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Consistency Proof via Pointwise Induction
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Abstract

We show that the consistency of the first order arithmetic PA follows from the pointwise induction
up to the Howard ordinal. Our proof differs from U. Schmerl [S]: We do not need Girard’s Hierarchy
Comparison Theorem. A modification on ordinal assignment to proofs by Gentzen and Takeuti [T] is made
so that one step reduction on proofs exactly corresponds to the stepping down a — a[1] in ordinals. Also
a generalization to theories 1D, of finitely iterated inductive definitions is proved.

We show that the consistency of the first order arithmetic PA follows from the pointwise induction up to
the Howard ordinal. Our proof differs from U. Schmerl [S]: We do not need Girard’s Hierarchy Comparison
Theorem.

Let P be a proof of the empty sequent in PA or the second order arithmetic II} — CAg. For such a proof P
let o( P) denote the ordinal assigned to P and r(P) a reduct of P defined by Gentzen and Takeuti [T]. r(P) is
again a proof of the empty sequent and o(r(P)) < o(P). Then the reduction r : P +— r(P) is close to but does
not fit perfectly the stepping down a ~ a[n] defined by Buchhoiz [B2].! We need to tune these functions o and
r to stepping down in order to have o(r(P)) = o(P)[n] for an n. For this purpose we introduce two inference
rules: the padding rule and the keight rule. In both rules the lowersequent is identical with the uppersequent.
Let S, [Si] denote the uppersequent {the lowersequent], resp. Also let h(S) denote the height of a sequent (in
a proof P).

=3~

(pad)s

with o(5;) = o(S.) + b.
L (hot)
with h(S,) = h(5;) + 1 and o(S5;) = D10(Su). Dia denotes an ordinal term defined in [B2].

Using these rules we can unwind gaps between D and r(D) so that
o(r(P)) = o(P)[1] holds.

1 Fundamental sequences

The following is the fundamental sequences given in [A] and a slight variant in Buchhloz [B2]. Let ¢ be a
natural number.

Definition 1 (Buchholz [B2]) The term structure (T(q), -[-])
1. Inductive definition of the sets PT(¢) and T'(q)
(To0) PT(q) € T(9)
(T1) 0€T(q)
(T2) aeT(q)&0<u<q = Dya€ PT(q)
(T3) ao,...,ax € PT(g)(k > 0) = (ao,...,ar) € T(q)

2. For ay,...,ar € PT(q) and k € {-1,0}, we set

0 k=-1
ag otherwise

(@0, va) = {

L This observation is also stated by M. Hamano and M. Okada [H-O].
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3. a+0=0+a=a; (a,...,ae)+ (bo,-- - bm) = (a0, . ax, b0y bm)ia-0=0;a-(n+1)=a-n+a
4, w =gf {0,1,1+l,...}CT(q) WithlZD()O

5. Foru <gq, ‘
Tu(q) = {(Duoo0, - - -, Du,ar) : k > —1, ao,...,ax € T(q), uo,..., ux < u}
6. dom(a) and a[z] for @ € T(q) and z € dom(a)
([ ]-1) dom(0) =0
([ ].2) dom(1) = {0}; 1{0] =0
(11:3) dom(Dus10) = Tul@); (Dus10)[z] = 2
([ ].4) Let a = D,b with b #0.
(a) If b= by + 1, then dom(a) = w; al[z] = (Dybo) - (n + 1)
(b) 1f dom(b) € {w} U {Tu(q) : u < v}, then dom(a) = dom(b); a[z] = D, b[z] :
(c) If dom(b) € {Tu(g) : © > v}, then dom(a) = w; a[n] = D,b[b,] with by = 1, b1 = Dyblbs]
([ 1-5) e=(ao,...,ak) k> 0: dom(a) = dom(ai); a[z] = (ao, .- ., ak—1) + ax[z]
Let OT(q) C T(g) denote the set of ordinal terms in [B1]. For example OT'(1) corresponds to the Howard

ordinal ¥eqy1. In [B1] Buchholz shows that the proof theoretic ordinal of the theory ID, for g-fold iterated
inductive definitions is given by the ordinal 1oeq, 41, i-e., the order type of OTo(q).

Proposition 1 (Buchholz [B1])
a,z € OT(q) & z € dom(a) = a[z] € OT(q)
Coventions.
1. Q, =4 D,0
2.0[n]=0;(a+ )[n]=afornew
3. a[n]® = a; a[n]™** = (a[n]™)[n]
4. D% = a; D¥*la = D, (Dka)
ERA denotes the Elementary Recursive Arithmetic.
Let (PI), denote the following inference rule:
A(0,p) a#0AA(ell],r(p)) D Ala,p)
A(a,p)
where « denotes a variable ranging over OT(g), and A [r] is an elementary recursive relatione &2 [functione £3],

resp.
For a theory 7T let Con(™)(T) denote the iterated consistency of T

Con((T) & V(0 = 0); Conl™*(T) & Con(T + Con(™(T))

(PI),

Now our theorems are stated as follows:
Theorem 1 For each natural number g,
1. Over ERA, {Con™(ID,) :n < w} is equivalent to (PI)gy1.
2. Over ERA, the 1-consistency RF Nz, (ID,) of ID, is equivalent to
VnIm{(Do Dy, (Q41 - n))[1]™ = 0}.
For provably total recursive functions we have, e.g.,

Proposition 2 For each provably total recursive function f in PA, there exist k and d such that Vn[f(n) <
d - pm{(DoD¥(Q (k + n)))[1]™ = 0}].

This is seen from a slight modification of the proof of the theorem and so we omit a proof.

Remark. U. Schmerl [S] gives a proof of a variant of the Theorem 1.1 (¢ = 0), i.e., for PA via Girard’s
Hierarchy Comparison Theorem. In [S] the base theory (for us ERA) contains the fast growing functions
F, (o < €g) and/or the slow growing functions G4 (@ < ¥oeqs1) and their defing equations. Hence it seems
. that Schmerl’s result is incomparable to ours.
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2 Proof of Theorem

Fix a natural number q. We prove the Theorem 1.1. The Theorem 1.2 is proved similarly.

First consider the easy half: The rule (PI) 4, is a derived rule in ERA + {Con")(ID,) : n < w}.

Let provr denote a standard proof predicate for a theory T and ” B” the godel number of an expression B.
This follows from the following fact which is shown in [A]:

Proposition 3 For some elementary recursive function f we have
ERAY* Va € To(q + 1){provip,(f(a),”VnIm(a[n]™ = 0)”)}

Next consider the other half. Let VzB(z) be a IIY sentence. 1D, + VYzB(z) denote the theory obtained
from 1D, by adding extra axioms B(t) for an arbitrary term t. It suffices to show, in ERA + (PI)441,
Con(ID, + VrB(z)) under the assumption VzB(z) is true’. Our proof is an adaption from Gentzen’s and
Takeuti’s reduction in [T].

First ID, is embedded in a first order theory NID,, ;. In the latter theory the universe w of I D, is replaced
by a constant IV and this constant is treated as if it were a II} formula. Then as in [T] the inference rules for
the constant IV are analysed by using a substitution rule. Also as mentioned above we introduce two new rules,
the padding rule and the height rule to unwind gaps in Gentzen-Takeuti reduction. Now details follow.

Tﬁe language L of 1D, consists of

1. function constants 0 and the successor ’,

2. arithmetic predicate constants are lower elementary recursive relations R € £2 and their negations - R,
3. the least fixed points {P,}1<u<, for a fixed positive operator form A(X*,Y,n) and

4. logical symbols A, V,V 3. |

The negation —A of a formula A is defined by using de Morgan’s law and the elimination of double nega-
tions. A prime formula R(ti,...,t,) or its negation —R(¢1,...,t,) with an arithmetic predicate R is an
a.p.f.(arithmetic prime formula).

The azioms in 1D, are axioms for function and arithmetic predicate constants, the induction axiom (I4)
and axioms (P.1), (P.2) of the least fixed points {P,}1<u<, for arbitrary formula F:

(IA) F(0) AVz(F(z) D F(z')) D VaF(z)
(P1) Au(Py) C Py

(P2) Au(F)CF >P,CF
where Ay(X) = {n: A(X, 3 ¢, Po.n)}-

The language Ly of NIDgq consists of LU {N} U {X; : ¢ < w} with a unary predicate constant N and
a list of unary predicates X;. These unary predicates are denoted X, Y, etc. We sometimes write Py for the
constant N. For a predicate constant H € {P, : u < ¢} U{X; : i < w}, we write t € H for H(t) and t ¢ H
for —H(t). A formula is said to be an E formaula if it is either an a.p.f. or a formula in one of the following
shapes; AV B, dzA ort ¢ H with H € {P, :u < ¢} U{X; :i <w}. A formulais an A formula if its negation
is an E formula. For a formula A in L let AV denote the result of restricting all quantifiers in A to N. For
each u < ¢ let M, (X,¢) denote the formula:

MXt)=0eXAVz(ze X D2 € X) D teX;

NM(X)=AV(X)CX Dte X (u#0)

NID,, is fomulated in Tait’s calculus, i.e., one sided sequent calculus. Finite sets of formulae is called a
sequent. Sequents are denoted by T', A, etc.
Aziomsin NI1Dg,, are:

logical axiom I',—-A, A
where A is either an a.p.f. or a formula of the shape t € X.

arithmetic axiom 1. I',Ap
where Apg consists of a.p.f’.s and corresponds to the definition of a lower elementary relation R.

2. T', A for a true closed a.p.f. A.



128

3. T, A
where there exists a sequent A; so that A = Ag U A, is an instance of a defining axiom for R in 1
and A; consists solely of false closed a.p.f.’s.

Inference rulesin NIDgy; are:

(A),(V), (¥),(3), (cut), (weak) and (P,), (—Py) for (u < g).
1. (A),(V), (¥),(3): In these rules the principal formula is contained in the uppersequent. For example
T,3zA(z), At)

I, 3z A(zx) (3)
2. In the rule (cut)
-4 AA
—T.a ()
the cut formula A is an F formula.
3. (weak) is the weakening:
—2—- (weak)
with I' C A.
4. (P,):

It € Py, Ny(X,1)
T,t€P,

(Pu)
where X is the eigenvariavle, i.e., does not occur in the lowersequent.

5. (=PR,):
[,t ¢ Py,—Ny(F,t)
T.id P,

(—P)
for an arbitrary formula F in the language L.
Lemma 1 For any sentence A in L,
ID A = NIDgy + AN

Proof. It suffices to show that the following sequents are provable in
NIDgyq:

t ¢ P,,t € P,: Thisis proved by induction on u < ¢q. By [H(=Induction Hypothesis) we have =N, (X, t), Ny (X,1).
Rules (Py,) and (—P,) yields t € P,,t € P,.

(IA)N: For a given formula F(z) assume a € N, F(0) and Yz € N(F(z) D F(z')). We have to show F(a).
Let G(z) denote the fomula £ € N A F(z). Then we see Vo(G(z) D G(z')) fromz € N D 2’ € N. The
latter follows from the rules (—¥) = (—F) and (V). Also we have G(0). On the other hand we have
No(G, a) by the rule (nN) and a € N. Thus we get G(a) and hence F(a).

(P.1)N: Assume AN (P,,a). We have to show a € P,. By the rule (P,) it suffices to show A, (X,a). Assume
AN(X)C X. We show a € X.
Claim. P, C X
Proof of the Claim. Assume z € P,. By the rule (—=P,) we have N, (X, z). The assumption AY (X) C
X yields z € X. ]
From this Claim and the positivity of X in A we see AN (X, a). Thus again by the assumption AY (X) C X
we conclude @ € X.

(P.2)N: For a given formula F assume AY(F) C F and a € N N P,. We show F(a). This follows from the
rule (—FP,).

a

Definition 2 The length | A | of a formula A in Ly
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1. | A |= 0 for a prime formula A. Specifically | (=)H(t) |= 0 for any predicate H.
2. | QzA|=| F|+1 for Q € {V,3}
3. | Apo Ay |=max{] A; | +1:4= 0,1} for o € {A,V}.

A formula A € Pos, iff 1. if a predicate P, occurs positively in 4, then v < u, and 2. if a predicate P,
occurs negatively in A, then v < u.
Observe that NVy(X,t) € Pos, and ~P,(t) € Pos, & Pos, C Pos, for v < u.

Let Yz B(z) denote a fixed true I sentence with an a.p.f. B. The system NID,41 + VzB(z) is obtained
from NIDg41 by adding the axiom
(B) T, B(t)

for an arbitrary term ¢ and three inference rules; the padding rule (pad); (b € OT(q+ 1)), the height rule (hgt)
mentioned in the introduction and the substitution rule (sub), (v < q).
LX)
I'(F)

(sub)y

where 1. T(X) C Pos,, 2. X is the eigenvariable, i.e., does not occur the lowersequent, 3. F is an arbitrary
formula in Ly and 4. T'(F) denotes the result of substituting F for X in I'(X).

Let P be a proof (in NIDgy; + VzB(z)) and T a sequent in P. We define the height h(T') = h(T; P) of T
in P as follows:

1. h(T') = 0 if T is either the endsequent of P or the uppersequent of a rule (sub).
2. h(I') = h(A) + 1 if T is the uppersequent of an (hgt) whose lowersequent is A.
3. A(T') = R(A) if T is the uppersequent of a rule other than (sub) and (hgt) and A is the lowersequent.

Again let P be a proof (in NID,y, + YeB(x)). Let o denote an assignment of an ordinal term o(T') =
o(I'; P) € OT(q + 1) to each sequent T in P. If the assignment o : I' — o(T) enjoys the following conditions,
then we say that o is an ordinal assignment for P.

1. o(T') # 0 for each axiom I
Assume that T' is the lowersequent of a rule J and I’y and I'; denote the uppersequents of J.

2. o(T') = o(T'p) if J is one of (V), (weak), (P,).
3. o(T) = o(Ty) = o(T'1) if J is (A).

N.B. We require ordinals assigned to uppersequents of a (A) are equal.

4. o(I') = o(T'o) + b for some nonzero 0 # b € OT (g + 1) if J is either (3) or (V).
In this case we write, e.g., (V) for the rule (V).

5. o(T) = o(To) + b if J is (pad),.

6. o(T') = o(To) + Q4 if J is (= Py).

7. o(T) = o(To) + o(Ty) if J is (cut).

8. o(T) = Dyy10(To) if J is (hgt).

9. o(T) = Dyo(To) if J is (suby (u < q).

For an ordinal assignment o for a proof P we set o(P) = o(T.nq) with the endsequent T4, q of P.

Remark.
1. The padding rule (pad); is implicit in the literature, e.g., in [B2].

2. The substitution rule (sub) comes from [T] but Buchholz mentions a substitution operation Nt — Ft in
the proof of Lemma 4.12 in [B2].

Let P be a proof in NIDgy; + VzB(z) and o an ordinal assignment for P. We say that (P,0) is a proof
with the o.a. (=ordinal assignment) o if the following conditions are fulfilled:

(p0) The endsequent of P-is the empty sequent.
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(p1) The final part of P is an empty (sub)o followed by a nonempty series {(pad)s, }i<n of paddings with
dom(b;) € {0, {0},w}:

- (sub)o

— (pad)s,
P — (pad),,
(p2) For any (cut) in P,
I-4 AA
=" (cut)

r,a

(p3) For any (—=P,) in P,
)t & Py, ~N,(F,t)
F,t ¢ Pu (_|PU)

| ~Nu(F,t) |< h(T,t & Py, ~Nu(F,1); P).
Proposition 4 Assume ID, + YaB(z) is inconsistent. Then there exists a proof P with an o.a. 0.

Proof. By Lemma 1 pick a proof Py in NID,;; ending with the empty sequent. P, contains none of rules
(sub),(pad), (hgt). Below the endsequent of P, attach some (hgt)’s to enjoy the conditions (p2) and (p3).
After that attach further a (sub)y and a (pad)o to ensure the condition (pl). Let P denote the resulting proof
in NIDgy1 + VaB(z) of the empty sequent. For each sequent I' in Py set the ordinal o(I') = Qg1 - n for some
n < w. Then the whole proof P has an ordinal o(P) = Do D%, ,(Q - k) for some k. o

Thus assuming that Yz B(z) is true, it suffices to show the following lemma.

Lemma 2 Let (P,0) be a proof with an o.a. 0. Then there exists a proof (P',0) = r(P,0) with an o.a. o such
that :
o(P') = o(P)[1]

It remains to prove the Lemma 2.
Let P be a proof (not neccessrily ending with the empty sequent). The main branch of P is a series {T'; }i<n
of sequents in P such that: »

1. T'g is the endsequent of P.

2. For each ¢ < n I';41 is the right uppersequent of a rule J; so that I'; is the lowersequent of J; and J; is
one of the rules (cut), (weak), (hgt), (sub) and (pad)o.

3. Either I';, is an axiom or I';, is the lowersequent of one of the rules (V), (3), (=P,) and (pad), with b # 0.

The sequent I'y, is called the top (of the main branch) of the proof P.

Let P be a proof with an o.a. and I' a sequent in P. The u-resolvent of T is the uppermost substitution
rule (sub), below I' with v < u. Note that such a substitution rule always exists by the condition (p 1).

Let @ denote the top of the proof P with the o.a. 0. Put o = o(P). Observe that we can assume & contains
no first order free variable.

Case 1. @ is the lowersequent of a rule (p), at which the ordinal b is padded. This means that either
(p)s = (pad)y with & # 0 or (p)s = (V)s, (3)s with b > 1.

3 +b, (p)s
P

Case 1.1. Either the top ® is the endsequent (, then the last rule is
(P)s = (pad)y with b # 0), and/or dom(b) = w: dom(a) = dom(b). Replace the rule (p); by (p)s;1). Note that
b1 #0ifb> 1.

3 Tl (P
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Case 1.2. Otherwise:

Case 1.21. dom(b) = T,(¢+1): Let I be the u-resolvent of ® and I' the lowersequent of J. o(I') is of the form
Dya for some v < u and a with dom(a) = T,(q + 1). We have (D,a)(l] = D,a[a;] with a; = Dya[l]. Replace
the (p)s by (p)s[a,]-

Case 1.22. dom(b) = {0}, i.e.,, b = by + 1 for some by: Let J denote the uppermost (sub) or (hgt) below ®
and T the lowersequent of J. o(T') is of the form D, (a + by + 1):

3 +bo+1

+D,(a+bo+1)J

P
Replace the (p)s,+1 by (p)s, and insert a new (pad). immediately below J with ¢ = D, (a + b):

+bg

-

+Du(a + bo) J
+c- 2 (pad).

Il

Pl
Case 2. @ is an axiom and contains a true a.p.f. A: ® = 4, Aq.
A)AO
a b
-4 A4A b
r.a ot
» :

where a = o(',—A4),b = o(4, A) (b # 0). Eliminate the false a.p.f. =4 and insert a (weak) and an appropriate
(pad) as in Case 1 to get o P') = «[l].

Ig‘a
TA (weak)
Case 3. @ is a logical axiom: & = =X (¢t), X(t), Ag. Put
X*H(t) = X(1), X~ (1) = ~X(1), (=X (1))~ = X (1), ~X(1))* = X ().

Ca )

r,XF(t) X*(1),A
T A

P

where X*(t) € A and X denotes either X or a formula F by a (sub). As in Case 2 insert a (weak) and a
(pad).
P
r,X¥(t)
“T,A
p' (pad)

(weak)

Case 4. @ is the lowersequent of a (V);.

Case 5. ® is the lowersequent of an (3);.

Consider the Case 4. Let J denote a (cut) at which the descendent of the principal formula Ay V A; of the
(V)1 vanishes.

Case 4.1. There exists an (hgt) or a (sub) between ® and J: Let I denote the uppermost one among such
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rules.

Ai, AoV Ay, A
AoV A1, Ag (Vi +1
avaran !

F,“'/io/\"/i1 /10VA~1,A
r,A

P

‘where 1) i = 0,1, 2) A; is either A; or A;[X := F] and 3) 4] € {A;, A;}. For the lowersequent of I
o(ApV A,A") = Dy(c+ 1) forsome u < g+ 1andac
Lower the (V); under I and change +1 into +Dyc:

AiaAO VAlyAO

A ava !

—av A, A (Ve

I‘,"uio./\ _‘x‘il fioVZl,A
T A

Pl

Case 4.2. Otherwise: Let I denote the uppermost (hgt) below the (cut)J. Such an (hgt) exists since
| AoV Ay |> 0. Put h = h(AgV A;,A) — 1. Then h = h(A) > max{| Ao |,| A1 |} for the lowersequent A of the
(hgt) 1.

A, AgV AL, A
AV AL A, (Yt
S a Db+l
I‘,"Ao/\—u‘il /ioVAl,A
T A Jya+b+1
fe+1

= (hg) T, Dysa(c+1)
P

where a = o(?,—u‘io A=Ay), b+1=0(AgV A;,A) and o(A) = Dyy1(c+ 1) for some c.
Assuming —4; is an E formula, let P’ be the following: ’

A, AoV A1, A _
Cdomods Aoy And ey (weak) o
y ! A \% 3 ¥ ¥y A, 1,
TrAA o otY i edmet
3 g £1q —Ag, L,
z
WA A e
- 1 : 2 (cut), (Dgt1c) - 2

Pl

Here the subproof ending with -A;,T is obtained from the subproof of P ending with the left uppersequent
T',—Ag V —A; of the (cut) J by inversion. Observe that we still have a = o(=A;,T; P') under the same ordinal
assignment since the lowersequent and the uppersequents of a rule (A) have the same assigned ordinal.

Case 6. ® is the lowersequent of a (—F,).

Let J denote the (cut) at which the descendent of the principal formula of the (-P,) vanishes and I the
u-resolvent of ® = ¢—-P,,A,. Here note that there is no (sub),(v < u) between the (-P,) and J by the
restriction: the uppersequent of a (sub), C Pos,, i.e., 7Py(t) € Pos,. Therefore the u resolvent I is below J.
Also by the definition there is no (sub),(v < u) between J and I.
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t € P,, =Ny (F,1), Ao
td P, Ag
‘a © b
I,teP, t¢ Py, A
T,A

(_‘Pu): +Qu41

J,a+bd

{

c
(sub)y I, Dyc

ST [P

p
where a = o(l',t € P,),b = o(t ¢ P,,A),c = o(A) and o(t € P,,Ag) = by + Quq1 with by = oft ¢

Py, ~Nu(F,t),A¢). We have dom(b) = dom(c) = dom(Qu41) = Tu(q + 1).
Put z = Dyc[1]. Let P’ be the following:

.a

L, Nu(X, 1) (weak)
m wea
N‘E_X_t;T& (pad)yay, b[1]
Nu(X,1),A
g PuBoNu(BY) NalBD A o0 7 = Ducll
tgP’U:AO,A (cut), b0+Z
a - b2]
F;tEPu tgPH,A,A
IAA
! cle]
Ai—A D, c[2]
P A

where the subproof ending with T', A, (X, t) is obtained from the subproof in P ending with the left uppersequent
I',t € P, of the (cut) J by inversion. Note that Ny(F,t) is an E formula. We have o(T', Ny(X,t); P') = a =
o(T,t € P,; P) and hence o(Py) = o(Ny(X,t),A; P') = ¢[1]. Thus o(N,(F,t),A; P') = Dyc[l] = z and
o(A; P') = Dyclz] = (Dyc)[1] with D, ¢ = o(A; P). Therefore o( P') = a[l].

This completes a proof of the Lemma 2 and hence of the Theorem 1.
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Remark. As in [A] we have for each n < w
I F YdAm{(DoDf~1(Q - n))[d]™ = 0}

From this we can expect to sharpen the Theorem 1 for fragments, e.g., for IZ; but we have no proof of the
following:
Show that

IS i Yn3m{(DoD¥~1(Q - n))[I™ = 0}
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