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ON THE SPECTRA OF CARDINALITIES OF BRANCHES OF

KUREPA TREES

MÁRK POÓR

Abstract. We are interested in the possible sets of cardinalities of branches
of Kurepa trees in models of ZF C + CH. In this paper we present a sufficient
condition (for sets of cardinals) to be consistently the set of cardinalities of
branches of Kurepa trees.

1. Introduction

Kurepa trees are trees of height ω1 which have countable levels, but have more than

ω1-many cofinal branches. We are interested in how those sets of cardinals look like

for which there is a model of ZFC such that the following holds:

a cardinal κ is an element of our fixed set S

iff

there is a Kurepa tree T with exactly κ-many cofinal branches.

J.H. Silver showed that the existence of Kurepa trees is independent of ZFC+CH

[6]. R. Jin. and S. Shelah constructed a model of CH and 2ω1 = ω4, where Kurepa

trees only with ω3-many cofinal branches exist, and another with 2ω1 > ω2 and

Kurepa trees having exactly 2ω1-many cofinal branches [2]. Moreover, in the latter

there are no Jech-Kunen trees (a tree of height ω1 is a Jech-Kunen tree, iff each

level is of power at most ω1, with the cardinality of cofinal branches strictly between

ω1 and 2ω1). In [3] they prove that it is consistent with ZFC +CH that there are

Jech-Kunen trees, but no Kurepa trees.

If for a given sequence of cardinals 〈κi : i ∈ ω〉 we have Kurepa trees Ti (i ∈ ω) with

each Ti having κi-many cofinal branches, then ∪{Ti : i ∈ ω} is a Kurepa tree with

sup{κi : i ∈ ω}-many cofinal branches. This means that the set of cardinalities

of Kurepa trees is closed under taking limits of countable sequences. Similarly, it

is not hard to see that this set is closed under taking limits of ω1-long sequences

too. Our goal is that for a given set S of cardinals satisfying a slightly strengthened
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version of this necessary condition (in a countable transitive model [c.t.m.] M of

ZFC) to construct a forcing extension M ′ ⊇ M where

M ′ |= S = {κ : there exists a Kurepa tree T such that |B(T )| = κ}

(where B(T ) denotes the set of cofinal branches of T ). Our main result, Theorem

3.2 implies that, for example, consistently there are Kurepa trees with ℵ2k-many

(k ∈ ω), ℵω- and ℵω+1-many cofinal branches (but there are no Kurepa trees with

ℵ2k+1-many cofinal branches).

2. Preliminaries and notations

In this paper, all ordinals are von Neumann ordinals, and by the cardinality of a

set S (in symbols |S|) we mean the least ordinal α such that there exists a bijection

between α and S. For any function f with domain dom(f) = S, the following

sequencelike notation will also symbol the set f

〈fs : s ∈ S〉,

that is

f = {〈s, f(s)〉 : s ∈ S} = 〈fs : s ∈ S〉.

For a given set S, and ordinal β, Sβ will symbol the set of functions from β to

S, i.e. Sβ = {f : β → S}. Similarly S<β =
⋃

α<β S
α. We use the notation

(for any set S and cardinal λ) [S]λ = {H ∈ P(S) : |H | = λ}, and similarly

[S]<λ = {H ∈ P(S) : |H | < λ}. Regarding forcing we refer to [1] and [4].

Definition 2.1. A tree 〈T,≺T 〉 is a partially ordered set (poset) in which for each

x ∈ T the set

T≺x = {y ∈ T : y ≺T x}

is well ordered by ≺T .

Definition 2.2. The height of x in the tree T is the order type of T≺x

ht(x, T ) = otp(T≺x).

Definition 2.3. For each ordinal α the α’th level of T , or Lα(T ) is

{x ∈ T : ht(x, T ) = α}.

The restriction of T to α is

T ↾α
= ∪{Lβ(T ) : β < α}.

Definition 2.4. The height of the tree T , or ht(T ) is the least β such that

Lβ(T ) = ∅.

A tree of height ω1, with | Lα(T )| < ω1 for each α is called an ω1-tree.

From now on by branch we will mean cofinal branch.

Definition 2.5. A branch of a tree T is an ordered set (w.r.t. ≺T ) containing

exactly one element of each Lα(T ), α < ht(T ). For a given tree T B(T ) denotes

the set of branches of T .
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Definition 2.6. An ω1-tree T is a Kurepa tree if it has more than ω1-many

branches.

In this paper we will restrict our attention to trees that are downward closed subsets

of 2<ω1 , i.e. a set T of 0 − 1-valued functions on countable ordinals, where

(T ⊆ 2<ω1) and f ∈ T, β < dom(f) implies f↾β
∈ T, (1)

and f ≺T g, iff g extends f as a function (f ⊆ g). Then it is easy to see that for

each f ∈ T , ht(f, T ) = dom(f), and Lγ(T ) = T ∩ 2γ .) The following well-known

lemma states that regarding our problem, we can assume that trees are of the form

as in (1).

Lemma 2.7. Suppose that T is an ω1-tree. Then there exists an ω1-tree T ′ ⊆ 2<ω1

which is downward closed (i.e. T ′ is of the form (1)) with the same cardinality of

branches, i.e.

|B(T )| = |B(T ′)|

Proof. First we need the following claim.

Claim 2.8. Assume that 〈T,≺T 〉 is a tree such that | Lα(T )| ≤ 2ω, Lω1 = ∅. Then

there is an order-preserving mapping F : T → 2<ω1 such that for the downward

closed tree generated by ran(F )

T ′ = {f ∈ 2<ω1 : f ⊆ F (t) for some t ∈ T } ⊆ 2<ω1

the following holds. For each α < ω1 for the ω · (α + 1)-th level of T ′

Lω·(α+1)(T
′) = 2ω·(α+1) ∩ T ′ = {F (t) : t ∈ Lα(T )}. (2)

Proof. Fix an injection G : T → 2ω. For each t ∈ T if t ∈ Lα(T ) then define for

each β < α the element tβ to be the unique element in Lβ(T ) under t, i.e.,

tβ ≺T t, tβ ∈ Lβ(T ),

and let

tα = t.

Now define F (t) ∈ 2ω·(α+1) as follows.

(F (t))(β · ω + n) = (G(tβ))(n) (β ≤ α, n ∈ ω). (3)

Now if f ∈ 2ω·(γ+1) (γ < ω1) is the restriction of F (t) for some t ∈ T , i.e. f =

F (t)↾ω·(γ+1)
, and if α is such that t ∈ Lα(T ), then clearly α ≥ γ. Using that

tβ = (tγ)β if β ≤ γ, we obtain by (3) that

f(β ·ω+n) = F (t)↾ω·(γ+1)
(β ·ω+n) = (G(tβ))(n) = (G((tγ)β))(n) (β ≤ γ, n ∈ ω),

therefore f = F (tγ).

�
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Obviously |B(T )| ≤ |B(T ′)|.

The function F : T → T ′ given by the claim is an order-preserving embedding from

〈T,≺T 〉 to 〈T ′,⊆〉. Moreover, the fact that the ω · (α + 1)-th level of T ′ is the

F -image of Lα(T ) (by (2)) implies that for each cofinal branch b ⊆ T ′ and α < ω1

b ∩ 2ω·(α+1) = b ∩ Lω·(α+1)(T
′) = {F (t)} for some t ∈ Lα(T ).

This means that (fixing b ∈ B(T ′)) by the order-preservation

{t ∈ T : F (t) ∈ b} is a branch in T,

therefore |B(T )| ≥ |B(T ′)|, indeed.

�

Before stating our main theorem, we need some technical preparations.

Definition 2.9. Let the ordinal α ≤ ω1 be given, and let a, b ∈ 2α. We define the

mapping Fab : 2≤ω1 → 2≤ω1 as follows

s ∈ 2β 7→ Fab(s) ∈ 2β

β ∋ γ 7→

{
s(γ) + a(γ) + b(γ) (mod 2) if γ < α

s(γ) γ ≥ α

It can be easily seen that Fab is an automorphism of the tree 〈2<ω1 ,⊆〉.

Definition 2.10. A tree T ⊆ 2<ω1 which is downward closed is said to be homo-

geneous if for each pair a, b ∈ Lα(T ) on the same level, Fab is an automorphism of

〈T,⊆〉.

Definition 2.11. A tree 〈T,≺T 〉 is normal if the following conditions hold

• each t ∈ T which is not on the top level of T has at least two immediate

successors in T ,

• for each t ∈ Lα(T ), and each β > α (where β < ht(T )) there exists an

element t′ ∈ Lβ(T ), t ≺T t′,

• for each limit α (where α < ht(T )) and b ∈ B(T ↾α
), there is at most one

common upper bound of b in Lα(T ).

Definition 2.12. The set

Phom = {T ⊆ 2<ω1 : T is a countable homogenous normal subtree }

is a notion of forcing with the partial order

T ≤ T ′ ⇐⇒ T ↾ht(T ′)
= T ′,

i.e. the condition T extends the condition T ′ iff the tree T is an end-extension of

T ′.

(It is easy to see that a Phom-generic filter corresponds to a homogeneous subtree

of 2<ω1 of height ω1.)
4



Definition 2.13. A partial order P is λ-closed, if whenever 〈pα : α < γ〉 is a

decreasing sequence (i.e. β < α implies pβ ≥ pα ) of length γ < λ, then there exists

a common lower bound p ∈ P, i.e. p ≤ pα for each α < γ.

Lemma 2.14. Phom is ω1-closed.

Proof. If a decreasing sequence p0 ≥ p1 ≥ . . . is given, then ∪{pi : i ∈ ω} is a

growing union of countable homogeneous normal trees. Since it is easy to check

that the growing union of normal trees is normal, and homogeneity of a tree T

means that for a, b, t ∈ T (a, b are on the same level) Fab(t) ∈ T , we are done. �

At some point we will make use of the following claim.

Claim 2.15. Let T ⊆ 2<ω1 be a homogeneous tree, t, t′, t′′ ∈ T , and α = ht(t) =

ht(t′) < ht(t′′) = β, that is t and t′ are on the same level, and t′′ is on a higher

level. Furthermore, assume that t′ ⊆ t′′, i.e. t′′ is an extension of t′ as a function.

Then t∪ t′′↾β\α
∈ T , that is, roughly speaking, t and t′ have the same extensions in

T .

Proof. It is easy to check that Ftt′(t′′) = t ∪ t′′↾β\α
. �

We will make use of the next lemma which is [4, VII., Thm. 6.14.]

Lemma 2.16. Let M be a c.t.m. Suppose that the cardinal λ, and the sets A,B ∈

M (|A| < λ) are given. Let P be a λ-closed notion of forcing, G ⊆ P be P-generic

over M , f : A → B, f ∈ M [G]. Then f ∈ M .

Which has the following straightforward corollary.

Corollary 2.17. If β < λ, then forcing with a λ-closed notion of forcing adds no

new subsets of β.

The next lemma is a corollary of the proof of Lemma 2.16. It is folklore. (Recall

that for each element x ∈ M there is a canonical P-name

x̂ = {ŷ × {1P} : y ∈ x} (4)

for which the evaluation of x̂ by G

x̂[G] = x

whenever G ⊆ P is P-generic over M , see [4, Ch VII, Definition 2.10].)

Lemma 2.18. Let M be a c.t.m. Suppose that the cardinal λ, and the sets A,B ∈

M (|A| < λ) are given. Let P be a λ-closed notion of forcing, p ∈ P, f is a P-name

for which

p  f : A → B is a function.

Then there is an extension p′ ≤ p, and a function f0 ∈ M such that

p′  f = f̂0.
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Proof. Let G ⊆ P-generic over M with p ∈ G. Then apply Lemma 2.16, set

f0 = f [G] ∈ M , and choose p′ ∈ G, p′ ≤ p such that p′  f = f̂0. �

The lemma has the following straightforward application.

Corollary 2.19. Forcing with a λ-closed notion of forcing adds no new sequences

of type γ (for any γ < λ), that is, if G denotes the generic filter, then

Mγ ∩M [G] = Mγ ∩M.

For some technical reasons we will later use the following definition and lemma.

Definition 2.20. If M is a c.t.m., P ∈ M is a notion of forcing and σ, τ ∈ M are

P-names, then σ is a nice P-name for a subset of τ if σ is of the form

σ = ∪{{π} ×Aπ : π ∈ dom(τ), Aπ ⊆ P is an antichain}.

The next lemma is [4, Ch VII, Lemma 5.12].

Lemma 2.21. Suppose that M is a c.t.m., P ∈ M is a notion of forcing, τ, µ ∈ M

are P-names. Then there is a nice name σ for a subset of τ such that

1  (µ ⊆ τ) → (µ = σ).

The following lemma is folklore, but for the sake of completeness we include the

proof.

Lemma 2.22. Let M be a c.t.m., λ, ̺ be cardinals in M , P ∈ M be a notion of

forcing which is λ-cc. Then, whenever G ⊆ P is generic over M , and ν is such that

M |= ν = (|P|<λ)̺,

then

M [G] |= 2̺ ≤ ν.

Proof. By λ-cc, there are at most |P|<λ-many antichains in P. This implies that

since dom(̺̂) = {α̂ : α < ̺}, there are at most (|P|<λ)̺ = ν-many nice names for

subsets of ̺̂ in M . Let C ∈ M denote the set of nice names for subsets of ̺̂ (where

|C| ≤ ν). By Lemma 2.21 each subset S ∈ P(̺) ∩ M [G] is represented by a nice

name τ ∈ C. �

The following lemma can be found as [4, Ch. VII., Lemma 6.9]

Lemma 2.23. Let λ be a cardinal in a c.t.m. M , and P be a poset which is λ-cc

in M . Then forcing with P preserves cofinalities ≥ λ, i.e. if

cfM (α) ≥ λ,

then whenever G is P-generic over M ,

cfM (α) = cfM [G](α),

in particular if λ is regular in M , then P preserves cardinals ≥ λ.
6



The following well-known fact can be found as [4, Ch. VIII. Lemma 3.4].

Lemma 2.24. Suppose that T ∈ M is an ω1-tree, P is ω1-closed. Then forcing

with P does not add any new branch to T .

The next technical lemma will be later needed [4, Ch. VII. Lemma 7.11].

Lemma 2.25. Let the poset P ∈ M given, and suppose that P′ ∈ M is a dense

subset of P. Then

• if G ⊆ P is generic over M , then the intersection G′ = G∩P′ is P′-generic

over M ,

M [G] = M [G′],

moreover, G = {p ∈ P : ∃q ∈ G′ q ≤ p},

• if G′ ⊆ P′ is generic over M , then the filter G = {p ∈ P : ∃q ∈ G′ q ≤ p}

is P-generic over M ,

M [G′] = M [G],

moreover, G′ = G ∩ P′.

3. The main result

In this section we will prove the following theorem. We will make use of some ideas

from [2], where the authors proved among others, that it is consistent with ZFC

that 2ω1 = ω4, and Kurepa trees only with ω3-many branches exist.

Our main forcing object will be a two-step forcing iteration where we can isolate a

dense closed subset. The first paper in which such argument arose was [5] (see the

end of Section 3 of that paper. In fact, the forcings used by Kunen are essentially

versions of the forcings used in this paper.)

Definition 3.1. A set of ordinals E is closed under taking ̺-limits, iff whenever δ

is an ordinal such that cf(δ) = ̺ and E ∩ δ is cofinal in δ, then δ ∈ E.

Theorem 3.2. Let M be a c.t.m. of ZFC + GCH, and let C ∈ M be a set of

ordinals such that 0, 1 /∈ C, and the following holds (in M).

C is closed under ω-, and ω1-limits, and

∀δ ∈ C : ω ≤ cf(δ) ≤ ω1 implies δ + 1 ∈ C,
(5)

If 2 /∈ C, then further assume that

there is an inaccessible cardinal κ ∈ M,moreover

C is closed under < κ-limits, and

∀δ ∈ C : ω ≤ cf(δ) < κ implies δ + 1 ∈ C,

(6)

Then there is notion of forcing S ∈ M such that whenever G ⊆ S is S-generic over

M , then

M [G] |= C = {α : there exists a Kurepa tree T such that |B(T )| = ωα}
7



Remark 3.3. If 2 /∈ C, then in the final model κ will be ω2, thus (6) is requiring

condition (5) to be true in the final model.

First we define S. We will work in M .

If 2 /∈ C, i.e. we would like to obtain a final model in which every Kurepa tree has

more than ω2 branches, then define L to be the following Lévy collapse

L = Lv(κ, ω1) =

= {f : dom(f) ⊆ κ× ω1, dom(f) ∈ [λ× κ]<ω1 , f(λ, α) < λ (∀ 〈λ, α〉 ∈ κ× ω1)}.
(7)

Let

Pα = Phom for each α ∈ C, (8)

and let Tα∼
be the Pα-name of the generic tree.

We have two distinct cases depending on whether 2 ∈ C. We will need the following

sets defined for each ordinal in C.

Definition 3.4. Let the system

〈Xα : α ∈ C〉 (Xα ∩Xβ = ∅, α 6= β ∈ C)

of pairwise disjoint sets such that

• If 2 ∈ C, then

|Xα| = ωα,

• otherwise, if 2 /∈ C then

|Xα| =

{
ωκ+α−2, if α < ω,

ωκ+α, if α ≥ ω.

Observe that if one collapses each cardinal greater than ω1 and less than

ωκ = κ (where each other cardinal remains a cardinal), then in that model

|Xα| = ωα.

Definition 3.5. Let Qα
∼

, 1Qα
∼

, ≤Qα
∼

be Pα-names in M for which

1Pα
 Qα

∼
= {f : dom(f) ∈ [X̂α]<ω1 , ran f ⊆ Tα

∼
}, (9)

with the pointwise extension order, i.e.

1Pα
 ≤Qα

∼
= {〈f, g〉 : ∀x ∈ dom(g) : (x ∈ dom(f) ∧ f(x) ⊇ g(x))}, (10)

and a name for the greatest element 1Qα
∼

1Pα
 1Qα

∼
∈ Qα

∼
is the empty function, i.e. the empty set. (11)

Such names exist by the maximal principle [4, II., Thm. 8.2]. Now after one adds a

Pα-generic filter F over M , Qα
∼

will be decoded into a partial order with the reverse

inclusion relation, with the largest element 1Qα
∼

[F ].

8



Remark 3.6. After replacing Qα
∼

by Qα
∼

∪ {〈∅, 1Pα
〉} (if needed) we can assume

that

1Qα

∼
= ∅ = ∅̂, (12)

and

〈1Qα

∼
, 1Pα

〉 = 〈∅, 1Pα
〉 ∈ Qα

∼
(13)

Now we define Rα-s (α ∈ C) to be the following two step iterations as in [4, Ch

VIII., §5.].

Definition 3.7.

Rα = Pα ∗ Qα
∼

= {〈p, q
∼

〉 : p ∈ Pα, q
∼

∈ dom(Qα
∼

), p Pα
q
∼

∈ Qα
∼

}, (14)

which is a notion of forcing with the following partial order

〈p1, q1
∼

〉 ≤ 〈p2, q2
∼

〉 ⇐⇒ p1 ≤ p2 ∧ p1 Pα
q1
∼

≤ q2
∼
,

and a (not necessarily unique) greatest element

1Rα
= 〈1Pα

, 1Qα

∼
〉 (15)

Definition 3.8. For our fixed set C let R be the following countably supported

product

R = {r ∈
∏

α∈C

Rα : | supp(r)| < ω1}, (16)

(where by supp(r) we mean the set {α ∈ C : rα 6= 1Rα
}) which is a partial order

with the product ordering, i.e.

r0 ≤ r1 ⇐⇒ ∀α ∈ C (r0)α ≤ (r1)α.

For a set E ⊆ C define

R↾E
= {r↾E

: r ∈ R}. (17)

Clearly for any partition E1, E2 of C,

R ≃ R↾E1
× R↾E2

.

Now we can define S.

Definition 3.9.

S =

{
L × R, if 2 /∈ C,

R if 2 ∈ C.
(18)

(Where by L × R we mean the product the partial order, i.e. 〈l1, r1〉 ≤ 〈l2, r2〉 iff

l1 ≤ l2 and r1 ≤ r2.)

If r ∈ R and α ∈ C, then prα(r) ∈ Rα denotes its projection onto its α-th coordinate.

From now on we fix an S-generic filter G over M . For any α ∈ C set Gα to be

G-s projection onto Rα. Similarly, for any set E ⊆ C let G↾E
⊆ R↾E

denote G-s

projection onto R↾E
. The following lemma [4, Ch VIII., Lemma 1.3] guarantees

that G↾E
is R↾E

-generic over M .
9



Lemma 3.10. Let P0 × P1 be a product partial order, and fix a filter G which is

P0 × P1-generic over M . Then pr0(G) ⊆ P0 is P0-generic over M , pr1(G) ⊆ P1 is

P1-generic over M , and G = pr0(G) × pr1(G).

We will make use of the following too [4, Ch VIII., Thm. 1.4].

Lemma 3.11. Let G0 ⊆ P0, G1 ⊆ P1 be filters, then the following three conditions

are equivalent.

(1) G0 ×G1 is P0 × P1-generic over M ,

(2) G0 is P0-generic over M , and G1 is P1-generic over M [G0],

(3) G1 is P1-generic over M , and G0 is P0-generic over M [G1].

Furthermore if (1) − (3) holds, then

M [G0 ×G1] = M [G0][G1] = M [G1][G0].

The next definition, and lemma can help us to find an intermediate model between

M , and M [Gα] (for a fixed ordinal α ∈ C).

Definition 3.12. Let P be a partial order in M , and let Q
∼

be a P-name for a

partial order. If the filter F ⊆ P is P-generic over M , and H ⊆ Q
∼

[F ] ∈ M [F ], then

F ∗H = {〈p, q
∼

〉 ∈ P ∗ Q
∼

: p ∈ F, q
∼

[F ] ∈ H}.

We state [4, Ch VIII. Thm. 5.5]

Lemma 3.13. Let P be a partial order in M , and let Q
∼

be a P-name for a partial

order. Let G ⊆ P ∗ Q
∼

be a filter, F = prP(G), and let

H = { q
∼

[F ] : ∃p : 〈p, q〉 ∈ G}.

If G is P ∗ Q
∼

-generic over M , then

• F is P-generic over M ,

• H ⊆ Q
∼

[F ] ∈ M [F ] is Q
∼

[F ]-generic over M [F ],

• G = F ∗H, and

• M [G] = M [F ][H ].

Using this, and having the filter Gα which is Rα-generic over M , we can define

Fα = prPα
(Gα) (⊆ Pα),

Hα = { q
∼

[Fα] : ∃p 〈p, q〉 ∈ Gα} ⊆ Qα
∼

[Fα], (19)

(where Fα is Pα-generic over M) so that

Gα = Fα ∗Hα, (20)

and

M [Gα] = M [Fα][Hα] (21)
10



holds.

Now we will verify some technical statements about the aforementioned partial

orders.

Definition 3.14. For each α ∈ C we define the subset R•
α ⊆ Rα as follows. Let

〈p, q
∼

〉 ∈ R•
α, iff (〈p, q

∼
〉 ∈ Rα, and)

(1) p ∈ Pα = Phom, ht(p) = γ + 1,

(2) q
∼

= ĥ for a function h ∈ M (with dom(h) ⊆ Xα) mapping into the top

level of p, i.e. ran(h) ⊆ p ∩ 2γ .

Definition 3.15. Let R• to be the subset of R consisting of elements r satisfying

rα ∈ R•
α for every α ∈ supp(r).

Lemma 3.16. Let α ∈ C. Then R•
α is dense in Rα.

Proof. Since for a fixed 〈p, q
∼

〉 ∈ Rα

p  q
∼

∈ Qα
∼

= {f : dom(f) ∈ [X̂α]<ω1 , ran f ⊆ Tα
∼

},

thus

p  ∃f, g enumerations of dom(q) ⊆ X̂α, ran(q) ⊆ 2<ω1 in type ω,

where (∀i) q
∼

(f(i)) = g(i),

and by applying the maximal principle [4, II., Thm. 8.2] two times, there exist

names f ′ and g′ such that

p  f ′ is an enumeration of dom(q) in type ω̂, (22)

and

p  g′ is an enumeration of ran(q) in type ω̂, ∀i (q(f ′(i)) = g(i)). (23)

Now, recall that Pα = Phom is ω1-closed (by Lemma 2.14), thus the set 2<ω1 will

not grow by an extension with a Pα-generic filter. Moreover, the ω1-closedness of

Pα allows us to apply Lemma 2.18, and we obtain a condition p′ ≤ p, and functions

f0 : ω → Xα, g0 : ω → 2<ω1 (f0, g0 ∈ M) such that

p′  f ′ = f̂0 ∧ g′ = ĝ0.

By (22)-(23) this means that p′ determines q
∼

, i.e. letting h = g′ ◦ f ′−1

p′  q
∼

= ĥ.

By extending p′ further if necessary, we may assume that p′ has successor height,

say ht(p′) = γ + 1, and, moreover, ran(h) ⊆ 2≤γ . Now, for each x ∈ dom(h),

choose sx ∈ p′ ∩ 2γ extending h(x) (this is possible since p′ is normal), and define

a function h′ with dom(h′) = dom(h) and h′(x) = sx for all x ∈ dom(h). Then we

are done, since

〈p, q
∼

〉 ≥ 〈p′, q
∼

〉 = 〈p′, ĥ〉 ≥ 〈p′, ĥ′〉 ∈ R•
α.

�
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Fact 3.17. For a set E ⊆ C the restriction R•
↾E

= {r↾E
: r ∈ R•} is a dense

subset of R↾E
.

Lemma 3.18. Let M ′ ⊇ M be a c.t.m. such that

Mω ∩M ′ = Mω ∩M, (24)

i.e. there are no new sequences of type ω consisting of elements of M .

Then for any set E ⊆ C (E ∈ M ′)

M ′ |= R↾E
is ω2-cc.

Proof. Note that our conditions imply that ((ω1)M = (ω1)M ′

), and CH holds also

in M ′. For the conclusion of the lemma these corollaries would be sufficient, but in

our applications (24) will always hold.

We will need the following lemma [4, Ch II. Thm. 1.6.] which we will refer to as

the ∆-system Lemma.

Lemma 3.19. Let κ be an infinite cardinal, let θ > κ be regular, and satisfy ∀α < θ

(|α<κ| < θ). Assume that |A| ≥ θ, and ∀x ∈ A (|x| < κ). Then there is a D ⊆ A,

such that |D| = θ, and D forms a ∆-system, i.e. there is a kernel set y such that

∀x 6= x′ ∈ D : x ∩ x′ = y.

From now on we will work in M ′, therefore ω2 will stand for ωM ′

2 . Assume on the

contrary that A ⊆ R↾E
is an antichain of size ω2. We can apply Lemma 3.19 for

the set of supports {supp(r) : r ∈ A} of the antichain (with κ = ω1, and θ = ω2),

since each support is countable (by (16)) and ωω
1 = ω1 in M ′ (by (24)). Hence we

can assume w.l.o.g. that {supp(r) : r ∈ A} is a ∆-system with the kernel

S ⊆ E, (25)

that is for each r ∈ A, α ∈ S,

prα(r) 6= 1Rα
,

and if α /∈ S, then there is at most one r ∈ A for which

prα(r) 6= 1Rα
.

By Fact 3.17 we can assume that A ⊆ R•
↾E

. Therefore for each u ∈ A we can define

the function hu with dom(hu) ⊆ ∪{Xα : α ∈ S}, ran(hu) ⊆ 2<ω1 , and a sequence

〈p
(u)
α : α ∈ S〉 ∈

∏
α∈S Pα such that the following holds

prα(u) = 〈p(u)
α , ĥu↾Xα

〉 (∀ α ∈ S). (26)

Since

M ′ |= |Phom| ≤ |(2<ω1)ω| = |ωω
1 | = ω1

by CH , |
∏

α∈S Pα| = |ωω
1 | = ω1 (in M ′), we obtain that there is an element

p = 〈pα : α ∈ S〉 ∈
∏

α∈S Pα, and a set D ⊆ A, |D| = ω2, such that

∀u ∈ D : 〈p(u)
α : α ∈ S〉 = p. (27)

12



Now we will apply the ∆-system Lemma for the system {dom(hu) : u ∈ D} of

countable sets, hence there is a subset |D′| = ω2 such that

{dom(hu) : u ∈ D′} is a ∆-system with the kernel K ⊆ ∪{Xα : α ∈ S}, (28)

where K is countable. Now

{hu↾K
: u ∈ D′} ⊆ (2<ω1)K ,

where this latter set has size at most ω1, because by CH
∣∣(2<ω1)K

∣∣ = |ωω
1 | = ω1.

Therefore we can obtain a subset D′′ ⊆ D′ of size ω2 such that

hu↾K
= hv↾K

for each u, v ∈ D′′. (29)

Now it is straightforward to check that if u 6= v ∈ D′′, then u and v are compatible.

�

Next we prove that for each α ∈ C the Tα has |Xα|-many branches in M [Gα]. With

a slight abuse of notation, from now on we will identify each branch b ∈ B(T ) with

the corresponding function from ω1 to {0, 1}, i.e. the following holds

B(T ) = {f : ω1 → 2 : (∀α < ω1)f↾α
∈ T }.

Lemma 3.20. Let α ∈ C be fixed. Then the following holds in M [Gα].

M [Gα] |= |B(Tα)| = |Xα|.

Proof. Using (19) − (21), there is a filter Fα which is Pα-generic over M , and a

filter Hα ⊆ Qα
∼

[Fα] which is Qα
∼

[Fα]-generic over M [Fα]. Now by the very definition

of the name Qα
∼

, (9) − (11), Qα
∼

[Fα] is the notion of forcing

Qα
∼

[Fα] = {f : dom(f) ∈ [Xα]<ω1 , ran f ⊆ Tα},

where a condition g is stronger than f iff for each x ∈ dom(f), g(x) ∈ Tα is an

end-extension of f(x) as functions, i.e.,

g(x)↾dom(f(x))
= f(x).

It is straightforward to see that a generic filter adds branches, where the pairwise

distinct new branches (by genericity) are corresponding to elements of Xα, thus

M [Gα] = M [Fα][Hα] |= |B(Tα)| ≥ |Xα|. (30)

The following lemma proves that the inequality |B(Tα)| ≤ |Xα| also holds in M [Gα].

Before stating that lemma we state that for functions f, g where ran(f), ran(g) ⊆

{0, 1} having the same domain, by f + g we mean the pointwise addition modulo

2.
13



Lemma 3.21. Denoting the set of branches explicitly added by the filter Hα by

BH = {bx : x ∈ Xα} ∈ M [Fα][Hα] = M [Gα],

the following will hold. For each branch b ∈ B(T ) ∩ M [Gα], there is an ordinal

β < ω1, and branches b1, b2, . . . , bn ∈ BH such that

b↾ω1\β
= (b1 + b2 + · · · + bn)↾ω1\β

,

that is, for each γ ≥ β b(γ) = (b1 + b2 + · · · + bn)(γ).

This is a statement in M [Gα], assume that it doesn’t hold, and let b ∈ B(T )∩M [Gα]

be a counterexample, and ḃ a name for it. Then there is an element r ∈ Gα that

forces (in M) that b is a counterexample, i.e.

r  (∀s = {b1∼
, b2∼

, . . . , bn∼
} ∈ [BH ]<ω)

(∀γ < ω̂1)(∃β ≥ γ) (b1∼
+ b2∼

+ · · · + bn∼
)(β) 6= ḃ(β)

(31)

By Lemma 3.16 we can assume that r ∈ R•
α.

Working in M , first we will need the following Claim.

Claim 3.22. There exist a decreasing sequence of conditions 〈ri = 〈pi, ĥi〉 : i ∈

ω〉 ∈ M in R•
α, and a strictly increasing sequence of countable ordinals , 〈γi : i ∈

ω〉 ∈ M such that the following conditions hold

(i) r0 = r from (31),

(ii) the height of pi is γi + 1,

(iii) the function hi : dom(hi) → pi maps its domain onto pi-s top level, i.e.,

ran(hi) = pi ∩ 2γi,

(iv) for each i ∈ ω, k ∈ ω, s = {x0, x1, . . . , x2k} ∈ [dom(hi)]
2k+1 there exists

βs ∈ [γi, γi+1) such that

ri+1  ḃ(βs) 6=

(
bx0
∼

+ bx1
∼

+ · · · + bx2k
∼

)
(βs). (32)

Claim 3.23. For the sequences
〈
ri = 〈pi, ĥi〉 : i ∈ ω

〉
, 〈γi : i ∈ ω〉 ∈ M given by

Claim 3.22 there exist a countable ordinal γ∞ and a lower bound r∞ = 〈p∞, ĥ∞〉 ≤

ri (∀i ∈ ω) in Rα, where

ht(p∞) = γ∞ + 1 = sup{γi : i ∈ ω} + 1, (33)

and

h∞ :
⋃

i∈ω

dom(hi) → p∞,

h∞(x) = ∪{hi(x) : x ∈ dom(hi)}.

Moreover, for each t ∈ Lγ∞(p∞) = p∞ ∩ 2γ∞ there exists δ < γ∞, k ∈ ω,

{x0, x1, . . . x2k} ∈ [dom(h∞)]2k+1 such that

t↾γ∞\δ
= (h(x0) + h(x1) + . . . h(x2k)) ↾γ∞\δ

.

14



Before proving these claims first we show that Claim 3.22 and 3.23 finish the proof

of Lemma 3.21. Suppose that Claim 3.23 gives the lower bound r∞ = 〈p∞, ĥ∞〉

for the decreasing sequence
〈
ri = 〈pi, ĥi〉 : i ∈ ω

〉
(given by Claim 3.22). Then for

a generic filter G′ ⊆ Rα with r∞ ∈ G′, r∞ determines the levels of the generic tree

T ′ = ∪{p : ∃ q
∼

〈p, q
∼

〉 ∈ G′} below ht(p∞) = γ∞ + 1, i.e. T ′ ∩ 2≤γ∞ = p∞.

Therefore, towards a contradiction, suppose that G′ ⊆ Rα is an arbitrary filter that

is generic over M with r∞ = 〈p∞, ĥ∞〉 ∈ G′, and (31) holds with ḃ. In M [G′]

ḃ[G′] : ω1 → 2 is a branch through the generic tree T ′ ⊇ p∞, and ḃ[G′]↾γ∞
must

be an element of T ′ ∩ 2γ∞ = p∞ ∩ 2γ∞ . Claim 3.23 states that there exist δ < γ∞,

k ∈ ω, {x0, x1, . . . x2k} ∈ [dom(h∞)]2k+1 such that

ḃ[G′]↾γ∞\δ
= (h∞(x0) + h∞(x1) + . . . h∞(x2k)) ↾γ∞\δ

. (34)

Also by the construction of h∞ (Claim 3.23) dom(h∞) = ∪{dom(hi) : i ∈ ω},

and γ∞ = sup{γi : i ∈ ω} (and recall that ri = 〈pi, ĥi〉 is decreasing, hence

〈dom(hi) : i ∈ ω〉 is increasing). This means that there is a finite n such that

x0, x1, . . . , x2k ∈ dom(hn), and γn > δ. Then condition (iv) from Claim 3.22

implies that there is a β ∈ [γn, γn+1) such that

r∞ ≤ rn+1  ḃ(β) 6= (h∞(x0) + h∞(x1) + · · · + h∞(x2k)) (β). (35)

In particular (using that δ < γn ≤ β < γn+1 < γ∞)

G′ ∋ r∞  ḃ↾γ∞\δ
6= (h∞(x0) + h∞(x1) + · · · + h∞(x2k)) ↾γ∞\δ

,

which contradicts (34).

For the proof of Claim 3.22 and 3.23 we will need the following technical prepara-

tions.

Claim 3.24. Suppose that ξ < ω1 is a limit ordinal and T ′ ⊆ 2<ξ is a countable

homogeneous normal tree of height ξ, and U ⊆ B(T ′) ⊆ 2ξ, U 6= ∅ is a countable

set of branches of T ′. Then

T = T ′∪
{
t ∪ (u1 + u2 + · · · + u2k+1)↾ξ\dom(t)

: t ∈ T ′, {u1, u2, . . . , u2k+1} ∈ [U ]2k+1, k ∈ ω
}

is a countable homogeneous normal tree of height ξ + 1, where T ↾ξ
= T ′.

Proof. Define the set B as

B =
{
u1 + u2 + · · · + u2k+1 : k ∈ ω, {u1, u2, . . . u2k+1} ∈ [U ]2k+1

}
, (36)

and

T = T ′ ∪ {t ∪ b↾ξ\dom(t)
: t ∈ T ′, b ∈ B}, (37)

i.e. we add some branches to T ′ and obtain a tree of height ξ + 1, in other words

T \ T ′ = Lξ(T ) = 2ξ ∩ T. (38)

First we have to check that every element of 2ξ which we added is indeed a branch

of T ′, i.e., (
t ∪ b↾ξ\dom(t)

) ∣∣
β

∈ T ′ for each b ∈ B, t ∈ T ′, β < ξ. (39)
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Fixing an arbitrary element b = u1 + u2 + · · · + u2k+1 from B, t ∈ T ′, and β < ξ

first we can assume that β > dom(t). Observe that for each δ ∈ (dom(t), ξ), using

that T ′ contains t, u1↾δ
, u2↾δ

, . . . , u2k+1↾δ
, by the homogeneity of T ′

b↾δ
=

(
F(u1↾

δ
)(u2↾

δ
)

)
◦

(
F(u3↾

δ
)(u4↾

δ
)

)
◦ · · · ◦

(
F(u2k−1↾

δ
)(u2k↾

δ
)

)
(u2k+1↾δ

) ∈ T ′.

Now, if t, b↾β
∈ T , we can use Claim 2.15 to get that t ∪ b↾β\dom(t)

∈ T ′.

T is obviously countable, and the normality will follow from the fact that T ′ is

normal, we only have to check that for each t ∈ T there is t′ ∈ T ∩ 2ξ greater than

t, i.e., t ⊆ t′. Indeed, if t ∈ T is not on the top level of T then choosing an arbitrary

u ∈ U 6= ∅, we have by the construction that t ∪ u↾ξ\dom(t)
∈ T .

For the homogeneity of T , fix β ≤ ξ, c, d ∈ Lβ(T ) = 2β ∩ T , t ∈ T , we have to

check that Fcd(t) is in T . We can assume that dom(t) = ξ since otherwise t ∈ T ′,

and the homogeneity of T ′ implies that Fcd(t) = F(
c↾

dom(t)

)(
d↾

dom(t)

)(t) ∈ T ′.

Therefore dom(t) = ξ, and t = t′ ∪ b↾ξ\dom(t)
for some t′ ∈ T ′, b ∈ B. Second, if

β = dom(c) = dom(d) < ξ, then letting δ = max{β, dom(t′)}, t can be considered

as

t = t↾δ
∪ b↾ξ\δ

,

(where t↾δ
∈ T ′ by (39)), hence again by the homogeneity of T ′ we have

Fcd(t) = Fcd(t↾δ
) ∪ b↾ξ\δ

∈ T.

This means that the only remaining case is when β = ξ, that is, c, d,∈ 2ξ, and are

of the form

c = t′′ ∪ (b′′)↾ξ\dom(t′′)
for some b′′ ∈ B,

d = t′′′ ∪ (b′′′)↾ξ\dom(t′′′)
for some b′′′ ∈ B.

Now, if the ordinals dom(t′), dom(t′′), dom(t′′) ∈ ξ are not equal, then letting δ =

max{dom(t′), dom(t′′), dom(t′′)}, we can view t = t′ ∪ b↾ξ\dom(t′)
as t = t↾δ

∪ b↾ξ\δ
,

and similarly

c = c↾δ
∪ (b′′)↾ξ\δ

,

d = d↾δ
∪ (b′′′)↾ξ\δ

.

Then

Fcd(t) = F(c↾
δ
)(d↾

δ
)(t↾δ

) ∪ (b+ c+ d)↾ξ\δ
,

we would only need that b + c + d ∈ B. By (36) b, c, d ∈ B implies b + c + d ∈ B,

therefore T is a homogeneous tree, indeed.

�

Moreover, we obtain the following.

Corollary 3.25. Let δ ∈ C, 〈vi : i ∈ ω〉 ∈ M be a decreasing sequence in R•
δ .

Then there is a common lower bound v∞ = 〈w∞, ĝ∞〉 ∈ R•
δ of the sequence.
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Proof. Let wn, gn are such that vn = 〈wn, ĝn〉. Let w = ∪{wn : n ∈ ω} (which is

in Pδ = Phom by Lemma 2.14), and g∞ to be the function such that dom(g∞) =

∪{dom(gn) : n ∈ ω}, assigning g∞(x) = ∪{gn(x) : x ∈ dom(gn)}. Then g∞(x) is

a branch of w.

If the wn’s are strictly decreasing (and thus the ht(wn)’s are strictly increasing)

ht(w) must be a limit ordinal, and then for obtaining w∞ we can apply Claim 3.24

with

U = {g∞(x) : x ∈ dom(g∞)},

ξ = ht(w), T ′ = w.

�

Corollary 3.26. For δ ∈ C, r = 〈p, ĝ〉 ∈ R•
δ , with the countable ordinals ht(p) =

ξ ≤ ξ′ there exists an extension r′ = 〈p′, ĝ′〉 ∈ R•
δ of r with ht(p′) = ξ′ + 1.

Proof. The statement holds also for ξ′ < ξ, if ξ′ + 1 = ξ. We apply induction on ξ′,

and assume that ξ′ ≥ ξ.

For ξ′ = ξ′′ + 1, if r′′ = 〈p′′, ĝ′′〉 ≤ r is the desired extension for ξ′′, then let

p′ = p′′ ∪ {ta i : i ∈ {0, 1}, t ∈ p}, and for each x ∈ dom(g′′) let g′(x) = g(x) a 0.

Finally, for limit ξ′ > ξ choose a sequence ξ0 = ξ < ξ′
1 < · · · < ξ′

n < . . . such that

sup{ξ′
i : i ∈ ω} = ξ′. By induction choose a decreasing sequence

r = 〈p, ĝ〉 ≥ 〈p′
1, ĝ

′
1〉 ≥ . . . 〈p′

i, ĝ
′
i〉 ≥ . . .

in Rδ so that ht(p′
i) = ξ′

i + 1. Now applying Claim 3.25 will work. �

Proof. (Claim 3.22) We are given r0 = 〈p0, ĥ0〉 = r ∈ R•
α (the height of p0 ht(p0) =

γ0 + 1), and we will apply induction.

Assume that r0, r1, . . . , ri, and γ0, γ1, . . . , γi are defined. Let 〈sn : n ∈ ω, 〉 be an

enumeration of the set ∪{[dom(hi)]
2k+1 : k ∈ ω} (recall that dom(hi) is countable

using (9) from Definition 3.5). Now we construct a decreasing sequence

ri ≥ v0 ≥ v1 ≥ · · · ≥ vm ≥ . . .

below ri in R•
α, and a sequence 〈βn : n ∈ ω〉 (where each βj ≥ γi) such that

(1) if sm = {x0, x1, . . . , x2k}, then

vm  ḃ(βm) 6= (bx0
∼

+ bx1
∼

+ · · · + bx2k
∼

)(βm) (40)

(2) for vm = 〈wm, ĝm〉 we have ht(wm) > βm + 1.

Suppose that the βj-s, and the vj-s are defined for j ≤ l, and let sl+1 = {x0, x1, . . . , x2k}.

Then using that vl ≤ ri ≤ r and (31),

vl  (∃β ≥ γi) (bx1
∼

+ bx2
∼

+ · · · + bx2k
∼

)(β) 6= ḃ(β), (41)

hence there is a countable ordinal βl+1 ≥ γi, and a condition v′
l ≤ vl, such that

v′
l  (bx0

∼
+ bx1

∼
+ · · · + bx2k

∼
)(βl+1) 6= ḃ(βl+1). (42)
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By Lemma 3.16, we can assume that v′
l ∈ R•

α, and let vl+1 = v′
l = 〈w′

l, ĝ
′
l〉. Also by

further extension (using Corollary 3.26) we can assume that

ht(wl+1) is greater than βl+1 + 1. (43)

As we obtained the decreasing sequence 〈vj = 〈wj , ĝj+1〉 : j ∈ ω〉 under ri = 〈pi, ĥi〉

and the βj-s, we can define ri+1 = 〈pi+1, ĥi+1〉 ∈ R•
α to be a lower bound of the vj ’s

as follows. Using Corollary 3.25 first we define 〈p′
i+1, ĥ′

i+1〉 to be a lower bound of

the vj ’s.

Define hi+1 as follows. For each x ∈ dom(h′
i+1) let hi+1(x) = h′

i+1(x). For ensuring

(iii), for each t ∈ (pi+1 ∩ 2γi+1) \ {hi+1(x) : x ∈ dom(hi+1)} we can pick pairwise

distinct elements xt from Xα \ dom(h′
i+1), and define hi+1(xt) = t. Now we have

checked (iii).

It remained to check that γi+1, pi+1, hi+1 (defined by the equalities ri+1 = 〈pi+1, ĥi+1〉

and ht(pi+1) = γi+1 + 1) satisfy (iv). If sm = {x1, x2, . . . , x2k+1} ∈ [dom(hi)]
2k+1,

then ri+1 ≤ vm+1 ≤ v′
m and (42) together implies (32) from (iv). βm ∈ [γi, γi+1)

follows from the fact that (43) holds for vl+1’s first coordinate wl+1. �

Proof. (Claim 3.23) So suppose that 〈ri = 〈pi, ĥi〉 : i ∈ ω〉, 〈γi : i ∈ ω〉 fulfills our

requirements (i) − (iv). Let p′ = ∪{pi : i ∈ ω} which is a countable homogeneous

normal tree of height

γ = sup{γi : i ∈ ω} (44)

by Lemma 2.14, and because the sequence of γi-s is strictly increasing. We define

the function h as follows.

dom(h) = ∪{dom(hi) : i ∈ ω}, (45)

and for each x ∈ dom(h) define h(x) to be ∪{hi(x) : x ∈ dom(hi)}, which is a

function, since 〈pi, ĥi〉-s form a decreasing sequence in R•
α. By (iii), h(x) ∈ 2γ ,

which is not an element of p′, since p′ ⊆ 2<γ (by ht(p′) = γ).

Apply Claim 3.24 with T ′ = p′, ξ = γ, U = ran(h), and let p∞ = T be the given

tree (that is

p∞ = p′ ∪ {t ∪ b↾ξ\dom(t)
: t ∈ p′, b ∈ B}, (46)

where

B = {h(x0)+h(x1)+ · · ·+h(x2k) : k ∈ ω, {x0, x1, . . . x2k} ∈ [dom(h)]2k+1}), (47)

we are done. �

�

We will need the following basic lemmas.

Lemma 3.27. Suppose that E ⊆ C, E ∈ M ′ is a set, M ′ ⊇ M is a c.t.m., such

that

Mω ∩M ′ = Mω ∩M, (48)
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i.e., there is no new sequence of type ω consisting of elements of M . Let T ∈ M ′

(T ⊆ 2<ω1) be a tree of height ω1 with countable levels. Then extending M ′ by a

filter F ⊆ R↾E
which is R↾E

-generic adds no new branches to T , i.e.

B(T ) ∩M ′[F ] = B(T ) ∩M ′.

Proof. As R•
↾E

is dense in R↾E
(by Corollary 3.17), forcing with one yields exactly

the same extensions as forcing with the other (by Lemma 2.25), we only have to

show that R•
↾E

is ω1-closed in M ′ to apply Lemma 2.24. Our conditions together

with by Corollary 3.25 imply that for each decreasing sequence (of type ω) in R•
↾E

belonging to M ′ has a lower bound. (In fact first we can find such a lower bound

only in R• and we can restrict the obtained condition, or we can also refer to the

fact that these partial functions are countably supported). Then Lemma 2.24 gives

the desired result.

�

Lemma 3.28. Let E ⊆ C be a set, M ′ ⊇ M be a c.t.m. such that

Mω ∩M ′ = Mω ∩M, (49)

i.e. there is no new sequence of type ω consisting of elements of M . Then extending

M ′ by a filter F ⊆ R↾E
which is R↾E

-generic adds no new sequences of type ω

consisting of elements of M ′, i.e.

(M ′)ω ∩M ′ = (M ′)ω ∩M ′[F ]

Proof. Again, (similarly to the proof of Lemma 3.27) we have that each decreasing

ω-sequence in R•
↾E

belonging to M ′ has a lower bound (by Corollary 3.25). Then

apply Corollary 2.19. �

Recall that G ⊆ S is S-generic over M . In the next lemma we will prove that if

α /∈ C, then there is no Kurepa tree in M [G] with ω
M [G]
α branches.

Lemma 3.29. Let T ∈ M [G] (T ⊆ 2<ω1) be a tree of height ω1 with countable

levels, and let α be an ordinal so that

M [G] |= |B(T )| = ωα. (50)

Then α ∈ C.

The proof of this lemma will take a lot of effort. From Lemma 3.31 to Lemma 3.55

we will find two models, each containing T , but exactly the greater containing all

branches of T . From Claim 3.56 to Lemma 3.59 we will see that the homogeneity

of our generic Tδ-s imply that the larger of the two models cannot contain all the

branches, contradicting our previous arguments.

Fix an ordinal α such that

α /∈ C, and

M [G] |= |B(T )|] = ωα.
(51)
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We will derive a contradiction by finding a suitable intermediate model containing

M [G] ∩ B(T ), arguing that the residual forcing still adds new branches.

First we would like to find an intermediate extension N (M ⊆ N ⊆ M [G]) which

is small enough, but T ∈ N .

Before that we prove that T ⊆ M .

Claim 3.30.

Mω ∩M [G] = Mω ∩M,

This implies that ω1 does not collapse, that is,

M [G] |= ∄bijection between ω and ωM
1 .

Moreover,

2<ω1 ∩M = 2<ω1 ∩M [G],

in particular

T ⊆ M.

Proof. We have two cases depending on C. The filter G is S-generic, where either

S = L×R (if 2 /∈ C), or S = R (otherwise, (18)). Now as L is ω1-closed, both R• and

R• × L are ω1-closed (Corollary 3.25 and each condition is countably supported).

This means that by Corollary 2.19 forcing with R• × L, or R• does not add new

sequences. Then recalling Corollary 3.17 we obtain that R• × L is dense in L × R,

and R• is dense in R, we are done (by Lemma 2.25). �

Lemma 3.31. Suppose that M ′ ⊇ M be a c.t.m. where

M ∩Mω = M ′ ∩Mω, (52)

and for our inaccessible κ from (6) (and (7))

(κ is a cardinal)M ′

.

Then

M ′ |= L is κ-cc.

Proof. Suppose that A ⊆ L ∈ M is a an antichain of size κ. First we can apply the

∆-system lemma (Lemma 3.19) for the system {dom(a) : a ∈ A}, since dom(a) is

countable by (7), and for any infinite ordinal γ < κ

(γω)M ′

= (γω)M ≤ (γγ)M < κ

by the fact that κ is inaccessible in M . Therefore we can assume that {dom(a) :

a ∈ A} is a ∆-system, let K ⊆ κ× ω1 denote its kernel. Since K is countable, and

κ > ω is inaccessible in M , (52) implies that ω < cf(κ)M ′

. Therefore, there is an

ordinal δ < κ such that K ⊆ δ × ω1. This and the definition of L (7) imply that

for each a ∈ A, ran(a↾K
) ⊆ δ. But the derived system A′ = {a↾K

: a ∈ A} ⊆ δK ,

gives an upper bound

(δω)M ′

= (δω)M ≤ (δδ)M < κ

for the cardinality of A′. This contradicts the fact that A is an antichain of size

κ. �
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Lemma 3.32. In the final model, M [G]

M [G] |= |Xδ| = ωδ (∀δ ∈ C). (53)

In general, cardinals and cofinalities greater than or equal to (ω2)M [G] are preserved,

where

• (ω2)M [G] = κ, if 2 /∈ C, that is, we forced with L too,

• (ω2)M [G] = (ω2)M , if 2 ∈ C.

Proof. For proving (53), by Definition 3.4 it is enough to show that if 2 /∈ C then

only cardinals strictly between ω1 and κ are collapsed, and if 2 ∈ C, then no

cardinals are collapsed.

In both cases, Corollary 3.30 states that ω1 is not collapsed. Now if 2 /∈ C, then we

had forced with L × R, otherwise only with R. In the first case, by Lemma 3.11, G

can be identified with I×G↾C
, and we can consider this extension as first extending

with I, and then with G↾C
. Therefore, in both case it is enough to show that

(1) adding the filter I which is generic over M destroys exactly cardinals in (ω1, κ).

(2) extending M (resp., M [I]) byG↾C
doesn’t collapse cardinals greater than ωM

2 =

ω2 (resp., ω
M [I]
2 = κ)

Note that by Corollary 3.30, ω1 is absolute. For the first claim, L collapses every

cardinal between ω1 and κ, because the generic filter gives surjections from ω1 onto

each µ < κ. Lemma 3.31 gives that L is κ-cc in M , thus by Lemma 2.23 cardinals

and cofinalities greater than or equal to κ remain cardinal in M [I].

For (2), we can apply Lemma 3.18 for R (with M ′ = M , and M ′ = M [I] too,

because of Corollary 3.30), and we obtain that R is ωM ′

2 -cc in M ′ in each case.

Then Lemma 2.23 implies that cardinals (and cofinalities) greater than or equal to

ωM ′

2 are still cardinals (and cofinalities) after forcing. This completes the proof of

(53). �

Lemma 3.33. If M ⊆ M [J ] ⊆ M [G] is a forcing extension, (J ⊆ O is generic

over M), where O is a notion of forcing (smaller than ω
M [G]
2 )M , then GCH holds

in M [J ] for ν ≥ ω
M [G]
2 .

Moreover, in the case when we used the inaccessible cardinal κ (i.e. (ω2)M [G] = κ),

then

M [J ] |= “κ is inaccessible, in particular 2ω1 < κ.”

Proof. Let λ = |O|M < ω
M [G]
2 . By Lemma 2.22, if ν is a cardinal in M , then

M [J ] |= 2ν ≤ (λν·λ)M .

This yields that

(ν ≥ λ) →
(
M [J ] |= 2ν ≤ (νν·ν)M = (ν+)M

)
(54)

by GCH in M . Therefore we also obtain that in M [J ] 2ν = ν+ for ν ≥ ω
M [G]
2

(because λ < ω
M [G]
2 ).
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Moreover, if M [G] = M [I][G↾C
] and ω

M [G]
2 = κ is inaccessible in M , then κ is still

a strong limit in M [J ]. In this case, because |O|M = λ < κ, and O obviously has

the κ-cc in M , we have that Lemma 2.23 guarantees that cf(κ) is still κ in M [J ].

This yields the conclusion that κ remains inaccessible in M [J ]. �

For finding our desired model N which contains T as an element, but cannot contain

all of its branches (because 2ω1 is smaller there), we need to extend M by filters

containing less information than what I ⊆ L and G↾C
⊆ R↾C

= R give. First we

are to find a model M ′′ between M and M [I] extracting minimal information from

the extension by I.

We would like to consider the notion of forcing L as a product.

Definition 3.34. For L defined in (7), and a set of ordinals K ⊆ κ let

L↾K
= {f ∈ L : dom(f) ⊆ K × ω1} =

= {f : dom(f) ⊆ K × ω1, | dom(f)| < ω1, f(λ, α) < λ (∀ λ ∈ K}
.

Then clearly

L ≃ L↾K
× L↾κ\K

.

Furthermore, for any filter F ⊆ L define

F ↾K
= F ∩ L↾K

.

Claim 3.35. There exists an ordinal µ < κ such that

T ∈ M [G↾C
][I↾µ

].

Proof. First, using Lemma 3.28

Mω ∩M [G↾C
] = Mω ∩M, (55)

also implying that ω1 is absolute. Moreover, κ is a cardinal in M [G↾C
] ⊆ M [G],

because R = R↾C
has the ω2-cc in M (by Lemma 3.18). Now Lemma 3.31 states

that

M [G↾C
] |= L is κ-cc. (56)

Applying Lemma 2.21 in M [G↾C
], there is a nice L-name σ ∈ M [G↾C

] for a subset

of 2<ω1 for which

1L  (Ṫ ⊆ 2̂<ω1) → (Ṫ = σ),

where Ṫ ∈ M [G↾C
] is a L-name for T ∈ M [G↾C

][I]. Here σ = {{f̂} × Af : f ∈

2<ω1} (where each Af is an antichain in L, and of size < κ by (56)). Note that

cfM [G↾
C

](κ) = κ by Lemma 2.23 (because R↾C
is ω2-cc by Lemma 3.18). This

means that for each f ∈ 2<ω1 there is an ordinal µf < κ such that

∀l ∈ Af : dom(l) ⊆ µf × ω1.

Define

µ = sup{µf : f ∈ 2<ω1} < κ. (57)
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Then clearly Af ⊆ L↾µ
for each f ∈ 2<ω1. Since L ≃ L↾µ

× L↾κ\µ
, and if I↾µ

=

I ∩ L↾µ
, I↾κ\µ

= I ∩ L↾κ\µ
are filters given by I in the components, then the tree

T = σ[I] depends only on coordinates in µ× ω1, i.e. on I↾µ
. Therefore

T = σ[I] = σ[I↾µ
] ∈ M [G↾C

][I↾µ
],

as desired.

�

Definition 3.36. In the case when G = I × G↾C
(because 2 /∈ C) we define

M ′′ = M [I↾µ
], and if G = G↾C

, then let M ′′ = M .

Note that in each case

T ∈ M ′′[G↾C
]. (58)

Claim 3.37. There exists a set S ⊆ C, S ∈ M ′′ such that

M ′′ |= |S| < ω
M [G]
2 ,

and

T ∈ M ′′[G↾S
].

Proof. First, since Lµ is ω1-closed (in M), Mω ∩ M [I↾µ
] = Mω ∩ M . Therefore

one can apply Lemma 3.18 and obtain that in M (and M [I↾µ
], resp.). R↾C

has no

antichain of size ωM
2 (ω

M [Iµ]
2 , resp.). We get that

M ′′ |= R↾C
is ω2-cc. (59)

By Lemma 2.21, there is a nice R↾C
-name σ for a subset of 2̂<ω1 such that

1R  (Ṫ ⊆ 2̂<ω1) → (Ṫ = σ)

(where Ṫ ∈ M ′′ is a R↾C
-name for T ∈ M ′′[G↾C

], and σ =
⋃

f∈2<ω1 {f̂} × Af ).

Define S′ = ∪{Af : f ∈ 2<ω1}, and

S = {supp(r) : r ∈ S′} ⊆ C.

Since each supp(r) is countable (by the very definition of R (16), and R↾C
is a

projection) and because |S′| ≤ ω1 (in M ′′), we have that

M ′′ |= |S| ≤ ω1. (60)

(Note that, since we worked in M ′′ we only have that S ∈ M ′′.)

Recall that G↾C
can be identified with the product G↾S

× G↾C\S
. Now σ[G↾C

]

depends only on G↾C
’s projection onto R↾S

, G↾S
, and there is a corresponding

R↾S
-name σ′ ∈ M ′′ such that

T = σ[G↾C
] = σ′[G↾S

] ∈ M ′′[G↾S
].

�
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In the beginning of Lemma 3.29, our condition was equality

M [G] |= |B(T )| = ωα,

(where α /∈ C), and our goal is to find a model N between M ′′ and M ′′[G↾S
] with

T ∈ N , and

N |= 2ω1 < (ωα)M [G],

implying that

N |= |B(T )| < (ωα)M [G]

(since each branch corresponds to a function from ω1 to 2).

Now working in M ′′, we are to show that R↾S
, which is a product of two-step

iterations is isomorphic to a two-step iteration of products. R↾S
was a product

restricted to the countably supported elements, each coordinate is a two-step iter-

ation Pγ ∗ Qγ
∼

. Recall that an element r ∈ R↾S
⊆

∏
γ∈S Rγ has coordinates of the

form rγ = 〈pγ , qγ
∼

〉 ∈ Rγ (γ ∈ S). Here qγ
∼

is a Pγ-name for which

pγ Pγ
qγ
∼

∈ Qγ
∼

= {f : dom(f) ⊆ X̂α, | dom(f)| < ω1, ran f ⊆ Tα
∼

}

by (14), (3.5).

Definition 3.38. Let P↾S
be

P↾S
= {p ∈

∏

δ∈S

Pδ : | supp(p)| < ω1}.

We will construct a partial order that has a dense subset isomorphic to R•
↾S

.

Definition 3.39. Define Q↾S∼
∈ M to be the P↾S

-name so that

1P↾
S

 Q↾S
∼

= {f : f is a function, dom(f) ∈ [S]<ω1 , (∀α ∈ dom(f))f(α) ∈ Qα
∼

}.

Definition 3.40. Let (P↾S
∗Q↾S∼

)• be the following subset of the two-step iteration

P↾S
∗ Q↾S∼

. Define 〈p, q
∼

〉 to be an element of (P↾S
∗ Q↾S∼

)•, iff

(1) q
∼

= ĥ for some h ∈ M with dom(h) ∈ [S]<ω1 ,

(2) supp(p) = dom(h),

(3) for each α ∈ dom(h) 〈pα, ĥ(α)〉 ∈ R•
α.

Claim 3.41. (P↾S
∗ Q↾S∼

)• is a dense subset of P↾S
∗ Q↾S∼

.

Proof. Fix 〈p, q
∼

〉 ∈ P↾S
∗ Q↾S∼

. Similarly to the proof of Lemma 3.16, first recall

that

p  q
∼

∈ Q↾S
∼

= {f : f is a function, dom(f) ∈ [S]<ω1 , (∀α ∈ dom(f))f(α) ∈ Qα
∼

}

and p ∈ P↾S
, which is ω1-closed, as being then countable supported product of ω1-

closed posets (Lemma 2.14). Now a suitable extension p′ of p determines dom( q
∼

) ∈
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[S]<ω1 . Then we can extend p′ so that for each α ∈ dom( q
∼

) it forces a value for

supp( q
∼

(α)) ∈ [Xα]<ω1 , and by picking a further extension p′′ ≤ p′ we can assume

that p′′ determines ( q
∼

(α))(β) ∈ 2<ω1 for each α ∈ dom( q
∼

), β ∈ supp( q
∼

(α)).

Therefore we obtain a function h ∈ M with 〈p′′, ĥ〉 ∈ P↾S
∗ Q↾S∼

, and

〈p′′, ĥ〉 ≤ 〈p, q
∼

〉.

After a further extension we can assume that supp(p′′) = dom(h), and for each

α ∈ supp(p′′) the tree p′′
α has a top level, and the function h(α) : dom(h(α)) → p′′

α

maps its domain into the top level of p′′
α. �

Claim 3.42. (P↾S
∗ Q↾S∼

)• is isomorphic to R•
↾S

.

Proof. Simply assign to r = 〈〈pα, ĝα〉 : α ∈ S〉 the pair 〈〈pα : α ∈ S〉, ĥ〉, where

dom(h) = supp(r), and h(α) = gα for each α ∈ supp(r) . �

As G↾S
∩ R•

↾S
is R•

↾S
-generic over M ′′ (Lemma 2.25), Claims 3.41, 3.42 (and

applying Lemma 2.25 again) imply that there are generic filters F ↾S
⊆ P↾S

, H↾S
⊆

Q↾S∼
[F ↾S

] such that

T ∈ M ′′[G↾S
] = M ′′[F ↾S

][H↾S
]. (61)

We could consider the model M ′′[F ↾S
] in which the trees Tδ (δ ∈ S) are already

existing elements, but at that moment we have not added the |Xδ| branches yet,

implying that 2ω1 is small.

Definition 3.43. In M ′′[F ↾S
] we define

Q = Q↾S
∼

[F ↾S
] = {f ∈

∏

δ∈S

Qδ
∼

[Fδ] : | supp(f)| < ω1}, (62)

and

X = ∪{Xδ : δ ∈ S}, (63)

Define K ⊆ Q be the filter so that

M ′′[G↾S
] = M ′′[F ↾S

][H↾S
] = M ′′[F ↾S

][K] (64)

holds.

We will have the following crucial lemma.

Lemma 3.44. If M ′ ⊆ M [G] is a c.t.m. such that Q ∈ M ′ (and M ⊆ M ′) then

M ′ |= Q has the ω2-cc.
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Proof. The proof is a straightforward application of the ∆-system lemma, and CH

(which holds by Claim 3.30). Assume that A = {fγ : γ < ω2} is an antichain.

Then, since the fγ-s are countably supported (62), and ωω
1 = ω1 < ω2 by CH , there

is a subset A′ ⊆ A of size ω2 where

{dom(f) : f ∈ A′} forms a ∆-system with kernel W.

Now, since x ∈ Xδ ∩ dom(f) implies that f(x) ∈ Tδ (and |Tδ| = ω1)

|{f↾W
: f ∈ A′}| ≤ |ωW

1 | = |ωω
1 | = ω1.

Thus one can find ω2-many elements of A′ such that any two of them coincide on

W (which is the intersection of their domains). �

Our next goal is to find a subset Z ⊆ ∪{Xδ : δ ∈ S}, such that |Z| ≤ ω1, and

adding the branches indexed by the elements of Z to M ′′[F ↾S
] will result in a model

that contains the tree T .

We will see that adding the branches indexed by Z ∪
⋃

{Xδ : δ ∈ S, δ < α} will

result a model which cannot contain all the branches B(T ) ∩ M [G], because there

2ω1 will not be large enough (i.e. in M ′′[F ↾S
][K↾Z∪(

⋃
{Xδ : δ∈S,δ<α})

])). From now

on we will work in M ′′[F ↾S
] to prove that forcing with Q↾Z∪

⋃
{Xδ : δ∈S,δ<α}

will

have these aforementioned properties.

Claim 3.45. There exists a set Z ⊆ ∪{Xδ : δ ∈ S} of size at most ω1, i.e.

M ′′[F ↾S
] |= |Z| ≤ ω1

such that

T ∈ M ′′[F ↾S
][K↾Z

].

Proof. Since T ⊆ M ′′[F ↾S
] (in fact, T ⊆ (2<ω1)M = (2<ω1)M [G], by Claim 3.30),

and T ∈ M ′′[F ↾S
][K], applying Lemma 2.21 gives that there is a nice Q-name σ in

M ′′[F ↾S
] for a subset of 2<ω1 , such that

1Q  (Ṫ ⊆ 2̂<ω1) → (σ = T ).

σ is a nice name i.e. is of the form

σ = ∪{{f̂} ×Af : f ∈ 2<ω1},

where each Af ⊆ Q is an antichain, and each Af is of size at most ω1 by Lemma

3.44. Let

Z = ∪{dom(a) : a ∈ Af , f ∈ 2<ω1} ⊆ X,

where |Z| ≤ |2<ω1 | · |ω1| = ω1. Then clearly σ depends only on K↾Z
, thus

T ∈ M ′′[F ↾S
][K↾Z

]. (65)

�
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Definition 3.46. Let Y denote the set

Y = Z ∪ (∪{Xδ : δ ∈ S, δ < α}). (66)

Obviously

T ∈ M ′′[F ↾S
][K↾Y

],

let N denote M ′′[F ↾S
][K↾Y

].

Lemma 3.47. N = M ′′[F ↾S
][K↾Y

] contains T , but there are branches in M [G]

which are not contained in N .

Proof. The next lemma is the key for verifying that B(T ) ∩ M [G] ) B(T ) ∩ N ,

where our assumption was that

M [G] |= |B(T )| ≥ ωα, and α /∈ C, (67)

thus α /∈ S ⊆ C.

Now we have two cases depending on whether {δ : δ ∈ S, δ < α} is empty, or not.

If the set {δ : δ ∈ S, δ < α} is empty, then since α ≥ 2 and α /∈ C either α = 2

holds, implying 2 /∈ C, or α > 2 thus 2 /∈ S ⊆ C. Therefore Claims 3.48 and 3.51

will finish the proof of Lemma 3.47.

Claim 3.48. If 2 ∈ C, then

N = M ′′[F ↾S
][K↾Y

] |= 2ω1 < ωM [G]
α .

Proof. First we will need that this case GCH holds above ω2 = ω
M [G]
2 in M ′′[F ↾S

].

It suffices to prove the following claim.

Subclaim 3.49. M ′′[F ↾S
] can be obtained by a single forcing extension of M ,

where the poset has cardinalityM less than ω
M [G]
2 .

Proof. Since we defined M ′′ to be M (Definition 3.36), we have that M ′′[F ↾S
] is a

forcing extension of M , where we forced with the set P↾S
. In order to show that

M |= |P↾S
| < ωM

2 ,

first, Phom ≤ |2<ω1|ω = ω1 in M (because Phom ⊆ [2<ω1 ]ω by Definition 2.12),

hence |P↾S
| ≤ |Phom|ω · |ωω

1 = ω1. �

Recall that each Tδ, given by the Pδ-generic filter Gδ is a subtree in 2<ω1 of height

ω1, thus is of size ω1. In M ′′[F ↾S
] (62) and Definition 3.5 (recalling that Fδ ⊆ Pδ

is generic) give us that Q↾Y
is of size

|Q↾Y
| = |Y |ω · ωω

1 . (68)

We have to determine |Y |. Let

σ = sup({δ : δ ∈ S, δ < α}) ≥ 2.

Since S ∈ M ′′ = M , and by 3.37

M ′′ |= |S| ≤ ω1, (69)
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which gives cfM ′′

(σ) ≤ ω1. Now we will show that σ < α. Recall that α /∈ C by

our assumptions (51).

Subclaim 3.50.

σ ∈ C,

in particular, σ < α.

Proof. First observe that as M ′′ = M , (69) states that cfM (σ) = cfM ′′

(σ) ≤ ω1,

and then the condition (5) in Theorem 3.2 implies that

σ = sup(S ∩ α) = sup(C ∩ σ) ∈ C.

�

Now |Y | ≤ ω1 + sup{|Xδ| : δ ∈ S, δ < α}, but |Xδ| = (ωδ)M [G] by Lemma 3.32

(which is in fact ωδ of M), thus

M ′′[F ↾S
] |= |Y | ≤ ωM [G]

σ < ωM [G]
α . (70)

Letting λ denote (ωσ)M [G], note that λ+ = (ωσ+1)M [G], λ++ = (ωσ+2)M [G] by

Lemma 3.32. Using (68),

M ′′[F ↾S
] |= |Q↾Y

| ≤ λω · ωω
1 .

Recalling that Q is ω2-cc in M ′′[F ↾S
] (Lemma 3.44), Lemma 2.22 states that

M ′′[F ↾S
][K↾Y

] |= 2ω1 ≤ ((λω · ωω
1 )ω1 )M ′′[F↾

S
]. (71)

For calculating this cardinal in M ′′[F ↾S
] we have two cases.

• If σ is limit (and thus cfM ′′[F↾
S

](σ) ≤ ω1), then first recall that no cofinal-

ities were collapsed in our case. Using the conditions for C in Theorem 3.2

we have that σ + 1 ∈ C, therefore for α /∈ C α ≥ σ + 2. This case using

that σ ≥ 2, and by the GCH in M ′′[F ↾S
] above ω

M [G]
2 for λ = ω

M [G]
σ

M ′′[F ↾S
] |= (λω · ωω

1 )ω1 ≤ 2λ = λ+ = ω
M [G]
σ+1 < ωM [G]

α .

• If σ is a successor, then cf(λ) = λ > ω1. Hence using again that GCH

holds above ω
M [G]
2 (and that ω

M [G]
2 ≤ ω

M [G]
σ = λ)

M ′′[FS ] |= (λω · ωω
1 )ω1 = sup{βω1 : β < λ} = λ < ωM [G]

α .

We get that (71) and the above estimations give

M ′′[F ↾S
][K↾Y

] |= 2ω1 < ωM [G]
α .

�

Claim 3.51. If 2 /∈ C

M ′′[F ↾S
][K↾Z

] |= 2ω1 < κ = ω
M [G]
2
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Proof. First recall that

M ′′[FS ] |= |Z| = ω1,

Since each Tδ is of size ω1,

M ′′[F ↾S
] |= |Q↾Z

| = |Z|ω · ωω
1 = ωω

1 = ω1

by CH . Then Q↾Z
is trivially ω2-cc, and by Lemma (2.22).

M ′′[F ↾S
][K↾Z

] |= 2ω1 = (ωω1
1 )M ′′ [F↾

S
].

We can calculate (ωω1
1 )M ′′ [F↾

S
], because by Lemma 3.33 (with M ′ = M ′′[F ↾S

]) κ

is inaccessible in M ′′[F ↾S
], therefore

M ′′[F ↾S
] |= ωω1

1 < κ = ω
M [G]
2 ,

as desired. �

This finishes the proof of Lemma 3.47, since it follows from {δ : δ ∈ S, δ < α} = ∅

that Y = Z, and ω
M [G]
2 < ωM

α [G].

�

Next we prove that M ′′[F ↾S
][K] = M ′′[F ↾S

][K↾Y
][K↾X\Y

] = N [K↾X\Y
] will con-

tain each branch of T from the final model M [G].

Claim 3.52.

M [G] ∩ B(T ) = M ′′[F ↾S
][K] ∩ B(T )

Proof. First, M [G] is either M [G↾C
], or M [I][G↾C

], and G↾C
≃ G↾S

× G↾C\S
,

I ≃ I↾µ
× I↾κ\µ

, and M ′′ is either M , or M [I↾µ
]. Also recall that M ′′[G↾S

] =

M ′′[F ↾S
][K] by (64) from Definition 62. This means that

M ′′[F ↾S
][K][G↾C\S

] = M ′′[G↾S
][G↾C\S

] = M ′′[G↾C
],

and our final model M [G] is either M ′′[G↾C
], or M ′′[G↾C

][I↾κ\µ
].

For this forcing extensions (i.e. extension by G↾C\S
and I↾κ\µ

) we would like to

apply Lemmas 2.19, 3.27 to ensure that none of them add new branches to T . First,

the R↾C\S
-generic filter G↾C\S

doesn’t add new branches by Lemma 3.27 (applying

with M ′ = M ′′[F ↾S
][K]). Second, L↾κ\µ

∈ M is ω1-closed in M . But there are no

new ω-sequences in M ′′[G↾C
] ⊆ M [G] by Corollary 3.30, thus it can be easily seen

that

M ′′[G↾C
] |= L↾κ\µ

is ω1-closed.

Now we can apply Lemma 2.19, thus forcing with the ω1-closed L↾κ\µ
adds no new

branches to T . �

As we got that all branches of T are contained inM ′′[F ↾S
][K] = M ′′[F ↾S

][K↾Y
][K↾X\Y

],

and T ∈ N = M ′′[F ↾S
][K↾Y

], it remains to show that the extension of N with the

filter K↾X\Y
adds more than ω

M [G]
α -many branches, which would contradict (50).
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Claim 3.53. There exists an ordinal γ ∈ S such that γ > α.

Proof. By the definition of X,Y, Z (63), (66) we have

Y = Z ∪
⋃

{Xδ : δ ∈ S \ α}, X =
⋃

{Sδ : δ ∈ S},

and

X \ Y ⊆ ∪{Xδ \ Z : δ ∈ S, δ > α}

and we know that

M ′′[F ↾S
] |= |Z| ≤ ω1 < ω

M [G]
2 .

Now assume on the contrary that S ⊆ α+ 1 (hence also S ⊆ α), then the equality

X = Y would hold, which contradicts to the fact that extension with K↾X\Y
adds

branches to T (because of Lemma 3.47). �

Therefore the fact that |Xδ| = ω
M [G]
δ for δ ∈ C (by Lemma 3.33), and

M ′′[F ↾S
] |= |Z| ≤ ω1,

(together with 0, 1 /∈ S) implies that for every δ ∈ C

|Xδ \ Z| = |Xδ| = ω
M [G]
δ . (72)

Definition 3.54. Let Xδ \ Z be denoted by X ′
δ, and let

X ′ = X \ Y = ∪{X ′
δ : δ ∈ S : δ > α}.

Then (72) states

|X ′
δ| = ω

M [G]
δ (δ > α).

Claim 3.55. There is a set X ′′ ∈ N , X ′′ ⊆ X ′ of size ≤ ω
M [G]
α such that decom-

posing Q↾X′ into the product Q↾X′′ ×Q↾X′\X′′ , and thus obtaining the filters K↾X′′ ,

K↾X′\X′′ ,

N [K↾X′′ ] ∩ B(T ) = M [G] ∩ B(T ),

that is, all branches of T are in the model N [K↾X′′ ].

Proof. In M ′′[F ↾S
][K] (and in M [G]) there are ω

M [G]
α branches of T (by Claim

3.52, and (51)), and since each branch corresponds to a function from ω1 to 2, the

set of branches can be identified with a function ω
M [G]
α × ω1 → 2, which can be

identified with a subset of ω
M [G]
α ×ω1. Let B ⊆ ω

M [G]
α ×ω1 be the set in N [K↾X\Y

]

coding the branches of T . Then using Lemma 2.21, there is a nice Q↾X\Y
-name σ

in N such that

1Q↾
X\Y

 (Ḃ ⊆ ωM [G]
α × ω1) → (σ = Ḃ)

(where Ḃ is a Q↾X\Y
-name in N for B). Now if

σ = {〈̂µ, ν〉 ×A〈µ,ν〉 : µ < ωM [G]
α , ν < ω1},

where each A〈µ,ν〉 ⊆ Q↾X\Y
is an antichain, we have (because by Lemma 3.44

N |= Q↾X\Y
is ω2-cc),
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that |A〈µ,ν〉| ≤ ω1 for each µ ν. Define

X ′′ = ∪{dom(a) : a ∈ A〈µ,ν〉, µ < ωM [G]
α , ν < ω1} ⊆ X \ Y,

and note that

|X ′′| ≤ ω1 · ωM [G]
α = ωM [G]

α .

Then clearly B = σ[K↾X\Y
], and for any Q↾X\Y

-generic filter J

σ[J ] ∈ N [J↾X′′ ].

This completes the proof the Claim. �

Claim 3.56. (Let X ′′ be given by Claim 3.55.) There is a set X ′′′ ⊆ X ′ \X ′′ such

that (in N) Q↾X′′ is isomorphic to Q↾X′′′ . (This gives rise to the split up of Q↾X′

to the product

Q↾X′′ × Q↾X′′′ × Q↾X′\(X′′∪X′′′)
).

Proof. Since X ′′ is given by Lemma 3.55 |X ′′| ≤ ω
M [G]
α , and recall that

Q↾X′′ = {f : dom(f) ⊆ X ′′ is countable, (x ∈ Xδ) → (f(x) ∈ Tδ)},

and

|Y | < ωM [G]
α

by (70). For each δ > α, δ ∈ S, using the facts

|Xδ| = |X ′
δ| = ω

M [G]
δ ,

|X ′′| ≤ ωM [G]
α

there is a set X ′′′
δ ⊆ X ′

δ \X ′ of size |X ′′ ∩Xδ|. Letting X ′′′ = ∪{X ′′′
δ : δ > α, δ ∈ S},

it follows that for each δ

N |= |X ′′′ ∩Xδ| = |X ′′ ∩Xδ|,

therefore (by (62), and the absoluteness of this definition, Lemma 3.30)

N |= Q↾X′′ ≃ Q↾X′′′ ,

as desired. �

The next point will be the key in the proof of Lemma 3.29, where we will make use

of the homogeneity of the Tδ-s similarly as in [2].

Lemma 3.57. Whenever b ∈ N is a Q↾X′′-name such that b[K↾X′′ ] ∈ N [K↾X′′ ] is

a branch through T , b[K↾X′′ ] /∈ N , then there exists a Q↾X′′-name b′ such that (in

N)

1Q↾
X′′

 b′ is a new branch in T.

For the proof we will need the following claim.

Claim 3.58. For any fixed element q ∈ Q↾X′′ , and filter J which is Q↾X′′-generic

over N , there is another Q↾X′′-generic filter J ′ (over N) such that q ∈ J ′, and

J ′ ∈ N [J ].
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Proof. Recall that each Tδ is a homogeneous normal tree given by forcing with Pδ,

normality implies that for each t ∈ Tδ, ht(t, Tδ) < γ < ω1, there exists an element

tγ ∈ Tδ ∩ 2γ with t ⊆ tγ . Now by the definition of Q↾X′′ (62), using dom(q)-

s countability, we can assume that there exists a countable ordinal ̺ such that

x ∈ dom(q) implies that q(x) ∈ 2̺.

Let d = dom(q) ⊆ X ′′. Let u ∈ J be such that dom(u) = d, and for each x ∈ d

u(x) ∈ 2̺. For each δ ∈ S, x ∈ d ∩Xδ we define

Fx = Fu(x)q(x) : 2≤ω1 → 2≤ω1 , (73)

which is an automorphism of Tδ if we restrict to it, because Tδ is homogeneous.

Now we define an automorphism ϕ of the poset Q↾X′′ .

ϕ : Q↾X′′ → Q↾X′′ ,

f 7→ ϕ(f),

such that

(ϕ(f))(x) =

{
Fx(f(x)) if x ∈ d

f(x) otherwise,
(74)

i.e. (considering Q↾X′′ as the countable support product of Tδ-s) we applied an

automorphism on some coordinates (coordinates in d). Obviously ϕ(u) = q, by

(73) and (74). It is straightforward to check that ϕ is indeed an automorphism,

since for a pair q1, q2 ∈ Q↾X′′

q1 ≤ q2 ⇐⇒ (∀x ∈ dom(q1) ∩ dom(q2)) : (q1(x) ⊇ q2(x).

Now letting

J ′ = ϕ[J ] = {f : f = ϕ(g) for some g ∈ J} ∈ N [J ] (75)

we obtain a filter containing ϕ(u) = q. It remained to check that J ′ is generic over

N . Suppose that D ∈ N is a dense subset of Q↾X′′ . Then ϕ−1(D) is also a dense

subset (note that ϕ ∈ N), and if qD ∈ J∩ϕ−1(D), then ϕ(qD) ∈ J ′ and ϕ(qD) ∈ D.

�

Proof. (Lemma 3.57) Now suppose that b[K↾X′′ ] is a new branch of T , and q ∈

K↾X′′ forces that, i.e.

q  b is a new branch in T. (76)

Now using Claim 3.58, for any filter J which is generic over N , there exists a generic

filter J ′ containing q, such that

J ′ ∈ N [J ].

This means that

N [J ′] ⊆ N [J ],

and by (76) and q ∈ J ′,

N [J ′] |= b[J ′] is a new branch in T,

thus

N [J ] |= b[J ′] is a new branch in T.
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Since J was arbitrary, we have that

1Q↾
X′′

 ∃b′ a new branch in T.

Finally, applying the maximal principle [4, II., Thm. 8.2], there exists a name

b′ ∈ N such that

1Q↾
X′′

 b′ a new branch in T.

�

Now, if ψ : Q↾X′′ → Q↾X′′′ is an isomorphism (provided by Claim 3.56), (and ψ∗

denotes the induced operation between the Q↾X′′ -names and Q↾X′′′ -names) then by

our previous lemma clearly

N |=
(
1Q↾

X′′′
 ψ∗(b′) a new branch in T

)
.

The next Lemma completes the proof of Lemma 3.29, since Lemma 3.55 guarantees

that N [K↾X′′ ] contains all branches of T .

Lemma 3.59. For b′ given by Lemma 3.57

N [K↾X′′ ] |= “1Q↾
X′′′

 ψ∗(b′) is a new branch in T ”.

Before the proof recall the facts implying that Lemma 3.59 completes the proof

of 3.29. By Lemma 3.55 each branch of T which is in M [G] already appears in

N [K↾X′′ ], that is

B(T ) ∩M [G] = B(T ) ∩N [K↾X′′ ].

But ψ∗(b′)[K↾X′′′ ] is a new branch in N [K↾X′′ ][K↾X′′′ ] which is a model between

M and M [G], a contradiction.

Proof. Whenever J ⊆ Q↾X′′′ is generic over N we have that ψ∗(b′)[J ] ∈ 2ω1 is a

new branch of T (i.e. not in N), therefore we claim the following.

Claim 3.60.

∀q ∈ Q↾X′′′ ∃q0, q1 ≤ q, δ < ω1 : (N |= qi  (ψ∗(b′))(δ) = i) (i = 0, 1) (77)

Proof. Assume on the contrary, that q is a counterexample. But then for each

δ < ω1 there exists iδ ∈ {0, 1} such that whenever q′ ≤ q decides ψ∗(b′)(δ), then

q′  (ψ∗(b′))(δ) = iδ,

from which

q  (ψ∗(b′))(δ) = iδ.

Now, since we defined 〈iδ : δ < ω1〉 in N , q determines (ψ∗(b′))(δ), thus forces that

ψ∗(b′) is not a new branch, a contradiction. �

But this claim is true even in N [K↾X′′ ].

Claim 3.61.

∀q ∈ Q↾X′′′∃q0, q1 ≤ q, δ < ω1 :
(
N [K↾X′′ ] |= qi  (ψ∗(b′))(δ) = i

)
(i = 0, 1)
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Proof. For a fixed q let q0, q1 and α given by Claim 3.60 for which (77) holds. Let

J ⊆ Q↾X′′′ be generic over N [K↾X′′ ]. If qi ∈ J for some i ∈ 2, then J is also generic

over N , and by Lemma 3.60,

N [J ] |= ψ∗(b′[J ](δ) = i. (78)

Statement (78) is absolute between transitive models, thus

N [K↾X′′ ][J ] |= ψ∗(b′[J ](δ) = i.

We conclude that choosing the same qi-s and α works. �

Let B ∈ N [K↾X′′ ] denote the set of branches of T in N [K↾X′′ ]. Now if q ∈ Q↾X′′′

forces that ψ∗(b′) is not a new branch

N [K↾X′′ ] |= (q  the branch ψ∗(b′) is in B) ,

then in a fixed generic filter K↾X′′′ containing q

N [K↾X′′ ][K↾X′′′ ] |= ψ∗(b)[K↾X′′′ ] ∈ B.

This implies that there exists a branch b0 ∈ B, such that b0 = ψ∗(b′)[KX′′′ ), which

is forced by some q′ ∈ K↾X′′′ , q
′ ≤ q

N [K↾X′′ ] |=
(
1Q↾

X′′′
 b̂0 = ψ∗(b′)

)
,

i.e. q′ determines ψ∗(b′), which contradicts to Claim 3.61.

�

Remark 3.62. By further forcing we could prescribe 2ω1 to be any cardinal greater

than or equal to the cardinalities of branches of Kurepa trees.

Question 3.63. In Theorem 3.2 can we drop the condition that for α ∈ C if

ω ≤ cf(α) ≤ ω1,

then α + 1 must be contained in C? Or is it true that the existence of a Kurepa

tree with ωα-many branches (with cf(α) either countable or ω1) implies not only

the inequality 2ω1 ≥ ωα+1 (Konig’s inequality), but the existence of a Kurepa tree

with exactly ωα+1 branches?
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