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Abstract
We present a cut-free sequent calculus for a class of first-order theories in negation
normal form which include coherent and co-coherent theories alike. All structural
rules, including cut, are admissible.
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1 Introduction

At least since [7] one of the main problem in proof theory has been to find for a given
first-order theory T an equivalent sequent calculus G satisfying Gentzen’s celebrated
cut-elimination theorem.1 When T is just classical or intuitionistic first-order logic,
then we can see that the issue has already been settled in the early days of proof theory
by Gentzen himself with the sequent calculi LK and LJ, respectively. However, if T
consists of non-logical axioms it is not entirely clear whether such a G can be found
at all. For G cannot simply be LK or LJ extended with one new ‘axiomatic sequent’
⇒ A for each non-logical axiom A of T, since in this case there is no guarantee that
G would still satisfy cut elimination.

In [6] Negri introduced cut-free sequent calculi for coherent theories, i.e., first-
order theories in which the non-logical axioms are (closed) formulas of the form
∀x̄(P1 ∧ · · · ∧ Pn ⊃ ∃ȳ(C1 ∨ · · · ∨ Cm)), where each Pi is an atom and each C j is a
conjunction of atoms.2 The methodology of [6] were later generalized in [3] by Negri
andDyckhoff,who showed that anyfirst-order theory admits a cut-free systematization

1 Here a theory is just as set of axioms in the language of first-order logic.
2 In [6] coherent theories were called ‘geometric’.
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in sequent calculus. To attain such a greater level of generality, the methodology of [3]
dictates that for theories not falling under the coherent fragment, the language is to be
extended with new symbols and consequently more axioms need to be considered. For
example, the axiom of strict seriality, namely ∀x∃y(x ≤ y∧¬y ≤ x), is not coherent,
nor there exists a coherent formula in the same languagewhich is equivalent to it. The
basic idea of [3] is that such an axiom is nevertheless equivalent to coherent one of
another, richer, language. Specifically, if the original language is extended with a new
binary predicate constant � and a new atom x � y is defined as ¬x ≤ y, then strict
seriality can be written in such extended language as ∀x∃y(x ≤ y ∧ y � x), which
is entirely coherent. However, we need consider also an extra axiom corresponding
(at least partly) to the definition of x � y. In general, when the axioms of a theory
are of certain syntactic complexity, extending the language may become exceedingly
involved and inmanyways undesirable. For example, it almost entirely prevents one to
prove interesting results such as interpolation theorem which are notoriously sensitive
to the choice of the non-logical constants in the language.3

In this paper we suggest a much simpler way to extend the methodology of [6]
beyond the coherent fragment without resorting to the linguistic extensions of [3]. In
particular, we show that if the language is in negation normal form, then the class of
theories admitting a cut-free systematization in sequent calculus is significantly larger
than the class of coherent ones, although it is still smaller than the class of all first-order
theories. Interestingly such a class includes all co-coherent theories investigated in [9],
for which so far the methodology of [6] was not applicable, as well as well-known
theories such as classical mereology [2] and Tarski’s formalization of geometry [12].

2 The calculus Gn

The language Ln is a first-order language (without identity) in negation normal form,
i.e., Ln contains two sorts of atoms, the positive atoms and the negative ones. A
positive (negative) atom is indicated as P (P̄ , respectively). Compound formulas are
built up from atoms, ⊥ and 
 in the usual way using conjunction, disjunction and the
quantifiers. The negation ¬A of a formula A is defined inductively as follows: ¬P :=
P̄ , ¬P̄ := P , ¬(B∧C) := ¬B∨¬C ,¬(B∨C) := ¬B∧¬C , ¬∀x B := ∃x¬B and
¬∃x B := ∀x¬B. The depth d(A) of a formula A is defined inductively as follows:
d(⊥) = d(
) = d(P) = d(P̄) = 0, d(B ∧C) = d(B ∨C) = d(B)+ d(C)+ 1, and
d(∀x B) = d(∃x B) = d(B)+1. It follows that d(¬A) = d(A). We agree that A ⊃ B
and A ≡ B are abbreviations for ¬A ∨ B and (A ⊃ B) ∧ (B ⊃ A), respectively.
A sequent is a pair 〈�,�〉 of (finite, possibly empty) multisets �, � of formulas and
will be indicated as � ⇒ �. The sequent calculus Gn consists of the following initial
sequents and inference rules, where z is the proper variable of R∀ and L∃, namely it
does not occur free in their conclusion.

3 For interpolation in extensions of first-order logic the reader is referred to [4].
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P, � ⇒ �, P P̄, � ⇒ �, P̄

P, P̄, � ⇒ �
LNC

� ⇒ �, P, P̄
LEM

⊥, � ⇒ �
L⊥

� ⇒ �,
 R


A, B, � ⇒ �

A ∧ B, � ⇒ �
L∧ � ⇒ �, A � ⇒ �, B

� ⇒ �, A ∧ B
R∧

A, � ⇒ � B, � ⇒ �

A ∨ B, � ⇒ �
L∨ � ⇒ �, A, B

� ⇒ �, A ∨ B
R∨

A(y/x),∀x A, � ⇒ �

∀x A, � ⇒ �
L∀ � ⇒ �, A(z/x)

� ⇒ �,∀x A R∀

A(z/x), � ⇒ �

∃x A, � ⇒ �
L∃ � ⇒ �, ∃x A, A(y/x)

� ⇒ �, ∃x A R∃

A logical axiom is an initial sequent or the conclusion of a rule with no premise.4 The
notions of derivationof a sequent andderivable sequent are defined as usual.Weassume
that if � ⇒ � is derivable and �′ ⇒ �′ differs from � ⇒ � only in the names of
bound variables, then �′ ⇒ �′ is also derivable. The height h(D) of a derivationD of
� ⇒ � is defined inductively as follows: if� ⇒ � is a logical axiom, then h(D) = 0;
if � ⇒ � is the conclusion of a rule with two premises �′ ⇒ �′ and �′′ ⇒ �′′
whose derivations areD′ andD′′, respectively, then h(D) = max(h(D′), h(D′′))+ 1;
if � ⇒ � is the conclusion of a rule with one premise �′ ⇒ �′ whose derivation
is D′, then h(D) = h(D′) + 1. If D is a derivation of � ⇒ � and n ∈ N, then we
say that � ⇒ � is n-derivable, if h(D) ≤ n. A rule is admissible if its conclusion is
derivable, whenever its premises are derivable and it is height-preserving admissible
if its conclusion is n-derivable, whenever its premises are n-derivable.

We shall also consider the standard structural rules of weakening, contraction and
cut.

� ⇒ �
A, � ⇒ �

LW
� ⇒ �

� ⇒ �, A
RW

A, A, � ⇒ �

A, � ⇒ �
LC

� ⇒ �, A, A
� ⇒ �, A

RC

� ⇒ �, A A,� ⇒ �

�,� ⇒ �,�
cut

We do not assume any of these rules as primitive since they are all admissible. In fact,
we shall see that weakening and contraction are also height-preserving admissible.

4 The labels LNC and LEM are abbreviations for ‘law of non-contradiction’ and ‘law of excludedmiddle’,
respectively.
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Finally, the rules for negations, i.e.,

� ⇒ �, A
¬A, � ⇒ �

L¬
A, � ⇒ �

� ⇒ �,¬A
R¬

will also be proved admissible. However, since we are primarily interested in the
extensions of Gn we shall postpone the proof of the admissibility of the structural
rules and of the negation rules once such extensions have been introduced.

3 The extensions of Gn

Wenow consider how to extend the calculusGn with inference rules.We first introduce
the notion of coherent formula and coherent theory in Ln . To ease the notation let a
literal � be either a positive atom P or a negative one P̄ . We shall use �, j, ı, . . . to
indicate literals. A (closed) formula of Ln is coherent when it is equivalent to:

∀x̄
(
�1 ∧ · · · ∧ �n ⊃ ∃ȳ((j11 ∧ · · · ∧ j1p ) ∨ · · · ∨ (jm1 ∧ · · · ∧ jmq )

))

Without loss of generality we assume that none of the variables in ȳ occurs free
in �1 ∧ · · · ∧ �n . We shall also agree that if n = 0 (m = 0), then the consequent
(antecedent) of ⊃ is 
 (⊥, respectively). A theory is coherent when all its non-logical
axioms are coherent formulas. Given a coherent formula, the corresponding coherent
rule Cn is:

j11, . . . , j1p , �1, . . . , �n, � ⇒ � · · · jm1 , . . . , jmq , �1, . . . , �n, � ⇒ �

�1, . . . , �n, � ⇒ �
Cn

where in each premise of Cn each variable in ȳ of the coherent formula has been
replaced by a variable in z̄ not occurring free in the conclusion of Cn . Let G∗

n be any
extension of Gn with finitely many coherent rules. It is easy to see that a coherent
formula A and the corresponding coherent rule Cn are equivalent in the that sense that
the sequent ⇒ A is derivable in G∗

n and Cn is admissible in the calculus Gn plus the
cut rule and the initial sequent ⇒ A.

To prove the admissibility of the contraction rules, we shall assume that coherent
rules satisfy the following closure condition for contraction. Let Cn be a coherent rule
of G∗

n such that:

j11 , . . . , j1p , �, �, �1, . . . , �n−2, � ⇒ � · · · jm1 , . . . , jmq , �, �, �1, . . . , �n−2, � ⇒ �

�, �, �1, . . . , �n−2, � ⇒ �
Cn

Then, the following rule cCn is also a rule of G∗
n :
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Cut elimination for coherent... 431

j11 , . . . , j1p , �, �1, . . . , �n−2, � ⇒ � · · · jm1 , . . . , jmq , �, �1, . . . , �n−2, � ⇒ �

�, �1, . . . , �n−2, � ⇒ �
cCn

We say that the rule cCn is the contracted version of Cn .
Perhaps the most well-known example of a coherent theory is first-order logic with

identity. If the predicates = and �= are added to Ln , then a sequent calculus for first-
order logic with identity can be obtained by extending Gn with the following two
coherent rules Ref= and Repl=, corresponding each to the two coherent axioms of
reflexivity and replacement of identicals, ∀x(
 ⊃ x = x) and ∀x∀y(�(x) ∧ x = y ⊃
�(y)).

x = x, � ⇒ �

� ⇒ �
Ref=

�(y), �(x), x = y, � ⇒ �

�(x), x = y, � ⇒ �
Repl=

In general, adding a coherent rule toGn doesnot suffices to obtain a cut-free calculus for
a givenfirst-order theory. For example, consider a simplefirst-order theory axiomatized
by the coherent formula ∀x(x < x ⊃ ⊥) and let G<

n be the extension of Gn by the
following coherent rule with no premise:

x < x, � ⇒ �
Irref<

As a counter-example to cut elimination in G<
n consider the sequent ⇒ x ≮ x .

Although such a sequent is derivable by cut , i.e.,

⇒ x < x, x ≮ x
LEM

x < x ⇒ Irref<

⇒ x ≮ x
cut

it is clear that a cut-free derivation of it can hardly be found, unless we avail ourselves
with the rules of negation. Certainly, using the rules of negation, especially R¬, the
sequent can easily be proved to be cut-free derivable.

x < x ⇒ Irref<

⇒ ¬x < x
R¬

⇒ x ≮ x
df¬

However, since no rule of negation is primitive in Gn , we should show that at least R¬
is admissible. Alas, it appears that in the presence of Irref< the admissibility of R¬
essentially requires the admissibility of cut . To see this, let the premise of R¬ be an
instance of Irref< with A principal formula. Thus, A is x < x and the derivation of
the conclusion of R¬ is:

x < x, � ⇒ �
Irref<

� ⇒ �,¬x < x
R¬
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432 P. Maffezioli

However, it should be clear that the only way to derive the conclusion of R¬ is to use
cut .

⇒ x < x, x ≮ x
LEM

x < x, � ⇒ �
Irref<

� ⇒ �, x ≮ x
cut

� ⇒ �,¬x < x
df¬

Thus, it seems that there is a circularity in the admissibility of cut and the rules of
negation: the former presupposes the latter and vice versa.

To overcome this obstacle we shall impose on G∗
n an additional closure condition.

Let Cn be a coherent rule of G∗
n except Repl= and � the multi-set of its principal

atoms. Moreover, let Rel(�) = ⋃
�∈� Rel(�), where Rel(�) is the set of predicates of

�. In G<
n , for example, we have Rel(�) = {<}, since Irref< is the only coherent rule.

Now, we shall assume that G∗
n contains all instances of the following rule:

P, � ⇒ � P̄, � ⇒ �

� ⇒ �
LEM∗

where Rel(P) ⊆ Rel(�) or Rel(P̄) ⊆ Rel(�). Moreover, if Cn is Repl= and � ⇒ �

a sequent to be derived in G∗
n such that � contains either P or P̄ and as well as an

identity atom Q or Q̄ in �, then we shall also add all instances of LEM∗ such that
FV(P, P̄) ∩ FV(Q, Q̄) �= ∅, where FV(A) is the set of the free variables of a formula
A.

Some remarks on LEM∗ are in order. Firstly, LEM∗ is amulti-succedent version of
the rule Gem-at of [8], introduced to provide a single-succedent calculus for classical
propositional logic; the main difference is that in Gem-at the principal formulas are
an atom and its negation, whereas here we have two atoms.

Secondly, from a semantic point of view, LEM∗ is just another way to express in
sequent calculus the law of excluded middle; in this respect, it does not differ sub-
stantially from LEM . The motivation for having another rule for the law of excluded
middle is that with LEM∗ we can address satisfactorily the issue of circularity in
the admissibility of negation rule and cut . In the case of G<

n the sequent ⇒ x ≮ x
becomes cut-free derivable:

x < x ⇒ x ≮ x
Irref<

x ≮ x ⇒ x ≮ x
⇒ x ≮ x

LEM∗

(The case of the admissibility of R¬ in G<
n can be dealt with similarly). Much more

generally, we shall see that in any extension G∗
n of Gn , although R¬ is still needed in

the proof of admissibility of cut (Theorem 2), cut is not needed at all in the proof of
the admissibility of R¬ (Lemma 2).

Thirdly, LEM∗ is manifestly a non-analytic rule; inasmuch as it makes P and P̄
disappear, LEM∗ is similar to a cut rule. While the presence of a rule similar to cut
in the extensions of first-order logic is arguably acceptable from a conceptual point
of view, such a rule in a sequent calculus for first-order logic would certainly be a
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Cut elimination for coherent... 433

disturbing upshot for anyone subscribing to the idea that logic is analytic. Here we can
retain the idea that at leastGn is analytic by imposing that LEM∗ is only present inG∗

n .
Moreover, the side conditions circumscribe significantly the non-analytic character of
G∗
n brought about by LEM∗. Indeed,weneed to consider the instances of LEM∗ where

all predicates occurring in the disappearing formulas occur also in the coherent rules,
provided that these rule are not the identity rules. And since we only consider finitely
many rules at a time, it is clear that the number of instances to be added is finite.
Moreover, if we also consider the identity rules, especially Repl= the disappearing
formulas of LEM∗ canbe taken to be atomswhosevariables are the variables occurring
in the identity atoms principal in Repl=. Also in this case we shall add only finitely
many instances of LEM∗.

4 Admissibility results

In this section we shall prove the main admissibility results concerning the structural
rules ofG∗

n as well as the admissibility of the rules of negation.We proceed by showing
first the height-preserving admissibility of weakening and contraction rules. These
results will be then used in the proof of the admissibility of the negation rules which,
in turn, will be applied in the proof of the admissibility of cut rule.

We need some preliminary results regarding the substitution of variables. Let the
variable y be free for x in �,�. The substitution rule Sb is:

� ⇒ �

�(y/x) ⇒ �(y/x)
Sb

Lemma 1 The substitution rule is height-preserving admissible in G∗
n.

Proof Let D be the derivation of the premise � ⇒ �. We proceed by induction on
h(D). If h(D) = 0, then� ⇒ � is a logical axiom or the conclusion of a coherent rule
with no premise. Then, also the conclusion of Sb is a logical axiom or the conclusion
of a coherent rule with no premise. If h(D) > 0, then we reason by cases on the last
rule R applied in the derivation of � ⇒ �. If R is a propositional rule or a quantifier
rule, then the proof is as in Lemma 4.1.2 of [8]. If R is LEM∗, then the premises of
LEM∗ are P, � ⇒ � and P̄, � ⇒ � and the conclusion of Sb can be derived as
follows:

P, � ⇒ �

P(y/x), �(y/x) ⇒ �(y/x)
Sb

P̄, � ⇒ �

P̄(y/x), �(y/x) ⇒ �(y/x)
Sb

�(y/x) ⇒ �(y/x)
LEM∗

Notice that the two applications of Sb are height-preserving admissible by the inductive
hypothesis and that the application of Sb is legitimate since if y is free for x in �,�,
then so is in P, �,� and P̄, � ⇒ � (because P and P̄ are atoms). Finally, if R is a
coherent rule Cn with at least one premise, then the proof does not differ substantially
from that given in Lemma 1 of [6]. In this case� contains the literals �1, . . . , �n . Since
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y may be one the proper variables of Cn , we first need replace each premise of Cn all
such variables with new ones; this can be done via several applications of Sb, all of
which are height-preserving admissible by the inductive hypothesis. Next we apply
again Sb to replace x with y and then Cn again. ��

Now we can prove that the structural rules, including cut, are admissible in G∗
n . In

fact, we shall prove something stronger, namely the height-preserving admissibility
of weakening and contraction as well as the height-preserving invertibility of all rules.

Theorem 1 The rules of weakening and contraction are height-preserving admissible
in G∗

n. Moreover, all rules are height-preserving invertibile.

Proof We start with the height-preserving admissibility of weakening. We only con-
sider LW and leave RW to the reader. We proceed by induction on h(D), where D is
the derivation of the premise � ⇒ � of LW . If h(D) = 0, then � ⇒ � is a logical
axiom or the conclusion of a coherent rule with no premise. Then, also the conclusion
of LW is a logical axiom or the conclusion of a coherent rule with no premise. If
h(D) > 0, then � ⇒ � is the conclusion of some rule R and we proceed by cases
on R. If R is a propositional or quantifier rule, then the proof is as in Theorem 2 of
[6]. If R is LEM∗, then from the premises P, � ⇒ � and P̄, � ⇒ � of LEM∗ the
conclusion of LW is obtained as follows:

P, � ⇒ �

A, P, � ⇒ �
LW

P̄, � ⇒ �

A, P̄, � ⇒ �
LW

A, � ⇒ �
LEM∗

Notice that the two applications of LW in the derivation above are height-preserving
admissible by the inductive hypothesis. If R is a coherent rule Cn with at least one
premise, then� contains �1, . . . , �n . Since Amay contain some of the proper variables
of Cn , we first apply Sb on the premises of Cn to replace all such variables with new
ones. Notice that Sb is height-preserving admissible by Lemma 1 and the substitution
does not affect �1, . . . , �n, �

′,� in virtue of the variable condition. Then, the con-
clusion of LW is obtained from here by applying LW (which is height-preserving
admissible by the inductive hypothesis) and Cn again.

The proof of height-preserving invertibility of logical rules is similar to the proof
of Theorem 3.1.1 and Lemma 4.2.8 in [8]. Moreover, coherent rules as well as LEM∗
are height-preserving invertible via the height-preserving admissibility of LW .

To prove height-preserving admissibility of contraction, we proceed by induction
on the premise A, A, � ⇒ � of LC (the case of RC is left to the reader). Let D be
the derivation of A, A, � ⇒ �. If h(D) = 0, then A, A, � ⇒ � is a logical axiom
or the conclusion of a coherent rule with no premise. If it is a logical axiom, then we
have the following cases.

(i) P ∈ � ∩ �. The conclusion of LC is also a logical axiom.
(ii) P̄ ∈ � ∩ �. The conclusion of LC is also a logical axiom.
(iii) P, P̄ ∈ �. The conclusion of LC is also a logical axiom.
(iv) P, P̄ ∈ �. The conclusion of LC is also a logical axiom.
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(v) A is P and P̄ ∈ �. The conclusion of LC is also a logical axiom.
(vi) A is P̄ and P ∈ �. The conclusion of LC is also a logical axiom.
(vii) ⊥ ∈ �. The conclusion of LC is also a logical axiom.
(viii) 
 ∈ �. The conclusion of LC is also a logical axiom.

If the premise of LC is the conclusion of a coherent rule Cn with no premise, then we
distinguish the following three cases:

(ix) none of the occurrences of A is principal in Cn . In this case, �1, . . . , �n ∈ �.
Then, the conclusion of LC is a conclusion of Cn .

(x) exactly one occurrence of A is principal in Cn . In this case, A is � and
�1, . . . , �n−1 ∈ �, namely the premise of LC is �, �, �1, . . . , �n−1, �

′ ⇒ �.
Then, the conclusion �, , �1, . . . , �n−1, �

′ ⇒ � of LC is a conclusion of Cn .
(xi) both occurrences of A are principal of Cn . Thus, A is � and �1, . . . , �n−2 ∈ �,

i.e., the premise of LC is �, �, �1, . . . , �n−2, �
′ ⇒ �. Notice that the conclusion

�, �1, . . . , �n−2, �
′ ⇒ � of LC is not a conclusion of Cn (since Cn needs

n literals to be applied). However the sequent �, �1, . . . , �n−2, �
′ ⇒ � is a

conclusion of the contracted version cCn , which is a rule of G∗
n in virtue of the

closure condition.

If h(D) > 0, thenwe need to reason by cases on the last rule R applied in the derivation
of the premise of LC . If R is a propositional or quantifier rule, then see Theorem 4 of
[6]. If R is LEM∗, then none of the occurrences of the contracted formula A can be
principal. Then, from the premises P, A, A, � ⇒ � and P̄, A, A, � ⇒ � we derive
the conclusion of LC as follows:

A, A, P, � ⇒ �

A, P, � ⇒ �
LC

A, A, P̄, � ⇒ �

A, P̄, � ⇒ �
LC

A, � ⇒ �
LEM∗

Clearly, the two applications of LC are height-preserving admissible by the inductive
hypothesis. If R is coherent rule Cn with at least one premise, then have three cases,
all similar to (ix)-(xi). Firstly, none of the occurrences of A is principal in Cn . Then,
we take the premises of Cn and via several applications of LC (all height-preserving
admissible by the inductive hypothesis) and Cn we obtain the conclusion of LC as
in (ix). Secondly, exactly one occurrence of A is principal of Cn . The reasoning is as
in (x). Thirdly, both occurrences of A are principal. In this case we the conclusion of
LC is obtained via several height-preserving admissible applications of LC and the
contracted version of cCn , like in (xi). ��

These preliminary results will be nowused to prove the admissibility of the negation
rules as well as the admissibility of the cut rule. We start with the admissibility of the
rules of negation.

Lemma 2 The rules L¬ and R¬ are admissible in G∗
n. Moreover, in each rule if the

premise is n-derivable, then the conclusion is n + 1-derivable.

Proof We consider L¬ first. Let D be the derivation of the premise � ⇒ �, A. We
proceed by induction on h(D). If h(D) = 0, then � ⇒ �, A is either a logical axiom

123



436 P. Maffezioli

or the conclusion of a coherent rule with no premise. If it is a logical axiom, then we
consider the following cases.

(i) P ∈ � ∩ �. The conclusion of L¬ is a logical axiom.
(ii) P̄ ∈ � ∩ �. The conclusion of L¬ is a logical axiom.
(iii) P, P̄ ∈ �. The conclusion of L¬ is a logical axiom.
(iv) P, P̄ ∈ �. The conclusion of L¬ is a logical axiom.
(v) A is P and P ∈ �. The conclusion of L¬ is¬P, P, �′ ⇒ � and this is a logical

axiom since ¬P := P̄ .
(vi) A is P̄ and P̄ ∈ �. The conclusion of L¬ is¬P̄, P̄, �′ ⇒ � and this is a logical

axiom since ¬P̄ := P .
(vii) A is P and P̄ ∈ �. The conclusion of L¬ is ¬P, � ⇒ �′, P̄ and this is a

logical axiom since ¬P := P̄ .
(viii) A is P̄ and P ∈ �. The conclusion of L¬ is ¬P̄, � ⇒ �′, P and this is a

logical axiom since ¬P̄ := P .
(ix) ⊥ ∈ �. The conclusion of L¬ is a logical axiom.
(x) 
 ∈ �. The conclusion of L¬ is a logical axiom.

If � ⇒ �, A is the conclusion of a coherent rule C with no premise, then �

contains �1, . . . , �n . Also in this case, the conclusion of L¬ is also a conclusion of C .
If h(D) > 0, then we distinguish according to whether A is principal or not principal
of R. In the latter case, then the conclusion of L¬ is obtained from the premise of R
by an application of L¬ and then by one of R. Clearly, such an application of L¬ is
admissible by the inductive hypothesis. (Here we tacitly assumed that R is a rule with
one premise, but if it has has two or more premises the reasoning is the same). If A is
principal of R, then R is either R∧ or R∨ or R∀ or else R∃. We consider only the first
case. If R is R∧, then A is B ∧ C and D is:

� ⇒ �, B � ⇒ �,C
� ⇒ �, B ∧ C

R∧

Considering that ¬(B ∧ C) := ¬B ∨ ¬C , the conclusion of L¬ is thus obtained as
follows:

� ⇒ �, B
¬B, � ⇒ �

L¬
� ⇒ �,C

¬C, � ⇒ �
L¬

¬B ∨ ¬C, � ⇒ �
R∧

Once again the two applications of L¬ are admissible by the inductive hypothesis.
We now prove the admissibility of R¬ which is slightly more challenging. We

proceed by induction on h(D), whereD is the derivation of the premise A, � ⇒ �. If
h(D) = 0, then A, � ⇒ � is a logical axiom or the conclusion of coherent rule with
no premise. In the first case, we reason by cases.

(i) P ∈ � ∩ �. The conclusion of L¬ is a logical axiom.
(ii) P̄ ∈ � ∩ �. The conclusion of L¬ is a logical axiom.
(iii) P, P̄ ∈ �. The conclusion of L¬ is a logical axiom.
(iv) P, P̄ ∈ �. The conclusion of L¬ is a logical axiom.
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(v) A is P and P ∈ �. The conclusion of L¬ is � ⇒ �′, P,¬P and this is a
logical axiom since ¬P := P̄ .

(vi) A is P̄ and P̄ ∈ �. The conclusion of L¬ is � ⇒ �′, P̄,¬P̄ and this is a
logical axiom since ¬P̄ := P .

(vii) A is P and P̄ ∈ �. The conclusion of L¬ is P̄, �′ ⇒ �¬P and this is a logical
axiom since ¬P := P̄ .

(viii) A is P̄ and P ∈ �. The conclusion of L¬ is P, �′ ⇒ �¬P̄ and this is a logical
axiom since ¬P̄ := P .

(ix) ⊥ ∈ �. The conclusion of L¬ is a logical axiom.
(x) 
 ∈ �. The conclusion of L¬ is a logical axiom.

If A, � ⇒ � is the conclusion of a coherent rule Cn with no premise, then we need
to distinguish two cases. Either A is principal of Cn or it is not. If it is not, then
the conclusion of R¬ is a conclusion of Cn . Else, A is �n and �1, . . . , �n−1 ∈ �.
In this case we use LEM∗. In particular, we need to find a derivation D′ of the
the sequent �1, . . . , �n−1, �

′ ⇒ �,¬�n starting from the conclusion of Cn , namely
�1, . . . , �n−1, �n, �

′ ⇒ �. Let D′ be the following derivation.

�1, . . . , �n−1, �n, �
′ ⇒ �

Cn

�1, . . . , �n−1, �n, �
′ ⇒ �, �̄n

RW
�1, . . . , �n−1, �̄n, �

′ ⇒ �, �̄n

�1, . . . , �n−1, �
′ ⇒ �, �̄n

LEM∗

Since ¬�n := �̄n we have derived �1, . . . , �n−1, �
′ ⇒ �,¬�n . If h(D) > 0, then

we distinguish according to whether A is principal or not principal of the last rule
R applied in the derivation of the premise. In the latter case, we reason as in the
corresponding case in the proof of the admissibility of L¬. If A is principal of R,
then we need to consider, besides the cases already considered in the proof of the
admissibility of L¬, also the possibility that R is a coherent rule Cn . Let D be the
derivation of the premise of R¬ with A principal of Cn . To prevent the derivation trees
to spread we assume without loss of generality that Cn has just one premise. Thus,
premise of R¬ has the following derivation:

j11, . . . , j1p , �1, . . . , �n−1, �n, �
′ ⇒ �

�1, . . . , �n−1, �n, �
′ ⇒ �

Cn

We can find a derivation D′ of the conclusion of R¬, namely the sequent
�1, . . . , �n−1, �

′ ⇒ �,¬�n , by considering the following derivation:

j11, . . . , j1p , �1, . . . , �n−1, �n, �
′ ⇒ �

j11, . . . , j1p , �1, . . . , �n−1, �n, �
′ ⇒ �, �̄n

RW

�1, . . . , �n−1, �n, �
′ ⇒ �, �̄n

Cn
�1, . . . , �n−1, �̄n, �

′ ⇒ �, �̄n

�1, . . . , �n−1, �
′ ⇒ �, �̄n

LEM∗
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Notice that the applicability of Cn is legitimate since no proper variable of Cn may
occur in �̄n introduced in the application of RW . From here we immediately see that
�1, . . . , �n−1, �

′ ⇒ �,¬�n is derivable since ¬�n := �̄n . ��

We can now prove the central admissibility result for G∗
n , namely the admissibility

of the cut rule.

Theorem 2 The rule of cut is admissible in G∗
n.

Proof We proceed by induction on the depth d(A) of the cut formula A with a sub-
induction on the height of a cut , defined as the sum of the heights of the two premises
of cut . The proof follows the patter of the proof of Theorem 4.2.10 of [8]. We have the
following two main cases. (A) One of the two premises of cut is a logical axiom or
the conclusion of a coherent rule with no premise; (B) none of the two premise of cut
is a logical axiom or the conclusion of a coherent rule with no premise. In case (A),
we need to consider the following sub-cases: (i) the left premise is a logical axiom or
the conclusion of a coherent rules with no premise; (ii) the right premise is a logical
axiom or the conclusion of a coherent rules with no premise. In case (B), there are
three sub-cases: (iii) A is not principal in the left premise; (iv) A is principal only in
the left premise; (v) A is principal in both premises. We start from (i) and consider
first the case in which the left premise is a logical axiom.

(i.1) P ∈ � ∩ �. The conclusion of cut is a logical axiom.
(i.2) P̄ ∈ � ∩ �. The conclusion of cut is a logical axiom.
(i.3) A is P ∈ �. The original cut is:

P, �′ ⇒ �, P P,� ⇒ �

P, �′,� ⇒ �,�
cut

The conclusion of cut is obtained by several application of LW and RW , jointly
indicated as W , from the right premise as follows:

P,� ⇒ �

P, �′,� ⇒ �,�
W

(i.4) A is P̄ ∈ �. Similar to case (i.3).
(i.5) P, P̄ ∈ �. The conclusion of cut is a logical axiom.
(i.6) P, P̄ ∈ �. The conclusion of cut is a logical axiom.
(i.7) A is P and P̄ ∈ �. The original cut is:

� ⇒ �′, P̄, P
LEM

P,� ⇒ �

�,� ⇒ �′, P̄, �
cut
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The conclusion of cut is obtained by W and R¬ from the right premise as
follows:

P,� ⇒ �

�, P,� ⇒ �′, �
W

�,� ⇒ �′,¬P, �
R¬

�,� ⇒ �′, P̄, �
df¬

(i.8) A is P̄ and P ∈ �. Similar to (i.7).
(i.9) ⊥ ∈ �. The conclusion of cut is a logical axiom.

(i.10) 
 ∈ �. The conclusion of cut is a logical axiom.

If the left premise of cut is the conclusion of a coherent Cn rule with no premise, then
the cut formula A is not principal in Cn . Thus, we have only one case, namely:

(i.11) �1, . . . , �n ∈ �. The conclusion of cut , i.e., �1, . . . , �n, �
′,� ⇒ �,�, is a

conclusion of Cn .

We now consider the case (ii). If the right premise of cut is a logical axiom, then there
are several cases:

(ii.1) P ∈ � ∩ �. The conclusion of cut is a logical axiom.
(ii.2) P̄ ∈ � ∩ �. The conclusion of cut is a logical axiom.
(ii.3) A is P ∈ �. Similar to (i.3).
(ii.4) A is P̄ ∈ �. Similar to case (i.3).
(ii.5) P, P̄ ∈ �. The conclusion of cut is a logical axiom.
(ii.6) A is P and P̄ ∈ �. Similar to (i.7).
(ii.7) A is P̄ and P ∈ �.. Similar to (i.7).
(ii.8) P, P̄ ∈ �. The conclusion of cut is a logical axiom.
(ii.9) ⊥ ∈ �. The conclusion of cut is a logical axiom.

(ii.10) 
 ∈ �. The conclusion of cut is a logical axiom.

If the right premise is the conclusion of a coherent rule Cn with no premise, then we
need to distinguish according to whether the cut formula is principal or not principal
in Cn :

(ii.11) A is not principal in Cn . Then, �1, . . . , �n ∈ �. The conclusion of cut
�, �1, . . . , �n,�

′ ⇒ �,� is also a conclusion of Cn .
(ii.12) A is principal in Cn . In this case, A is �n and �1, . . . , �n−1 ∈ �. Thus, the

original cut is:

� ⇒ �, �n �1, . . . , �n−1, �n,�
′ ⇒ �

Cn

�, �1, . . . , �n−1,�
′ ⇒ �,�

cut

Here we need to reason on the left premise. Let �n be P (the case of P̄ is
similar). If the left premise is a logical axiom and P is principal, then either
P ∈ � or P̄ ∈ �. In the first case, the conclusion of cut is obtained by W as
in (i.3). In the second case, the conclusion of cut is obtained by W and R¬ as
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in (i.7). If the left premise is a logical axiom and P is not principal, then the
conclusion of cut is a logical axiom, too. If the left premise is the conclusion
of a coherent rule C ′

n with no premise, then � contains �′
1, . . . , �

′
m and also the

conclusion of cut is a conclusion of C ′
n . If the left premise is the conclusion

of a rule R, then the cut formula �n , being atomic, cannot be principal in R.
If R is a propositional rule or LEM∗ or else a quantifier rule without variable
condition, then we take the premise of R, apply an instance of cut on it and the
right premise of cut and then R again. If R is a quantifier rule with variable
condition or a coherent rule, we take again the premise(s) of R, apply the rule
Sb in order to replace all the proper variable with new ones, apply an instance
of cut on the right premise of cut and finally R again. This concludes the proof
of case (ii).

Regarding case (iii) we proceed by cases on the last rule R applied in the derivation
of the left premise. Here we permute cut and R as in case (ii.11). Regarding case (iv)
we proceed by cases on the last rule R applied in the derivation of the right premise.
Here, too, cut is permuted with R as in (ii.11). Finally, the case (v) does not differ
from the same case in the proof of Theorem 4.2.10 of [8] since it involves only logical
rules. ��

5 Beyond coherent theories

In this section we shall compare using some examples the present method with that of
[6].We first recall some definitions from [6]. LetL be the standard first-order language
(possibly with identity). A (closed) formula of L is coherent when it is equivalent to:

∀x̄
(
P1 ∧ · · · ∧ Pn ⊃ ∃ȳ((Q11 ∧ · · · ∧ Q1p ) ∨ · · · ∨ (Qm1 ∧ · · · ∧ Qmq )

))

We assume that no variable in ȳ occurs free in P1∧· · ·∧ Pn . Given a coherent formula
of L, a coherent rule C is:

Q11, . . . , Q1p , P1, . . . , Pn, � ⇒ � · · · Qm1, . . . , Qmq , P1, . . . , Pn, � ⇒ �

P1, . . . , Pn, � ⇒ �
C

where in each premise of C each variable in ȳ has been replaced by a variable in z̄
not occurring in the conclusion of C . Let G∗ be any extension of the calculus G3c for
first-order logic with finitely many coherent rules. As shown in [6], the admissibility
results for structural rules hold for G∗.

It is clear that a coherent formula ofL is a special case of a coherent formula ofLn ,
the one in which all literals are positive atoms. On the other hand, there are coherent
formulas of Ln that are not coherent in L. Consider once again the axiom of strict
seriality ∀x∃y(x ≤ y ∧ ¬y ≤ x). In L strict seriality is not coherent since ¬y ≤ x
is not atomic. However, in Ln we have since the beginning that ¬y ≤ x := y � x
and consequently strict seriality is equivalent to the coherent formula ∀x∃y(
 ⊃ x ≤
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y ∧ y � x). Thus, it corresponds to the following coherent rule StrSer, with z proper
variable:

x ≤ z, z � x, � ⇒ �

� ⇒ �
StrSer

One may object that the example of strict seriality is too artificial. After all, such a
principle can easily be treated by the standard coherent rules once it is formalized
in L as the coherent formula ∀x∃y(x < y). While this certainly the case, for certain
axioms there does not seem to be a similar solution.Consider, for example, the axiomof
extensionality in set theory, namely the formula ∀x∀y(∀z(z ∈ x ≡ z ∈ y) ⊃ x = y).
In Ln such a formula is coherent, since it is equivalent to ∀x∀y(x �= y ⊃ ∃z((z ∈
x∧z /∈ y)∨(z /∈ x∧z ∈ y))). Thus, inG∗

n extensionality corresponds to the following
coherent rule Ext , where u is the proper variable:

u ∈ x, u /∈ y, x �= y, � ⇒ � u /∈ x, u ∈ y, x �= y, � ⇒ �

x �= y, � ⇒ �
Ext

However, extensionality is not coherent in L. In L the closest we can get to a coherent
formulation of extensionality is ∀x∀y(x = y ∨ ∃z((z ∈ x ∧ ¬z ∈ y) ∨ (¬z ∈ x ∧ z ∈
y))), which still fails to be coherent precisely because both ¬z ∈ y and ¬z ∈ x are
compound formulas.

Other examples of axioms that are coherent in Ln but not in L include the supple-
mentation principles in mereology.5 Consider the so-called strong supplementation
principle: ¬xPy → ∃z(zPx ∧ ¬zOy), where P and O are the relations of part and
overlap, respectively.6 Strong supplementation is clearly not coherent in L. However,
in Ln the formulas ¬xPy and ¬zOy are the atoms x P̄y and zŌy and strong supple-
mentation can be converted into the following coherent rule of Gn , where u is the
proper variable:

x P̄y, uPx, uŌy, � ⇒ �

x P̄y, � ⇒ �
StrSupp

A final example is from Tarski’s classical formalization of geometry in [12] based
on a ternary predicate B of betweennes among points. As noted in [1], the theory is
not coherent since the so-called lower 2-dimensional axiom ∃x∃y∃z(¬B(x, y, z) ∧
¬B(y, z, x) ∧ ¬B(z, x, y)) asserting the existence of three non-collinear points
on the same plane is not coherent. Thus, in order to provide a cut-free sequent
calculus equivalent to Tarski’s system, in [1] the language L is extended with
predicates corresponding to the negations of the primitive predicates, in particu-
lar of B. In Ln this is not necessary since the predicate B̄ is already present. The
lower 2-dimensional axiom can be thus reformulated in Ln as the coherent formula

5 See [2] for an overview on mereology and [5] for a proof-theoretic approach.
6 Intuitively, the principle says that if an individual x fails to be part of an individual y, then there must be
a part of x disjoint from y—such a part being helpfully understood as a remainder.
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 ⊃ ∃x∃y∃z(B̄(x, y, z)∧ B̄(y, z, x)∧ B̄(z, x, y)), which corresponds to the following
coherent rule of G∗

n with x , y and z not occurring free in the conclusion:

B̄(x, y, z), B̄(y, z, x), B̄(z, x, y), � ⇒ �

� ⇒ �
L2D

These examples suffice to show that the class of axioms to which the present method
applies is larger that the class of ordinary coherent axioms. How much larger? We
provide a partial answer to this question. For a start we notice that not any (first-order)
axiom can be treated in G∗

n . Consider, for example, the axiom of minimal posets from
[3], according to which every element is less or equal than some minimal element,
namely ∀x∃y(
 ⊃ x ≤ y ∧ ∀z(y ≤ z ⊃ y = z)). Even in Ln such a formula is not
coherent. Following the method of semindefinitional extensions developed in [3], we
extend L with a new symbol unary predicate M and define M(x) as ∀z(x ≤ z ⊃ x =
z). Then, we take the axiom of minimal posets and replace ∀z(x ≤ z ⊃ x = z) with
M(x). In this way the new axiom of minimal posets becomes the coherent formula
∀x∃y(
 ⊃ x ≤ y ∧ M(y)). Clearly this is not enough since there are no axiom
governing M(x). However, as shown in [3], the only axiom for M(x) that needs to be
considered is the coherent formula M(x) ∧ x ≤ z ⊃ x = z, whereas the conditional
(∀z(x ≤ z ⊃ x = z)) ⊃ M(x) is not needed since in the new axiom of minimal
posets the atom M(y) occurs in the consequent of ⊃ (or positively, in the terminology
of [3]). A sequent calculus for the theory of minimal posets is thus obtained by adding
on top of G3c= the following coherent rules, where u is proper variable in PM1.

x ≤ u, M(u), � ⇒ �

� ⇒ �
PM1

x = z, M(x), x ≤ z, � ⇒ �

M(x), x ≤ z, � ⇒ �
PM2

The method of semidefinitional extensions is certainly very general: any first-order
formulas can be converted into a rule of sequent calculus without jeopardizing cut
elimination. In other words, the class of axioms to which the method of semidefi-
nitional extensions applies is the class of all first-order formulas. The drawback of
the semidefinitional approach is that the language L needs to be extended with new
symbols; and for certain theories this procedure, though viable in theory, is in prac-
tice exceeding complex. The examples above show that certain axioms can easily be
treatedwith themethod of semidefinitional extensions, but they do not need to. Indeed,
those axioms already correspond to coherent rules of Gn , with no need to extend the
underlying language Ln . Thus, it appears that the class of axioms that can adequately
dealt with in Gn is intermediate between the class of coherent axioms and the class of
all axioms expressible in some extension of a standard first-order language.

6 Co-coherent formulas in negation normal form

In this section we shall see that the axioms that the present method can treat include all
the so-called co-coherent formulas. Recall from [9] that a formula of L is co-coherent
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when it is equivalent to:

∀x̄
(
∀ȳ((Q11 ∨ · · · ∨ Q1p ) ∧ · · · ∧ (Qm1 ∨ · · · ∨ Q1q )

) ⊃ P1 ∨ · · · ∨ Pn
)

where we assume that none of the variables in ȳ occurs free in P1 ∨ · · · ∨ Pn . A
theory is co-coherent when all its proper axioms are co-coherent formulas. Given a
co-coherent formula, the corresponding rule co-C is:

� ⇒ �, P1, . . . , Pn, Q11 , . . . , Q1p · · · � ⇒ �, P1, . . . , Pn, Qm1 , . . . , Qmq

� ⇒ �, P1, . . . , Pn
co-C

where in each premise each variable in ȳ has been replaced by a variable in z̄ not
occurring free in the conclusion. Let co-G∗ be any extension ofG3c= withfinitelymany
co-coherent rules. Also co-G∗ satisfies the admissibility results of the previous section.
In L coherent rules fall short of treating co-coherent formulas, which require co-
coherent rules. This is clearly disadvantageous since there might be theories in which
some axioms are coherent and others are co-coherent. Alas, for such ‘mixed’ theories
the standard method of [6] to preserve the admissibility results is not applicable.
In fact, evidence suggests that when we work with such ‘combined calculi’, then cut
elimination is jeopardized. Consider, for example, inL a sequent calculusGE resulting
fromG3c= by adding a zero-premise co-coherent rule E1 corresponding to the fact that
a binary relation∼ is reflexive aswell as a one-premise coherent rule E2 corresponding
to the fact that ∼ is Euclidean.

� ⇒ �, x ∼ x
E1

y ∼ z, x ∼ y, x ∼ z, � ⇒ �

x ∼ y, x ∼ z, � ⇒ �
E2

In such a calculus it is easy to find a counter-example to cut elimination. Indeed, the
sequent corresponding to the symmetry of∼, namely x ∼ y ⇒ y ∼ x , is not derivable
without cut , though is derivable with it, as the following derivation shows:

⇒ x ∼ x E2
y ∼ x, x ∼ y, x ∼ x ⇒ y ∼ x

x ∼ y, x ∼ x ⇒ y ∼ x E2

x ∼ y ⇒ y ∼ x cut

While in L the combination of coherent and co-coherent rules may impair cut elim-
ination, this issue does not arise in Ln for the simple reason that in Ln co-coherent
formulas are, in fact, coherent. More precisely, given a co-coherent formula of L:

∀x̄
(
∀ȳ((Q11 ∨ · · · ∨ Q1p ) ∧ · · · ∧ (Qm1 ∨ · · · ∨ Q1q )

) ⊃ P1 ∨ · · · ∨ Pn
)

we can use classically valid equivalences to obtain the following

∀x̄
(
¬P1 ∧ · · · ∧ ¬Pn ⊃ ∃ȳ((¬Q11 ∧ · · · ∧ ¬Q1p ) ∨ · · · ∨ (¬Qm1 ∧ · · · ∧ ¬Qmq )

))
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However, given the definition of negation in Ln , the latter is a coherent formula:

∀x̄
(
P̄1 ∧ · · · ∧ P̄n ⊃ ∃ȳ((Q̄11 ∧ · · · ∧ Q̄1p ) ∨ · · · ∨ (Q̄m1 ∧ · · · ∧ Q̄mq )

))

In other words, co-coherent formulas of L are special cases of coherent formulas of
Ln . This entails that a co-coherent formula of L can be expressed by a coherent rule
of G∗

n .

Q̄11, . . . , Q̄1p , P̄1, . . . , P̄n, � ⇒ � · · · Q̄m1 , . . . , Q̄mq , P̄1, . . . , P̄n, � ⇒ �

P̄1, . . . , P̄n, � ⇒ �
Cn

Thus, in Ln there is no need of special, co-coherent rules for co-coherent axioms as
coherent rules in negation normal form suffice to treat both coherent and co-coherent
formulas. This means that in G∗

n we can treat coherent and co-coherent theories alike.

7 Conclusions

Since Negri’s work [6] there has been a growing interest in methods for obtaining
cut-free sequent calculi for first-order theories falling outside the coherent fragment.
Recent works such as [3] introduced the method of semidefinitional extensions and
showed any first-order theory admits a cut-free systematization in sequent calculus.
While such a method, in virtue of its wide applicability, has superseded all previous
ones, including Negri’s own method of systems of rules of [3], alternative approaches
are still worth to be investigated, if only because semidefinitional extensions are
arguably quite artificial and, though unavoidable in certain cases, they are not needed
at all for certain others. To what extent are semidefinitional extensions dispensable
is not clear and one of the main contribution of the present work was to take some
steps towards providing an answer to this question. In particular, using languages
in negation normal form we showed that without resorting to semidefinitional exten-
sions we can still provide cut-free sequent calculi for a class of theories which include,
among others, also co-coherent theories investigated in [9]. While the present method
is inevitably a special case of the method of semidefinitional extensions, in the sense
that the latter is applicable to all first-order theories while the former only to a proper
subclass thereof, it has the advantage of being entirely standard in proof theory. Indeed,
languages in negation normal form have been extensively investigated in proof theory
and were the primary source of inspiration for Gentzen-Schütte sequent calculi for
classical and intuitionistic first-order logic.7 From this perspective, one can see that
among the contributions of this paper there is also the development of extensions of
Gentzen-Schütte sequent calculi which have so far been hardly considered at all.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

7 Such calculi are named after K. Schütte who introduced them in [10], although his original calculi are
still in a standard first-order language. Gentzen-Schütte calculi in a language in negation normal form came
only with Tait’s classical paper [11].

123



Cut elimination for coherent... 445

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s Elements. Rev. Symb. Log. 2(4),
700–768 (2009)

2. Cotnoir, A., Varzi, A.: Mereology. Oxford University Press, Oxford (2021)
3. Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symb. Log. 21(2), 123–163 (2015)
4. Gherardi, G.,Maffezioli, P., Orlandelli, E.: Interpolation in extensions of first-order logic. Stud. Logica.

108, 619–648 (2020)
5. Maffezioli, P.: Analytic rules for mereology. Stud. Logica. 104(1), 79–114 (2016)
6. Negri, S.: Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem.

Arch. Math. Logic 42(4), 389–401 (2003)
7. Negri, S., von Plato, J.: Cut elimination in the presence of axioms. Bull. Symb. Log. 4(4), 418–435

(1998)
8. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)
9. Negri, S., von Plato, J.: The duality of classical and constructive notions and proofs. In: Schuster, P.,

Crosilla, L. (eds.) From Sets and Types to Topology and Analysis: Towards Practicable Foundations
for Constructive Mathematics, pp. 149–161. Oxford University Press, Oxford (2005)

10. Schütte, K.: Schlussweisen-Kalküle der Prädicatenlogik. Mathematischen Annalen 122, 47–65 (1950)
11. Tait, W.: Normal derivability in classical logic. In: Barwise, K. (ed.) The Syntax and Semantics of

Infinitary Languages, pp. 240–251. Springer, Berlin (1968)
12. Tarski, A., Givant, S.: Tarski’s system of geometry. Bull. Symb. Log. 5(2), 175–214 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Cut elimination for coherent theories in negation normal form
	Abstract
	1 Introduction
	2 The calculus Gn
	3 The extensions of Gn
	4 Admissibility results
	5 Beyond coherent theories
	6 Co-coherent formulas in negation normal form
	7 Conclusions
	References




