arXiv:1911.06303v3 [math.LO] 26 Oct 2021

Noname manuscript No.
(will be inserted by the editor)

Mutual algebraicity and cellularity

Samuel Braunfeld - Michael C. Laskowski

Received: date / Accepted: date

Abstract We prove two results intended to streamline proofs about cellular-
ity that pass through mutual algebraicity. First, we show that a countable
structure M is cellular if and only if M is w-categorical and mutually alge-
braic. Second, if a countable structure M in a finite relational language is
mutually algebraic non-cellular, we show it admits an elementary extension
adding infinitely many infinite MA-connected components.

Towards these results, we introduce MA-presentations of a mutually al-
gebraic structure, in which every atomic formula is mutually algebraic. This
allows for an improved quantifier elimination and a decomposition of the struc-
ture into independent pieces. We also show this decomposition is largely inde-
pendent of the MA-presentation chosen.
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classes
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1 Introduction

Cellular structures are a particularly simple class of countable structures that
appear as a dividing line in many combinatorial problems concerning countable
structures or hereditary classes of finite structures. Cellularity (Definition 13)
plays a leading role when counting the number of countable structures of a
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given age [9], counting the finite models of a given size in a hereditary class [7],
or counting the number of substructures of a countable structure up to isomor-
phism [0]. It is usually easy to check that cellular structures are well-behaved
in these problems, so the work consists of showing that the non-cellular case
exhibits the appropriate “many models” behavior. The easiest strategy is seem-
ingly to pass through the weaker notion of mutual algebraicity (Definition 2)
splitting the problem into the non-mutually algebraic case and the mutually
algebraic but non-cellular case. This strategy is explicitly employed in the
companion paper [1] to count the number of structures bi-embeddable with a
given countable structure. In this paper, we provide results describing the gap
between mutual algebraicity and cellularity, for use in the second of the cases
above.

In our strategy for problems concerning cellularity, the first step is to pro-
duce complicated behavior in the non-mutually algebraic case, likely using
the Ryll-Nardzewski-type characterization of mutual algebraicity in a finite
relational language from [3]. Our first result shows that in the w-categorical
setting, this is already enough.

Theorem 1 (Theorem 6) Suppose M is a countable structure in a countable
language. Then M is cellular if and only if M is mutually algebraic and w-
categorical.

The next step of the strategy is to show that if M is mutually algebraic
but not cellular, then models of its theory are still sufficiently complex. This
is the main part of the paper. At first blush, it is not clear that cellularity and
mutual algebraicity are related. By definition, a cellular structure M admits
a natural partition into finite pieces. Depending on the language a mutually
algebraic structure M is presented in, such a partition might not be readily
describable. As examples, if we take T to be the theory of (Z, succ), the the-
ory of the integers with a binary successor relation, then any model M of
T is mutually algebraic, and M is naturally partitioned into its ‘Z-classes’.
The salient feature is that the binary successor relation is mutually algebraic,
i.e. essentially bounded degree. By contrast, the arguably simpler theory of
Th(M, E), where E is an equivalence relation on M with two classes, both in-
finite, is mutually algebraic (in fact, cellular), yet the atomic formula E(z,y)
is not mutually algebraic. In this case, the cellular partition of M is into single-
tons, with singletons from the two classes distinguished, which requires naming
a constant. In Section 2, we introduce the notion of an MA-presentation, in
which all atomic relations are mutually algebraic. We show that M A-presented
structures M admit a stronger quantifier elimination result and there is a nat-
ural equivalence relation ~ that partitions M as in the definition of cellularity.
We also define a notion of two structures with the same universe but in dif-
ferent languages to be associated and we prove that every mutually algebraic
structure is associated to an MA-presented structure. Although there may be
several MA-presented structures associated to a given mutually algebraic M,
the corresponding partitions into ~-classes are largely the same.
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In Section 3, we use the fact that any mutually algebraic M has many
associated MA-presented structures to give several characterizations of cellu-
larity, e.g., a mutually algebraic M is cellular if and only if there is a uniform
finite bound on the size of ~-classes in some/every associated MA-presented
M'. As a byproduct of this analysis, we prove the following result, which is
used by the authors in [I] to obtain “many models” behavior for mutually
algebraic non-cellular structures, since it shows they will in some sense encode
a partition with infinitely many infinite classes in some elementary extension.

Theorem 2 (Theorem 8) Let L be finite relational, and suppose M is mu-
tually algebraic but non-cellular countable L-structure. Then there is some
M* = M such that M* contains infinitely many new infinite MA-connected
components, pairwise isomorphic over M. Furthermore, we may take the uni-
verse of M* to be the universe of M together with these new components.

Also in Section 3, we obtain other characterizations of cellularity, including
the following, which does not mention partitions.

Theorem 3 (Theorem 7) A countable structure M is monadically w-categorical
if and only if M s cellular.

The paper is largely self-contained. In some places, there are references
made to w-stable and superstable theories, but most of what is used about
them is elementary and can be found in e.g., [12].

2 Mutual algebraicity and M A-presentations

Throughout this paper, we only consider languages £ with no function sym-
bols (i.e., £ only has relation and constant symbols). As all the properties we
consider are preserved by passing between a function and its graph, this is not
a significant restriction.

Definition 1 Given a structure M, an n-ary relation R(Z) is mutually alge-
braic if there is a constant K such that for each m € M, the number of tuples
b € M™ such that M = R(b) and m € b is at most K.

Note that every unary relation is mutually algebraic.

Definition 2 Given an L-structure M, let Ly, be L expanded by constant
symbols for every element of M. M is mutually algebraic if every L ps-formula
is equivalent to a boolean combination of mutually algebraic £, formulas.

Theorem 4 ([5] Theorem 3.3, [4] Proposition 4.1, Theorem 4.2) Given
an L-structure M, let Ly; be L expanded by constant symbols for every element
of M. The following are equivalent.

1. M is mutually algebraic.
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2. Every atomic L-formula is equivalent to a boolean combination of quantifier-
free mutually algebraic L s -formulas.

8. Bvery Las-formula is equivalent to a boolean combination of Lyr-formulas
of the form 3y50(z,q), where 0(Z,q) is quantifier-free mutually algebraic.

4. M is weakly minimal and trivial.

While Theorem 4 is useful, the dependence on Lj;—formulas can be awk-
ward in applications. To alleviate this, we introduce a stronger notion of an
MA-presented structure and with Proposition 1, we see that such a structure
admits a better reduction of quantifier complexity. However, as we will see
in Lemma 7, every mutually algebraic structure M is associated (see Defini-
tion 10) to an MA-presented structure M’ in a new language.

2.1 MA-presented structures

Definition 3 An L-structure M is MA-presented if every atomic L-formula
is mutually algebraic. M is finitely MA-presented if, in addition, £ is finite
relational.

We begin by bounding the quantifier complexity of formulas in an MA-
presented structure.

Definition 4 Let & = {3z0(7, z), where 0(7, Z) is quantifier-free and mutually
algebraic L-formula}. We allow 1g(zZ) = 0, so as M is MA-presented, every
atomic L-formula is in £.

Let £* := {all L-formulas equivalent to boolean combinations and adjunc-
tions of free variables of formulas from £}. As every v(Z) € & is mutually
algebraic, the set £ of formulas is not closed under adjunction of dummy
variables, although £* is.

We note a dichotomy among partitioned formulas (z,g) := 3z0(x, 7, z) €
€ with lg(x) = 1: On one hand, if both 1g(y) = 1g(z) = 0, i.e., if 5(z) := 6(x)
is quantifier-free and mutually algebraic, then —3(z) is also quantifier-free,
mutually algebraic (recall that every formula in one free variable is mutually
algebraic) hence =8 € £. On the other hand, if at least one of 1g(7),1g(z) > 0,
then for some K € w, M |= Vy3<KapB(x, ), i.e., 2B(M,¢) is cofinite for all
ce M@,

Proposition 1 Suppose M is an infinite, MA-presented L-structure. Then
every L-formula is equivalent to a formula in E*.

Proof This proof is similar to the proof of Theorem 4.2 of [4]. Via Disjunctive
Normal Form and the dichotomy above, every formula in £* in which the
variable x appears in each element of £ can be written as

\/ /\ i (T, Gig) A /\ =Bk (T, Ujk)
i J

k
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where =8, (M, €) is cofinite for all j, k, and ¢.

Note that £* contains all atomic L-formulas and is closed under boolean
combinations. Thus, to prove the Proposition, it suffices to show that £* is
closed under projections. By the standard form given above and the fact that
3 commutes with \/, it suffices to show that

J
i j=1

where each «;, 3; € € and where —=3;(M, ¢;) is cofinite for all j and ¢; from
M. We split into cases.

Case 1. There is no «;.

In this case, as M is infinite and each —f,(M,¢;) is cofinite, §(y) :=
3z A\; =B;(x, y;) holds for all g.

Case 2. There is at least one «;.

As the conjunction of elements of £ with a common variable symbol is
also in £, we may assume there is exactly one a*(x,§*). There are now two
subcases.

Subcase 2a). y* = () and o* (M) is infinite.
Then as in Case 1, §(y) := 3zfa”(x) A \; =8;(x, §;)] holds for all .
Subcase 2b). Not Subcase 2a).

In this case, for some r* € w, M = V§*3=" za*(x,7*). For each j, put
v(2,9;) = o (x,5*) A Bj(x,§5). Thus, v;(M,¢;) € o*(M,c*) for all j and all
¢ e M5 Also, as a* and B; contain a common free variable, namely x, each
7j(z,y;) is mutually algebraic. It follows that d(y) is equivalent to

J
\/ I xa* (z, ") NI \/ v;(, ?J;)

1<r<r* j=1

so it suffices to show that this formula is in £*.

As in the proof of Lemma 2.4 of [8], for each r and for each S C {1,...,J},
=Ty Njes Vi@, ¥;) € €. From this, it follows easily that 37" A ;5 7;(z, 7))
and 3"z A\ ;5 vj (2, ¥;) are in €. Finally, by the inclusion-exclusion principle,

it follows that \/j:1 7vj(z,75) is also in £ and we finish.

This restriction on quantifier complexity will be used in the analysis of the
following natural decomposition of an MA-presented structure into indepen-
dent components, analogous to the decomposition of a graph into connected
components. In fact, the mate relation defined next is the same as the edge
relation of the Gaifman graph, and ~ the same as its connectedness relation.
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Definition 5 Suppose M is an MA-presented L-structure. For a,b € M, call
b a mate of a if there is some ¢ from M and the type of (some permutation of)
abc contains an atomic L-formula. Being a mate is reflexive and symmetric.
Let ~ be the transitive closure of the mate relation. As ~ is an equivalence
relation, write [a]., for the ~-class of a € M, and call ~-classes MA-connected
components.

Observe that if M is an MA-presented L-structure, then M = —R(d) for
all L-atomic R(z) and all d € M'8(®) whenever d is not contained in a single
~-class.

Definition 6 Suppose M is an MA-presented L-structure. A component map
is a bijection f: M — M such that f([a]~) = [f(a)]~ (setwise) for all a € M.
An L-component map is a component map such that for each a € M, f[4_ :
[a]~ = [f(a)]~ is an L-isomorphism.

The following Lemma, similar to [5, Proposition 4.4] although working with
a single structure, follows immediately from the observation above.

Lemma 1 If M is an MA-presented L-structure, then f: M — M is an
automorphism if and only if it is an L-component map.

The following definition gives a syntactic characterization of the ~-relation.

Definition 7 A linked L-atomic conjunction is an L-formula of the form
O(w) := A, ai(w;), where each o;(w;) is L-atomic and w; N w41 # 0 for
all i < n—1. (If n = 1, this last condition is vacuous, hence every L-atomic
formula is a linked L-atomic conjunction.)

Note that if every atomic £-formula is mutually algebraic (e.g., when M is
MA-presented), then as ¢(@) A)(7) is mutually algebraic whenever ¢(a), ¢ ()
are mutually algebraic and N # (), it follows every linked £-atomic conjunc-
tion O(w) is mutually algebraic as well.

Lemma 2 Suppose M is an infinite, MA-presented L-structure. For a,b € M,
a ~ b if and only if tp(a,b) contains Jub(x,y,a) for some linked, L-atomic
conjunction 0(x,y,a).

Proof First, assume a ~ b. Choose { cg,...,c, } € M such that ¢y = a, ¢, =
b, and c¢;41 is a mate of ¢; for each i < n. For each ¢ < n, choose an L-
atomic a;(x;, xi41, ;) witnessing ¢;+1 is a mate of ¢;. Without loss, assume
z; and z; are disjoint for distinct ¢, j. Then, writing @, for x;xi41%;, () ==
Nicn @i(w;) is a linked L-atomic conjunction and M = Jub(a,b,u), where
w:=w\{xo,zp }.

Conversely, assume M = Juf(a,b, ), where 0(w) := A,_, a;(w;), with
each o; L-atomic and w; Nw; 1 # 0. For each ¢ < n, choose a variable symbol
x; € W; NWip1. Choose & € M'® such that M = 6(a,b,c), let & denote
the restriction of ¢ corresponding to w;, and let d; be the singleton in ¢;
corresponding to x;. Without loss, assume a € ¢y and b € ¢,_1. Then a,dy
and b,d,_1 are mates, as are d;, d;11 for each i <n — 1. Thus, a ~ b.
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For elements a,b € acl(()), a ~ b can be rather strange (e.g., if ¢,d are
constant symbols then the formula ¢(z,y) := (x = ¢ Ay = d) is mutually
algebraic). However, outside of acl(), the ~ relation characterizes dependence.
The following definition appears in [3].

Definition 8 Let M be any L-structure. A mutually algebraic £-formula 6(Z)
supports _an infinite array if there is an infinite set {d;:i € w} such that
M = 6(d;) for each i and d; Nd; = for all i # j.

Lemma 3 Suppose M is any structure and 0(Z) is a mutually algebraic for-
mula. Then 0(Z) supports an infinite array if and only if 0(Z) is not algebraic,

ie., M = 3%30(%).

Proof Left to right is obvious, so assume 6(Z) is not algebraic. Choose any
infinite set {d; : i € w} of distinct realizations of §(2). By the finite A-system
lemma, there is a finite set R and an infinite I C w such that d; N Jj = R for
all distinct i,7 € I. As [ is infinite and 6(Z) is mutually algebraic, we must
have R = (), hence 0(z) supports an infinite array.

Lemma 4 Suppose M is MA-presented, ¢ € M*, and &N acl()) = 0.

1. If tp(c) contains a quantifier-free, mutually algebraic L-formula 0(Z) with
lg(z) =1g(€), then tp(€) contains a linked L-atomic conjunction p(Z).

2. If tp(€) contains a mutually algebraic L-formula §(Z) with 1g(Z) = 1g(e),
then there are z 2 %, d 2 ¢ with 1g(d) = 1g(2), and a linked L-atomic
conjunction p(z) € tp(d).

3. If ¢ satisfies a quantifier-free mutually algebraic Lyr-formula 0(Z,m) with

c¢Nacl(m) = 0. Then there are z 2 %, d 2 ¢ with 1g(d) = 1g(z), and a

linked L-atomic conjunction §(Z) € tp(d).

Proof By passing to a large enough elementary extension, we may assume M
is |£|T-saturated. For (1), by writing () in Disjunctive Normal Form and
choosing a disjunct in tp(¢), we may assume 6(z) has the form

N iz A N\ -8i(z)

ies jeu
where each ay;, 8; are L-atomic. Now, since M is MA-presented, each «;(Z;), 8;(Z;)
is mutually algebraic, and since ¢ N acl(()) = 0, the saturation of M implies
that 6(z) supports an infinite array. Thus, by Lemma A.1 of [8], there is an
So C S such that p(2) := A,;cg, @i(Zi) is a linked, L-atomic conjunction with
U{zi:i€ So} =2 As 0(2) F p(2), p(2) € tp(e).

For (2), by Proposition 1, we may assume §(Z) has the form there. By

choosing a disjunct satisfied by ¢, we may assume 6(Z) has the form

N oi@) A N ()
ies jeu

where each ¢;(Z;),1;(Z;) is from &, and so is mutually algebraic. As §(Z)
supports an infinite array, again we have a subset Sy C S with v(Z) :=
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Nies, ¢i(Ti), and {Z; : i € So} linked with (J{Z; : i € So} = Z. Now, each
¢;(Z;) has the form 3w;n;(Z;, ;) where n;(Z;, ;) is quantifier-free and mutu-
ally algebraic. Thus, v(Z) is equivalent to a formula 3@0*0(z, w*) with 6(z, @*)
quantifier free and mutually algebraic since {n;(Z;,w;) : i € Sy} are linked.
Additionally, M |= (). Write 6 as 6(z) with Z O #. Choose d 2 ¢ such that
M = 60(d). As 6(2) is mutually algebraic, d N acl(()) = (). Thus, we can apply
(1) to (%) and d, getting p(Z) as required.

(3) Let M5 be the expansion of M naming the constants of m. Applying (1)
to 0(x,m) in My, tp(¢) contains a linked, Ly-atomic conjunction p(z,m) :=
Nies, @i(@i,m;) with (J{Z; 1 i € So} = Z. As M is MA-presented, every atomic
formula «;(Z,w;) is mutually algebraic, hence by choosing disjoint variables
for each w; and letting w? = (w; : i € Sp), we have M = Jw* (¢, w”) where
§(c, w%) := N\;cq, @i(Zi, ;). Choose any d 2 ¢ with M = 6(d) and we finish,
taking z := " w?.

Proposition 2 Suppose M is an M A-presented L-structure and let a € M \
acl(D). Then [a]~ = acl(a) \ acl(().

Proof Assume M is MA-presented and fix a € M \ acl(f). First, assume b ~ a.
By Lemma 2 choose a linked £-atomic conjunction 8(z,y, @) and ¢ such that
M = 6(a,b,¢). As 0 is mutually algebraic, it follows that b € acl(a) and
a € acl(b). Thus, if b € acl(()), we would have a € acl(()) as well, which it is
not. So b € acl(a) \ acl().

Conversely, assume b € acl(a) \ acl()). As M is mutually algebraic, Th(M)
is weakly minimal by Theorem 4, and so acl satisfies exchange. That is, since
b € acl(a) \ acl(()), we also have a € acl(b) \ acl(()). Thus, there is an integer K
and a pair of L-formulas ¢(z,y),¥(x,y) € tp(a,b) witnessing the algebraicity,
ie, M | 35Fz¢(x,b) and M = I=Kyip(a,y) Let

3(x,y) = dlx,y) Av(z,y) A I ud(u,y) A Iy (,v)

Then §(z,y) € tp(a,b) and is mutually algebraic directly from Definition 1.
Since {a,b} Nacl(P) =0, b ~ a follows from Lemma 4(2) and Lemma 2.

Much of the development in this subsection generalizes Section 4 of [5],
which studies elementary extensions of a mutually algebraic model M. There,
for N = M and a € (N — M), the component [a] of a was defined as acl(a)\M,
and every such N is a union of components over M. This agrees with our
notation, as the natural expansion of N to an Lj; structure is MA-presented
with acl() = M, but importantly, here we name fewer constants.

2.2 Associating a mutually algebraic structure with an MA-presented
structure

In this section, we define what we mean by an association of structures in
different languages and prove that every mutually algebraic structure is asso-
ciated to an MA-presented structure. This procedure is far from unique, but
we explore how different the ~-relations can be.
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Definition 9 Suppose £ C L* are languages and M is an L-structure. An
L*-structure M* is a q.f. expansion by definitions of M if M™* is an expansion
of M (i.e., M* and M have the same universes and the interpretations of
every Ly-formula are the same in both structures) such that every atomic
L*-formula is equivalent to a quantifier-free £j/-formula.

The following facts are easy.
Fact 5 Suppose L C L* and M* is a q.f. expansion of M by definitions. Then:

1. Bvery q.f. Ly;-formula is equivalent to a q.f. Lar-formula.

2. Every L4, -formula 6*(ZT) is equivalent to an Lr-formula v(Z).

3. For every N = M there is a unique N* > M* such that N* is a q.f.
expansion of N by definitions; and

4. For every N* = M*, the L-reduct N = M and N* is a q.f. expansion by
definitions of N.

5. If £* (and hence L) are finite, relational, then there is some finite m from
M so that every L*-formula ¢(T) is equivalent in M* to some Ly, -formula

(T, m).

Proof (1) By taking boolean combinations, one immediately gets that every
q.f. L*-formula is equivalent to a q.f. Lys-formula. Then (1) follows from this
by taking specializations.

(2) As M and M* have the same universes, one proves by induction on
the complexity of L*-formulas that every L£*-formula is equivalent to an £j;-
formula. By taking specializations, (2) follows.

(3) Given any atomic L£*-formula «(Z), let §(Z) be a q.f. L-formula equiv-
alent to it. Now interpret a(N*) as 6(N). This works, and is the unique way
of obtaining such an N*.

(4) Easy.

(5) As L£* is finite relational, let {c;(Z;) : i < K} enumerate the (finitely
many) L*-atomic formulas. By (1), for each i, choose an L-formula ¢;(Z;, 7;)
and m € M'®W) such that ¢;(Z;,7m;) equivalent on M* to ¢;(Z;). Let m be
any finite tuple containing every m;. It follows by induction on the complexity
of L*-formulas that every L*-formula is equivalent on M* to an L;,-formula.

Definition 10 Suppose £; and Lo are any two languages. An L;-structure
M and an Ls-structure Mo with the same universes are associated if there is
an L1 U Lo-structure M* (also with the same universe) that is a q.f. expansion
by definitions of both M; and Mo.

The most obvious example of associated structures is that any expansion
M’ of a structure M by naming constants is associated to M. The following
results are immediate from Fact 5.

Fact 6 Suppose My, My are associated structures in languages L1, Lo, respec-
tively. Then, letting M denote their common universe:

1. Every (q.f.) L1(M)-formula is equivalent to a (q.f.) Lo(M)-formula; and
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2. Forl =1,2, if Ny = My then there is a unique N3_y = Ms_,; with universe
Ny such that N1 is associated to Ns.

Definition 11 Suppose M is a mutually algebraic L-structure. A set A of
quantifier-free, mutually algebraic £;-formulas is acceptable if every R € L is
equivalent to a boolean combination of formulas from A. If A is an acceptable
set of formulas, let D(A) := |J{a : #(Z,a) € A} denote the parameters from
M used in A.

Note that by Theorem 4(2), every M admits an acceptable set .A. Moreover,
if £ is finite, then A and hence D(A) can be chosen to be finite as well.

Definition 12 Suppose M is a mutually algebraic L-structure and A is an
acceptable set of Ly/-formulas. Let

L4 := { constant symbols of L}U{¢cq:d € D(A) } U{Ry(Z): ¢(Z,a) € A}

and let M 4 be the £ s-structure with universe M, cMa = M for every c € L,
i = d for every d € D(A), and Rff"‘ ={be M'$®) : M = ¢(b,a)}.

Lemma 7 Let M be any mutually algebraic L-structure, A an acceptable set
of Lyr-formulas, and let M 4 be the L 4-structure constructed as above. Then:

1. My is MA-presented.

2. M and M4 are associated.

3. For every Y C M and every subset X C MP¥,
(a) X is Y-definable in M 4 if and only if X is (D(A)UY)-definable in M.
(b) acly, (V) = acly(D(A)UY).

Proof The verifications of (1) and (2) are just unpacking definitions. It is
also clear that (3b) follows immediately from (3a), which itself follows from
induction on the complexity of formulas, using that the constants of L are
present in £ 4 and interpreted correctly to handle the case of atomic formulas.

Now, aclys, (0) can vary widely among associated MA-presentations of M
(e.g., the set of ‘extra parameters’ D(.A) can be increased arbitrarily), but we
will see that ~-classes sufficiently far away from aclys, () are invariant under
our choice of MA-presentation. We begin with the following lemma. In its
proof, we use some basic facts from stability theory. We say two tuples m and
m' have the same strong type, stp(m) = stp(m’) if and only if E(m,m’) for
every O-definable equivalence relation with finitely many classes. It is easily
seen that having the same strong type implies having the same type, but the
bonus is that if each of m,m' are independent from c, i.e., neither tuple forks
over ¢, then tp(m,c) = tp(m/, ¢).

Lemma 8 Suppose My and My are both associated MA-presented L1, Lo-
structures respectively with common mutual expansion M*, and suppose a &
aclyr=(0). Then [a]~,, = [a]~,,, -
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Proof By passing to sufficiently saturated elementary extensions, we may as-
sume that My, My and M* are all (|£1| + |L2|)T-saturated. By symmetry,
it suffices to prove that if a ~ps b, then a ~jp7 b. For this, choose a fi-
nite tuple ¢ with a,b € ¢ and a quantifier-free, mutually algebraic £;-formula
#(Z) € tp(¢). Since a & acly+ (1), the mutual algebraicity of ¢(z) implies that
cNacly(0) =0

As M, is associated to My, choose a quantifier-free Lo (M )-formula 6(Z, m)
equivalent to ¢(Z) on M. Thus,

M* = VI(p(T) <> 0(z,m))

As M* is sufficiently saturated, choose m’ from M* so that stp,,.(m') =
stpy« (M) and @' independent from ¢ over (0 (in M*). As tpy.(¢,m') =
tpas- (€,m), we have M* | 6(c,m’), and by the independence we have ¢ N
aclys-(m') = 0. But now, since 6(z,m’) is a quantifier-free Lo(M)-formula,
M, | 6(¢,m') and since My is a reduct of M*, &N aclyy, (M) = (). Thus, by
Lemma 4(3) there are Z D 7, d O ¢ with 1g(d) = 1g(2), and a linked L£>-atomic

conjunction 6(z) € tp(d). As a,b € d, d witnesses that a ~y, b.

It is tempting to weaken the hypothesis of Lemma 8 to simply ‘a ¢
aclyy, (0) U aclyy, (9)” but the following example shows this is not sufficient.

Ezxample 1 Let L1 contain a single binary relation R; and let M; be an £;-
structure containing infinitely many directed Z-chains, Z-chains, and Z~-
chains. In some Z-chain of M7, pick a point a and its successor b, although we
do not name them by constants. Let L5 contain a single binary relation Rg, and
let M5 be the Lo-structure with the same universe as M7 and Réw 2 interpreted
as RM \ {(a,b)}. Tt is easily checked that M; and M, are associated, that
aclyy, (0) = aclyg, (@) = 0, and that the ~-components are the chains.

Now My looks the same as M, except that the Z-chain containing m and
m' has been broken to produce a Z-chain with ‘minimum’ element b and a
7~ -chain with ‘maximum’ element a. Hence a ~p, b, but a %, b.

Despite this example, if M4, and M4, are each associated to the same
mutually algebraic M as in Definition 12, we can do better.

Proposition 3 Suppose M is a mutually algebraic L-structure with two ac-
ceptable sets Ay and Ao of Lyr-formulas. For ¢ = 1,2, let acly denote the
algebraic closure relation on M4, and let [a]y denote the ~-component of a in
My,. For any a € M \ (acly (0) Uacly(0)) we have [a]1 = [a]s.

Proof To ease notation, for ¢/ = 1,2, write M, in place of M4, and Dy in
place of D(A;). As M; and M, are associated, let M* be their common q.f.
expansion. In light of Lemma 8, it suffices to show that a & acly-(0).

As M, My, Mo, M* all have the same universe and the same interpretation
of every constant ¢ € L, it follows by induction on formulas as in Lemma 7
that every X C M* that is O-definable in M* is (D1 U Dy)-definable in M. Tt
then follows that acly (@) C acly (D1 U D3). However, as a € acly(() for both



12 Samuel Braunfeld, Michael C. Laskowski

¢ = 1,2, it follows from Lemma 7 that a & (acly(D1) U acly(D2)). But, as
M is mutually algebraic, algebraic closure is trivial, hence a & acly; (D1 U D3),
hence not in aclys«(@). Thus, [a]; = [a]z follows from Lemma 8.

3 Cellularity

We begin by stating our definition of cellularity.

Definition 13 A structure M is cellular if, for some integers n and (k; : i €
[n]), it admits a partition { K,{¢ ;| i € [n],j € w}} satisfying the following.
1. K is finite and 1g(¢&; ;) = ;.

2. For a fixed i, { & ; | j € w} are pairwise isomorphic over K. We may thus
1 ki )

enumerate each as ¢; ; = (¢; j,..., ¢

3. For every i € [n] and o € Sa, there is a o} € Aut(M) mapping each ¢; ;

onto ¢; ,(;) by sending cfyj to cf o(5) for 1 < ¢ <k;, and fixing M\ UjEw Gi
pointwise.
The original definition of cellularity from [11] and its rephrasing in [9]

require n = 1. But given a partition as in Definition 13, we may produce one
with n = 1 by taking ¢; to be the concatenation of ¢; ; for each i € [n], so our
definition is equivalent.

Note that like w-categoricity, w-stablility, and mutual algebraicity, the cel-
lularity of a structure M is preserved under reducts. Thus, we begin with the
following Lemma that does not depend on our choice of language.

Lemma 9 If M is cellular, then M is w-categorical, w-stable, and mutually
algebraic.

Proof Call a cellular partition { K,{¢;; |i € [n],j € w}} of M indecompos-
able if, for each i € [n] if we partition each ¢; ; as d; ;" €;; with both sides
non-empty, then

{K,{Ei/ﬁj|Z'/€[n],i’#i,jEw}U{Jm:jEw}U{ém:jEw}}

is mot a cellular decomposition of M.

Aslg(é; ;) drops each time a cellular partition is decomposed, it follows that
every cellular M has an indecomposable cellular partition. Fix an indecompos-
able cellular partition { K,{¢; ; | i € [n],j € w} } witnessing the cellularity of
M. Form a new finite relational language

LY={c: ke K}U{Ujp:ien],1 <<k }U{Ri(Z):i€n]}

where each U; ¢ is unary and each R; is a k;-ary relation symbol. Let M™ be the
L*-structure with universe M, and interpretations cj! " =k for each k € K,
U%* = {cfﬁj rjE€w}, and RM := {¢;:jcw}. It is easily verified that
the ‘grid-like structure’” M* is w-categorical, w-stable, and mutually algebraic.
Moreover, by the automorphism condition in the definition of cellularity, it
follows that every L-definable set in M is L£*-definable in M*, hence M is a
reduct of M*.
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The following Lemma crucially requires £* to be finite relational. As an
example, naming infinitely many constants destroys w-categoricity.

Lemma 10 Suppose L, L' are both finite relational languages and the L-structure
M is associated to the L'-structure M'. Then

1. M is w-categorical if and only if M’ is.
2. M is cellular if and only if M' is.

Proof For both parts, as both properties are preserved under reducts, it suffices
to prove this in the special case where £ C £ and M’ is a q.f. expansion by
definitions of M. As £’ is finite relational, by Fact 5(5), choose a finite m from
M’ so that every £'-formula is equivalent in M’ to an L;-formula.

For (1), assume M is w-categorical. Let k := lg(m). Then, up to equivalence
in M’, for every n > 1, the number of £'-formulas ¢(Z) with at most n free
variables is at most the number of £-formulas with at most (n + k) free vari-
ables. As the latter number is finite, M’ is w-categorical by Ryll-Nardzewski’s
theorem.

For (2), assume M is cellular. Fix a partition { K,{¢;; |i€ [n],jcw}}
witnessing this. By Lemma 9, M is w-categorical, hence M’ is w-categorical
by (1). Let

K* ::KUU{Ei,j:Eiyjmm7é®}

Note that K* is finite, and after reindexing (removing finitely many tuples)
M’ can be partitioned as { K*,{¢; j | i € [n],j € w}}. It is easily checked that
this partition witnesses that M’ is cellular.

As a warm-up to proving Theorem 6, we first characterize cellularity among
infinite, finitely MA-presented structures.

Proposition 4 The following are equivalent for an infinite, finitely MA-presented
L-structure M :

1. M is cellular;

2. M 1is w-categorical;

3. There is a uniform finite bound on |acl(a)| for a € M;
4. There is a uniform finite bound on |[a]~| for a € M.

We remark that this list could be extended. For example such an M is
cellular if and only if the binary relation ~ is £-definable.

Proof (1) = (2) is by Lemma 9.

(2) = (3): This direction holds for any w-categorical M. As there are only
finitely many distinct 1-types, and only finitely many inequivalent 2-formulas
§(z,y), there is an integer K so that M = 3<Kx§(z,a) among all a € M and
all algebraic formulas §(z,a). From this, a uniform bound on |acl(a)| can be
found.

(3) = (4) is immediate, since by Proposition 2, [a]. C acl(a) for every
ac M.
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(4) = (1): Choose enumerations ¢ for each [a]~-class in M. As L is finite
and there is a uniform bound on 1g(¢), the set of quantifier-free types ¢ftp(c)
occurring is finite. Let {p;(Z;) : © € [n]} enumerate the quantifier-free types
that occur infinitely often, and let K := | J{¢ : ¢ftp(¢) occurs only finitely many
times}. Then K C M is finite. For each i € [n], let {¢; ; : j € w} enumerate the
tuples ¢ realizing p;(Z;). Recalling that each ¢ ; is an enumeration of a ~-class,
Lemma 1 implies that { K,{¢ ;| i € [n],j € w} } is a cellular decomposition
of M.

Next, we relax the assumption that a mutually algebraic M is finitely MA-
presented, but keep the assumption of a finite relational language. For this, we
begin with the following lemma.

Lemma 11 Suppose M and M’ are associated mutually algebraic structures
in finite relational languages £ and L', respectively. If there is a uniform finite
bound on |aclys(a)| for each a € M, then there is a uniform finite bound on
laclas (a)| for each a € M.

Proof Suppose |aclys(a)] < N for every a € M. Then, for any finite set A C M,
since acly(A) = (J{aclp(a) : a € A} for every a € A, |acly(4)] < N - |A].
Now, it follows from Fact 5(5) that there is a finite m from M so that every
L'-formula is equivalent on M to an L;-formula. Fix any a € M. From the
above, if b € aclyp (a), then b € aclys(am). Thus, if k = |m|, then acly (am) <
N(k+1).

Theorem 5 The following are equivalent for an infinite, mutually algebraic
L-structure M in a finite relational language L.

1. M 1is cellular;

2. M 1is w-categorical;

3. There is a uniform finite bound on |acl(a)| for all a € M;

4. For every finitely MA-presented M’ associated to M, there is a uniform
finite bound on |[a]~| for a € M';

5. For some finitely MA-presented M’ associated to M, there is a uniform
finite bound on |[a]~| for a € M.

Proof (1) = (2) is given by Lemma 9.

(2) = (3): As in the proof of Proposition 4, (3) holds for any w-categorical
M.

(3) = (4): Choose any finitely MA-presented M’ associated to M. By (3)
and Lemma 11, there is a uniform bound on |acl(a)| among a € M, hence
there is a uniform bound on |[a]~| by Proposition 4 applied to M’.

(4) = (5): This follows immediately from Lemma 7, noting that a finite
acceptable set A can be found.

(5) = (1): Given M’ witnessing (5), M’ is cellular by Proposition 4, hence
M is cellular by Lemma 10.

Finally, we want to identify cellular structures ‘in the rough’ where the
original language might not be finite. We do know that on one hand, that if
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M cellular, it is describable in a finite relational language (see e.g., the proof
of Lemma 9).

On the other hand, extending to an infinite language (even with only rela-
tion symbols) can be troublesome.

Ezample 2 Let L = {U,:n €w} and let M be a countable model of the
theory of ‘independent unary predicates.” Then M is mutually algebraic, and
in fact, MA-presented in this language. Additionally, [a]. = {a} = acl(a) for
all @ € M, hence there are uniform, finite bounds (namely one) for the sizes
of these sets. Despite that, M is not cellular.

Theorem 6 Suppose M is a countable structure in a countable language.
Then M s cellular if and only if M is mutually algebraic and w-categorical.

Proof That cellularity implies mutual algebraicity and w-categoricity is Lemma 9.
Conversely, assume M is mutually algebraic and w-categorical. We reduce to
the case of a finite relational language, and so finish by Theorem 5. Recall Lach-
lan’s theorem, [3, Proposition 1.6] that a superstable, w-categorical theory in
countable language is w-stable.

Thus, as M is mutually algebraic implies Th(M) is weakly minimal and
superstable, our w-categorical M is w-stable as well. Thus, by e.g., [10, Ch.
3, Lemmas 1.7, 3.9], Th(M) is interdefinable with some reduct My in a finite
relational language. It follows that My is cellular by Theorem 5. But, as M is
interdefinable with My, M is cellular as well.

From these results, we obtain a characterization of cellularity that does not
mention mutual algebraicity.

Definition 14 A countable structure M is monadically w-categorical if every
expansion of M by (finitely many) unary predicates is w-categorical.

Theorem 7 A countable structure M is monadically w-categorical if and only
if M is cellular.

Proof 1t is easy to see that if M is cellular, then any expansion by finitely
many unary predicates still admits a partition as in Definition 13, although
the value of n for the partition might increase.

Now suppose M is monadically w-categorical. As M itself is w-categorical,
by Theorem 6 it suffices to show that M is mutually algebraic. Assume this is
not the case. Then, by combining [5, Theorem 3.3(3)] with [2, Theorem 3.2(4)],
we conclude there is an expansion M™* of M by finitely many unary predicates
such that there are M*-definable D C (M*)! and E C D?, where E is an
equivalence relation on D with infinitely many infinite classes {C), : n € w}.
But then, adding a single, new unary predicate U containing exactly n elements
of each C),, we get a monadic expansion of M with infinitely many 1-types,
contradicting M being monadically w-categorical.
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We remark that the restriction of adding only finitely many unary pred-
icates is necessary, see e.g., Example 2 — If £ is just equality and M is an
infinite L-structure, then M is cellular, but there is an expansion by w unary
predicates that is not cellular.

Our final result gives another characterization of cellularity among mutu-
ally algebraic structures and allows us to produce an extension of a mutually
algebraic non-cellular model analogous to an extension of a non-mutually alge-
braic model by infinitely many infinite arrays all realizing the same quantifier-
free type. Thus we may reproduce the “many models” behavior of the non-
mutually algebraic case in the mutually algebraic non-cellular case.

Theorem 8 Let L be finite relational, and suppose M is mutually algebraic
but non-cellular countable L-structure. Then there is some M™* = M such that
M* contains infinitely many new infinite MA-connected components, pairwise
isomorphic over M. Furthermore, we may take the universe of M* to be the
universe of M together with these new components.

Proof As L is finite relational, by Lemma 7 there is an expansion M’ of M
by finitely many constants with M’ MA-presented. As the L-reduct of any
elementary extension of M’ is an L-elementary extension of M, we may assume
M itself is MA-presented. By Proposition 4, there is no finite bound on the
size of MA-connected components in M.

Claim We may find an elementary extension of M adding a single new infinite
MA-component.

Proof (Proof of Claim) We proceed by compactness. Let r be the maximum
arity of the language £ and expand £ by new constants { ¢; ; | i € w,j € [r] }.
As notation, let & = (¢;1,. .., ¢ ). Consider the following theory:

1. The elementary diagram of M.

2. For every i € w, ¢;; is not equal to any m € M.

3. For every ¢ € w, some R € L holds on some initial subtuple of ¢;. We now
let ¢, denote the maximal initial subtuple such that some R € £ holds on

c..

4. For every i € w, ¢; N ¢y # 0.

5. For every i # j € w, ¢; # C.

If this theory were satisfiable, we would get an elementary extension of
M, and [cg,0]~ would be the desired infinite MA-connected component. So
consider a finite subset S of the sentences, and let ' C M be the finite
set of realizations of L£js-constants mentioned in S. Let n € w be such that
n — 1 is the largest first index of any ¢; ; occurring in S. We must interpret
(€, --.,C,_q1) so that it satisfies a linked L-atomic conjunction, avoids F, and
the subtuples are distinct. Given z,y € M, let d(x, y) be the minimum number
of conjuncts of any L-atomic conjunction satisfied by any tuple containing x
and y (and d(x,y) = oo if they are in different MA-connected components).
Then it suffices to find some © € M such that |[z]~| > nr and d(z, f) > n
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for every f € F, since we may then find a tuple containing x and avoiding
F that satisfies a linked L-atomic conjunction with n conjuncts (and with
the subtuples for each conjunct distinct), and may take & to be the subtuple
satisfying the i*" conjunct.

Since M is MA-presented, there is some K € w such that for every m € M,
|[{x € M |d(m,z) <k}|< KFfor every k € w. As there is no finite bound on
the size of MA-connected components in M, there is some MA-connected com-
ponent of size greater than |F|- K™, and so we may take the desired z in that
component. We may also need to interpret constants appearing in |J, { &\¢ },
but we may choose all such points to lie in a different MA-connected compo-
nent.

With the claim in hand, we work inside a sufficiently saturated elementary
extension of M. We may take an infinite set {¢; | i € w} of realizations of
tp(co,0/M), pairwise independent over M. Then { [¢;]~ | i € w } are the desired
infinite MA-connected components, pairwise isomorphic over M. Furthermore,
by [5, Proposition 4.2], M < MU {[¢]~ |i €w }.
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