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GENERALISED STABILITY OF ULTRAPRODUCTS OF FINITE

RESIDUE RINGS

RICARDO ISAAC BELLO AGUIRRE

Abstract. We study ultraproducts of finite residue rings
∏

n∈N

Z/nZ�U where

U is a non-principal ultrafilter. We find sufficient conditions of the ultrafilter U
to determine if the resulting ultraproduct

∏

n∈N

Z/nZ�U has simple, NIP, NTP2

but not simple nor NIP, or TP2 theory, noting that all these four cases occur.

1. Introduction

It is well known that any pseudofinite field has supersimple rank 1 theory. This
follows e.g. from the main theorem and Proposition 4.11 of [2]. In this paper we
investigate generalised stability properties of arbitrary pseudofinite residue rings.
More specifically, we describe non-principal ultrafilters on N such that the ultra-
product

∏

Z/nZ�U is supersimple, or NIP but non-simple, or NTP2 but not NIP
or simple, or TP2, noting that all these possibilities occur. The information is de-
picted in the following diagram.

Bounded number

of prime divisors

Bounded exponents, (e.g.
∏

p∈P

Z/pbZ�U , for fixed b) Simple case

Unbounded

exponents

Bounded set of primes,
(e.g.

∏

n∈N

Z/qnZ�U , for fixed prime q)

NIP case
Unbounded set of primes,
(e.g.

∏

p∈P,n∈ω

Z/pnZ�U) NTP2 case

Unbounded number of prime divisors, (e.g.
∏

n∈ω
Z/nZ�U) TP2 case

We now state the main theorems that make up this paper and indicate where
can they be found inside the paper.

Theorem 1.1 (Corollary 2.3). Let U be a non-principal ultrafilter on N and let
U ∈ U and b ∈ N be such that every n ∈ U is a product of powers of fewer than b
primes each prime being less than b. Then

∏

n∈N

Z/nZ�U is NIP.

Theorem 1.2 (Corollary 2.9). Let U be an ultrafilter on N such that there exists
b ∈ N and U ∈ U such that for every n ∈ U there are at most b prime divisors.
Then

∏

n∈N

Z/nZ�U is NTP2.

Theorem 1.3 (Corollary 3.8). Consider the collection of rings of the form Z/nZ
with n ∈ N. Consider also an ultrafilter on N such that there exists b ∈ N and
U ∈ U such that if n ∈ U then n is a product of fewer than b primes and if pl

divides n then l < b. Then
∏

n∈N

Z/nZ�U is supersimple.
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Theorem 1.4 (Corollary 4.3). Let U be an ultrafilter on N such that for every
b ∈ N the set

{n ∈ N : there are at least b distinct prime divisors of n}

is in U . Then
∏

n∈N

Z/nZ�U has TP2 theory.

In the second section we present both Theorem 1.1 and Theorem 1.2, concerning
the NIP and NTP2 cases respectively.

In the third section we present Theorem 1.3 about the simple theory case, and
also mention some results on coordinatisation, as found in [8].

Finally in the fourth section we present Theorem 1.4 for the TP2 case.
We heavily use definability of certain pseudofinite residue rings in well known

valued fields. When handling valued fields, we will usually work in the multisorted
Denef-Pas language of valued fields Lvalf defined with more detail in Definition 3.2.

We will write P for the set of prime numbers, U , V , W , . . . for ultrafilters, and
U , V , W , . . . for elements of ultrafilters. Also we write x, y, . . . for variables and
a, b, . . . for parameters. If we want to emphasise that a variable or parameter is
a tuple we will write x̄, ȳ or ā, b̄ respectively. When U is an ultrafilter on I we
often write [ai]U for an element of

∏

i∈I

Ri/U ; we may write [ai] if the ultrafilter U

is clear from the context. Unless specified otherwise, “U is an ultrafilter” means
U is a non-principal ultrafilter. For V an element in U a (non-principal) ultrafilter
we call {V ∩ U : U ∈ U} the induced ultrafilter on V by U . We use T to denote a
complete first order theory and M to denote a model T .

We present now the definition of the tree property of the second kind.

Definition 1.5. We say that an L-formula ϕ(x, y) has the tree property of the
second kind, in short TP2, if there are {bi,j : i, j < ω} in M and l < ω such that:

i) The set {ϕ(x, bi,j) : j ∈ ω} is l-inconsistent, for all i ∈ ω;
ii) For all ξ ∈ ωω the set {ϕ(x, bi,ξ(i)) : i ∈ ω} is consistent.

We say a theory T is NTP2 , or does not have TP2, if no formula satisfies TP2.

By Definition 3.1 of [3] the class of TP2 theories is the same as the class given
by Definition 1.5 with l = 2 in i).

Example 1. The theory of the generic ultrahomogeneous triangle-free graph has
the tree property of the second kind.

A proof is given in Example 3.13 of [3].

Definition 1.6. An L-formula ϕ(x, y) has the independence property for T if there
are (ai)i∈ω and (bI)I⊆ω in M such that M |= ϕ(ai, bI) if and only if i ∈ I.

We say that a theory is NIP if no formula satisfies the independence property.

Definition 1.7. We say that a formula ψ(x, y) has the tree property for T if there
are (aη)η∈ω<ω and some k ≥ 2 such that:

a) For every δ ∈ ω<ω the set of formulas {ψ(x, aδ⌢l) : l ∈ ω} is k-inconsistent;
b) If η ∈ ωω then the set {ψ(x, aη↾n) : n ∈ ω} is consistent.

A theory is said to be simple if no formula has the tree property.

The class of NTP2 theories is a simultaneous generalisation of both the classes
of NIP and simple theories.

Remark 1.8. Any simple theory is NTP2. Any NIP theory is NTP2.

By Example 7.7 of [3], any ultraproduct
∏

p∈P

Qp/U of p-adic fields, where U is a

non-principal ultrafilter on P, has NTP2 theory. This follows from the more general
AKE-like result found in Theorem 7.6 in [3]. Paraphrased, this says the following.
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Proposition 1.9 ([3] Theorem 7.6). Let K = (K,Γ, k, v : K → Γ, ac : K → k) be
a Henselian valued field of characteristic (0, 0) in the Denef-Pas language. Then
the height λ of an array of parameters {b̄i,j : j < ω, i < λ} in K which satisfies
clauses i) and ii) from Definition 1.5 is less than the height of arrays of parameters
either in k or in Γ which satisfies clauses i) and ii) from Definition 1.5.

In particular we have that if k has NTP2 theory in Lrng, then so does K.

Observe that in Proposition 1.9, if we consider K := (
∏

Qp/U ,Γ, k, v, ac) then

K is strictly NTP2, in the sense that since k is a pseudofinite field then it has IP
and so K has IP, and Γ has SOP so K has SOP.
Acknowledgements. I would like to thank greatly Dugald Macpherson for his
supervision during this project, and Anand Pillay for his very helpful comments and
suggestions around this work, specially around using coordinatisability in section
3. I would like to also thank CONACYT for the financial support that allowed this
work.

2. NIP, and NTP2 cases

First, for a fixed prime p we consider the ring
∏

n∈N

Z/pnZ�U .

Proposition 2.1. Fix a prime p. Ultraproducts of the form
∏

n∈N

Z/pnZ�U with U

a non-principal ultrafilter on N are interpretable in
∏

n∈N

Qp�U and hence are NIP.

Proof. We first recall that Qp has NIP theory, c.f. [1], [5] or [11]. We will show
that uniformly in n, Z/pnZ is interpretable in Qp, the p-adic numbers. We know
that the valuation ring, Zp is definable inside the valued field Qp. Also we can use
a parameter a ∈ Qp with v(a) = n to define pnZp, since pnZp = {x ∈ Zp : v(x) ≥
v(a)}. Hence the structure Zp/p

nZp
∼= Z/pnZ is interpretable in Qp, uniformly in

n (a parameter varying through Z). Furthermore the ultraproduct
∏

n∈N

Z/pnZ�U is

interpretable by the same formula in the ultrapower
∏

n∈N

Qp�U which is still NIP.

Since being NIP is preserved under interpretability we conclude that ultraproducts
of the form

∏

n∈N

Z/pnZ�U are NIP. �

We present now a lemma that will be useful further on. Here for j in an index
set J , and a collection of structures (Aj)j∈J then πj is the usual projection map
from

∏

k∈J

Ak to Aj . We extend this notation to ultrafilters, i.e. if we consider U an

ultrafilter on
∏

Ik we will denote by πj(U) the ultrafilter {V ⊆ Ij : ∃U ∈ U(πj(U) =
V )} on Ij .

Lemma 2.2. Let {Ik}k<n be a family of index sets, for each Ik let {Rk
i }i∈Ik be a

family of rings indexed by Ik, and U an ultrafilter on
∏

k<n

Ik. Then

∏

(i0,...,in−1)

(R0
i0 × · · · ×Rn−1

in−1
)�U ∼= (

∏

i0

R0
i0�π0(U)) × · · · × (

∏

in−1

Rn−1
in−1

�πn−1(U)).

Proof. We can show that the assignment ϕ given by sending [(a)(k0,...,kn−1)]U to
([(ak0)]π0(U), . . . , [(akn−1)]πn−1(U)) is an isomorphism.

�

Corollary 2.3. Let U be a non-principal ultrafilter on N and let U ∈ U and b ∈ N

be such that every n ∈ U is a product of powers of fewer than b primes each prime
being less than b. Then

∏

n∈N

Z/nZ�U is NIP.
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Proof. Put R′ :=
∏

n∈N

Z/nZ�U . Let U ∈ U be as in the hypothesis, and consider

the induced ultrafilter on U by U , namely V := {U ∩ V : V ∈ U}. Put R :=
∏

n∈U

Z/nZ�V . Then R ∼= R′.

Furthermore we can find V ∈ V such that every n ∈ V has the same d prime
factors, p1, p2, . . . , pd. Considering W the induced ultrafilter on V by V and using
Lemma 2.2 we have that R ∼= (

∏

m
(Z/pm1 Z)�W1)×· · ·×(

∏

m
(Z/pmd Z)�Wd), for some

ultrafilters W1, . . . ,Wd on N. Since each of
∏

m
(Z/pmk Z)�Wk is NIP by Proposition

2.1 we can conclude that R′ is NIP. �

We take a moment here to note that we are using and will use the following
result.

Proposition 2.4. Each of R1, . . . , Rn rings is NIP (respectively, simple, NTP2)
if and only if R1 × . . .×Rn is NIP (respectively ,simple, NTP2).

This follows from the following two lemmas.

Lemma 2.5. Let L := L1 ⊔ L2. Let ϕ(x̄, ȳ) ∈ L, where x̄ ∈ L1 and ȳ ∈ L2. Then
ϕ(x̄, ȳ) is equivalent to a finite disjunction of formulas of the form θ(x̄) ∧ ψ(ȳ),
where θ(x̄) ∈ L1 and ψ(ȳ) ∈ L2.

Proof. By induction on the length of the formula ϕ. See for example Exercise 9.6.15
of [9]. �

Lemma 2.6. Let L1, . . . ,Ln be disjoint languages. If A1, . . . , An are NIP , simple
or NTP2 Li-structures then so is A1 ⊔ . . . ⊔ An.

To see this, it suffices to show that each of NIP , simple and NTP2 are preserved
under binary disjoint unions. We present as an example the NTP2 case.

Remark 2.7. Let A be L-structure and B be an L′-structure, where L and L′ are
disjoint. Then the L⊔L′-structure A⊔B is NTP2 if and only if both A and B are
NTP2.

Proof. Note that if either A or B have TP2 then A⊔B the disjoint union has TP2
witnessed by the same formula and array. Now assume that A⊔B has TP2. Then
TP2 is witness by a formula ϕ(x, ȳ) with x a single variable and an array (b̄i,j).
But by Lemma 2.5 ϕ is a finite disjunction of formulas of the form θl ∧ψl. So for a
particular index k, there is a subarray from (b̄i,j) that witness the tree property of
the second kind for θk ∧ ψk. Furthermore we can find an array of parameters only
in A such that θk(x, ȳ) holds, or only in B such that ψk(x, ȳ) holds. This means
that either A or B have the tree property of the second kind. �

Now let both p ∈ P, and n ∈ N vary in
∏

(p,n)∈P×ω

Z/pnZ�U with U a non-principal

ultrafilter on P×ω. Consider the following class of residue rings C := {Z/pnZ : p ∈
P, n ∈ ω}.

Proposition 2.8. Any ultraproduct of rings in C = {Z/pnZ : p ∈ P, n ∈ ω} has
NTP2 theory.

Proof. We first note that Z/pnZ ∼= Zp/p
nZp, where Zp denotes to the ring of p-adic

integers.
Let U be a non-principal ultrafilter on P × ω. For each (p, e) ∈ P × ω choose

an element ape ∈ Qp such that v(ape) = e. This defines peZp in Qp, as the set
of elements in Zp with value greater or equal to the value of ape . Hence Zp/p

eZp
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is interpretable in (Qp, ape), and R :=
∏

(p,e)∈P×ω

(Zp/p
eZp)�U is interpretable in

∏

(p,e)∈P×ω

(Qp, ape)�U , where ape is an element in
∏

(p,e)∈P×ω

Qp with (p, e)-projections

equal to ape . Since by Proposition 1.9 we have that
∏

p∈P

Qp/W is NTP2 then
∏

(p,e)∈P×ω

(Qp, ape) is also NTP2.

By the above observations, R is NTP2. So every ultraproduct in C has NTP2
theory. �

Furthermore, in Proposition 2.8 R need not be simple or NIP. If the ultrafilter
concentrates on a prime p then R is NIP but not simple, and if it concentrates on
prime powers with exponent 1 then R is supersimple since the ultraproduct is then
a pseudofinite field. Since pseudofinite fields have the independence property, R is
not NIP .

Corollary 2.9. Let U be an ultrafilter on N such that there exist b ∈ N and U ∈ U
such that every n ∈ U has at most b prime factors. Then

∏

n
Z/nZ�U is NTP2.

Proof. Let R′ be such an ultraproduct and U an element of the ultrafilter as in
the hypothesis. Consider V := {V ∩ U : V ∈ U}. Put R :=

∏

n∈U

Z/nZ�V . Fur-

thermore there is a V ∈ V such that every n ∈ V has exactly d prime divisors.
Choose as earlier an ultrafilter W on V such that R ∼=

∏

n∈V

(Z/p
en(1)

n(1) Z × · · · ×

Z/p
en(d)

n(d) Z)�W . Using Lemma 2.2 we have that R ∼= (
∏

(pn(1),en(1))

Z/p
en(1)

n(1) Z�W1) ×

· · · × (
∏

(pn(d),en(d))

Z/p
en(d)

n(d) Z�Wd). Hence by Proposition 2.8 we have that R (and

therefore R′) has NTP2 theory. �

3. Simple case

Now fix b ∈ N and consider the following ultraproduct,
∏

p∈P

Z/pbZ�U .

In [Che-Hru] we find the following definition.

Definition 3.1. Let D ⊆ N be structures possibly in different languages with D
definable in N , and let a ∈ Neq be a canonical parameter for D.

(1) D is canonically embedded in N if the 0-definable relations of D are the
relations on D which are a-definable in the sense of N .

(2) D is stably embedded in N if every N -definable relation on D is D, a-
definable, uniformly, in the structure N .

(3) D is fully embedded in N if it is both canonically and stably embedded in
N .

In [3] it is mentioned in the proof of Theorem 7.6 that if K̄ = (K,Γ, k, v, ac) is a
henselian valued field of characteristic (0, 0) in the three sorted Denef-Pas language
then Γ and k are stably embedded with no new induced structure so are fully
embedded. For completeness we include a proof. We first recall the definition of
the Denef-Pas language for Henselian valued fields.

Definition 3.2. The Denef-Pas language is a three sorted language, with a sort for
the valued field in the language of rings Lrng = {·,+,−, 0, 1}, a sort for the ordered
abelian group, in the language of ordered abelian groups Logps = {+, 0, <}together
with an extra symbol ∞, and a sort for the residue field in the language of rings,
Lrng. We also include symbols for a valuation map v : K → Γ and an angular
component map āc : K → k.
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Proposition 3.3. Let K̄ = (K,Γ, k, v, ac) be a Henselian valued field of charac-
teristic (0, 0) in the Denef-Pas language. Then the value group Γ and the residue
field k are fully embedded.

Proof. In the Denef-Pas language we have elimination of field quantifiers, cf. [12],
or [13].

Let us show first that Γ is stably embedded. Consider a K̄-definable relation R
on Γ, defined by ϕ(x̄, ᾱ, β̄). By Denef-Pas quantifier elimination we may assume
ϕ has the form Q̄(ā, b̄)ψ(x̄, ᾱ, ā, β̄, b̄) where ψ is a quantifier free formula, Q̄ is a
tuple of quantifiers on the group and residue field sorts, x̄ is a tuple of free variables
of the valued field sort, ᾱ and ā are tuples of free variables and bound variables
respectively of the ordered group sort, and β̄ and b̄ are tuples of free and bound
variables respectively from the residue field sort.

Furthermore we may assume ψ is a disjunction of formulas of the form ψ1(x̄) ∧
ψ2(v(t2(x̄), ᾱ, ā)∧ψ3(āc(t3(x̄)), β̄, b̄), where ψ1(x̄) is a formula without quantifiers on
the valued field sort, ψ2(v(t2(x̄)), ᾱ, ā) is a formula without quantifiers on the value
group sort, and ψ3(āc(t3(x̄)), β̄, b̄) is a quantifier free formula from the residue field
sort, also t2(x̄) and t3(x̄) are terms obtained from the variables x̄ via the operations
from the valued field sort. We may assume the variables from ā only appear in
formulas like ψ2, and the variables from b̄ only appear in formulas like ψ3. Hence
ϕ is equivalent to a disjunction of formulas of the form ψ1(x̄) ∧ ϕ2(v(t2(x̄)), ᾱ) ∧
ϕ3(āc(t3(x̄)), β̄). Here ψ1 is a quantifier free formula on the sort of valued fields,
ϕ2(v(t2(x̄), ᾱ) is a (quantified) formula from the sort of ordered groups where the
bound variables are among ā, and ϕ3(āc(t3(x̄)), β̄) is a (quantified) formula from
the residue field sort where the bound variables are from b̄.

Since the formula ϕ defines a relation on Γ we end up with a formula made up
with a disjunction of formulas of the form of ϕ2 and the parameters involved are
all from Γ, possibly of the form v(p̄) for some p̄ ∈ K.

Next we show that Γ is canonically embedded. Consider now S an ∅-definable
relation in Γ, defined by ϕ(x̄, ᾱ, β̄). By the above argument we end up with S
being definable by a disjunction of formulas of the form ϕ2(v(t2(x̄)), ᾱ) with no
parameters. Hence S is ∅-definable and so Γ is canonically embedded in K̄.

In an analogous way we have that when a formula defines a subset of k the only
part of the formulas in the disjunction of formulas of the form ψ1(x̄)∧ϕ2(v(t2(x̄), ᾱ)∧
ϕ3(āc(t3(x̄)), β̄) we are interested in is that corresponding to ϕ3(āc(t3(x̄)), β̄) and
every parameter used can be taken to be from k, where some may be of the form
āc(p̄) for p̄ ∈ K. Hence k is stably embedded. Furthermore an ∅-definable relation
in k defined by a formula ϕ(x̄, ᾱ, β̄) ends up being ∅-definable by a formula only in
the residue field sort. Hence k is canonically embedded in K̄.

�

In the next definition and proposition, taken from [8], we work in a saturated

model M = M
eq

of T = T eq.

Definition 3.4.

• Suppose that P is a class of (partial) types closed under automorphisms.
We say that T is coordinatised by P if for every a ∈ M there is n ∈ ω
and ai for i ≤ n such that an = a and tp(ai/ai−1) ∈ P for all i ≤ n, with
a−1 = ∅. The sequence (ai : i ≤ n) is called a coordinatising sequence.

• A type q is said to be simple if for each extension p′ ∈ S(B) there is a
subset A of B with |A| ≤ |T | such that p′ does not divide over A.

• A type q is said to be supersimple if for each extension p′ ∈ S(B) there is
a subset A of B with |A| < ℵ0 such that p′ does not divide over A.
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Proposition 3.5 ([8], Proposition 4.2). If T is coordinatised by simple types then
T is simple. Furthermore if T is coordinatised by supersimple types then T is
supersimple.

We turn now to prove the following. We will work in
∏

p∈P

Qp�U .

Proposition 3.6. Fix b ∈ Z+ and let R be the ultraproduct
∏

p∈P

Z/pbZ�U , where

U is a non-principal ultrafilter on P. Then R has supersimple theory.

Proof. Since
∏

Zp/p
bZp�U ∼=

∏

Z/pbZ�U , we will think about R inside the

valued field structure Q = (
∏

p∈P

Qp�U ,Γ,
∏

Fp�U , v, ac; φ̄) where φ is the de-

finable function on
∏

p∈P

Qp�U with φ([xp]U ) = [pxp]U . Thus we want to show

R′ :=
∏

p∈P

Zp/p
bZp�U has supersimple theory with the induced structure in which

the 0-definable relations on R′ are all those arising from 0-definable relations on Q.
In order to show that R′ has a supersimple theory, by Proposition 3.5 it suffices

to coordinatise it through supersimple types. We will consider the class of types P
of the form tp([piap + (pb)]/[pi+1ap + (pb)]), for [ap + (pb)] ∈ R′.

For any given [ap + (pb)] ∈ R′ we can have the coordinatising sequence α0 :=
[pb−1ap + (pb)], . . . , αb−(i+1) := [piap + (pb)], . . . , αb−2 := [pap + (pb)], αb−1 := [ap +

(pb)]. Furthermore tp(αb−i−1/αb−i−2) = tp([piap + (pb)]/[pi+1ap + (pb)]) ⊆ {x ∈
R′ : [p]x = [pi+1ap + (pb)]} which equals to a definable set, namely Sb−(i+1) =

[piap + pb−1R′ + (pb)] := {[piap + pb−1x+ (pb)] : x ∈ R′}.
Also there is a definable bijection ϕb−i−1 over [piap+(pb)] between

∏

Zp/pZp�U
and Sb−(i+1). To see this, note that for cp ∈ Zp/p

bZp written as cp := cp(0)+pcp(1)+

. . . + pb−1cp(b−1) + (pb) we can define, uniformly on p, a bijection ϕb−i−1,p from

Zp/pZp to Sb−i−1,p := {z ∈ Zp/p
bZp : pz = pi+1cp + (pb)} = picp + pb−1Zp/p

bZp +
(pb) as follows ϕb−i−1,p(x) := pb−1x+picp +(pb). Therefore we can find the wanted
definable bijection ϕb−i−1 as the induced by ϕb−i−1,p sending [xp] ∈

∏

Zp/pZp�U
to [piap + pb−1xp + (pb)].

Moreover
∏

Zp/pZp�U is a pseudofinite field stably embedded in Q, so all the
types realised in

∏

Zp/pZp�U are supersimple. Hence all the types of the form
tp(αi/αi−1) are also supersimple.

We note that P is closed under automorphisms of R′.
Finally, note that for an element [ap + (pb)] ∈ R′ the sequence α0 = [pb−1ap +

(pb)], α1 = [pb−2ap + (pb)], . . ., αb−1 = [ap + (pb)] is a coordinatising sequence and
we have that tp(αi/αi−1) is in P for 0 ≤ i < b− 1.

Now we can apply Proposition 3.5 to conclude that since R′ is coordinatised by
supersimple types then it is supersimple.

�

Remark 3.7. It is noted in Remark 4.3 of [8] that if (ai : i ≤ n) is a coordi-
natising sequence then SU(an) ≤ SU(an/an−1)⊕ . . .⊕SU(a0). Hence the structure
∏

p∈P

Z/pbZ�U has finite SU-rank and this rank is at most b since the coordinati-

satising sequence used in the proof of Proposition 3.6 has length b and each of
the types of the sequence has SU-rank 1, cf. [10]. Furthermore we have that
∏

p∈P

pb−1Zp/p
bZp�U ✂

∏

p∈P

Zp/p
bZp�U has infinitely many cosets and also we have

that
∏

p∈P

((Zp/p
bZp)/(pb−1Zp/p

bZp))�U ∼=
∏

p∈P

Zp/p
b−1Zp�U . Similarly the ideal

∏

p∈P

pb−(i+1)Zp/p
b−iZ�U of

∏

p∈P

Zp/p
b−iZp�U has infinitely many infinite cosets.



8 RICARDO ISAAC BELLO AGUIRRE

This last argument translates into a (dividing)forking sequence of types of length
b which means that SU(an) ≥ b. Hence for any given a ∈

∏

p∈P

Zp/p
bZp�U we have

that SU(a) = b.

We can now use Proposition 3.6 together with Lemma 2.2 to cover the following
more general case.

Corollary 3.8. Consider an ultrafilter on N such that there exists b ∈ N and U ∈ U
such that if n ∈ U then n is a product of less than b primes and if pl divides n then
l < b. Then R′ :=

∏

Z/nZ�U is supersimple, of finite SU-rank.

First note that for example the ultrafilter U might include the set

{n ∈ N : If pe | n then e ≤ b, and n has less than b prime divisors}.

Proof. Let U ∈ U be as in the hypothesis, and consider V the induced ultrafilter
on U by U . We put R :=

∏

n∈U

Z/nZ�V , so R ∼= R′. There is V ∈ V such that every

n ∈ V has the same number d of prime factors, pn(1), pn(2), · · · pn(d) and every pn(i)
has the same exponent ei. Hence using Lemma 2.2 on W the induced ultrafilter on
V by V we have that R ∼= (

∏

m
(Z/pe1m(1)Z)�W1) × · · · × (

∏

m
(Z/pedm(d)Z)�Wd). Since

each one of
∏

m
(Z/peim(i)Z)�Wi is supersimple by Proposition 3.6, R′ is supersimple.

�

Remark 3.9. The ring
∏

m
Z/pe1m(1)Z�W1 × . . . ×

∏

m
Z/pedm(d)Z�Wd has SU-rank

exactly e1 + . . .+ ed.

Remark 3.10. There is an alternative, maybe more direct, way of proving Propo-
sition 3.6. We present here a brief sketch of the proof for R :=

∏

p
Zp/p

2Zp�U , but

the argument also yields Corollary 3.8.
We note by the Ax-Kochen-Eršov theorem that

∏

p∈P

Z/p2Z�U is elementary

equivalent to R′ :=
∏

p∈P

Fp[[t]]/t2�U in the language of rings, cf. Proposition 2.4.10

of [15].
We have R′ is interpretable in k :=

∏

p
Fp�U . In order to see this we only need to

note that for any prime q the ring Fq[[t]]/t2 is uniformly interpretable in Fq since we
can identify a+ bt+ t2Fq[[t]] ∈ Fq[[t]]/t

2 with the pair (a, b) and interpret addition,
(⊕), and multiplication, (∗), from Fq[[t]]/t

2 inside Fq × Fq in the following way.

• For pairs (a, b), (c, d) we put (a, b) ⊕ (c, d) := (a+ c, b+ d);
• For pairs (a, b), (c, d) we put (a, b) ∗ (c, d) = (ac, ad+ bc).

Since k is supersimple of SU-rank 1, R′ is supersimple of SU-rank 2 and hence
R is also supersimple of SU-rank 2.

Although k is interpretable in R′ the isomorphism from (k2,⊕, ∗) to R′ is not
definable in R′. Otherwise, it would be also definable in R and thus we would
get that for some U ∈ U if p ∈ U then the ring Zp/p

2Z is isomorphic to the
characteristic p ring ((Z/pZ)2,⊕, ∗) but this is a contradiction.

In Proposition 3.6 we chose to give the proof using coordinatisation through
supersimple types because we believe it provides added information for the class of
finite rings of the form Z/pnZ. In particular, it may prove useful towards showing
that for a fixed d the class of rings {Z/pdZ : p ∈ P} is a (weak) asymptotic class in
the sense of [6], see also [7].
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4. TP2 case

Not every ultraproduct of finite residue rings is NTP2. First, we note the fol-
lowing. The proof is routine and omitted here.

Claim 4.1. If {Ri : i ∈ I} is a collection of rings, then SL2(
∏

i∈I

Ri/U) ∼=
∏

i∈I

(SL2(Ri))/U .

For an analogous result (over fields, but with arbitrary groups of Lie type) see
Proposition 1 of [14].

Now we will present a useful necessary condition for a theory to be NTP2, from
[4].

Lemma 4.2. Let T be NTP2, G a definable group in M |= T and (Hi)i∈ω a
uniformly definable family of normal subgroups of G, with Hi = ϕ(x, ai). Let
H :=

⋂

i∈ω

Hi, and put H 6=j :=
⋂

i∈ω\{j}

Hi. Then there is some i∗ ∈ ω such that,

[H 6=i∗ : H ] is finite.

Proposition 4.3. Let U be an ultrafilter on N such that for every b ∈ N the set

{n ∈ N : there are at least b prime divisors of n}

is in U . Then
∏

Z/nZ�U has TP2 theory.

First we note these ultrafilters exist, since the collection

{{n ∈ N : there are at least b prime divisors of n} : b ∈ N}

has the finite intersection property.

Proof. Let R :=
∏

(Z/nZ)/U . We want to find a definable group G in R and
a uniformly definable family of normal subgroups {Hi}i<ω that contradicts the
conclusion from Lemma 4.2, and to do this we consider for each j < ω the group

SL2(Z/jZ) ∼= Gj := Fj × SL2

(

Z/p
ej,1
j,1 Z

)

× · · · × SL2

(

Z/p
ej,bj
j,bj

Z
)

such that Fj is isomorphic to SL2(Z/nZ) where n can only have prime factors
smaller than pj,1, and both bi and pi,1 increase as i → ∞, in such a way that
pj,k > pj′,k′ whenever j > j′ or both j = j′ and k > k′.

We can now for a given j and k with 1 ≤ k ≤ bj find non-central elements

Aj,k =
(

aj,k 0
0 bj,k

)

∈ SL2

(

Z/p
ej,k
j,k Z

)

with aj,k 6= bj,k. Consider Aj,k inside Gj

occurring as the k + 1-th entry in

Aj,k =

(

IdFj
, Id

SL2(Z/p
ej,1
j,1 Z), . . . , Aj,k, . . . , Id

SL2

(

Z/p
ej,bj

j,bj
Z

)

)

Now let Fj,k be the conjugacy class in Gj of Aj,k. This is uniformly de-

finable (over j) using Aj,k as a parameter. Elements in Fj,k are of the form

(1, Id, . . . , gAj,kg
−1, . . . , Id) where g ∈ SL2

(

Z/p
ej,k
j,k Z

)

.

Consider now Nj,k = CGj
(Fj,k). Then this is a normal subgroup of Gj since

for every α ∈ Gj and every γ ∈ Nj,k we have that αFj,kα
−1 = Fj,k so αγα−1 ∈

Nj,k. Furthermore Nj,k = CGj
(Fj,k) is uniformly definable using Aj,k through the

formula defining the centralizer, namely ϕ(x,Aj,k) := ∀g ∈ Gj(xgAj,kg
−1x−1 =

gAj,kg
−1). We have

Nj,k = Fj × SL2

(

Z/p
ej,1
j,1 Z

)

× . . .× C
SL2(Z/p

ej,k

j,k
Z)(Fj,k) × . . .× SL2

(

Z/p
ej,bj
j,bj

Z
)

.
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Define Nj, 6=k =
⋂

l 6=k

Nj,l and Nj =
⋂

l

Nj,l. Then the index

[Nj, 6=k : Nj ] = [SL2

(

Z/p
ej,k
j,k Z

)

: C
SL2(Z/p

ej,k

j,k
Z)(A

SL2(Z/p
ej,k

j,k
Z)

j,k )]

is at least pj,k. Indeed, if [Nj, 6=k : Nj ] = λ then for all B ∈ SL2

(

Z/p
ej,k
j,k Z

)

we have that Bλ ∈ C
SL2(Z/p

ej,k

j,k
Z)(A

SL2(Z/p
ej,k

j,k
Z)

j,k ) which means that in partic-

ular BλAj,kB
−λ = Aj,k. Considering the matrix D = ( 1 1

0 1 ), DλAj,kD
−λ =

(

aj,k λ(bj,k−aj,k)
0 bj,k

)

= Aj,k only if λ(bj,k − aj,k) is a multiple of p
ej,k
j,k . Hence the

index [Nj, 6=k : Nj ] is at least pj,k. And we have pj,k → ∞ as j → ∞.

We want to consider H =
∏

j

Nj/U =
∏

j

(

⋂

l

Nj,l

)

/U and H 6=k =
∏

j

Nj, 6=k/U =

∏

j

(

⋂

l 6=k

Nj,l

)

/U and we must show that the index [H 6=k : H ] is infinite. But we

know that [Nj, 6=k : Nj ] ≥ pj,k for every j. Also if j′ > j then [Nj′, 6=k : Nj′ ] ≥
pj′,k > pj,k. By  Loś’s Theorem we have [

∏

(Nj, 6=k)/U :
∏

(Nj)/U ] ≥ pj,k for each
pj,k hence in the ultraproduct the index [H 6=k : H ] is infinite, for all k. Hence
we just need to show that H =

⋂

i

Hi and H 6=k =
⋂

i6=k

Hi for some family of uni-

formly definable normal subgroups {Hi : i < ω}. Put Hi =
∏

j

Nj,i/U and recall

that H =
∏

j

(

⋂

l

Nj,l

)

/U and H 6=k =
∏

j

(

⋂

l 6=k

Nj,l

)

/U and that
∏

j

(

⋂

l

Nj,l

)

/U =

⋂

l

(

∏

j

Nj,l/U

)

and
∏

j

(

⋂

l 6=k

Nj,l

)

/U =
⋂

l 6=k

(

∏

j

Nj,l/U

)

. Thus, by Lemma 4.2 ap-

plied to the family of groups {
∏

j

Nj,i}i<ω the ring
∏

Z/nZ/U has the tree property

of the second kind.
�
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