~ can indeed be defined.!® However, it is not obvious at all how to define the
satisfaction predicate if we switch to the version with the truth axioms for quantified
sentences which employ constant terms instead of numerals.

3 From consistent M-logic to a truth class

From now on, we will work with a fixed countable and recursively saturated model M
of 1 Ay + exp. Following the original strategy of KKL, our first step is the development
of a proof system called ‘M-logic’ (M L in short). Intuitively, M L is a system which
permits us to process arbitrary sentences in the sense of M, including the nonstandard
ones. The system is described externally (not in the model) in the form of a sequent
calculus.!” We will use ‘=’ for the sequent arrow, with expressions of the form
‘I' = A’ referring to sequents. We shall always assume that both I' and A are
externally finite sequences of M-sentences. Note that, unlike in Gentzen’s original
system, we do not admit formulas with free variables in the sequents. This deficiency
will be compensated by the presence of infinitary rules of inference in M L.

The definition of M-logic is framed after Gentzen’s original system LK (see [8]).
All the initial sequents have the form ¢ = ¢, for an arbitrary ¢ € Senty,, (M). The
following rules of M L are copied directly from Gentzen’s system:

e Weakening, left and right (W-left and W-right):

r=A '= A
o, = A = A9

e Exchange, left and right (E-left and E-right):

F,llf,(p,f”:}A F:}A,Iﬂ,(p,A/
Lo, v, IV = A L= A,0,%, A

e Contraction, left and right (C-left and C-right):

0,0, ' = A I'= A, 0,0
p,I'= A = A0

15 For the formulation of the extensionality condition, see [6, p. 329-330].

16N amely, let S(¢, v) be the formula of L7 stating that the result of substituting numerals for free variables
in ¢ in accordance with the assignment v is true.

17 This is the first difference between our proof and the original KKL’s construction.
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o Cut:

= A9 ¢,X=A
Y= A,A

e —-left and —-right:

= Ap o, = A
-0, '= A I'=A,—¢p

o A-left and A-right (for arbitrary sentences 6 and x such that one of them is ¢):

o, ' = A F'=sAe TI'sSAY
oAy, = A F'=s Aony

e V-left and V-right (for arbitrary sentences 6 and x such that one of them is ¢):

o, '=A ¢, = A, = A9
oVvy,I'=s A I'=A,0Vy

e —-left and —-right:

F'=A¢ Y.X2=A 0. T =AY
o> Y, I,T= A, A F=A,¢— ¢

In addition, M-logic has the following rules of inference:

e The truth rule for literals (Tr-lit). Let ¢ be of the form ¢t = s with M = val(t) =
val(s) or of the form ¢ # s with M = val(t) # val(s):

o.T = A
r= A

e The M-rule, left and right (M -left, M-right):

{p@), T = A:ae M} {' = A,¢(a) :a € M}
Ixpx), ' = A I' = A, Vxe(x)

e J-right and V-left:

I'= A, ¢a) @, = A
I'= A, 3Ixp(x) Vxp(x),I' = A

Occasionally we will employ Gentzen’s terminology, classifying rules as ‘struc-
tural’ or ‘logical’. A logical rule always introduces a logical symbol (for example,
the M-rules are logical, since they introduce quantifiers); all the other rules will be
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referred to as ‘structural’.'® For a logical rule, the phrase ‘principal formula’ denotes
the formula in the lower sequent containing the newly introduced logical symbol (thus,
for example, the implication ¢ — 1 appearing as the first formula on the left in the
lower sequent of the rule —-left is the principal formula of this rule). For a logical
rule, the phrase ‘active formula’ refers to the formula(s) in the upper sequent(s) used
in the derivation of the principal formula (thus, for example, in the rule M-right every
formula of the form ¢(a) appearing as the last element in the succedent of one of the
upper sequents is to be classified as active).

Proofs in M L are (possibly infinite) trees of finite height, where the height of a
proof is defined (as usual) as the length of the maximal path. By definition, trees with
no maximal finite path do not qualify as proofs in M L. Note that this is a minor
difference between our construction and the one of KKL, who work without such a
finiteness restriction. One consequence of this difference is that KKL need to employ
the assumption that M is recursively saturated in the consistency proof of their version
of M-logic. Indeed, for recursively saturated models the distinction between two sys-
tems of M-logic (with and without the finite height restriction) does not correspond to
any real difference, namely, it transpires that if M is recursively saturated, then sen-
tences provable in M-logic with no restriction on the height of proofs will always have
proofs of finite height.!® The effect of restricting the heights of proofs is that we will
not need the recursive saturation assumption in our consistency proof (the assumption
will be employed only to guarantee the transition from the consistent M-logic to the
truth class, see Lemma 7 and its proof). Another effect is the overall simplification of
the proof, with the point being that in the construction of a truth class we simply do
not need to analyze the relation between the two versions of M-logic.?’

Observe thatin M L, the infinitary rules M -left and M -right replace the original rules
3-left and V-right of Gentzen.?! It should be also emphasized that in all the quantifier
rules of M L we employ numerals. Thus, for example, in order to apply 3-right, we
need a sentence ¢(a) where a is a numeral. In contrast, in Gentzen’s original system
the rule 3-right would permit us to derive I' = A, Ixp(x) from I' = A, ¢(¢) for an
arbitrary term ¢, not necessarily a numeral. The effect of this modification of Gentzen’s
system is that the truth class which we construct can contain term pathologies. Thus,
in amodel (M, T') of CT~ which we eventually obtain there can exist a nonstandard
formula ¢ (x) such that for some term 7, ¢(¢) belongs to T (so that, loosely speaking,
the model thinks that ¢ () is true), while the sentence —3x¢(x) also belongs to T'. In
this way we obtain a disconcerting effect: the model thinks that =3x¢(x) is true even

18 The reader should keep in mind this special meaning of "logical’. In particular, the phrase ‘logical rule’
does not mean ‘a rule which is valid by logic alone’, as it could be argued that, e.g., the M-rules are not
valid by logic alone, while various structural rules, including cut, are valid by logic alone.

19 See Lemma 8 of Kotlarski et al. [14]. The same observation is formulated as Lemma 3.1 in [20], where
the full proof is given.

20 As for the terminology, the proof system described in this paper could be called ‘finite height M-logic’,
in contrast to the original M-logic with no finiteness restriction. However, for brevity I will simply use the
name ‘M-logic’ when referring to our finite height system.

21 proof systems with similar infinitary rules have already been studied in the literature in the context of
cut elimination. See, for example, [22].
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758 C. Cieslinski

though it considers as true some term instantiation of ¢ (x).>? (This will happen if all
the numerical instantiations of ¢(x) are seen as false by the model, that is, if for all
numerals a, the sentence —¢(a) belongs to T'.) However, (M, T') can still be a model
of CT ™, since the quantifier axioms of C7~ only employ numerals.

The expression ‘M-logic’ is a bit of a misnomer, since it is clearly not a system
of pure logic for sentences in the sense of M. The extralogical intrusions are not just
the infinitary rules (the M-rules given above). In addition, thanks to the (Tr-lit) rule,
the system contains the means permitting it to recognize the truth of literals, thus
going beyond pure logic also in this respect. We write ‘M L F ¢’ as an abbreviation
of ‘ML F= ¢’ (in other words, ‘M L - ¢’ means that M-logic proves the sequent
whose antecedent is empty and the succedent contains just ¢). Now, if ¢ is a true literal
(that is, if ¢ is of the form ‘¢ = s” and M |= val(t) = val(s) or ¢ is of the form
‘t £ 5 with M |= val(t) # val(s)), then ML ¢, since the sequent = ¢ can be
derived from the initial sequent ¢ = ¢ by (Tr-lit).

The lemma below establishes a connection between M-logic and truth classes.

Lemma?7 Let M |= 1 Aq + exp be countable and recursively saturated. If M -logic is
consistent, then M can be expanded to a model of CT ™.

We will use the notation ‘ML -, S’ for expressing that the sequent S has a proof
in M-logic of height at most n (in short, S is n-provable). For the proof of the lemma,
we introduce first the family of unary predicates ‘ Pr, (S)’ expressing this relation in
the arithmetical language; in other words, ‘Pr,(S)’ will be an arithmetical formula
expressing that S is n-provable. Observe that for each rule R of M-logic, the relation
‘S can be obtained by R from n-provable sequents’ can always be expressed by an
arithmetical formula, provided that n-provability is arithmetically expressible. Thus,
for example, ‘S can be obtained by M-left from n-provable sequents’ can be written
down as:

ar, A, o(x)(S = @xex), T = A) AVaPry(p(a), T = A)).

In view of this, we introduce the following definition.

Definition8 e Pro(S) := S is an initial sequent.
o Prpi1(S) == Pry(S) V Vgemr(S can be obtained by R from n-provable
sequents).

By external induction on natural numbers it can be demonstrated that:
Observation9 Vk € w VS[ML b S = M |= Pri(S)]

We can now turn to the proof of Lemma 7.

Proofof Lemma 7 Let ¢q, ¢1, ... be an enumeration of the set of M —sentences (this
is the only place where the countability assumption is used).

22 For more information about the related pathological phenomena in satisfaction classes, see [1].
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We define:
To=9¢

T, U{on} if ML ¥ (T,, — —,) and ¢, is not existential,
T, U{EAxy ()} U{y(a)} if oo =3xy (x) and ML ¥ (T, = —¢y),

for an a € M such that ML ¥ (T,, —» =¥ (a)),
T, U {—¢,} otherwise.

Tn+1 =

The above definition strongly resembles the one typically employed in the proof of
Lindenbaum’s lemma. The expression ‘7},” on the right side of the definition (as in
‘ML ¥ (T, — —¢,)’) stands for the conjunction of all the sentences added on
previous levels of the construction.

The difference with Lindenbaum’s construction is that here existential statements
are always added to T, together with the witnessing formulas. In view of this, we need
to verify that whenever ML ¥ (T, — —3xyr(x)), there will exist an a € M such
that ML ¥ (T, — —¥(a)). There is no analogous step in the proof of Lindenbaum’s
lemma; this is also the only place in the whole proof where recursive saturation of the
model is important.

Thus, assume that M L ¥ (T, — —3xy(x)). Define:

px) ={=Pri(T, — =Y (x)) : k € ).

We observe that p(x) is a type. Otherwise there is a natural number k such that
M = VaPri(T, — —(a)).” Hence for all a, ML +; T, — —(a). But then by
the M-rule and cut, ML + T,, — —3x(x), which is a contradiction.

Since p(x) is a type, by recursive saturation there is an a € M which realizes it
and we have: VkM = —Pri(T,, — —¥(a)), hence the sentence 7, — —(a) is not
provable in M-logic, as required.

Now, define T as | ,,c,, T»- The proof of Lemma 7 is completed by demonstrating
that (M, T') = CT ™~ provided that M-logic is consistent.

The set T is clearly complete (for every M-sentence 1, either ¢ or negation of
Y belongs to 7') and it contains a numerical example for every existential statement
which belongs to 7. In addition, since by assumption M -logic is consistent, there is no
Y such that both i and —1 belongs to T'. In this setting, checking that all the axioms
of CT™ are true in (M, T) is fairly easy and we consider just one example, namely,
the axiom for the existential quantifier. In other words, we verify that

M, T) = VvVgo(x)(SentLA, @Avp()) — (T Qve(v)) = EIxT((p()'c)))).

Observe that in the proof of both implications the assumption of the consistency of
M-logic will be used.

23 Here we assume that the operation of substituting a (possibly non-standard) numeral for a free variable
in a (possibly non-standard) formula v always produces a unique result. However, this assumption is valid
in every model of 1 A + exp.
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Assume that (M, T) = T (3ve(v)). Let ‘Jup(v)’ be ¢, (that is, let it be the n-
th sentence in our enumeration of M-sentences). Then on the level n 4 1 of the
construction, ¢, must have been added to 7, together with the witnessing statement
¢(a) for some numeral a (otherwise the negation of ¢,, was added, but this is impossible
since it would make 7' inconsistent). Therefore (M, T) = 3xT (¢ (x)).

For the opposite implication, assume that (M, T) = JxT (¢(x)), then for some
a € M, ¢p(a) € T. Assuming for the indirect proof that Jvp(v) ¢ T, pick a natural
number n such that both ¢(a) and —=3ve(v) belong to T;,. But then all Tj-s for k > n
are inconsistent in M-logic, meaning that for every k > n, ML - T — v for every
M -sentence . In effect 7 would have to contain a pair of contradictory statements,
which is impossible. O

4 Consistency of M-logic

At this stage all that is missing for the proof of Theorem 4 is the argument for the
consistency of M-logic. In [14] the consistency of M-logic is proved by the technique
of approximations; a detailed argument along the same lines is also presented in [7].
Roughly, the authors define a new language which contains fresh predicate symbols
corresponding to formulas in the sense of M (formulas of this new language are said
to ‘approximate’ those of L(M)); they introduce also a new logic for this language
called ‘template logic’ in Engstrom’s dissertation. The rest of the proof proceeds then
by proving the soundness of template logic and establishing the link between M -logic
and template logic.?*

We will not employ this formal machinery; we opt instead for a syntactic proof
with cut elimination as the main tool.2> Let us start by observing that cut elimination
is indeed sufficient for our goal.

Proposition 10 Ifevery sequent provable in M -logic has a cut-free proof, then M -logic
is consistent.

Proof If M-logic is inconsistent, then it proves that 0 = 1. By cut elimination, take
a cut-free proof P of 0 = 1. It is easy to observe that every sentence in P has to be
either atomic or negated atomic (the reason is that without cut, (Tr-lit) is the only rule
that permits us to eliminate sentences in the proof and (Tr-lit) can eliminate literals
only.) For an arbitrary occurrence S of a sequent in P, let the level of S in P be defined

24 See [7], Sections 3.4.3 and 3.4.4. See also p. 33 of Engstrom’s dissertation, where he writes: ‘Proving
consistency of alogic can be done, mainly, in two different ways; the proof theoretic way, by a cut-elimination
theorem, or the model theoretic way, by a soundness theorem. We will use the model theoretic approach
and prove a soundness theorem’.

25 Cuteliminationis also the technique employed by Leigh [17] in the proof of the conservativity theorem for
CT ™. However, in Leigh’s paper the perspective is different, namely, itis CT ™ itself that gets reformulated
as a sequent calculus. Leigh obtains then a special version of cut elimination lemma for his truth system,
from which the conservativity result follows. Our starting point is different, as we work with M-logic (not
CT ™) formulated as a sequent calculus, which permits us to give a simpler proof of the conservativity
result. Admittedly, Leigh’s proof gives in addition a formalized version of the conservativity theorem (see
the second part of his Theorem 1.1). I am not sure at the moment whether the formalized conservativity
result can be obtained by the methods presented in this paper.
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as the length of maximal path generated by S in P.2 Let Tro(x) be the arithmetical
truth predicate for atomic sentences and their negations. By external induction on the
level of occurrences of sequents in P, it can be demonstrated that for every S in P,
if all sentences in the antecedent of S are T'rg, then some sentence in the succedent
of S is Tro.2” This trivially holds for level O (that is, for the initial sequents). In
the inductive part, observe that any S of level n + 1 must have been obtained in P
from sequents of lower level by weakening, contraction, exchange, (Tr-lit) or by the
rules for negation applied to atomic sentences; this is so by assumption that P is
cut-free and the application of any other rule would introduce a superfluous logical
symbol to the conclusion. In effect, very weak resources are enough to verify that if
all sentences in the antedecent of S are T'ro then some element of the succedent of
S is Trg (in particular, the argument does not require that the model M satisfies any
stronger arithmetical theory than 7 Ag + exp).

It immediately follows that M |= Tro(0 = 1), which is impossible. |

The next lemma states that cut can be eliminated in all proofs in M L.

Lemma 11 Let M be an arbitrary model of I Ag + exp. For every sequent S, if S is
provable in ML, then S has a cut-free proof in M L.

It immediately follows that M-logic is consistent for every model M = 1Ag +
exp.?®

The aim of the remaining part of the paper is to lead the proof of Lemma 11 to the
point at which it can be completed simply by repeating Gentzen’s original argument
for cut elimination. It should be emphasized that we are not there yet. Our setting is
that of possibly nonstandard sentences (sentences in the sense of M) and this generates
an obstacle which first has to be removed.

In order to see the obstacle, let us recap the classical argument. The aim is to show
that the system with the following mix rule (which is a generalized version of cut)
admits mix elimination:

'=A = A
[ = A% A

()

where ¥ and A contain ¢ (the mix formula); ¥* and A* differ from ¥ and A only in
that they do not contain any occurrence of ¢. Since mix and cut produce equivalent
proof systems, mix elimination gives us the desired result.

26 Thus, occurrences of sequents which are initial in P have level 0 and the maximal level of an occurrence
of a sequent in P is not larger than the height of P. Note that the proof can contain different occurrences
of one and the same sequent; in such a case the levels of these occurrences can also be different.

27 Note that we are using here the resources of the model M. Strictly speaking, we demonstrate that: for
every Sin P, if for every ¥ in the antecedent of S M = T'ro(v), then for some sentence v in the succedent
of SM = Tro(y).

28 The reader should keep in mind our finiteness restriction, that is, proofs in M-logic are by definition
trees of finite heights. This explains the apparent discrepancy between Lemma 11 and the result of KKL,
which states that a countable model M of Peano arithmetic is recursively saturated if and only if M-logic
is consistent (see the remarks on p. 286 after the proof of Lemma 2 in [14]; cf. also Theorem 3.15 of Smith
[20]). The point is that both KKL and Smith work with a version of M-logic with no finiteness restriction
on the height of proofs.
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In the next stage it is demonstrated that mix can be eliminated from any proof
which contains only a single application of the mix rule in the last step. This is done
by double induction on the degree of proofs (main induction) and on the rank of proofs
(subinduction). For proofs with mix used only in the last step, we define:

e The left rank of the proof is the largest number of consecutive sequents in a path
starting with the left-hand upper sequent of the mix and such that every sequent
in the path contains the mix formula in the succedent.

o The right rank of the proof is the largest number of consecutive sequents in a path
starting with the right-hand upper sequent of the mix and such that every sequent
in the path contains the mix formula in the antecedent.

e The rank of the proof is the left rank of the proof + the right rank of the proof.

e The degree of the proof is the syntactic complexity of the mix formula.

After this is done, it follows that mix can be eliminated from an arbitrary proof
(not just from proofs which contain only a single application of the mix rule in the
last step). Namely, given an arbitrary proof P, we can eliminate all the applications
of mix stage by stage, by considering subproofs of P which contain mix only in the
last step.

When applying this strategy to the case of M-logic, one immediate difference is
that in the final part of the reasoning (the one in which mix is eliminated from an
arbitrary proof) we have to make sure that the height of the mix-free proof remains
finite.”? As for the earlier parts, there is no problem in our setting with induction on
the rank of proofs, since both the left and the right rank of the proof in M L will always
be a (standard) natural number, restricted by the height of the proof. However, the
induction on the degree of proofs in M L is quite problematic. Since the mix formula
might be a non-standard element of the model M, its syntactic complexity might be
a non-standard number. Arguing externally by induction on non-standard numbers is
clearly an invalid move and this is the main obstacle complicating the situation.

Our remedy is to replace the general notion of a degree with a notion relativized to
a proof. Assume that we are given a proof P with mix applied only in the last step,
that eliminates the (possibly non-standard) mix formula ¢. The guiding intuition to be
formalized below is that in the mix-elimination proof the syntactic shape of ¢ matters
only comparatively. For example, ¢ might have the form —1. The intuition is that this
will matter only provided that v itself (without negation) appears in P; otherwise in
the context of a mix-elimination proof ¢ might just as well be treated as a formula
of syntactic complexity 0, even if it is non-standard. The underlying reason is that
in a mix-elimination proof the notion of a degree of a mix formula ¢ is used only
in analysing the case of ¢ being obtained in the proof by a logical rule (thus, in our
example, ¢ would be obtained by one of the rules for negation, which means that
itself must appear in the proof).

Our objective is to make these ideas precise. In what follows the word ‘sequence’
should always be interpreted externally; in other words, sequences are finite or infinite

29 Unlike Gentzen’s original system, M L contains infinitary rules. In effect, we must make sure that there
are no infinitely many sequents Sp, S; ... in a proof P in M L such that each of them is obtained in P by
mix but the elimination of all these mixes requires an infinite series of higher and higher mix-free proofs.
If this happened, then P could not be transformed into a single mix-free proof of finite height.
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objects in the real world, not necessarily elements of M. The length of a finite sequence
a = (ag ...ay) is the number of its elements, that is, [ih(a) = k + 1. For an infinite
sequence a we define [h(a) as w.

Definition 12 Let o be an arbitrary binary connective and let Q € {3, V}. We define:

e x <y (‘x is a direct subsentence of y’) is an abbreviation of the following arith-
metical formula:

Senty,, (x) A Sentr,, (¥) A

(Eh/f € Sent,,(y ==Y Ax =1)
vip, € Sentp, (y=(poY)Ax =9 VX =¢)
v3O(x) € Fmyp,,dadv € Var(y = (Qvl(v)) Ax = (Q(a)))).

o Lety € Senty,, (M). We say that s is a <-sequence for ¢ iff s = ¢ and for every
k such that k + 1 < [h(s), sk+1 < Sk.

The notion of a degree can now be defined in the following way.

Definition 13 Let P be an arbitrary proof in M L with mix used only in the last step.
Let ¢ be the mix formula in P. We define:

e d(¢, P) (the degree of ¢ in P) = sup{lh(s) : s is a <-sequence for ¢ such that
for every k < lh(s) sx € P}.
e d(P) (the degree of P) is defined as d(¢, P).

The expression ‘s € P’ means that the sentence occupying the k-th place in the
sequence s appears in some sequent in the proof P. In effect, given a proof P with
a mix formula g, its degree is identified with the maximal length of a <-sequence
generated by ¢ and containing just the sentences used anywhere in P (not necessarily
onasingle pathin P). The actual length of this sequence is left open by the definition; in
particular, it is not decided whether the relevant sequence is finite or not. Nevertheless,
we are going to demonstrate that proofs with mix used only in the last step always
have finite degrees.>”

In order to prove this finiteness property, we introduce first the function str(x)
(“the structure of a formula x”). Let the letter p be a new symbol, which will be treated
as a propositional variable. Intuitively, given an arithmetical formula ¢, the function
str produces a formula of the language with the new symbol which is exactly like ¢,
except that the letter *p’ is substituted for all occurrences of atomic formulas in ¢.3!
The function szr can be defined by the following arithmetical condition.

30 This property does not hold for proofs with arbitrarily many applications of the mix rule, hence the
restriction. A counterexample can be produced along the following lines. Take an infinite <I-sequence
@, 90, ¢1 - .. and consider a proof with mix for ¢ in the last step in which some sequent is earlier obtained
by an infinitary rule. The idea is that then you can add all the ¢; -s to this proof on distinct branches of the
infinitary rule (say, introducing them by weakening and then eliminating them by mix).

31 Thus, for example, str(Ax(x +x =0 Vv Vy—x x y =0)) is ‘Ax(p v Vy—p)’.
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Definition 14 str(x) = y iff there are sequences s and s’ and a number k + 1 such
that:

1. Ih(s) =k +1and Ih(s’) =k + 1,

2. s is a syntactic construction of x (hence sy = x),32
3.5, =,

4. foreveryl < k + 1:

e if 5; has the form t = s, then s; is p,

e if for some j < [, s; has the form —s;, then s has the form —-s},

e if for some i, j < [, s has the form s; o 5, then s; has the form s/ o s},
o if for some j < [, s; has the form Qus;, then sl’ has the form st}.

Let us extend the arithmetical language by the new unary function symbol 2* for
the x-th power of two. Let Ag(exp) be the class of bounded formulas in the extended
language, with new terms functioning as possible bounds (so that, for example, the
quantifier Vx < 2% counts as bounded). Define I Ag(exp) as the theory extending
Robinson’s arithmetic with appropriate axioms for exponentiation together with the
induction schema for all Ag(exp) formulas.?? Since it is known that I Ap(exp) and
I Ao + exp are equivalent theories,>* the observations to be made below in terms of
I Ap(exp) apply automatically to I Ag + exp as well.

Note that given the assumption of binary coding, the expression ‘str(x) = y’ can
be written down as a Ag(exp) formula. Let us denote by |x| the length of the binary
expansion of x. The quantifier for the lengths of sequences s and s’ from Definition 14
can be bounded by |¢| - [¢|; the codes of these sequences will be bounded by 2/¢11¢!.
In effect, the totality of str can be proved already in I Ag + exp.

Abbreviate str(p) = str(y) as¢ ~ . Let compl(¢) be the number of connectives
and quantifiers in ¢; we assume that ‘compl(x) = y’ is a Ag(exp) formula. We now
observe that a formula which appears at some stage in a <I-sequence will always have a
larger syntactic complexity than formulas appearing later in this sequence; moreover,
sameness of structure implies the same number of logical symbols. This is the content
of the proposition below.

Proposition 15 (a) Let ¢ be an arbitrary (possibly nonstandard) arithmetical sen-
tence and let s be an arbitrary <l-sequence generated by ¢. Then for every {r € s,
if ¥ is not the first element of s (that is, if v # ), then M = compl({¥) <
compl(@).

(b) M [= Vo, ¥ (¢ ~ ¢ — compl(p) = compl(})).

32 n other words, s is a sequence with x as the last element, such that every element of s is either an atomic
formula (identity between terms) or it is a complex formula formed from some earlier elements of s by
attaching a quantifier or adding a sentential connective. We assume that the condition of being a syntactic
construction of x is expressed here by an arithmetical formula.

33 Fora precise definition, see [9, p. 37].

34 See [9, p. 271ff]. I Ag(exp) conservatively extends I Ay + exp; moreover, the new function symbol 2*
is definable in  Ag.
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Proof For the proof of Proposition 15(a), given a <I-sequence generated by ¢ denote
by s, (for an arbitrary number n smaller than the length of s) the n-th element of 5.3
By external induction we demonstrate that:

Vk < lh(s)(k >0— M = compl(sy) < compl(@)).

In the proof of Proposition 15(b) we work with the assumption that M = ¢ ~ .
The conclusion that M |= compl(p) = compl (i) follows then directly from the fact
that for an arbitrary y, the number of connectives and quantifiers in x is the same
as the number of connectives and quantifiers in str(x), i.e., M = Vx compl(x) =
compl(str(x)). This can be established in /Ag(exp) by Ag(exp) induction on the
length of sequences a, b, ¢, d such that:

e a = (Xo...xk)is a syntactic construction of y,

e b= (by...by) is acalculation of complexity of elements of a (in other words, for
I <k, x; has b; connectives and quantifiers)

e ¢ = (x ... x}0) is asyntactic construction of str(x),

e d = (dy...dy) is acalculation of complexity of elements of ¢

with the final effect being that sequences b and d are identical, hence the complexity
of x (given by by) is the same as the complexity of str(x) (given by dy). O

The key property of the equivalence relation ~ is encapsulated in the following
corollary to Proposition 15.

Corollary 16 Let Z C Senty,, (M). For every s, if s is a <-sequence with elements
from Z, then lh(s) < card({[ga]N NS Z}), where [@]~ is the class of sentences
from Z such that ¢ ~ .

Proof Let s be a <-sequence with elements from Z. It is enough to observe that for
no ¢, ¥ € s we will have: ¢ ~ ¥ (in effect, no two different elements of s belong
to the same equivalence class of the ~ relation, hence the length of s is not greater
than the number of equivalence classes). Fix ¢ and ¥ € s and assume (without loss
of generality) that ¢ precedes ¥ in s. Let s’ be the sequence obtained from s by
removing all sentences preceding ¢. Then s’ is a <I-sequence generated by ¢. By
Proposition 15(a) we obtain: compl (i) < compl(g) and hence by Proposition 15(b)
not ¢ ~ . O

We are now ready to demonstrate that proofs with mix used only in the last step always
have finite degrees.

Lemma 17 Let P be an arbitrary proof in M L with mix used only in the last step.
Then d(P) is a natural number (in other words, it is never w).

Proof Fix a proof P in M L which contains mix only in the last step. Let Z be the
set of all sentences which appear in P. We demonstrate that {[¢]~ : ¢ € Z} is finite,
which by Corollary 16 guarantees the conclusion of Lemma 17.

35 Since the expression ‘sequence’ is used here in the external sense, a number n smaller than the length
of s is always standard.
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For an arbitrary sequent S in P, let [(S) (the level of S) be the length of the path
leading from S to the end sequent of P. We denote by §; the set of all sequents in P
whose level is not greater than i. Let Sent; be defined as the set of all sentences which
appear in some element of S;. Let k be the height of P. The task is to show that:

Vi < k{[¢]~ : ¢ € Sent;}is finite.

This will end the proof, since Senty = Z.

We proceed by induction. For i = 0 the conclusion is trivial, as Senty itself is finite
(Senty is the set of sentences which appear in the end sequent of P). Now, assuming
that {[¢]~ : ¢ € Sent;} is finite, we claim that {[¢]~ : ¢ € Sent;11} is also finite.

Observe that Sent;;1 can contain more sentences than Sent; only provided that
some sequent of the level i is obtained in P either by mix or by (Tr-lit) or by a logical
rule (other structural rules do not generate any new sentences on level i + 1). If some
sequent of the level i is obtained in P by mix, then i = 0, since by assumption P
contains mix only in the last step. Then the conclusion easily follows, since in such a
case Sent; is finite (it is simply Senftg together with the mix sentence). In effect, we
can now assume that i # 0, with no sequent of the level i being obtained in P by mix.

Assume that the set Sent; 1\ Sent; of new sentences at the level i 4 1 is not empty.
Then each element of this set is either eliminated by (Tr-lit) in the next stage of the
proof or it is an active formula of the logical inference with the principal formula
belonging to Sent;. Let us note first that all the elements of Sent; ;1\ Sent; which are
eliminated by (Tr-lit) fall into just two possible ~-classes (one for atomic sentences
and one for their negations). This leaves us with the second case - that of sentences
new on the level i + 1 which are obtained by logical rules. By inductive assumption,
all the principal formulas of logical rules belong to finitely many ~-classes. We will
demonstrate that in such a case all active formulas also belong to finitely many ~-
classes, which will finish the proof.

Let [¢]~ be a ~-class on Sent;. We claim that there are at most two ~-classes x
and y such that for every ¢ ~ ¢, if ¢ is the principal formula of a logical inference
rule which produces in P the sequent S belonging to S;, then every active formula of
this inference rules belongs either to x or to y. Let us analyse cases.

e Case 1: ¢ = "—607". Define x as [0]~. Take an arbitrary ¥ ~ ¢ such that i is the
principal formula of a logical inference rule which produces the sequent S. Then
Y has the form —y and the active formula must be y. Since =y ~ —60, we have
y ~ 0, therefore y € x.

e Case2: ¢ =" x 007 Define x as [x]~ and y as [f#]~. Take an arbitrary ¥ ~ ¢
such that v is the principal formula of a logical inference rule which produces the
sequent S. Then ¥ has the form x’ o 6" and the active formula must be x’ or 6’
Since x ~ x’ and 6 ~ 6’, we have: all active formulas belong either to x or to y.

e Case 3: ¢ =" Qub . Define x as [0]~. Take an arbitrary 1y ~ ¢ such that v is the
principal formula of a logical inference rule which produces the sequent S. Then
¥ has the form Qvy and the active formulas must be of the form x (a). Since
x ~ 6 and for every a, x (a) ~ x,°° we have: all active formulas belong to x.

36 We remind the reader that ~ ignores the term differences between formulas.
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O

In the proof of the cut elimination lemma one more property of degrees of proofs
will be important. In what follows we use the notation Sent(P) for the set of all
sentences which appear in a proof P.

Proposition 18 Let ¢ and r be M -sentences such that y < ¢. Let P and P’ be proofs
in M-logic such that:

Both P and P’ contain mix only in the last step.
The mix formula in P is ¢.

The mix formula in P’ is .

Sent(P’) C Sent(P).

Then d(P") < d(P).

Proof Since the degree of a proof has been defined as the maximal length of a <-
sequence of sentences belonging to the proof generated by the mix formula, let
(¥, 0o . .. 0) be a maximal such sequence for P’. Since Sent(P’) C Sent(P), it
is easy to observe that the sequence (¢, ¥, 0y . ..6;) is a a <J-sequence of sentences
belonging to P generated by ¢. Hence, d(P’) < d(P). O

In effect, Definition 13, Lemma 17 and Proposition 18 give us the notion of a degree
such that degrees of proofs (with mix used only in the last step) are always standard
natural numbers. Hence, induction on the degree of such proofs can be applied and
the way to proving cut elimination theorem for M L is now open.

I will not present the whole cut elimination proof, since it is mostly a repetition of
Gentzen’s reasoning. Instead, I will mostly restrict myself to discussing the cases of
the new rules (the ones not present in the original Gentzen’s system).

Proofof Lemma 11 (Outline and chosen cases). It is demonstrated that: (1) mix can be
eliminated from any proof which contains only a single application of the mix rule in
the last step, (2) given a proof P with mix only in the last step, the new mix-free proof
will employ only sentences used in P, (3) the height of the new mix-free proof P’ is
determined by the height of the initial proof P. Let us assume (main induction) that
mix can be eliminated in this way in every proof of degree < n. Let us also assume
(subinduction) that mix can be eliminated in this way in every proof of a degree n but
with rank < k. Our task is to show that mix can be eliminated in this way in proofs of
degree n and rank k.

The proof starts with the case of k& = 2 (the lowest possible rank) and proceeds
by analysing subcases. Here we analyse only two subcases, with the first one cor-
responding to a rule of ML absent in LK .37 Namely, let us assume for a start that
the mix formula Yx¢(x)3® is obtained in P by a logical rule in both the succedent of
the left-hand upper sequent of the mix and in the antecedent of the right-hand upper
sequent of the mix. Then the last stage of the proof runs as follows:

37 Note that for a proof of rank 2, neither the left-hand upper sequent nor the right-hand upper sequent of
the mix can be the lower sequent of (Tr-lit).

38 The case of the existential mix formula is closely analogous and I do not discuss it separately.
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M-tight {I' = A,pa) :a e M} o), L= A V-left
I' = A, Vxp(x) Vxp(x), L= A |
I'S= A, A X

We can then eliminate mix constructing P’ in the following way:

I' = A, p(c) p), L= A
LY = A% A
= A,A

Here the observation is that the same end sequent can be obtained by applying mix
to the formula ¢(c); in effect, we build a proof P’ of I', ©* = A*, A which contains
mix only in the last step and whose degree is smaller than that of P (the last property
follows by Proposition 18, since Sent(P") C Sent(P)). Hence, applying the inductive
assumption we conclude that mix in P’ can be eliminated without introducing any
new sentences absent from P’. The final modifications (weakening and exchanges)
leading to the end sequent I', ¥ = A, A also do not involve adding to the proof
any new formulas (in general: in the present setting new proofs without mix are
produced from sentences belonging to the initial proof P). Moreover, the number of
weakenings/exchanges to be performed can be showed to depend on the lengths (i.e.,
number of elements) of sequences I', ¥ and A, A, which in turn depend on the height
of the initial proof.3” In effect, the height of the mix-free proof will be bounded by a
function taking the height of the initial proof as an argument.

The second case we consider is that of the mix formula ¢ — .%? Then the last
stage of the proof runs as follows:

mix
possibly, some weakenings and exchanges

> right p.I'= Ay T=>A¢ = AL
= Ago—>yY > Y, B, E1 = A A
[, 2= A A A

We can then transform it into a proof with the following final stage:

mix

(p,FﬁA,w w721:>A1
Y= A @, I, 2T = A% Ay
T Z0 = A% A% A
I, 2= A, A, A
Admittedly, at the moment our proof contains two mixes; however, the point is that
we can eliminate them one by one. In the first stage by the inductive hypothesis we
eliminate mix from the proof of ¢, I, Z]" = A*, A1 (this proof contains mix only in
the last step). After this is done, we obtain the proof of X, I'*, £}* = A*, A*, A4
containing mix only in the last step, which again can be eliminated by the inductive

hypothesis. Note that for this to work, we need the information that at each stage,
eliminating mix from a proof P produces a proof P’ such that Sent(P’) C Sent(P)

mix

mix

possible weakenings and exchanges

39 Only a limited number of sentences can belong to a sequent provable in M L by a proof of a given (fixed)
height n.

40 The reasoning in this case is essentially the classical argument due to Gentzen. The case of implication
is considered here just in order to emphasise once again the crucial role of Proposition 18.
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(mix elimination introduces no new sentences, cf. Proposition 18), as this guarantees
that in both cases the degrees of our mixes fall within the main inductive hypothesis.

When k > 2, we have in addition the case of (Tr-lit) to analyse. Thus, in the last
stage (Tr-1it) could be used to obtain the right-hand upper sequent of the mix. In effect,
the last stage of the proof might run as follows:

p.EA
Y Y= A it
I X" = A A

If ¢ is the mix formula, we can omit (Tr-lit) and use the mix rule instead:

I'=> A 0, 2= A
2= A% A

mix
If the mix formula is not ¢, we can build the following proof:
'=sA 0, 2= A
[, T*= A* A

¢.T, 5% = A* A
T, 2= A% A

mix

some exchanges
Tr-lit

Since in both cases the new proof has lower rank than k (we moved the mix up
the derivation), the inductive hypothesis applies and the mix rule is eliminable. The
case of (Tr-lit) being used to obtain the left-hand upper sequent of the mix is very
similar. ]

With the proof of Lemma 11, the construction of a truth class in a recursively
saturated model of 1 Ay + exp has been completed.

We leave as open several natural questions concerning the possibility of applying
the present technique in conservativity proofs of extensions of CT ™ (thatis, of CT ™
with new axioms added). In our framework, adding new axioms to C7 ~ would enforce
a corresponding modification in M-logic, where new rules or new initial sequents will
also have to be added. In general, the question then would be whether the addition
of these new elements preserves the property of cut eliminability, possibly in some
restricted form but still permitting to derive the consistency of the extended version
of M-logic.*!
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41 For an illustration, consider the question of whether adding to CT ™ the axiom stating that all proposi-
tional tautologies are true produces a conservative extension of the base arithmetical theory (see [1, p. 336]
and [3, p. 225] where the question is explicitly stated as open and the motivation behind it is explained).
A corresponding system of extended M -logic could be simply the system presented in this paper but with
new initial sequents of the form = ¢ such that M = ‘¢ is a propositional tautology’. Unfortunately, it can
be demonstrated that such an expanded system does not admit full cut elimination. It is an open question
whether the expanded system is always consistent, and if so, whether its consistency can be proved by some
restricted version of cut elimination lemma.
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