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RANKS BASED ON STRONG AMALGAMATION

FRAÏSSÉ CLASSES

VINCENT GUINGONA AND MIRIAM PARNES

Abstract. In this paper, we introduce the notion of K-rank,
where K is a strong amalgamation Fräıssé class. Roughly speak-
ing, the K-rank of a partial type is the number “copies” of K that
can be “independently coded” inside of the type. We study K-rank
for specific examples of K, including linear orders, equivalence re-
lations, and graphs. We discuss the relationship ofK-rank to other
ranks in model theory, including dp-rank and op-dimension (a no-
tion coined by the first author and C. D. Hill in previous work).

1. Introduction

In model theory, there are many different notions of dimension and
rank that are used to measure the complexity of partial types in first-
order theories. Some of these notions of rank involve measuring the
largest “size” of a certain combinatorial configuration that exists in
the type. For example, the dp-rank of a partial type is the largest
depth of an ICT-pattern in the type (see Definition 2.1). Ideally, one
would like a general framework that simultaneously captures various
combinatorial notions of rank together in a single unified notion.
In a modest step towards that goal, we introduce a novel class of

ranks we call K-rank for a strong amalgamation Fräıssé class, K. The
idea is to concretely codify the notion of a “combinatorial configura-
tion” by using K-configurations (see Definition 4.1). Roughly speaking
the K-rank of a partial type counts the maximum number of “copies”
of K that can be “independently coded” in the type. More formally,
“coding” is captured by the notion of K-configuration and the number
of “copies” is captured by iterative free superpositions (see Definition
3.8), which leads to the notion of K-rank (see Definition 6.1).
In some instances, K-rank does generalize known notions of model

theoretic rank. For example, ifK is the class of finite linear orders, then
K-rank (linear order rank) generalizes dp-rank in distal theories (see
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Example 6.10). This is a consequence of the fact that linear order rank
generalizes op-dimension (see Definition 2.2) on theories without the
independence property (i.e., NIP theories); see Proposition 6.9. The
notion of op-dimension was first introduced by the first author and
C. D. Hill in [6] and has since been utilized in other model theoretic
studies; e.g., [16]. As another example, if K is the class of all finite
sets with a single equivalence relation, then K-rank is bounded by the
dp-rank; see Proposition 6.12. Both dp-rank and op-dimension are
additive [6,11] (see Definition 6.3); we examine under what conditions,
on bothK and the target theory, K-rank is additive. From this analysis
on the specific classK of all finite linear orders, we derive a result which
may be of independent interest: We give a new characterization of NIP
for certain theories based on the growth rate of K-rank; see Theorem
6.29.
The original idea for the “coding” part of this work comes from a

paper by the first author and Hill [7], where they study a related notion
called positive local combinatorial dividing lines. The requirements on
the Fräıssé classes considered in that paper are more stringent; specif-
ically, they are required to be indecomposable (see Section 1 of [7]).
In the current paper, we do not make this assumption. The notion
of “coding” in this manner is also related to the phenomenon of non-
collapsing generalized indiscernibles, studied by the first author, Hill,
and L. Scow in [8]; a detailed explanation of this relationship may be
found in Section 3 of [7]. When building generalized indiscernibles
indexed by a class K, one needs to assume K has the Ramsey prop-
erty. However, certain useful uniformity aspects of indiscernibility may
still exist in the absence of the Ramsey property. First, we develop a
“pseudo-indiscerniblity” when the index class is “nice” (see Proposi-
tion 4.14 and Proposition 4.15). We then utilize this in type-counting
arguments (e.g., Proposition 6.20).
This paper is organized as follows: In Section 2, we introduce the

notation used in the paper and cover some basic definitions. In Section
3, we discuss the relevant concepts surrounding strong amalgamation
Fräıssé classes. Primarily, we discuss the notion of free superposition,
which formalizes the idea of “independent copies” of a Fräıssé class. In
Section 4, we study the notion of configurations, which formalizes the
idea of “coding” a Fräıssé class into a partial type. In Section 5, we
connect the work in this paper back to the dividing lines considered
in [7]. In particular, we discuss an interesting generalization of a few
results from that paper. In Section 6, we define and examine K-ranks
for various strong amalgamation Fräıssé classes, K. In Subsection 6.1,
we study K-rank where K is the class of all finite linear orders, in
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Subsection 6.2, we study K-rank where K is the class of all finite sets
with a single equivalence relation, and in Subsection 6.3, we study K-
rank where K is the class of all finite graphs. We study each of these
K-ranks for types in the theory of the random graph in Subsection
6.4 and, in Subsection 6.5, we explore the additivity of some ranks in
theories without the independence property. Finally, in Section 7, we
discuss some interesting open problems.

2. Preliminaries

Let L be a first-order language. By the signature of L, denoted
sig(L), we mean the set of constant symbols, function symbols, and
relation symbols used in L. We say L is finite relational if sig(L)
is finite and consists only of relation symbols. For a relation symbol
R ∈ sig(L), we denote the arity ofR by arity(R). IfM is an L-structure
and A ⊆ M , we let L(A) denote the language that expands L by adding
constant symbols to the signature for each a ∈ A. Abusing notation,
also let L(A) also denote the set of L(A)-formulas. For languages L
and L0, we say L0 is a reduct of L if sig(L0) ⊆ sig(L). If M is an
L-structure and L0 is a reduct of L, let M |L0

denote the reduct of M
to L0. If M and N are L-structures, write M ∼=L N to mean that
M and N are isomorphic as L-structures (where we drop the L if it is
clear).
In this paper, we will often be working with two first-order theories in

different languages simultaneously, the “index” theory and the “target”
theory. Typically, the index theory will be the Fräıssé limit of a strong
amalgamation Fräıssé class (see Definition 3.1) in a finite relational
language and the target theory will be an arbitrary complete first-order
theory in an arbitrary language.
On the target side, suppose that T is a complete first-order theory

in a language L. We use C to denote the monster model of T ; in this
paper, it suffices to take C to be any model of T that is at least ℵ1-
saturated. We will also consider partial types π(y), which are consistent
collections of L(A)-formulas with free variables y for some A ⊆ C. In
this paper, we only consider such partial types over a small A (i.e.,
A is smaller than the saturation of C). For a partial type π and M a
substructure of C, let π(M) denote the set of all realizations of π from
M . If ϕ is a formula and P is some property, then we write ϕiff P to
denote the formula ϕ if P is true and ¬ϕ if P is false. If t < 2, we will
write ϕt to denote ϕiff t=1.
For the following two definitions, let T be a complete, first-order

theory in a language L, let C be a monster model of T , and let π(y) be
3



a partial type. We define two notions of rank that we will consider in
this paper, dp-rank and op-dimension. For simplicity of presentation,
we will only consider ω-valued dp-ranks and op-dimensions (generally,
these can be defined to be ordinal-valued).

Definition 2.1. Let m < ω and β be an ordinal. We say that π has
an ICT-pattern of depth m and length β if there exist L(C)-formulas
ϕi(y, zi) for i < m and ci,j ∈ C

|zi| for i < m and j < β such that, for
all g : m→ β, the partial type

π(y) ∪ {ϕi(y, ci,j)
iff g(i)=j : i < m, j < β}

is consistent. The dp-rank of π is the maximum m < ω such that π
has an ICT-pattern of depth m and length ω. We denote the dp-rank
of π by dpRk(π).

Definition 2.2. Let m < ω and β be an ordinal. We say that π has
an IRD-pattern of depth m and length β if there exist L(C)-formulas
ϕi(y, zi) for i < m and ci,j ∈ C

|zi| for i < m and j < β such that, for
all g : m→ β, the partial type

π(y) ∪ {ϕi(y, ci,j)
iff g(i)<j : i < m, j < β}

is consistent. The op-dimension of π is the maximum m < ω such
that π has an IRD-pattern of depth m and length ω. We denote the
op-dimension of π by opDim(π).

In this paper, we attempt to generalize “combinatorial patterns,” like
ICT-patterns or IRD-patterns, in order to define a generalized notion
of rank. To do this, we view the patterns as coming from an “index”
theory.
On the index side, let L0 be a finite relational language and let K

be a class of finite L0-structures closed under isomorphism.

• We say that K has the hereditary property if, for all B ∈ K and
A ⊆ B, A ∈ K.

• We say that K has the joint embedding property if, for all
A0, A1 ∈ K, there exist B ∈ K and embeddings ft : At → B
for each t < 2.

• We say thatK has the amalgamation property if, for all A,B0, B1 ∈
K and embeddings ft : A → Bt for each t < 2, there exist
C ∈ K and embeddings gt : Bt → C such that g0 ◦ f0 = g1 ◦ f1.

• We say thatK is a Fräıssé class if it has the hereditary property,
the joint embedding property, and the amalgamation property.

The Fräıssé limit of a Fräıssé class K is the unique (up to isomorphism)
countable L0-structure Γ such that Γ is ultrahomogeneous and K is the
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class of all finite structures embeddable into Γ (see Theorem 6.1.2 of
[9]). Since L0 is a finite relational language, the theory of the Fräıssé
limit of K is ℵ0-categorical and eliminates quantifiers (see Theorem
6.4.1 of [9]). Abusing terminology, we will typically say that K has a
certain property if its Fräıssé limit does. This allows us to avoid writing
the phrase “whose Fräıssé limit satisfies” throughout the paper.
In this paper, we will be interested in “coloring properties” of the

limits of Fräıssé classes. The following two definitions can be found in,
for example, [5]; here, we have rephrased them to be about colorings
of the Fräıssé limit.

Definition 2.3. Let K be a Fräıssé class with Fräıssé limit Γ. We say
that K is indivisible if, for all k < ω and c : Γ → k, there exist Γ′ ⊆ Γ
with Γ′ ∼= Γ and i < k such that

c(Γ′) = {i}.

Definition 2.4. Let K be a Fräıssé class with Fräıssé limit Γ. We say
that K is age indivisible if, for all k < ω, all c : Γ → k, and all A ∈ K,
there exist an embedding f : A→ Γ and i < k such that c(f(A)) = {i}.

It is clear that indivisibility implies age indivisibility.
In the next section, we will study these coloring properties in the

context of strong amalgamation Fräıssé classes.

3. Strong Amalgamation Fräıssé Classes

In this section, we define the notion of strong amalgamation Fräıssé
class. We then explore the free superposition and its relationship to
some properties of strong amalgamation Fräıssé classes.
Fix L0 a finite relational language and let K be a Fräıssé class in

L0. We can strengthen the amalgamation property as follows: We say
K satisfies the strong amalgamation property if, for all A,B0, B1 ∈ K

and embeddings ft : A → Bt for each t < 2, there exist C ∈ K and
embeddings gt : Bt → C such that g0◦f0 = g1◦f1 and g0(B0)∩g1(B1) =
g0(f0(A)). Since the language is relational, we may assume that the
empty structure is in K, so we obtain a “strong” joint embedding
property from the strong amalgamation property. Moreover, if Γ is the
Fräıssé limit of K, then K has the strong amalgamation property if
and only if, for all A ⊆ Γ, acl(A) = A; see (2.15) of [3].

Definition 3.1. Let K be a Fräıssé class in a finite relational language.
We say that K is a strong amalgamation Fräıssé class if it satisfies the
strong amalgamation property.

5



For each t < 2, let Kt be a class of finite Lt-structures, where Lt is
a finite relational language. Let L2 be the language whose signature
is the disjoint union of the signatures of L0 and L1 and define the free
superposition of K0 and K1, denoted K0 ∗K1, as the class of all finite
L2-structures A such that A|Lt

∈ Kt for each t < 2.

Remark 3.2. Suppose that A ∈ K0, B ∈ K1, and f : A → B is a
bijection. Then, we can “glue” A and B together via f to make an
element of K0 ∗K1. Formally, let C be the L2-structure with universe
A such that, for all R ∈ sig(L2) and a ∈ Aarity(R),

• if R ∈ sig(L0), then C |= R(a) ⇐⇒ A |= R(a), and
• if R ∈ sig(L1), then C |= R(a) ⇐⇒ B |= R(f(a)).

Then, clearly C ∈ K0 ∗K1. Indeed, C|L0
= A and C|L1

∼=L1
B.

Proposition 3.3 (Lemma 3.22 of [2]). If K0 and K1 are strong amal-
gamation Fräıssé classes, then K0∗K1 is a strong amalgamation Fräıssé
class.

Although the result is known, we give a proof here, as it will help in
the proof of Proposition 3.16 below.

Proof. We begin by exhibiting the strong amalgamation property. Fix
structures A,B0, B1 ∈ K0 ∗ K1 and fix L2-embeddings f0 : A → B0

and f1 : A → B1. In particular, f0 and f1 are both Ls-embeddings
for each s < 2. By the strong amalgamation property of Ks, there
exist Cs ∈ Ks and Ls-embeddings gst : Bt → Cs for t < 2 such that
gs0 ◦ f0 = gs1 ◦ f1 and gs0(B0) ∩ g

s
1(B1) = gs0(f0(A)). By embedding into

a larger structure and using the hereditary property, we may assume
that |C0| = |C1|. There exists a bijection h : C0 → C1 such that the
following diagram commutes:

A

f0
B0

f1 B1

g00

g10

g11

g01

C0

C1

h

As in Remark 3.2, endow C0 with an L2-structure via h and call it C2.
To exhibit the hereditary property, fix B ∈ K0∗K1 and let A ⊆ B. In

particular, A|L0
is a L0-substructure of B|L0

, so A|L0
∈ K0. Similarly,

A|L1
∈ K1. Thus, A ∈ K0 ∗K1. �
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Example 3.4. Note that the strong amalgamation property is necessary
to conclude that the free superposition is even a Fräıssé class. For ex-
ample, for each t < 2, let Lt be the language with one unary predicate,
Pt, and let Kt be the class of all Lt-structures where at most one el-
ement satisfies Pt. This is clearly a Fräıssé class, but does not have
strong amalgamation. On the other hand, K0 ∗ K1 is not a Fräıssé
class, as it fails joint embedding. Let A0 = {a0, a1} where P0(a0) and
P1(a1) and let A1 = {a2} where P0(a2) and P1(a2). Then, there exists
no B ∈ K0 ∗K1 which embeds A0 and A1 simultaneously.

Definition 3.5. Let K be a strong amalgamation Fräıssé class in L0,
A ∈ K, and R a relation of L0 with arity n.

(1) We say R is symmetric on A if, for all a ∈ nA and all σ ∈ Sn,
if A |= R(a), then A |= R(a ◦ σ).

(2) We say R is trichotomous on A if, for all a ∈ nA such that
a(i) 6= a(j) for all i < j < n, there exists exactly one σ ∈ Sn

such that A |= R(a ◦ σ).
(3) We say R is reflexive on A if, for all a ∈ nA such that a(i) = a(j)

for all i < j < n, A |= R(a).
(4) We say R is irreflexive on A if, for all a ∈ nA such that a(i) =

a(j) for some i < j < n, A |= ¬R(a).
(5) If n = 2, we say R is transitive if, for all a, b, c ∈ A, if A |=

R(a, b) ∧R(b, c), then A |= R(a, c).

We say A has one of the above properties if, for all R ∈ sig(L0), R has
that property on A. We say K has one of the above properties if, for
all A ∈ K, A has that property.

Proposition 3.6. Each of the properties in Definition 3.5 is closed
under free superposition.

Proof. Any witness to the failure of one of these properties in K0 ∗K1

reducts to a failure of the same property in either K0 or K1. �

Definition 3.7. We have a few strong amalgamation Fräıssé classes
that we examine in particular in this paper.

(1) (Sets) Let S denote the class of all finite L0-structures where
L0 has empty signature.

(2) (Linear Orders) Let LO denote the class of all finite L0-structures
that are trichotomous, irreflexive, and transitive, where L0 is a
language with one binary relation symbol.

(3) (Equivalence Relations) Let E denote the class of all finite L0-
structures that are symmetric, reflexive, and transitive, where
L0 is a language with one binary relation symbol.
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(4) (Graphs) Let G denote the class of all finite L0-structures that
are symmetric and irreflexive, where L0 is a language with one
binary relation symbol.

(5) (Hypergraphs) For k ≥ 2, let Hk denote the class of all finite
L0-structures that are symmetric and irreflexive, where L0 is a
language with one k-ary relation symbol. Clearly G = H2.

(6) (Tournaments) Let T denote the class of all finite L0-structures
that are trichotomous and irreflexive, where L0 is a language
with one binary relation symbol.

Definition 3.8. Suppose K is a strong amalgamation Fräıssé class and
fix n ≥ 1. Then, define K∗n recursively as follows:

(1) K∗0 = S,
(2) K∗(n+1) = K∗n ∗K.

Example 3.9. For any strong amalgamation Fräıssé class K, notice that

S ∗K = K ∗ S = K.

So, in particular, K∗1 = K and S∗n = S for all n ≥ 1.

Example 3.10. For all n ≥ 1, LO∗n is the class of all finite sets with n
linear orders.

Example 3.11. In any finite relational language L0 where all relations
are at least binary, the class of L0-hypergraphs, HL0

, is the set of all
finite L0-structures that are symmetric and irreflexive. By Proposition
3.6,

HL0
= Hk0 ∗ . . . ∗Hkn−1

,

where k0 ≤ · · · ≤ kn−1 list all the arities (with repetition) of the relation
symbols in L0. By Proposition 3.3, HL0

is a strong amalgamation
Fräıssé class.

In the remainder of this section, we will introduce tools that will
be used to compute K-rank for specific strong amalgamation Fräıssé
classes K in Section 6. We use the following proposition to build sub-
structures of Fräıssé limits that are isomorphic to the original limit.

Proposition 3.12. Suppose that Γ is the Fräıssé limit of K and Γ′ ⊆ Γ.
If, for all A,B ∈ K with A ⊆ B and |B \A| = 1 and for all embeddings
f : A → Γ′, there exists an embedding g : B → Γ′ extending f , then
Γ′ ∼= Γ.

Proof. This follows from Lemma 6.1.4 of [9]. �

The following definition is made in a general context, but we will
mostly be interested in the case where Γ is the Fräıssé limit of a strong
amalgamation Fräıssé class K.
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Definition 3.13. Let Γ be a structure in any language, L. We say
Γ is (quantifier-free) definably self-similar if, for any finite A ⊆ Γ and
any complete, non-algebraic (quantifier-free) 1-L-type p over A, p(Γ)
is isomorphic to Γ.

Note that, when Γ is the Fräıssé limit of a Fräıssé class in a finite
relational language, by quantifier elimination, being quantifier-free de-
finably self-similar is equivalent to being definably self-similar.

Lemma 3.14. Let K be a strong amalgamation Fräıssé class in a finite
relational language L0 with Fräıssé limit Γ. Then, Γ is definably self-
similar if and only if, for all B,B′, C ∈ K such that B ⊆ B′ and
|B′ \B| = 1, for all A ⊆ C and p a complete, non-algebraic 1-L0-type
over A, for all embeddings f : B → p(C), there exist C ′ ∈ K with
C ′ ⊇ C and an embedding f ′ : B′ → p(C ′) extending f .

Proof. (⇒): Assume that Γ is definably self-similar. Fix B, B′, C, A, p,
and f as in the lemma. Since Γ is the Fräıssé limit ofK, we may assume
that C ⊆ Γ. Since Γ is definably self-similar, p(Γ) ∼= Γ. By assumption,
f(B) ⊆ p(Γ). Since p(Γ) is also the Fräıssé limit of K, there exists an
embedding f ′ : B′ → p(Γ) extending f . Let C ′ = f ′(B′) ∪ C. This
gives the desired extension.
(⇐): Fix A ⊆ Γ finite and p a complete, non-algebraic 1-L0-type

over A. We show that the hypothesis of Proposition 3.12 is satisfied
for p(Γ). Consider B,B′ ∈ K with B ⊆ B′ and |B′ \ B| = 1 and
suppose that f : B → p(Γ) is an embedding. Let C = f(B) ∪ A, so f
is an embedding of B into p(C). By assumption, there exists C ′ ∈ K

with C ′ ⊇ C and an embedding f ′ : B′ → p(C ′) extending f . Since Γ
is the Fräıssé limit of K, we may assume C ′ ⊆ Γ and thus f ′ embeds
B′ into p(Γ). �

The preceding lemma gives us a characterization of when the Fräıssé
limit of a Fräıssé class is definably self-similar in terms of the class.
Thus, we will say that K is definably self-similar if its Fräıssé limit is
definably self-similar.
The next lemma is essentially the same as Theorem 2.6 of [14], but

we include a proof here for completeness.

Lemma 3.15. Suppose that K is a definably self-similar strong amal-
gamation Fräıssé class. Then, K is indivisible.

Proof. Let Γ be the Fräıssé limit of K, let k < ω, and let c : Γ →
k. We find Γ′ ⊆ Γ with Γ′ ∼= Γ and i < k such that c(Γ′) = {i}.
We may assume k = 2. Suppose that c−1({0}) 6∼= Γ. Then, by the
contrapositive of Proposition 3.12, there exist A,B ∈ K with A ⊆ B

9



and B = {b} ∪ A, and f : A → c−1({0}) an embedding that does not
extend to an embedding of B into c−1({0}). Then, consider

Γ′ =
{

d ∈ Γ : tpL0
(d, f(A)) = tpL0

(b, A)
}

.

Since Γ is definably self-similar, Γ′ ∼= Γ. On the other hand, for any
d ∈ Γ′, the function extending f to a function from B to Γ by sending b
to d is an embedding. Thus, c(d) = 1. In other words, c(Γ′) = {1}. �

In the next proposition, we show that being definably self-similar is
closed under free superposition.

Proposition 3.16. Suppose that K0 and K1 are definably self-similar.
Then, K0 ∗K1 is definably self-similar.

Proof. Let L0 be the language of K0, let L1 be the language of K1,
and let L2 be the language whose signature is the disjoint union of the
signatures of L0 and L1, which serves as the language forK2 = K0∗K1.
We use the characterization in Lemma 3.14. Fix B,B′, C ∈ K2 such

that B ⊆ B′, fix A ⊆ C, fix p(x) a complete, non-algebraic 1-L2-type
over A, and fix an L2-embedding f : B → p(C). In particular, for each
t < 2, f is an Lt-embedding of B into p|Lt

(C). For each t < 2, since
Kt is definably self-similar, there exist C ′

t ∈ Kt with C|Lt
⊆ C ′

t and an
Lt-embedding f ′

t : B′ → p|Lt
(C ′

t). Using the hereditary property, we
may assume that |C ′

0| = |C ′
1|. Then, as in the proof of Proposition 3.3,

there exists a bijection g from C ′
0 to C

′
1 such that the following diagram

commutes:

B

ι B′

f C

f ′
0

f ′
1

ι

ι

C ′
0

C ′
1

g

As in Remark 3.2, create the structure C ′ ∈ K2 with universe C ′
0

endowed with L2-structure given by g. Then, it is not hard to show
that f ′

0 is an L2-embedding of B′ into p(C ′). �

Example 3.17. The classes LO, G, and T are definably self-similar.
Moreover, for all k ≥ 2, Hk is definably self-similar. By Proposition
3.16, for all n ≥ 1, LO∗n, G∗n, and T∗n are definably self-similar and,
for all k ≥ 2, H∗n

k is definably self-similar. On the other hand, E is not
definably self-similar.
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Proof. In the theory of dense linear orders, for any complete, non-
algebraic 1-type p over a finite subset of Q, p(Q) is an open interval,
which is clearly isomorphic to Q. Hence, LO is definably self-similar.
Next, consider Hk for some k ≥ 2 in the language L0 with one k-

ary relation symbol, E. Fix B,B′, C ∈ Hk with B ⊆ B′, fix A ⊆ C,
and fix p a complete, non-algebraic 1-L0-type over A. Suppose that
f : B → p(C) is an embedding and that B′ = B ∪ {b′}. Create an
L0-structure C

′ where C ′ = C ∪ {c′} by setting, for all b ∈ Bk−1,

C ′ |= E(c′, f(b)) ⇐⇒ B′ |= E(b′, b),

and, for all a ∈ Ak−1,

C ′ |= E(c′, a) ⇐⇒ E(x, a) ∈ p(x),

and add no additional edges (except those necessary to create symme-
try). Finally, extend f to f ′ by setting f ′(b′) = c′. It is easy to check
that f ′ is an embedding from B′ into p(C ′). A similar argument works
for T, where the “direction” of each edge is determined by either B′ or
p.
Finally, consider the class E in the language L0 with one binary

relation symbol, E, and let Γ be the Fräıssé limit of E. Fix a ∈ Γ and
let p(x) be the complete 1-L0-type over {a} extending x 6= a∧E(x, a).
Clearly p(Γ) 6∼= Γ. �

The above proof for Hk can be modified to show that, if K has 3-
amalgamation (see [10]), then K is definably self-similar. On the other
hand, LO witnesses that the converse is false.
Although E is not definably self-similar, we can analyze E∗m for

m ≥ 1. The following lemma aids in this analysis.

Lemma 3.18. For m < ω, let Lm be the language with m binary
relation symbols Ei for i < m. For any set I, we can put an Lm-
structure on Im+1 by setting, for all i < m and all a, b ∈ Im+1, Ei(a, b)
if ai = bi. With this Lm-structure:

(1) if I is finite, then Im+1 ∈ E∗m; and
(2) if I is countably infinite, then Im+1 is isomorphic to the Fräıssé

limit of E∗m.

Proof. Trivial. �

Example 3.19. Although E is indivisible, for m ≥ 2, E∗m is not indi-
visible.

Proof. It follows from the Pigeonhole Principle that E is indivisible.
11



Fix m ≥ 2 and let Γ be the Fräıssé limit of E∗m. By Lemma 3.18,
we can suppose Γ has universe ωm+1. Consider the coloring c : Γ → 2
given by

c(a) =

{

0 if a0 < a1,

1 if a0 ≥ a1
.

Towards a contradiction, suppose there is Γ′ ∼= Γ with c(Γ′) = {t}. For
any a ∈ Γ′, there are only finitely many Et-classes in Γ′ that have non-
empty intersection with the E1−t-class of a in Γ′, a contradiction. �

To deal with E∗m in Section 6, we need a condition that is weaker
than being definably self-similar, but which is still strong enough to run
counting arguments. It turns out that age indivisibility is a sufficient
condition for our purposes. By Lemma 3.15, if K is definably self-
similar, then K is age indivisible.

Example 3.20. For all m < ω, E∗m is age indivisible. In particular, age
indivisibility is strictly weaker than being definably self-similar.

Proof. Let Γ be the Fräıssé limit of E∗m. By Lemma 3.18, we may
assume that Γ has universe ωm+1. Let c : Γ → k be a coloring and let
A ∈ E∗m. Let n = |A|. By Corollary A.2, there exist Y0, . . . , Ym ∈

(

ω

n

)

such that c is constant on B =
∏

i≤m Yi. On the other hand, there is
clearly an embedding g : A → B. Thus, c is constant on g(A). This
shows that E∗m is age indivisible. �

The property described in the following definition is mild, only re-
quiring that any combination of relation symbols of the same arity that
can happen, does happen. However, it provides a lower bound for the
number of types in our type-counting arguments in Section 6.

Definition 3.21. Let K be a strong amalgamation Fräıssé class. We
say that K is fully relational if, for all n < ω, for all functions f from
relation symbols in L0 of arity n to 2, there exist A ∈ K and a ∈ An

such that ai 6= aj for all i < j < n and, for all relation symbols R in
L0 of arity n, A |= R(a) if and only if f(R) = 1.

Note that, for a language with a single n-ary relation symbol, being
fully relational means that there is one (non-repeating) n-tuple where
the relation holds and one where it fails.

Example 3.22. Notice that S, LO, E, G, T, and Hk for all k ≥ 2 are
all fully relational.

Proposition 3.23. Suppose that K0 and K1 are fully relational. Then,
K0 ∗K1 is fully relational.

12



Proof. For each t < 2, let Kt be a strong amalgamation Fräıssé class
in the finite relational language Lt that is fully relational. Let K2 =
K0 ∗K1, where K2 is in the language L2 whose signature is the disjoint
union of the signatures of L0 and L1. Fix n < ω and, for t < 3, let
sign(Lt) denote the set of all relation symbols of Lt of arity n. Let
f : sign(L2) → 2. For each t < 2, since Kt is fully relational, there
exist At ∈ Kt and a

t ∈ An
t such that ati 6= atj for all i < j < n and, for

all R ∈ sign(Lt), At |= R(at) if and only if f(R) = 1. By the hereditary
property, we may assume that At = {ati : i < n}. Then, let A be the
L2-structure with universe A0 induced by the bijection a0i 7→ a1i as in
Remark 3.2. Thus, A ∈ K2 and, for all R ∈ sign(L2), A |= R(a0) if
and only if f(R) = 1. �

4. Configurations

Throughout this section, let L be any language, let T be a complete
L-theory, and let C be a monster model of T .
The following definition will be used to capture what we mean by

“coding” the class K in the partial type π.

Definition 4.1. Let K be a strong amalgamation Fräıssé class in a
finite relational language L0 and let π(y) be a partial type in T . A
K-configuration into π is a family of functions (I, fA)A∈K such that

(1) I : sig(L0) → L(C);
(2) for all A ∈ K, fA : A→ π(C); and
(3) for all R ∈ sig(L0), for all A ∈ K, for all a ∈ Aarity(R),

A |= R(a) ⇐⇒ C |= I(R)(fA(a)).

Note that, for each n-ary relation symbol R in L0, the L(C)-formula
I(R) has free variables consisting of an n-tuple of tuples of variables,
each of the same sort as y.
For a small C ⊆ C, we say that a K-configuration (I, fA)A∈K is over

C if the image of I is contained in the set of all L(C)-formulas. We
say (I, fA)A∈K is parameter-free if it is over ∅. We say (I, fA)A∈K is
injective if fA is injective for each A ∈ K.

A K-configuration can be defined in terms of the Fräıssé limit of K.

Lemma 4.2. Let K be a strong amalgamation Fräıssé class in a finite
relational language L0 with Fräıssé limit Γ, let π be a partial type in
T , and let C ⊆ C be small. There exists a K-configuration into π over
C if and only if there exist I : sig(R0) → L(C) and f : Γ → π(C) such
that, for all R ∈ sig(L0) and for all a ∈ Γarity(R),

Γ |= R(a) ⇐⇒ C |= I(R)(f(a)).
13



Proof. (⇐): Suppose I and f are given. For each A ∈ K, let fA
be obtained by composing f with an embedding of A into Γ. Then,
(I, fA)A∈K is a K-configuration into π.
(⇒): Let (I, fA)A∈K be a K-configuration into π(y). For each a ∈ Γ,

let ya be a tuple of variables in T of the same sort as y such that ya
and yb are disjoint for a 6= b. Consider the type Σ in the free variables
(ya)a∈Γ consisting of:

(1) π(ya) for all a ∈ Γ; and
(2) I(R)(ya0 , . . . , yan−1

)iff Γ|=R(a) for all n-ary R ∈ sig(L0) and a ∈
Γn.

By assumption, Σ is finitely satisfiable. By compactness, Σ is consistent
and, by saturation of C, it has a realization in C, say (ca)a∈Γ. Define
f : Γ → π(C) by setting f(a) = ca. Then I and f are the desired
functions. �

In light of the previous lemma, configurations are closely related to
a notion called “trace definability,” studied in [17].

Example 4.3. If T is the theory of the random 3-hypergraph and π(x) =
(x = x), where x is a singleton, then there exists a G-configuration into
π. Specifically, if R is the ternary relation in L and E is the binary
relation in L0, then let I(E)(x, y) = R(x, y, a) for some a ∈ C; this
gives the desired G-configuration. However, there does not exist a
parameter-free G-configuration into π; by quantifier elimination, any
L-formula must be a Boolean combination of formulas of the form
R(x, y, z) and equality.

We will see that any configuration can be made to be parameter-free
at the cost of changing the type; see Lemma 4.6. On the other hand,
if T has NIP, we will see that there exists no G-configuration into any
partial type in T (see Theorem 5.2 (2)).
In the preceding example, we saw a case where the target theory was

the theory of a Fräıssé limit of a Fräıssé class other than the index class
K. In this case, we were unable to find a parameter-free configuration
into x = x. However, if T is the theory of the Fräıssé limit of K, we
can.

Lemma 4.4. Let K be a strong amalgamation Fräıssé class in a finite
relational language L0, let T be the theory of the Fräıssé limit of K,
and let π(x) = (x = x), where x is a singleton. Then, there exists a
parameter-free K-configuration into π.

14



Proof. Let I be the inclusion function on sig(L0) and, for each A ∈
K, let fA : A → C be any embedding. Then, (I, fA)A∈K is a K-
configuration into π. �

Lemma 4.5. Let K be a strong amalgamation Fräıssé class in a fi-
nite relational language L0. If π0(y) and π1(y) are partial types in T ,
π0(y) ⊢ π1(y), and there exists a K-configuration in π0, then there
exists a K-configuration into π1.

Proof. Since π0(C) ⊆ π1(C), any K-configuration into π0 is also a K-
configuration into π1. �

As an immediate consequence of the previous lemma, if π(y) is a
partial type in T and there exists a K-configuration into π, then there
exists a K-configuration into the type y = y.
As previously mentioned, we can convert any configuration into a

parameter-free one at the cost of changing the target partial type.

Lemma 4.6. Let K be a strong amalgamation Fräıssé class in a fi-
nite relational language L0 and let π be a partial type in T . If there
exists a K-configuration into π, then there exists a parameter-free K-
configuration into some partial type of T (possibly different from π).

Proof. Let π(y) be a partial type in T and let (I, fA)A∈K be a K-
configuration into π. Choose c ∈ C

<ω such that, for all R ∈ sig(L0), we
can take c to be the parameters of I(R) (this can be done as sig(L0) is
finite). Define π∗ a partial type of T to be π expanded by adding
dummy variables z for c. Then, for each R ∈ sig(L0) of arity n,
I(R)(y0, . . . , yn−1) is T -equivalent to ϕR(y0, . . . , yn−1, c) for some L-
formula ϕR. Let

I ′(R)(y0, z0, y1, z1, . . . , yn−1, zn−1) = ϕR(y0, . . . , yn−1, z0).

For each A ∈ K, define f ′
A : A→ π∗(C) as follows: For a ∈ A,

f ′
A(a) = (fA(a), c).

Then, it is easy to check that (I ′, f ′
A)A∈K is a parameter-freeK-configuration

into π∗. �

We can also convert any configuration into an injective one at the
cost of changing the target partial type (assuming the target theory
has infinite models).

Lemma 4.7. Assume T has infinite models. Let K be a strong amal-
gamation Fräıssé class in a finite relational language L0 and let π be
a partial type in T . If there exists a K-configuration into some partial
type π of T , then there exists an injective K-configuration into some
partial type of T (possibly different from π).
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Proof. Let π(y) be a partial type in T and let (I, fA)A∈K be a K-
configuration into π. Let z be a single variable in T not used in π and
let π′(y, z) = π(y). For each n-ary R ∈ sig(L0), let

I ′(R)(y0, z0, . . . , yn−1, zn−1) = I(R)(y0, . . . , yn−1).

For each A ∈ K, since A is finite and C is infinite, there exists an
injective function g : A → C. Let f ′

A : A → π′(C) be given by f ′
A(a) =

(fA(a), g(a)) for all a ∈ A. By construction, f ′
A is injective. Thus,

(I ′, f ′
A)A∈K is an injective K-configuration into π′. �

Definition 4.8. For each t < 2, let Kt be a strong amalgamation
Fräıssé class over a finite relational language Lt. We say that K0 is
a reductive subclass of K1 if sig(L0) ⊆ sig(L1) and, for each A ∈ K0,
there exists B ∈ K1 such that A ∼=L0

B|L0
.

Example 4.9. Note that LO is a reductive subclass of T (it is actually
just a subclass). For any K0 and K1, K0 is a reductive subclass of
K0 ∗K1 (see Remark 3.2).

Lemma 4.10. For each t < 2, let Kt be a strong amalgamation Fräıssé
class over a finite relational language Lt, and let π be a partial type in
T . If there exists a K1-configuration into π and K0 is a reductive
subclass of K1, then there exists a K0-configuration into π.

Proof. Fix (I, fB)B∈K1
a K1-configuration into π. Fix A ∈ K0. Choose

B ∈ K1 and g : A → B such that g is an L0-isomorphism, and let
f ′
A = fB ◦ g. Then, for all R ∈ sig(L0) and a ∈ Aarity(R),

A |= R(a) ⇐⇒ B |= R(g(a)) ⇐⇒ C |= I(R)(fB(g(a))).

Thus, (I, f ′
A)A∈K0

is a K0-configuration into π. �

If π0(y0) and π1(y1) are two partial types in T where y0 and y1 are
disjoint, define π0 × π1 to be the following type:

(π0 × π1)(y0, y1) = π0(y0) ∪ π1(y1).

If y0 and y1 are not disjoint, we can choose different variables to force
disjointness. Fix n ≥ 1 and define π×n recursively as follows:

(1) π×1 = π,
(2) π×(n+1) = π×n × π.

It turns out that free superposition interacts with configurations into
these type products in the obvious manner.

Proposition 4.11. For each t < 2, let Kt be a strong amalgamation
Fräıssé class over a finite relational language Lt. Suppose π0 and π1
are two partial types in T . Suppose there exist a K0-configuration into
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π0 and a K1-configuration into π1. Then, there exists a (K0 ∗ K1)-
configuration into π0 × π1.

Proof. For each t < 2, let (It, ft,A)A∈Kt
be a Kt-configuration into πt.

We build (I, fA)A∈K0∗K1
a (K0 ∗K1)-configuration into π0 × π1.

For each t < 2 and each n-ary relation symbol R in Lt, let

I(R)(y0,0, y0,1, y1,0, y1,1, . . . , yn−1,0, yn−1,1) = It(R)(y0,t, y1,t, . . . , yn−1,t).

(Note that yi,t is of the same sort as free the variables of πt for all i < n
and t < 2.) Fix A ∈ K0 ∗K1. Let fA : A → (π0 × π1)(C) be given by,
for all a ∈ A,

fA(a) = (f0,A|L0
(a), f1,A|L1

(a)).

Then, we get that, for all R ∈ sig(L2), for all a ∈ Aarity(R),

A |= R(a) ⇐⇒ C |= I(R)(fA(a)).

Thus, (I, fA)A∈K0∗K1
is a (K0 ∗K1)-configuration into π0 × π1. �

Corollary 4.12. Let K be a strong amalgamation Fräıssé class in a
finite relational language and let T0 be the theory of the Fräıssé limit
of K. If x is a tuple of variables with n = |x| in T0, then there exists
a K∗n-configuration into x = x.

Proof. Use Lemma 4.4, Proposition 4.11, and induction. �

We can “compose” configurations, as long as the first configuration
is parameter-free and the second is injective.

Proposition 4.13. For each t < 2, let Kt be a strong amalgamation
Fräıssé class over a finite relational language Lt. Suppose that π(z) is a
partial type in T and suppose y is an n-tuple of variables in the Fräıssé
limit of K1 for some n < ω. Suppose there exist an injective K1-
configuration into π and a parameter-free K0-configuration into y = y.
Then, there exists a K0-configuration into π×n.

Proof. Let (I, fA)A∈K0
be a K0-configuration into y = y. Since the

theory of the Fräıssé limit of K1 has quantifier elimination, we may
assume that, for each R ∈ sig(L0), I(R) is a quantifier-free L1-formula.
Let (J, gB)B∈K1

be a K1-configuration into π(z). Extend J to sig(L1)∪
{=} by setting

J(=)(z0, z1) = [z0 = z1].

Define H : sig(L0) → L(C) by the following method: For each k-ary
R ∈ sig(L0), consider I(R)(y0, . . . , yk−1) (so yi = (yi,0, . . . , yi,n−1) for
each i < k). For each S(yi0,j0, . . . , yiℓ−1,jℓ−1

) ∈ sig(L1) ∪ {=} used in
I(R), replace it with

J(S)(zi0,j0, . . . , ziℓ−1,jℓ−1
).
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This creates an L(C)-formula in the variables ((zi,j)j<n)i<k; call it
H(R). For each A ∈ K0, choose B ∈ K1 so that the image of fA
is contained in Bn (we can do this since fA maps into n-tuples of
the Fräıssé limit of K1). Then, define hA : A → π×n(C) by setting
hA(a) = gB(fA(a)) for all a ∈ A. It is easy to check that (H, hA)A∈K0

is a K0-configuration into π×n. �

We analyze how the properties of being definably self-similar and
being age indivisible translate to configurations. Being age indivisible
manifests in a uniformity condition on L-types.

Proposition 4.14. Suppose that K is an age indivisible strong amal-
gamation Fräıssé class in a finite relational language L0 with Fräıssé
limit Γ and suppose that π(y) is a partial type in T . For all small
C ⊆ C, if there exists a K-configuration into π over C, then there exist
I : sig(R0) → L(C) and f : Γ → π(C) such that

(1) for all R ∈ sig(L0), for all a ∈ Γarity(R), Γ |= R(a) if and only
if C |= I(R)(f(a)); and

(2) for all a, b ∈ Γ,

tpL(f(a)/C) = tpL(f(b)/C).

Proof. Take I : sig(L0) → L(C) and f : Γ → π(C) as in Lemma 4.2.
Take Σ as in the proof of Lemma 4.2, with the additional formulas:

(3) ψ(ya) ↔ ψ(yb) for all ψ ∈ L(C) and a, b ∈ Γ.

Fix Σ0 ⊆ Σ finite. Then, there exists a finite set of L(C)-formulas Ψ(y)
and a finite A ⊆ Γ so that Σ0 mentions only variables ya for a ∈ A and
only formulas ψ(ya) ↔ ψ(yb) for ψ ∈ Ψ and a, b ∈ A. Consider the
coloring c : Γ → Ψ2 so that, for all a ∈ Γ and ψ ∈ Ψ,

c(a)(ψ) = 1 ⇐⇒ C |= ψ(f(a)).

Since K is age indivisible, there exists an embedding g : A → Γ such
that c is constant on g(A). Thus, we get. (f(g(a)))a∈A |= Σ0.
By compactness and saturation, there exists (ca)a∈Γ |= Σ. Define f ′ :

Γ → π(C) by setting f ′(a) = ca. Then, f
′ is the desired function. �

Note that, if we take C so that π is over C, then Proposition 4.14
is saying that we can choose f so that f maps into the realizations of
some complete type over C extending π.
When K is definably self-similar, we get a stronger condition on L-

types. For all A ⊆ Γ, let S(A) be the set of all complete, non-algebraic
1-L0-types over A.

Proposition 4.15. Suppose that K is a definably self-similar strong
amalgamation Fräıssé class in a finite relational language L0 with Fräıssé
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limit Γ and suppose that π(y) is a partial type in T . For all small
C ⊆ C, if there exists a K-configuration into π over C, then there exist
I : sig(R0) → L(C), f : Γ → π(C), and J ⊆ |y| such that

(1) for all R ∈ sig(L0), for all a ∈ Γarity(R), Γ |= R(a) if and only
if C |= I(R)(f(a)); and

(2) for all a, b ∈ Γ, tpL(f(a)/C) = tpL(f(b)/C);
(3) for all j ∈ J and all a, b ∈ Γ, f(a)j = f(b)j; and
(4) for all finite A ⊆ Γ and all p ∈ S(A), there exists b |= p such

that, for all i, j ∈ |y| \ J and all a ∈ A, f(a)i 6= f(b)j.

Proof. By Proposition 4.14, there exist I and f such that (1) and (2)
hold.
For conditions (3) and (4), start with J = ∅ and construct J re-

cursively as follows: For any J satisfying condition (3), assume that
condition (4) fails. So there exist a finite A ⊆ Γ and p ∈ S(A) such
that, for all b |= p, there exist i, j ∈ |y| \ J and a ∈ A such that
f(a)i = f(b)j. Let Γ′ = {b ∈ Γ : b |= p}. Since K is definably self-
similar, Γ′ ∼= Γ. Consider a coloring c : Γ′ → (|y| \ J)2 × A given by
c(b) = (i, j, a) for some choice of i, j ∈ |y| \ J and a ∈ A such that
f(a)i = f(b)j . By Lemma 3.15, we may assume that c is constant.
Thus, for all b, d ∈ Γ′, f(b)j = f(a)i = f(d)j (in other words, condition
(3) holds on Γ′ for J ∪{j}). Add j to J and replace Γ with Γ′. Repeat
this process. Since |y| is finite, this will eventually terminate. This
gives us the desired conclusion. �

We use Proposition 4.14 and Proposition 4.15 in Subsection 6.4 to
compute K-ranks for particular choices of K.

5. Dividing Lines

Before defining and studying K-ranks, we first connect the notions
discussed above with the ideas considered in [7].

Definition 5.1. Let K be a strong amalgamation Fräıssé class. Define
CK to be the class of all complete theories T with infinite models such
that there exists a K-configuration into some partial type π (in this
case, we will say that T admits a K-configuration).

Note that our definition of CK coincides with the definition of CK

from [7] in the case whereK is an indecomposable strong amalgamation
Fräıssé class (see Observation 2.12 of [7]). In that paper, the authors
establish a quasi-order on theories, use this quasi-order to define classes
of theories, and show that these classes are exactly those of the form
CK for some indecomposable strong amalgamation Fräıssé class, K (see
Theorem 2.17 of [7] for more details).
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How do the classes CK relate to known dividing lines in model the-
ory? First of all, CS = CE is the class of all complete theories with
infinite models. What about more interesting K? The following theo-
rem describes the relationship of CK to the classes of theories that are
stable, NIP, and k-dependent.

Theorem 5.2 (Proposition 4.31 of [7], Proposition 5.2 of [4]). Let T
be a complete first-order theory with infinite models.

(1) T is stable if and only if T /∈ CLO.
(2) T has NIP if and only if T /∈ CG.
(3) For all k ≥ 2, T has (k− 1)-dependence if and only if T /∈ CHk

.

Proof. If ϕ(y; z) is a witness to the order property, then the map I
sending < to

ϕ∗(y0, z0; y1, z1) = ϕ(y0; z1)

witnesses that there exists an LO-configuration into C
|y|+|z|. Similar

arguments can be made for the (k − 1)-independence property and
Hk-configurations for k ≥ 2; see the proof of Lemma 2.2 of [13]. �

Definition 5.3. Given two strong amalgamation Fräıssé classes K0

and K1, we say that
K0 . K1

if the theory of the Fräıssé limit of K1 is in CK0
. We say

K0 ∼ K1

if K0 . K1 and K1 . K0.

Proposition 5.4. Fix strong amalgamation Fräıssé classes K0, K1,
and K2.

(1) . is a quasi-order on strong amalgamation Fräıssé classes.
(2) K0 . K0 ∗K1.
(3) if K0 . K2 and K1 . K2, then K0 ∗K1 . K2.
(4) K0 . K1 if and only if CK1

⊆ CK0
.

(5) K0 ∼ K1 if and only if CK0
= CK1

.

Proof. For each i < 3, let Li be the language of Ki and let Ti be the
theory of the Fräıssé limit of Ki.
(1): By Lemma 4.4, T0 admits a K0-configuration. Hence, K0 . K0.

So . is reflexive.
Assume that K0 . K1 and K1 . K2. Then, T1 admits a K0-

configuration and T2 admits a K1-configuration. By Lemma 4.6, T1
admits a parameter-free K0-configuration and, by Lemma 4.7, T2 ad-
mits an injective K1-configuration. So, by Proposition 4.13, T2 admits
a K0-configuration. Thus, K0 . K2. So . is transitive.
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(2): Let T0 ∗T1 be the theory of the Fräıssé limit of K0 ∗K1. By (1),
T0 ∗ T1 admits a (K0 ∗K1)-configuration. However, K0 is a reductive
subclass ofK0∗K1. By Lemma 4.10, T0∗T1 admits a K0-configuration.
(3): Assume K0 . K2 and K1 . K2. Thus, T2 admits a K0-

configuration and a K1-configuration. By Proposition 4.11, T2 admits
a (K0 ∗K1)-configuration. Therefore, K0 ∗K1 . K2.
(4), (⇒): Assume K0 . K1 and T ∈ CK1

. By Lemma 4.6, T1
admits a parameter-free K0-configuration. By Lemma 4.7, T admits
an injective K1-configuration. By Proposition 4.13, T admits a K0-
configuration. Thus, T ∈ CK0

.
(4), (⇐): Assume CK1

⊆ CK0
. By Lemma 4.4, T1 is in CK1

. There-
fore, it is in CK0

. Therefore, K0 . K1.
(5): Follows immediately from (4). �

From this proposition, we get a characterization of when a free super-
position of two classes is equivalent to one of the classes. This corollary
is a generalization of two results from [7], namely Corollary 3.10 and
Theorem 4.24.

Corollary 5.5. Suppose K0 and K1 are strong amalgamation Fräıssé
classes. Then, K0 . K1 if and only if K0 ∗K1 ∼ K1.

Proof. (⇒): Assume K0 . K1. By Proposition 5.4 (2), K1 . K0 ∗K1.
By Proposition 5.4 (1), K1 . K1. By Proposition 5.4 (3), K0 ∗K1 .
K1. Thus, K0 ∗K1 ∼ K1.
(⇐): Assume K0 ∗K1 ∼ K1. By Proposition 5.4 (2), K0 . K0 ∗K1.

By Proposition 5.4 (1), K0 . K1. �

Corollary 5.6. If K is a strong amalgamation Fräıssé class and n ≥ 1,
then K∗n ∼ K.

Proof. Follows from Corollary 5.5 by induction. �

Corollary 5.7. (Corollary 3.10 of [7]) Let K be a strong amalgamation
Fräıssé class and T the theory of the Fräıssé limit of K. Then, T is
unstable if and only if K ∗ LO ∼ K.

Proof. By Theorem 5.2 (1), T is unstable if and only if T ∈ CLO, which
holds if and only if LO . K. By Corollary 5.5, LO . K if and only if
K ∗ LO ∼ K. �

Corollary 5.8. (Theorem 4.24 of [7]) Let L0 be a finite relational
language where each relation symbol is at least binary. Let HL0

be the
class of all L0-hypergraphs (see Example 3.11). Let k be the largest
arity among relation symbols in L0. Then,

HL0
∼ Hk.
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Proof. Let k0 ≤ · · · ≤ kn−1 = k list off all arities (with repetition) of
the relation symbols in L0. Then,

HL0
= Hk0 ∗ . . . ∗Hkn−1

.

Notice that Hm . Hℓ for each m ≤ ℓ. To see this, suppose that E is
the m-ary relation symbol for Hm, R is the ℓ-ary relation symbol for
Hℓ, and C is a monster model of the theory of the Fräıssé limit of Hℓ.
Fix c ∈ C

ℓ−m and set

I(E)(x0, . . . , xm−1) = R(x0, . . . , xm−1, c).

It is easy to check that this creates an Hm-configuration into C (similar
to Example 4.3).
So, by Corollary 5.5,

Hk0 ∗ . . . ∗Hkn−1
∼ Hkn−1

.

Therefore, HL0
∼ Hk. �

6. K-Ranks

In this section, instead of looking at which theories admit a K-
configuration (into any type) for some strong amalgamation Fräıssé
class K, we want to pay close attention to a fixed partial type in the
target. We aim to count the number of “independent copies” of a sin-
gle class K that we can code into a partial type. Let T be a complete
L-theory with monster model C and let K be a strong amalgamation
Fräıssé class in a finite relational language L0.

Definition 6.1. Fix n ≥ 1 and π a partial type in T . We say that π
has K-rank n if

(1) there exists a K∗n-configuration into π, and
(2) there does not exist a K∗(n+1)-configuration into π.

We say π hasK-rank∞ if there exists a K∗n-configuration into π for all
n < ω. We say π has K-rank 0 if there does not exist a K-configuration
into π. We denote the K-rank of π by RkK(π).

We can apply Lemma 4.5 and Proposition 4.11 to get a few imme-
diate results about K-rank.

Proposition 6.2 (Superadditivity of K-rank). For all partial types π0
and π1,

RkK(π0 × π1) ≥ RkK(π0) + RkK(π1).

Proof. Follows immediately from Proposition 4.11. �
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Definition 6.3. We say RkK is additive if, for all partial types π0 and
π1, if RkK(π0) <∞ and RkK(π1) <∞, then

RkK(π0 × π1) = RkK(π0) + RkK(π1).

For example, dp-rank is additive in the above sense [11]. Similarly,
op-dimension is additive [6]. This leads to the following question.

Question 6.4. Under what conditions on K and T is K-rank additive?

We present some partial results to Question 6.4 later in this section
(see Example 6.10 and Example 6.17).

Lemma 6.5. If π0(y) and π1(y) are partial types in T and π0(y) ⊢
π1(y), then

RkK(π0) ≤ RkK(π1).

Proof. Follows immediately from Lemma 4.5. �

Overloading notation, for each n ≥ 1, we can define RkK(n) as
follows: Fix an arbitrary n-tuple of variables y from T and set

RkK(n) = RkK(y = y).

This is clearly independent of the choice of y.

Lemma 6.6. For all 1 ≤ n < m < ω,

RkK(n) ≤ RkK(m).

Proof. Suppose RkK(n) = ℓ. Then, there exists a K∗ℓ-configuration
into Cn. Clearly there exists an S-configuration into Cm−n. By Proposi-
tion 4.11, there exists a (K∗ℓ∗S)-configuration into Cm. Since K∗ℓ∗S =
K∗ℓ, we get that RkK(m) ≥ ℓ. �

Using the terminology of Section 5, note that T ∈ CK if and only
if T is a complete theory with infinite models such that RkK(n) > 0
for some n ≥ 1. Moreover, by Corollary 5.6, if T ∈ CK, then T has
types with arbitrarily large K-rank and, if T /∈ CK (but T is a complete
theory with infinite models), then all types in T have K-rank 0.
In the following subsections, we will analyze K-rank for particular

choices of K.

6.1. Linear Order Rank. For this subsection, we consider the strong
amalgamation Fräıssé class LO. For anym ≥ 1, let Lm be the language
of LO∗m, which consists of m binary relation symbols <i for i < m.
It turns out that LO-rank is closely related to op-dimension. For any

partial type in any theory, we get that the op-dimension is an upper
bound for the LO-rank. Moreover, if the target theory has NIP, then
op-dimension coincides with LO-rank.
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Proposition 6.7. For any partial type π in any theory T ,

RkLO(π) ≤ opDim(π).

Proof. Assume RkLO(π) ≥ m. Let C be a monster model for T and let
(I, fA)A∈LO∗m be an LO∗m-configuration. So, for all A ∈ LO∗m, for all
a, b ∈ A, for all i < m,

A |= a <i b⇐⇒ C |= I(<i)(fA(a), fA(b)).

Fix n < ω. We will use this configuration to build an IRD-pattern
of depth m and length n in π. Begin by creating an A ∈ LO∗m with
universe m(2n) by setting, for all g, h ∈ A and i < m, g <i h if
g(i) < h(i) or g(i) = h(i) and g(j) < h(j) for minimal j < m such that
g(j) 6= h(j). Clearly, for all i < m, for all g, h ∈ A,

g(i) < h(i) =⇒ A |= g <i h

(but not conversely).
For g ∈ mn, let dg = fA(g

′), where g′ ∈ m(2n) is such that g′(i) =
2g(i) + 1 for all i < m. For j < n, let cj = fA(h

′), where h′ ∈ m(2n)
is such that h′(i) = 2j for all i < m. Then, for all g ∈ mn, i < m, and
j < n,

C |= I(<i)(dg, cj) ⇐⇒ 2g(i) + 1 < 2j ⇐⇒ g(i) < j.

Thus, for each g ∈ mn,

π(y) ∪ {I(<i)(y, cj)
iff g(i)<j : i < m, j < n}

is consistent. This is an IRD-pattern of depth m and length n in π.
Since n was arbitrary, by compactness, π has op-dimension ≥ m. �

Before showing that LO-rank and op-dimension coincide for NIP
theories, we mention a trick (essentially Proposition 1.18 of [6]) that
follows from the fact that LO∗m has the Ramsey property.

Remark 6.8. Suppose that T is a complete L-theory for any language
L, π is a partial type in T , K is a Ramsey class with Fräıssé limit Γ,
and there exists a K-configuration into π. Then, by Theorem 3.12 of
[15], the function f in Lemma 4.2 can be chosen so that, for all n < ω,
a, b ∈ Γn,

qftpL0
(a) = qftpL0

(b) =⇒ tpL(f(a)) = tpL(f(b)).

By Corollary 1.4(2) of [1], LO∗m is a Ramsey class; therefore, in par-
ticular, this holds when K = LO∗m.

Proposition 6.9. If T has NIP, then, for all partial types π,

RkLO(π) = opDim(π).
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This proof loosely follows the proof of Theorem 3.4 of [8], modified
to fit into our current framework.

Proof. The previous proposition gives us RkLO(π) ≤ opDim(π). To
prove the converse, suppose that π has op-dimension ≥ m. Therefore,
there exists an IRD-pattern of depth m and length ω in π. That is,
there exist L(C)-formulas ϕi(y, zi) for i < m and ci,j ∈ C

|zi| for i < m
and j < ω such that, for all g : m→ ω, the partial type

π(y) ∪ {ϕi(y, ci,j)
iff g(i)<j : i < m, j < ω}

is consistent. Say it is realized by bg ∈ C
|y|. By coding tricks, we may

assume that there exists an L-formula ϕ(y, z) such that ϕi = ϕ for all
i < m.
First, we create a function f : Γ → π(C), where Γ is the Fräıssé

limit of LO∗m. Fix A ∈ LO∗m and suppose that n = |A|. Choose an
injective function η : A → mn such that, for all a, a′ ∈ A and for all
i < m, η(a)(i) < η(a′)(i) if and only if a <i a

′. For all i < m, j < n,
and a ∈ A, notice that

C |= ϕ(bη(a), ci,j) ⇐⇒ η(a)(i) < j.

Therefore, for all i < m, for all <i-cuts Y of A, there exists c ∈ C
|z|

such that

Y = {a ∈ A : C |= ϕ(bη(a), c)}.

Consider the function a 7→ bη(a) from A to π(C). By compactness, there
exists a function f : Γ → π(C) such that, for all i < m, for all <i-cuts
Y of Γ, there exists c ∈ C

|z| such that

Y = {a ∈ Γ : C |= ϕ(f(a), c)}.

By Remark 6.8, we can assume that f : Γ → π(C) is a generalized in-
discernible. Therefore, for each k < ω and each quantifier-free Lm-type
p(x0, . . . , xk−1), we have an associated L-type p∗(y0, . . . , yk−1) (over the
same parameters as π and ϕ) extending π(y0)∪· · ·∪π(yk−1) such that,
for all a ∈ Γk, if a |= p, then f(a) |= p∗.
Since T has NIP, ϕ(y, z) has VC-dimension < k for some k < ω. In

other words,

C |= ¬∃y0 . . .∃yk−1

∧

s∈k2

(

∃z
∧

ℓ<k

ϕ(yℓ, z)
s(ℓ)

)

.

For each t ∈ m2, define the quantifier-free 2-Lm-type pt(x0, x1) as
follows: pt ⊢ x0 6= x1 and, for all i < m, pt ⊢ x0 <i x1 if and
only if t(i) = 1. We can extend this to a quantifier-free k-Lm-type
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qt(x0, . . . , xk−1) as follows: for all ℓ 6= ℓ′, qt ⊢ xℓ 6= xℓ′ and, for all
i < m, for all ℓ < k − 1, qt ⊢ xℓ <i xℓ+1 if and only if t(i) = 1.
Now fix t, t′ ∈ m2 distinct. We may assume, by perhaps swapping

t and t′, that there exists i0 < m such that t(i0) = 1 and t′(i0) = 0.
Since ϕ has VC-dimension < k, there exists s ∈ k2 such that

q∗t (y0, . . . , yk−1) ⊢ ¬∃z
∧

ℓ<k

ϕ(yℓ, z)
s(ℓ).

We define qr and σr recursively as follows: Let q0 = qt and σ0 the iden-
tity permutation on k. Fix r ≥ 0 and assume that we have constructed
qr and σr such that

(1) qr(x0, . . . , xk−1) ⊢ xσr(0) <i0 xσr(1) <i0 · · · <i0 xσr(k−1).

Then, choose ℓr < k− 1 minimal such that s(σr(ℓr)) = 0 and s(σr(ℓr +
1)) = 1. Note that, if no such ℓr exists, then

q∗r(y0, . . . , yk−1) ⊢ ∃z
∧

ℓ<k

ϕ(yσr(ℓ), z)
s(σr(ℓ)),

since it is a <i0-cut. In particular, ℓ0 exists.
Let σr+1 = σr ◦ (ℓr ℓr + 1) and let qr+1 be qr except, for each i < m,

we replace

(xℓr <i xℓr+1)
t(i) with (xℓr <i xℓr+1)

t′(i).

In particular, we maintain that qr+1 and σr+1 satisfy (1). Terminate
the construction when we first have

q∗r+1(y0, . . . , yk−1) ⊢ ∃z
∧

ℓ<k

ϕ(yℓ, z)
s(ℓ)

Choose a ∈ Γk such that a |= qr. Let

ψt,t′(y0, y1) := ¬∃z
(

ϕ(f(a0), z)
s(0) ∧ · · · ∧ ϕ(f(aℓr−1), z)

s(ℓr−1)∧

ϕ(y0, z)
s(ℓr) ∧ ϕ(y1, z)

s(ℓr+1)∧

ϕ(f(aℓr+2), z)
s(ℓr+2) ∧ · · · ∧ ϕ(f(ak−1), z)

s(k−1)
)

.

Consider the set

Γ′ = {a ∈ Γ : (a0, . . . , aℓr−1, a, aℓr+2, . . . , ak−1) |= qr|x0,...,xℓr
,xℓr+2,...,xk−1

}.

Since LO∗m is definably self-similar, Γ′ ∼= Γ. Notice that, for all a, b ∈
Γ′,

• If (a, b) |= pt, then (a0, . . . , aℓr−1, a, b, aℓr+2, . . . , ak−1) |= qr,
hence C |= ψt,t′(f(a), f(b)).

• If (a, b) |= pt′ , then (a0, . . . , aℓr−1, a, b, aℓr+2, . . . , ak−1) |= qr+1,
hence C |= ¬ψt,t′(f(a), f(b)).
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Replace Γ with Γ′ and repeat this process for all distinct t, t′ ∈ m2.
For t ∈ m2, let

ψt(y0, y1) :=
∧

t′∈m2,t′ 6=t

ψt,t′(y0, y1).

Finally, for i < m, let

ψi(y0, y1) :=
∨

t∈m2,t(i)=1

ψt(y0, y1).

Then, it is clear that, for all a, b ∈ Γ and i < m,

a <i b if and only if C |= ψi(f(a), f(b)).

By Lemma 4.2, there exists an LO∗m-configuration into π. Thus,
RkLO(π) ≥ m. �

Note that this proof uses generalized indiscernibles; this is the only
such use in this paper. In future work, we would like to remove the need
for indiscernibility so that arguments such as these can be generalized
to Fräıssé classes without the Ramsey Property.

Example 6.10 (NIP). Suppose T has NIP. Then LO-rank is precisely
op-dimension. In particular, LO-rank is additive (see Theorem 2.2 of
[6]).
If T is distal, then op-dimension coincides with dp-rank (see Remark

3.2 of [6]). Therefore, for distal T , LO-rank is dp-rank.

In the next example, we show that LO-rank can jump from 0 to ∞
in a theory with the independence property.

Example 6.11. Let L consist of infinitely many binary relation symbols
Ri for i < ω and let T be the model companion of the theory of L-
hypergraphs. Then,

RkLO(1) = 0 and RkLO(2) = ∞.

Proof. Let C be a monster model for T and let Γ be the Fräıssé limit of
LO. Towards a contradiction, suppose there exists an LO-configuration
into C over some small C ⊆ C. Since LO is definably self-similar, there
exists a function f : Γ → C satisfying the conclusion of Proposition
4.14. Thus, since L is a binary language, for all a, b ∈ Γ, the type
tpL(f(a), f(b)/C) is determined by the type tpL(f(a), f(b)). On the
other hand, since T is symmetric,

tpL(f(a), f(b)) = tpL(f(b), f(a)).

Therefore, Γ |= a < b if and only if Γ |= b < a, a contradiction.
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On the other hand, fix m < ω. For each i < m, let

I(<i)(y0,0, y0,1, y1,0, y1,1) = Ri(y0,0, y1,1).

For each A ∈ LO∗m, there exists a function fA : A→ C
2 such that, for

all a, b ∈ A and i < m,

A |= a <i b⇐⇒ C |= I(<i)(fA(a), fA(b)).

Hence, (I, fA)A∈LO∗m is an LO∗m-configuration into C
2. �

6.2. Equivalence Class Rank. For this subsection, we consider the
strong amalgamation Fräıssé class E. For any m ≥ 1, let Lm be the
language of E∗m, which consists of m binary relation symbols, Ei for
i < m.
It turns out that E-rank is bounded above by dp-rank.

Proposition 6.12. For any partial type π in any theory T ,

RkE(π) ≤ dpRk(π).

Proof. This follows similarly to the proof of Proposition 6.7. Suppose
RkE(π) ≥ m. Let Γ be the Fräıssé limit of E∗m and let C be a monster
model for T . Let (I, fA)A∈E∗m be an E∗m-configuration into C. So, for
all i < m, for all A ∈ E∗m, for all a, b ∈ A,

A |= Ei(a, b) ⇐⇒ C |= I(Ei)(fA(a), fA(b)).

Fix n < ω. Create A ∈ E∗m with universe mn by setting, for all i < m
and g, h ∈ A,

A |= Ei(g, h) ⇐⇒ g(i) = h(i).

For g ∈ A, let cg = fA(g). Thus, for all i < m, for all g, h ∈ A,

C |= I(Ei)(cg, ch) ⇐⇒ g(i) = h(i).

For each j < n, overloading notation, let j denote the function from m
to n that is constantly j. Then, for each g ∈ mn, we have that

π(y) ∪ {I(Ei)(y, cj)
iff g(i)=j : i < m, j < n}

is consistent (realized by cg). This is an ICT-pattern of depth m and
length n in π. Since n was arbitrary, by compactness, π has dp-rank
≥ m. �

Moreover, E-rank is bounded below by the dimension of the target
type (assuming the target theory has infinite models).

Proposition 6.13. For all theories T with infinite models,

RkE(m) ≥ m.
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Proof. Since T has infinite models, there exists an injective function
g : ω → C. Fix a tuple of variables y and let m = |y|. Fix A ∈ E∗m and
choose n < ω such that A embeds into nm+1 viewed as an element of
E∗m as in Lemma 3.18. Thus, we may assume A is this Lm-structure
on nm+1. Let fA : A → C

m be given by fA(a) = (g(a0), . . . , g(am)) for
each a ∈ nm+1.
For each i < m, let

I(Ei)(y0,0, . . . , y0,m, y1,0, . . . , y1,m) = [y0,i = y1,i] .

It is easy to check that (I, fA)A∈E∗m is an E∗m-configuration into y = y.
Thus, RkE(m) ≥ m. �

We say that a theory T is dp-minimal if dpRk(y = y) = 1 for some
(any) single variable y in T . Combining the previous two results, we
conclude that E-rank is precisely equal to the dimension of the target
type in dp-minimal theories.

Corollary 6.14. Let T be a dp-minimal theory with infinite models.
Then, RkE(m) = m.

Proof. Let y be an m-tuple of variables from T . By Proposition 6.13,

RkE(y = y) ≥ |y|.

Since dp-rank is subadditive [11], dpRk(y = y) ≤ |y|. So, by Proposi-
tion 6.12,

RkE(y = y) ≤ dpRk(y = y) ≤ |y|.

Thus, RkE(y = y) = dpRk(y = y) = |y|. �

Question 6.15. If T is dp-minimal and π is a partial type in T , then
does RkE(π) = dpRk(π)? More generally, under what conditions does
RkE(π) = dpRk(π)?

Although this question is still open, we have examples where E-rank
and dp-rank differ, even in an NIP theory.

Example 6.16. Fix k ≥ 2 and let T be the theory of the Fräıssé limit
of LO∗k. We claim that, in the theory T ,

⌊

k

2

⌋

≤ RkE(1) < k.

(On the other hand, dpRk(y = y) = k, so these ranks disagree.)

Proof. Let m = ⌊k/2⌋ and fix A ∈ E∗m. As in the proof of Proposition
6.13, there exists n < ω such that A embeds into X = nm+1 with Lm-
structure given in Lemma 3.18. For each i < m, we define two linear
orders <2i and <2i+1 on X as follows: for all a, b ∈ X , let
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• a <2i b if ai < bi or ai = bi and aj0 < bj0 where j0 = min{j <
n : aj 6= bj}, and

• a <2i+1 b if ai > bi or ai = bi and aj0 < bj0 where j0 = min{j <
n : aj 6= bj}.

It is clear from definition that, for all i < m, for all a, b ∈ X ,

Ei(a, b) ⇐⇒ (a <2i b↔ a <2i+1 b).

If k = 2m + 1, then define <2m arbitrarily. Since (X,<i)i<k is an
element of LO∗k, we get an embedding of X into C, the monster model
of T . Composing this function with the one sending A to X , we get a
function fA : A→ C such that, for all a, b ∈ A and i < m,

A |= Ei(a, b) ⇐⇒ (fA(a) <2i fA(b) ↔ fA(a) <2i+1 fA(b)).

For each i < m, let

I(Ei)(y0, y1) := [y0 <2i y1 ↔ y0 <2i+1 y1]

Then, (I, fA)A∈E∗m is an E∗m-configuration into C. Thus, RkE(1) ≥ m.
On the other hand, suppose that Γ is the Fräıssé limit of E∗k, C is

a monster model of T , and there exists an E∗k-configuration over a
finite C. Since E∗k is age indivisible, there exists a function f : Γ → C

satisfying the conclusion of Proposition 4.14. Fix a ∈ Γ and, for each
s ∈ k2, choose bs ∈ Γ such that, for all i < k, Ei(a, bs) if and only if
s(i) = 1. Consider the 2-types in T :

ps,0 = tpL(f(a), f(bs)) and ps,1 = tpL(f(bs), f(a)).

Since L has only binary relations and each f(a) and f(bs) have the
same L-type over C, these types determine the L-types over C. For
any s not the identically 1 function, f(a) 6= f(bs). Otherwise, suppose
that f(a) = f(bs) where s ∈

k2 with s(i) = 0. Then, we get that

tpL(f(a), f(b1)/C) = tpL(f(bs), f(b1)/C)

(where 1 is the identically 1 function). Since Γ |= Ei(a, b1), this implies
that Γ |= Ei(bs, b1), hence Γ |= Ei(a, bs), which is a contradiction.
Similarly, for s and t not identically 1, if (s, i) 6= (t, j), then ps,i 6= pt,j.
Therefore, we have at least 2 · (2k − 1) many non-equality 2-types in
T . On the other hand, there are 2k many non-equality 2-types in T
(one type for each possible assignment of x <i y or x >i y for all
i < k). Thus, 2k+1 − 2 ≤ 2k, a contradiction. Therefore, there is no
E∗k-configuration into y = y. Thus, RkE(y = y) < k. �
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6.3. Graph Rank. For this subsection, we consider the strong amal-
gamation Fräıssé class G.

Example 6.17 (NIP). If T is a theory with NIP, then, for all types π in
T , RkG(π) = 0. Thus, G-rank is trivially additive.

Proof. This follows from Theorem 5.2 (2) and Corollary 5.6. �

Similar to LO-rank, the G-rank can jump from 0 to ∞ in a theory
with the independence property.

Example 6.18. Let L be the language consisting of binary relation sym-
bols Ri for i < ω and let T be the model companion of the theory of
L-structures for which Ri is a triangle-free graph for all i < ω. Then,

RkG(1) = 0 and RkG(2) = ∞.

Proof. Let C be a monster model for T . Towards a contradiction, sup-
pose there exists (I, fA)A∈G a G-configuration into C. Fix n < ω such
that I(E) mentions only Ri for i < n. By quanitifier elimination, there
exists S ⊆ n2 such that

I(E)(y0, y1) =
∨

s∈S

∧

i<n

Ri(y0, y1)
s(i).

By swapping E with ¬E if necessary, we may assume the constant zero
function is not in S. If we consider a finite complete graph A, then
fA(A) can be viewed as a complete graph with edge colors in S. By
Ramsey’s Theorem, for sufficiently large A, there exists a triangle of
a fixed color s0 ∈ S. By assumption, there exists i0 < n such that
s0(i0) = 1, so this is an Ri0-triangle. This is a contradiction.
Fix an arbitrary m < ω and define, for each i < m, L-formulas as

follows:

I(Ei)(y0,0, y0,1, y1,0, y1,1) = Ri(y0,0, y1,1) ∧Ri(y0,1, y1,0).

For any A ∈ G∗m, there exists a function fA : A → C
2 such that, for

all a, b ∈ A and i < m,

A |= Ei(a, b) ⇐⇒ C |= I(Ei)(fA(a), fA(b)).

That is, (I, fA)A∈G∗m is a G∗m-configuration into C
2. �

6.4. Into the Random Graph. In this subsection, we study the spe-
cific case where the target theory is the theory of the random graph. It
turns out that K-rank, for various examples of K, acts in an interesting
manner in this theory.
For this subsection, let T be the theory of the random graph in the

language L with a single binary relation R and let C be a monster model
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for T . Let K be a strong amalgamation Fräıssé class in a language L0

with a single binary relation symbol, E. For any m ≥ 1, let Lm be
the language of K∗m, which consists of m binary relation symbols; call
them Ei for i < m. Let Γ be the Fräıssé limit of K∗m.
Fix n ≥ 1 and, for each t < 2, consider the set Xt = n × {t}.

Let Gn be the set of bipartite graphs with parts X0 and X1. Then,
|Gn| = 2n

2

. Say that G = (X0 ∪X1, F ) ∈ Gn is symmetric if, whenever
{(i, 0), (j, 1)} ∈ F , {(j, 0), (i, 1)} ∈ F . Let Gn

s be the set of symmetric
bipartite graphs with parts X0 and X1 and let Gn

ns be the set of non-
symmetric bipartite graphs with parts X0 and X1. Notice that |Gn

s | =

2(
n+1

2 ). To see this, observe that, for each i ≤ j < n, we can choose
whether or not to put {(i, 0), (j, 1)}, {(j, 0), (i, 1)} ∈ F . This gives us
(

n

2

)

+ n =
(

n+1
2

)

choices. Thus,

|Gn
ns| = 2n

2

− 2(
n+1

2 ) = 2(
n+1

2 )
(

2(
n

2) − 1
)

.

For each G ∈ Gn, let G∗ be the graph where we “swap parts” (i.e.,
{(i, 0), (j, 1)} is an edge of G if and only if {(j, 0), (i, 1)} is an edge of
G∗). Clearly (G∗)∗ = G and, for all G ∈ Gn, G ∈ Gn

s if and only if
G∗ = G.
Let S2 denote the set of all quantifier-free 2-Lm-types over ∅, p(x0, x1),

such that (a0, a1) |= p for some distinct a0, a1 ∈ Γ. For p ∈ S2, let p
∗

be the type in S2 such that, for all i < m,

p∗(x0, x1) ⊢ Ei(x0, x1) ⇐⇒ p(x0, x1) ⊢ Ei(x1, x0).

The next three propositions give conditions on K that guarantee
that RkK(n) = n2 − 1 for n ≥ 2. These conditions are met by LO, G,
and T.

Proposition 6.19. Fix n ≥ 1. Assume that K is either reflexive or
irreflexive. Assume also that K is either symmetric or trichotomous.
Then,

RkK(n) ≥ n2 − 1.

Moreover, this is witnessed by a parameter-free configuration.

Proof. Wemay assume n ≥ 2, since the statement is trivial when n = 1.
Let m = n2−1 and let y be an n-tuple of variables from T . Consider

the function g : S2 →
m2 where, for all p ∈ S2 and i < m,

g(p)(i) = 1 ⇐⇒ p(x0, x1) ⊢ Ei(x0, x1).

Since K is symmetric or trichotomous and K is reflexive or irreflexive,
g is injective. Thus, |S2| ≤ 2m.
Choose any injective function h : S2 → P(Gn) with the following

conditions:
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(1) If K is symmetric, then, for all p ∈ S2, h(p) = {G,G∗} for some
G ∈ Gn.

(2) If K is trichotomous, then, for all p ∈ S2, h(p) = {G} for some
G ∈ Gn

ns and h(p
∗) = (h(p))∗.

To see that such an h exists, we have to consider two cases:

Case 1. K is symmetric.

In this case, the number of allowed outputs for h is

|Gn
s |+

1

2
|Gn

ns| = 2(
n+1

2 ) +
1

2

(

2n
2

− 2(
n+1

2 )
)

=

2n
2−1 + 2(

n+1

2 )−1 ≥ 2n
2−1.

Case 2. K is trichotomous.

In this case, the number of allowed outputs for h is

|Gn
ns| = 2(

n+1

2 )
(

2(
n

2) − 1
)

≥ 2n
2−1.

In either case, the number of allowed outputs for h is at least

2n
2−1 = 2m ≥ |S2|.

Therefore, such a function h exists.
For each G = (X0 ∪X1, F ) ∈ Gn, let

ϕG(y0,0, . . . , y0,n−1, y1,0, . . . , y1,n−1) =
∧

i,j<n

R(y0,i, y1,j)
iff {(i,0),(j,1)}∈F .

Finally, for each i < m, let

I(Ei)(y0, y1) =
∨

p∈S2,p(x0,x1)⊢Ei(x0,x1)





∨

G∈h(p)

ϕG(y0, y1)



 .

For any A ∈ K∗m, consider the set n × A and endow it with an R-
graph structure as follows: For all distinct a, b ∈ A, choose some G =
(X0 ∪X1, F ) ∈ h(qftpL0

(a, b)). For all i, j < n, define

R((i, a), (j, b)) ⇐⇒ {(i, 0), (j, 1)} ∈ F

and add no other R-edges among n × {a, b}. Since C is a model of
the random graph, this R-structure on n × A embeds into C, say via
g : (n × A) → C. Define fA : A → C

n by setting fA(a) = (g(i, a))i<n.
Then, it is clear that, for all a, b ∈ A and i < m,

A |= Ei(a, b) ⇐⇒|= I(Ei)(fA(a), fA(b)).

Thus, (I, fA)A∈K∗m is aK∗m-configuration into y = y. Moreover, notice
that this gives us a parameter-free configuration. �
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Proposition 6.20. Fix n ≥ 1. Assume that K is definably self-similar
and fully relational. Then,

RkK(n) ≤ n2.

Proof. Fix m ≥ 1 and let y be an n-tuple of variables from T . Suppose
that there exists a K∗m-configuration into y = y. By Proposition
3.16, since K is definably self-similar, K∗m is definably self-similar.
Since K∗m is definably self-similar, we may assume that there exist
I, f , and J satisfying the conclusion of Proposition 4.15. That is,
I : sig(L0) → L(C), f : Γ → C

n, and J ⊆ |y| are such that

(1) for all i < m, for all a, b ∈ Γ, Γ |= Ei(a, b) if and only if
C |= I(Ei)(f(a), f(b));

(2) for all a, b ∈ Γ, tpL(f(a)/C) = tpL(f(b)/C);
(3) for all j ∈ J and all a, b ∈ Γ, f(a)j = f(b)j ; and
(4) for all p ∈ S2, there exist ap, bp ∈ Γ such that (ap, bp) |= p and,

for all i, j ∈ |y| \ J , f(ap)i 6= f(bp)j .

Since L is a binary language, condition (2) tells us that the type
tpL(f(ap), f(bp)) determines the type tpL(f(ap), f(bp)/C).
We get a function h : S2 → Gn as follows: Fix p ∈ S2. For all

i, j < n, we put {(i, 0), (j, 1)} in the edge set of h(p) if and only if
R(f(ap)i, f(bp)j). If we have p, p′ ∈ S2 distinct, then tpL(f(ap), f(bp))
and tpL(f(ap′), f(bp′)) disagree on some formula of the formR(y0,i, y1,j).
Therefore, h(p) 6= h(p′). Hence, h is injective.
Since K is fully relational, by Proposition 3.23, K∗m is fully rela-

tional. Thus, |S2| ≥ 2m. On the other hand, |Gn| = 2n
2

. Therefore,

2m ≤ 2n
2

. Thus, m ≤ n2. �

Proposition 6.21. Assume that K is either reflexive or irreflexive.
Assume that K is definably self-similar and fully relational.

(1) If K is trichotomous, then RkK(n) < n2 if n ≥ 1.
(2) If K is symmetric, then RkK(n) < n2 if n ≥ 2.

Proof. Fix m ≥ 1 and n ≥ 1. Let h : S2 → Gn be the injective function
from the proof of Proposition 6.20 and consider the map p 7→ (ap, bp)
from that proof. We will show that h is not surjective.

Case 1. K is trichotomous.

If p ∈ S2, then

tpL(f(ap), f(bp)) 6= tpL(f(bp), f(ap)).

Otherwise, tpL(f(ap), f(bp)/C) = tpL(f(bp), f(ap)/C), hence Ei(ap, bp)
if and only if Ei(bp, ap) for all i < m, which is a contradiction. Thus,
h(p) ∈ Gn

ns ( Gn.
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Case 2. K is symmetric and n ≥ 2.

If p, p′ ∈ S2 are distinct, then

tpL(f(ap), f(bp)) 6= tpL(f(bp′), f(ap′)).

Otherwise, tpL(f(ap), f(bp)/C) = tpL(f(bp′), f(ap′)/C), hence Ei(ap, bp)
if and only if Ei(bp′ , ap′) if and only if Ei(ap′, bp′) for all i < m, which
is a contradiction. Since n ≥ 2, Gn

ns 6= ∅. If p, p′ ∈ S2 are distinct and
h(p) ∈ Gn

ns, then h(p) 6= (h(p′))∗.
In either case, we see that h is not surjective. Therefore,

2m ≤ |S2| < |Gn| = 2n
2

.

So m < n2. �

We apply Propositions 6.19, 6.20, and 6.21 to LO, G, and T.

Example 6.22 (K = LO). For all n ≥ 1,

RkLO(n) = n2 − 1.

Proof. Since LO is irreflexive and trichotomous, Proposition 6.19 gives
us that RkLO(n) ≥ n2 − 1. Moreover, LO is definably self-similar and
fully relational, so Proposition 6.21 gives us that RkLO(n) < n2. �

Example 6.23 (K = T). For all n ≥ 1,

RkT(n) = n2 − 1.

Proof. Similar to Example 6.22. �

In this paper, although the focus is not on T-rank, we do get this
result “for free.” In future work, we may examine T-rank in other
contexts.

Example 6.24 (K = G). For all n ≥ 1,

RkG(n) =

{

1 if n = 1,

n2 − 1 if n ≥ 2
.

Proof. Since G is irreflexive and symmetric, Proposition 6.19 gives us
that RkG(n) ≥ n2 − 1. Moreover, G is definably self-similar and fully
relational, so Proposition 6.21 gives us that RkG(n) < n2 for n ≥ 2.
To see that RkG(1) = 1, use Proposition 6.20 and Lemma 4.4. �

We now turn our attention to when K = E. This will take more
work because E is not definably self-similar.
For t ∈ m2 and a, b ∈ ωm, we say that a ≤t b if, for all i < m,

• ai < bi if t(i) = 1 and
• ai = bi if t(i) = 0.
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Observe that, for any a, b ∈ ωm, there exists at most one t ∈ m2 such
that a ≤t b.
For positive integers m and n, consider the following property, which

turns out to be implied by the existence of an E∗m-configuration into
C
n:

(†)m,n: There exists a function f : ωm → C
n such that,

for all t, t′ ∈ m2, for all a, b, a′, b
′
∈ ωm with a ≤t b and

a′ ≤t′ b
′
,

tpL(f(a), f(b)) = tpL(f(a
′), f(b

′
)) ⇐⇒ t = t′.

In particular, when t = t′, f(a)ℓ = f(b)ℓ if and only if f(a′)ℓ = f(b
′
)ℓ

for each ℓ < n. Moreover, by choosing the constantly zero function for
t, we see that the function a 7→ tpL(f(a)) is constant. Restricting to
2m ⊆ ωm, we see that, for all a, b ∈ 2m,

(2) tpL(f(0), f(a)) = tpL(f(0), f(b)) ⇐⇒ a = b.

As advertised, we get the following lemma.

Lemma 6.25. If there exists an E∗m-configuration into C
n, then (†)m,n

holds.

Proof. Let (I, fA)A∈E∗m be a E∗m-configuration into C
n over C ⊆ C

finite. Fix k < ω. By Lemma A.1, there exists n < ω such that, for
all c :

(

nm

≤2

)

→ SL
2n(C), there exist Y0, . . . , Ym−1 ∈

(

n

k

)

such that, for all
t ∈ m2, c is constant on

Xt =

{

{a, b} : a, b ∈
∏

i<m

Yi, a ≤t b

}

.

Let A = nm+1 be the Lm-structure given in Lemma 3.18. In particular,
this holds for the coloring c given by, for all a, b ∈ nm with a ≤lex b,

c({a, b}) = tpL(fA(a, 0), fA(b, 0)/C).

As k was arbitrary, by compactness, there exists f : ωm → C
n such

that, for all a, b ∈ ωm and i < m, C |= I(Ei)(f(a), f(b)) if and only
if ai = bi and, for all t ∈

m2, the function (a, b) 7→ tpL(f(a), f(b)/C)
is constant for all a, b ∈ ωm with a ≤t b. In particular, the function
a 7→ tpL(f(a)/C) is constant. Since L is a binary language, the type
tpL(f(a), f(b)/C) is determined by the type tpL(f(a), f(b)). Therefore,
f witnesses that (†)m,n holds. �

Suppose (†)m,n holds for some n,m < ω, witnessed by f . Let ei be
the ith standard basis vector. For each ℓ < n, let

Vℓ =
{

a ∈ ωm : f(0)ℓ = f(a)ℓ
}

.
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Lemma 6.26. There exists Iℓ ⊆ m such that

Vℓ = {a ∈ ωm : (∀i ∈ m \ Iℓ)[ai = 0]}

In other words, Vℓ is the ω-span of {ei : i ∈ Iℓ}.

Proof. Let Iℓ = {i < m : (∃a ∈ Vℓ)[ai > 0]}. We show this works.
Clearly 0 ∈ Vℓ. Fix a ∈ Vℓ non-zero and i < m such that ai > 0.

Notice that, for all t ∈ m2,

0 ≤t a⇐⇒ 0 ≤t a+ ei.

By (†)m,n, since f(0)ℓ = f(a)ℓ, f(0)ℓ = f(a + ei)ℓ. Thus, f(a)ℓ =
f(a+ ei)ℓ. By (†)m,n, f(0)ℓ = f(ei)ℓ. Thus, ei ∈ Vℓ.

Suppose that a, b ∈ Vℓ. Then,

f(0)ℓ = f(a)ℓ and f(0)ℓ = f(b)ℓ.

By (†)m,n, f(a)ℓ = f(a+ b)ℓ. Therefore, a+ b ∈ Vℓ.
Putting these facts together, we get the desired conclusion. �

Lemma 6.27. Suppose (†)m,n holds, witnessed by f . For all ℓ, ℓ′ < n
and a ∈ ωm, if f(0)ℓ = f(a)ℓ′, then a ∈ Vℓ ∩ Vℓ′.

Proof. By (†)m,n, f(0)ℓ = f(2a)ℓ′ , hence f(a)ℓ′ = f(2a)ℓ′. By (†)m,n,
f(0)ℓ′ = f(a)ℓ′, hence a ∈ Vℓ′. On the other hand, by (†)m,n, f(a)ℓ =
f(2a)ℓ′ , hence f(0)ℓ = f(a)ℓ. Thus, a ∈ Vℓ. �

We are now ready to compute RkE(n).

Example 6.28 (K = E). For all n ≥ 1,

RkE(n) =

{

1 if n = 1,

n2 − 1 if n ≥ 2
.

Proof. Since E is reflexive and symmetric, Proposition 6.19 says that
RkE(n) ≥ n2 − 1. Moreover, Proposition 6.13 says that RkE(1) ≥ 1.
Towards a contradiction, suppose RkE(1) ≥ 2; hence, (†)2,1 holds,

say witnessed by f : ω2 → C. By (2), this gives us at least four distinct
2-L-types over ∅. On the other hand, there are only three such types,
a contradiction.
So it suffices to show that RkE(n) < n2 when n ≥ 2. To accomplish

this, we prove, by induction on n, that (†)n2,n fails.
We will deal with the base case of n = 2 at the end. Fix n ≥ 3 and

assume that (†)(n−1)2,n−1 fails. Towards a contradiction, suppose that

(†)n2,n holds, say witnessed by f : ωn2

→ C
n.

Claim. For all ℓ < n, |Iℓ| < (n−1)2 (where Iℓ is as defined in Lemma
6.26, for this choice of f).
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Proof of Claim. Fix ℓ < n. Towards a contradiction, suppose |Iℓ| ≥
(n − 1)2. Let m = (n − 1)2, let σ : m → Iℓ be any injective function,

and, for each a ∈ ωm, let aσ ∈ ωn2

be given by

aσ,i =

{

aj if i = σ(j),

0 if i /∈ im(σ)
.

In particular, aσ ∈ Vℓ. Hence, for all a, b ∈ ωm, f(aσ)ℓ = f(bσ)ℓ.
Define f ′ : ωm → C

n−1 as follows: For each a ∈ ωm, let f ′(a) = f(aσ)
restricted to exclude the ℓth coordinate. It is easy to check that f ′

satisfies (†)m,n−1, contrary to the inductive hypothesis. �

Let m = n2 and let

V = {a ∈ 2m : (∃ℓ < n)(∀i ∈ m \ Iℓ)[ai = 0]} .

In other words, V is the union of 2m ∩ Vℓ over all ℓ < n. By the claim,
for each ℓ < n, |Iℓ| ≤ (n− 1)2 − 1 = n2 − 2n. Thus,

|2m ∩ Vℓ| ≤ 2n
2−2n.

Therefore,

|2m \ V | ≥ 2n
2

− n2n
2−2n.

Claim. 2n
2

− n2n
2−2n > 2n

2−1 + 2(
n+1

2 )−1.

Proof of Claim. Since n ≥ 3, (n+1)(n−1) > 1
2
n(n+1). Thus, n2−2 >

(

n+1
2

)

− 1. So

2n
2−2 > 2(

n+1

2 )−1.

Similarly, (n+ 1)(n− 1) > n(n− 1). Thus, n2 − 2 > n2 − n− 1, so

2n
2−2 > 2n−12n

2−2n.

Since n ≥ 3, n < 2n−1. Therefore,

2n
2−2 > n2n

2−2n.

Putting these together, we get

2n
2−1 > 2(

n+1

2 )−1 + n2n
2−2n.

This gives us the desired conclusion. �

Therefore, by (2),
∣

∣

{

tpL(f(0), f(a)) : a ∈ 2m \ V
}∣

∣ = |2m \ V | > |Gn
s |+

1

2
|Gn

ns|.

However, by Lemma 6.27, for each a ∈ 2m \ V and all ℓ, ℓ′ < n,
f(0)ℓ 6= f(a)ℓ′ . Hence, each type tpL(f(0), f(a)) corresponds to a
unique element of Gn as in the proof of Proposition 6.20. Since E∗m is
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symmetric, as in the proof of Proposition 6.21, we conclude that there
are at most |Gn

s |+
1
2
|Gn

ns| such types. This is a contradiction.
For the base case, towards a contradiction, suppose that (†)4,2 holds.

This argument proceeds similarly to the general inductive argument.
Notice that, for all ℓ < 2, |Iℓ| ≤ 1 (this follows from a similar argument
to the first claim). Thus, |24 \ V | ≥ 24 − 3 = 13. On the other hand,

|G2|+
1

2
|G2

ns| = 12.

�

6.5. Ranks and the Independence Property. How do the ranks
studied above interact with model-theoretic dividing lines (in particu-
lar, the independence property)?
As long as LO-rank is finite, LO-rank grows linearly if T has NIP

and grows quadratically if T has the independence property.

Theorem 6.29. Let T be any complete first-order theory such that
RkLO(1) <∞.

(1) If T has NIP, then there exists C ∈ R such that, for all n ≥ 1,

RkLO(n) ≤ Cn.

(2) If T has the independence property, then there exists C ∈ R
such that, for sufficiently large n,

RkLO(n) ≥ Cn2.

Proof. (1): As noted in Example 6.10, if T has NIP, then RkLO is
additive. Thus, if we let C = RkLO(1), RkLO(n) = Cn for all n ≥ 1.
(2): Assume that T has the independence property and C is a mon-

ster model for T . By Theorem 5.2 (2) and Lemma 4.7, there exists an
injective G-configuration into C

k for some k < ω. Moreover, by Propo-

sition 6.19, for all m < ω, there exists a parameter-free LO∗(m2−1)-
configuration into C

m
1 , where C1 is a monster model for the theory of

the Fräıssé limit of G. By Proposition 4.13, there exists an LO∗(m2−1)-
configuration into C

km. Therefore,

RkLO(km) ≥ m2 − 1.

For n ≥ k, let m = ⌊n/k⌋. Then, by Lemma 6.6,

RkLO(n) ≥ RkLO(km) ≥ m2 − 1 ≥
1

k2
n2 −

2

k
n.

�

In the next few examples, we examine the applicability of the pre-
ceding theorem.
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Example 6.30. Let T be a complete theory in some language L. Sup-
pose that all indiscernible sequences of singletons are set indiscernible.
By Remark 6.8, we can make any LO-configuration into an indis-
cernible one, so there exists no LO-configuration into singletons of
T . Thus, RkLO(1) = 0. Therefore, for any such theory T , T has NIP if
and only if there exists C ∈ R such that, for all n ≥ 1, RkLO(n) ≤ Cn.
This applies, for example, to the theory of the Fräıssé limit of any
irreflexive, symmetric Fräıssé class in a finite relational language.

Example 6.31. Let L consist of infinitely many binary relation symbols
<i for i < ω and let T be the model companion of the theory which
says each <i is a linear order. Clearly T has quantifier elimination,
so T has NIP. Thus, LO-rank and op-dimension coincide. Therefore,
RkLO(1) = ∞. So, there are examples of NIP theories for which the
theorem does not apply. If we replace “linear order” with “partial
order” in the definition of T , we obtain an example of a theory with
the independence property such that RkLO(1) = ∞.

Similar to LO-rank, if the target theory has the independence prop-
erty and E-rank is finite, then E-rank necessarily grows quadratically.

Proposition 6.32. Let T be any complete first-order theory with the
independence property such that RkE(1) < ∞. Then, there exists C ∈
R such that, for sufficiently large n,

RkE(n) ≥ Cn2.

Proof. This is similar to the proof of Theorem 6.29 (2). �

Similarly, in any theory with the independence property, so long as
G-rank is finite, G-rank grows quadratically.

Proposition 6.33. If T is any theory and π any partial type with
RkG(π) ≥ 1, then

RkG(π
×n) ≥ n2 − 1.

Proof. This is similar to the proof of Theorem 6.29 (2). �

From Theorem 6.29, Proposition 6.32, and Proposition 6.33, we ob-
tain the following result about additivity of ranks: If T has the in-
dependence property, K = E, LO, or G, and K-rank is finite, then
K-rank is not additive.

7. Future Work

From the study of K-configurations and K-rank in the previous sec-
tions, we are left with a few open questions.
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Question 7.1. Under what conditions is K-rank a generalization of a
known rank in model theory?

In Example 6.10, we establish that LO-rank coincides with op-dimension
when T has NIP, which implies that LO-rank coincides with dp-rank
when T is distal. On the other hand, LO-rank diverges from op-
dimension when T has the independence property. Similarly, E-rank
appears to be related to dp-rank, but the exact relationship remains
unclear. Proposition 6.12 establishes that dp-rank is an upper bound
for E-rank while Corollary 6.14 shows that these ranks coincide on C

n

when T is dp-minimal. On the other hand, even in NIP theories, dp-
rank and E-rank diverge, as shown in Example 6.16. This example is
distal, however, which leads to an interesting question

Question 7.2. Do dp-rank and E-rank coincide for stable theories?

Along a similar line, when is K-rank additive (Question 6.4)? We
see that LO-rank, and even G-rank (trivially), are additive when T
has NIP. On the other hand, these ranks fail additivity when moving
to theories with the independence property. Is it possible that, more
generally, K-ranks are additive on NIP theories? In particular, is E-
rank additive on NIP theories?
Although we examined a few examples of strong amalgamation Fräıssé

classes in this paper, there are other classes that are currently unex-
plored. We have one result on T-rank, Example 6.23, and no results
on Hk-rank for k > 2. It is possible, for example, that T-rank coin-
cides with LO-rank for some types. Most of the technology developed
in this paper relies on the index language being binary, which makes
analyzing Hk-rank more challenging when k > 2. In future work, we
would like to examine K-rank for these and other classes, K.
Finally, Section 5 and the relationships to [7] reveal other interesting

open questions. For example, we have the strict .-chain

E < LO < G < H3 < H4 < . . . .

This leads to the following question

Question 7.3. Is . a linear quasi-order on strong amalgamation Fräıssé
classes? In particular, are there any classes strictly between E and LO?

In other words, is there a non-trivial dividing line, in the sense of
CK, below stability?

Appendix A. Combinatorial Lemmas

Fix k < ω and let

Dk = {t ∈ k{−1, 0, 1} : t(i) = 1 for i minimal such that t(i) 6= 0}.
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For a, b ∈ ωk and t ∈ Dk, define

a ≤t b if, for all i < k,











ai < bi if t(i) = 1,

ai = bi if t(i) = 0,

ai > bi if t(i) = −1.

Finally, for all a, b ∈ ωk, define

a ≤lex b if ai < bi for i minimal such that ai 6= bi.

Note that a ≤lex b if and only if there exists t ∈ Dk such that a ≤t b.

Lemma A.1. For all k, ℓ,m < ω, there exists n < ω such that, for all

colorings c :
(

nk

≤2

)

→ ℓ, there exist Y0, . . . , Yk−1 ∈
(

n

m

)

such that, for all
t ∈ Dk, c is constant on the set

Xt =

{

{a, b} : a, b ∈
∏

i<k

Yi, a ≤t b

}

.

Proof. By induction on k. Let k = 1 and fix ℓ,m < ω. By Ramsey’s
Theorem, there exists n such that, for all colorings c :

(

n

≤2

)

→ ℓ, there

exists Y ∈
(

n

m

)

such that c is constant on
(

Y

1

)

and c is constant on
(

Y

2

)

.

Since X0 =
(

Y

1

)

and X1 =
(

Y

2

)

, this is the desired conclusion.
Fix k,m, ℓ < ω. Let

ℓ′ = Dk×{−1,1}ℓ.

By Ramsey’s Theorem, there exists n′ < ω such that, for all colorings
c′ :

(

n′

≤2

)

→ ℓ′, there exists Yk ∈
(

n′

m

)

such that c′ is constant on
(

Yk

1

)

and c′ is constant on
(

Yk

2

)

. Let

ℓ′′ = (n′)2ℓ.

By the inductive hypothesis, there exists n′′ < ω such that, for all

colorings c′′ :
(

(n′′)k

≤2

)

→ ℓ′′, there exist Y0, . . . , Yk−1 ∈
(

n′′

m

)

such that,

for all t ∈ Dk, c
′′ is constant on Xt. Let n = max{n′, n′′}.

Fix a coloring c :
(

nk+1

≤2

)

→ ℓ. This induces a coloring c′′ :
(

(n′′)k

≤2

)

→ ℓ′′

given by: for each a, b ∈ (n′′)k with a ≤lex b, for each i, j ∈ n′, let

c′′({a, b})(i, j) = c({a⌢i, b⌢j}).

Thus, there exist Y0, . . . , Yk−1 ∈
(

n′′

m

)

such that, for all t ∈ Dk, c
′′

is constant on Xt. Now define c′ :
(

n′

≤2

)

→ ℓ′ as follows: for each

i ≤ j < n′, t ∈ Dk, and s ∈ {−1, 1}, choose a, b ∈
∏

i<k Yi with a ≤t b
and set

c′({i, j})(t, s) =

{

c({a⌢i, b⌢j}) if s = 1,

c({a⌢j, b⌢i}) if s = −1.
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Since c′′ is constant on Xt for each t, this function is independent of the
choice of a and b. Thus, there exists Yk ∈

(

n′

m

)

such that c′ is constant

on
(

Yk

1

)

and c′ is constant on
(

Yk

2

)

. We claim that Y0, . . . , Yk work for c.
Fix t ∈ Dk+1. If t(k) = 0, let

r = c′({i})(t|k, 1)

for any choice of i ∈ Yk. Since c
′ is constant on

(

Yk

1

)

, this is independent
of the choice of i. If t(k) 6= 0, let

r = c′({i, j})(t|k, t(k))

for any choice of i, j ∈ Yk with i < j. Since c′ is constant on
(

Yk

2

)

, this

is independent of the choice of i and j. Then, for any a, b ∈
∏

i≤k Yi
such that a ≤t b, we have that

c({a, b}) = r.

This is what we wanted to prove. �

Corollary A.2. For all k, ℓ,m < ω, there exists n < ω such that, for
all colorings c : nk → ℓ, there exist Y0, . . . , Yk−1 ∈

(

n

m

)

such that c is
constant on

∏

i<k Yi.

Proof. Since any coloring c : nk → ℓ can be extended arbitrarily to a

coloring c :
(

nk

≤2

)

→ ℓ, this follows immediately from Lemma A.1. �
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