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Summary

In this paper we propose two clustering methods for interval data based on the
dynamic cluster algorithm. These methods use different homogeneity criteria
as well as different kinds of cluster representations (prototypes). Some tools
to interpret the final partitions are also introduced. An application of one of
the methods concludes the paper.
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1 Introduction

In this paper we propose two new methods suitable for clustering a special
kind of data, called symbolic data, and characterized by multi-valued descrip-
tors (Diday (1988), Bock & Diday (2000)). Such data are usually collected
in a symbolic data table, where the individuals are represented in the rows
and the multi-valued variables in the columns. The cells contain multi-values
(intervals, multi-categories, distributions). In the present context of interval
data analysis, each cell contains an interval of real values. In Table 1, we
show an example of an interval data table, where the columns represent the
monthly intervals of temperatures and the rows (objects) describe 60 Chinese
meteorological stations.

Stations January February . . . November December

AnQing [1,8:7,1] [2,1:7,2] . . . [7,8:17,9] [4,3:11,8]
BaoDing [-7,1:1,7] [-5,3:4,8] . . . [0,8:14] [-3,9:5,2]
BeiJing [-7,2:2,1] [-5,9:3,8] . . . [1,5:12,7] [-4,4:4,7]
. . . . . . . . . . . . . . . . . .
ZhiJiang [2,7:8,4] [2,7:8,7] . . . [8,2:20] [5,1:13,3]

Table 1: Monthly averages of minimal and maximal daily temperatures ob-
served on 60 Chinese meteorological stations in 1988

Symbolic Data Analysis has provided partitioning methods in which different
types of symbolic data are considered. Diday & Brito (1989) used a transfer
algorithm to partition a set of symbolic objects into clusters described by
distribution vectors. Ralambondrainy (1995) extended the classical k-means
clustering method in order to deal with data characterized by numerical and
categorical variables. Verde et al. (2000) generalized the dynamic cluster-
ing algorithm to partition categorical multivalued symbolic data. In this
approach a context-dependent proximity measure is used as an allocation
function. Gordon (2000) presented an iterative relocation algorithm to par-
tition a set of symbolic objects into classes so as to minimize the sum of the
description potentials of the classes. Bock (2001) proposed several clustering
algorithms for symbolic data described by interval variables, based on a clus-
tering criterion and thereby generalized similar approaches in classical data
analysis. Recently, De Souza & De Carvalho (2004) have proposed partition-
ing clustering methods for interval data based on city-block distances.

The two new clustering approaches presented in this paper are based on the
Dynamic Cluster Algorithm (DCA) introduced by Diday (1971), Diday &
Simon (1976). Recall that DCA needs to define an allocation function (a
dissimilarity measure) and a way to represent the classes (prototypes). The
methods hereafter proposed are defined with different dissimilarity measures,
criteria and prototypes.
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In the first approach the prototypes are defined in the same representation
space as the objects to be clustered. Hence, the prototypes are described by
vectors of intervals. The dissimilarity function used to compare an object
to the description of a prototype (more generally, to compare two vectors of
intervals) is based on the Hausdorff distance (Chavent & Lechevallier (2002)).
In the second approach, the prototypes and the objects are not in the same
description space and the comparison function is not a dissimilarity but a
matching function.

Some criteria are proposed to interpret the quality of the partitions achieved
by the first or the second clustering method. An application of the first
method is performed on real data: 60 meteorological Chinese stations de-
scribed each month by an interval of temperatures (Long-Term Instrumental
Climatic Data Base of the People’s Republic of China http://dss.ucar.edu/
datasets/ds578.5/data/).

2 Notations and definitions

An interval variable Y is a correspondence from a set E into the set of real
values ℜ which has the following property on its graph: for all s ∈ E, the
sub-set [a, b] = Y (s) is a bounded interval of ℜ.

Let E = {1, ..., s, ..., n} be a set of n objects described by p interval variables
Y1, . . . , Yj , . . . , Yp. The interval data table is then a matrix (xj

s)n×p where the
n rows describe the n objects to be clustered and the p columns correspond
to the p interval variables. Each cell of the data table contains a bounded
interval xj

s = [aj
s, b

j
s] of ℜ.

We will note :

• xs = (x1
s, ..., x

p
s) the vector of intervals describing the object s

• P = (C1, ..., Ci, ..., Ck) a partition in k clusters of E

• Gi = (g1
i , . . . , gj

i , . . . , g
p
i ) a prototype of the cluster Ci

• Λ a representation space of the prototype Gi

3 The dynamic cluster algorithm

The aim of the dynamic cluster algorithm is to find a partition P ∗ = (C1, ..., Ck)
of E in k non empty clusters and a vector L∗ = (G1, . . . , Gi, . . . , Gk) of k
prototypes so that both P ∗ and L∗ optimize a criterion ∆:
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∆(P ∗, L∗) = Min {∆(P,L) / P ∈ Pk, L ∈ Λk} (1)

with Pk the set of all the k-clusters partitions of E and Λ the representation
space of the prototypes .

The criterion ∆ measures the adequacy between a partition P and a vector
L of k prototypes. This criterion is defined as the sum on the k clusters Ci

and on all the objects s ∈ Ci of dissimilarities D(xs, Gi):

∆(P,L) =
k∑

i=1

∑

s∈Ci

D(xs, Gi) (2)

This algorithm alternately performs a representation and an allocation step.
In the particular case of classical (non interval) real data and of prototypes
defined as the barycenters of the clusters, the dynamic cluster algorithm is
equivalent to the k-means batch algorithm.

In order to introduce the next sections, we recall the general scheme of the
DCA:

DYNAMIC CLUSTER ALGORITHM (DCA)

a) Initialization: Start from a random partition P = (C1, . . . , Ci, . . . , Ck)
or, alternatively, from a vector (G1, . . . , Gi, . . . , Gk) of k prototypes
randomly chosen among the elements of E. In such a case, an allocation
step is achieved as follows:

- Ci = ∅ for i = 1, . . . , k

- For s = 1 to n do:

∗ Assign s to cluster Cl such that l = argmini=1,...,kD(xs, Gi)

∗ Cl = Cl ∪ {s}

b) representation step: for i = 1 to k, perform the prototype Gi which
minimizes the criterion:

fCi
(G) =

∑

s∈Ci

D(xs, G), G ∈ Λ (3)

c) allocation step

- test←− 0

- for s = 1 to n do:

∗ Find the cluster Cm to which s belongs
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∗ Find the index l such that:

l = argmini=1,...,kD(xs, Gi)

∗ if l 6= m

· test←− 1

· Cl = Cl ∪ {s} and Cm = Cm − {s}

d) if test = 0 then stop, otherwise go to b)

At each iteration of this algorithm, a new couple (P,L) is found and the
decrease of the ∆ criterion can be proved under the following conditions:

• uniqueness of the affectation cluster for each object s ∈ E

• uniqueness of the prototype Gi minimizing the criterion fCi
given in

(3) for all the clusters Ci of the partition P of E.

The uniqueness of a cluster to which an object s is allocated (in the case of
equality of the distances) is easy to solve by assigning s to the cluster having
the smallest index.

The existence and the uniqueness of the prototype Gi is however more difficult
to prove because it depends on the comparison function D. In the next section
we propose two different prototypes for a cluster of interval data, related to
the choice of two different comparison functions D which are then parameters
of two different clustering algorithms.

4 Two new clustering methods

The prototype G of a cluster C is defined according to the criterion fC(G)
(defined in (3)) and optimized as an adequacy measure between the prototype
and the cluster. Because this criterion is based on the function D, chosen to
compare the prototype and an object to be clustered, two prototypes will be
defined according to the choice of the two different comparison functions D.

4.1 The first method

The first dynamical clustering method, here proposed, compares two vectors
of intervals x1 and x2 with a distance d1 based on the Hausdorff distance.
We do not use here the Hausdorff distance on a real ℜp-set, as in Chavent
(2004), but the sum of Hausdorff distances between intervals. First, we recall
the definition of the Hausdorff distance in the case of two intervals and,
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starting from this definition, we deduce the distance d1 between two vectors
of intervals used in this first approach. Then, we look for an explicit formula
of the prototype G of the cluster C able to optimize the adequacy criterion
fC (Chavent & Lechevallier (2002)), based on d1.

4.1.1 Definition of the Hausdorff-based distance

The Hausdorff distance (Nadler 1978), (Rote 1991) is often used in image
processing (Huttenlocher et al. 1993). It is used to compare two sets of
objects A and B. Such a distance dH depends on the particular metric d (L1

norm, L2 norm, etc.) chosen to compare two objects u and v in A and B,
respectively:

dH(A,B) = max(h(A,B), h(B,A)) (4)

where
h(A,B) = sup

u∈A
inf
v∈B

d(u, v) (5)

Let A and B be two intervals in ℜ, d(u, v) is simply |u − v| and it is easy
to show that the Hausdorff distance between two intervals xj

1 = [aj
1, b

j
1] and

xj
2 = [aj

2, b
j
2] is:

dH(xj
1, x

j
2) = max(|aj

1 − aj
2|, |b

j
1 − bj

2|) (6)

Finally, the distance d1 between two vectors of intervals x1 and x2 is the sum
on the p variables of the Hausdorff distances between the intervals:

d1(x1, x2) =

p
∑

j=1

max(|aj
1 − aj

2|, |b
j
1 − bj

2|) (7)

For intervals reduced to single points, that is when aj = bj , d1 is the L1

distance in ℜp.

4.1.2 The prototype

The prototype G = (g1, ..., gp) of a cluster C is the vector of p intervals which
minimizes the adequacy criterion:

fC(G) =
∑

s∈C

d1(xs, G) =
∑

s∈C

p
∑

j=1

dH(xj
s, g

j) (8)

Criterion (8) can also be written as:

fC(G) =

p
∑

j=1

f̃C(gj)
︷ ︸︸ ︷
∑

s∈C

dH(xj
s, g

j) (9)
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and the problem is now to find the interval gj = [αj , βj ] for (j = 1, ..., p)
which minimizes:

f̃C(gj) =
∑

s∈C

dH(xj
s, g

j) =
∑

s∈C

max(|αj − aj
s|, |β

j − bj
s|) (10)

We will see how to solve this minimization problem by transforming it into
two well-known minimization problems. Let mj

s be the midpoint of an interval
xj

s = [aj
s, b

j
s] and ljs be half of its length, i.e.:

mj
s =

aj
s + bj

s

2
and ljs =

bj
s − aj

s

2
(11)

and let µj and λj be the midpoint and half-length of the interval gj = [αj , βj ],
respectively. According to the following property defined for x and y in ℜ:

max(|x− y|, |x + y|) = |x|+ |y| (12)

the function (10) can be written as:

f̃C(gj) =
∑

s∈C

max(|(µj − λj)− (mj
s − ljs)|, |(µ

j + λj)− (mj
s + ljs)|)

=
∑

s∈C

|µj −mj
s|+

∑

s∈C

|λj − ljs| (13)

This yields two well-known minimization problems: find µj ∈ ℜ and λj ∈ ℜ
which minimizes, respectively:

∑

s∈C

|µj −mj
s| and

∑

s∈C

|λj − ljs| (14)

The solutions µ̂j and λ̂j are respectively the median of {mj
s, s ∈ C}, which

are the midpoints of the intervals xj
s = [aj

s, b
j
s], s ∈ C, and the median of the

set {ljs, s ∈ C} of their half-lengths. Finally, the solution ĝj = [α̂j , β̂j ] is the

interval [µ̂j − λ̂j , µ̂j + λ̂j ] and the prototype of C is G = (ĝ1, ..., ĝp).

4.2 The second method

The second dynamic clustering method, proposed in this paper, compares two
vectors of intervals by means of a dissimilarity d2. This dissimilarity compares
two couples pj

1 = (Sj
1, q1) and pj

2 = (Sj
2, q2), where q1 and q2 are weight

functions associated, respectively, to suitable sets of intervals Sj
1 and Sj

2.
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These subsets are obtained by a pre-processing step descretizing the intervals
xj

1 and xj
2 in ”basic” or elementary intervals. Firstly, we describe how to get

such subsets of intervals and the associating weight functions. Then, we
introduce the “two components” dissimilarity measure d2c to compare pj

1

and pj
2 and we define d2 as the sum of those dissimilarities with respect to

the p variables. Finally, we perform a prototype G.

4.2.1 Pre-processing step

The aim of the pre-processing step (De Carvalho (1995), De Carvalho et al.
(1999), Chavent et al. (2003)) is to discretize xj

s to obtain a subset of a set
{Ij

1 , . . . , Ij
Hj
} of elementary intervals and the corresponding set of weights qj

s.

A column j of the data table is a set {xj
1, ..., x

j
s, ..., x

j
n} of n intervals. Starting

from this set of intervals, another set of Hj disjoint intervals {Ij
1 , ..., Ij

h, ..., Ij
Hj
}

is performed. The elementary intervals are obtained by sorting the set of
lower and upper bounds of the n intervals {xj

1, ..., x
j
s, ..., x

j
n}. The so called

“elementary” intervals Ij
h have to verify the following properties:

i)

Hj⋃

h=1

Ij
h =

n⋃

s=1

xj
s

ii) Ij
h ∩ Ij

h′ = ∅ if h 6= h′

iii) ∀s ∈ E, ∀h Ij
h ⊆ xj

s or Ij
h ∩ xj

s = ∅

iv) ∀s ∈ E, ∃Sj
s ⊂ {I

j
1 , ..., Ij

Hj
} :

⋃

Ij

h
∈Sj

s

Ij
h = xj

s and ∀Ij
h ∈ Sj

s , Ij
h ⊆ xj

s

Then, Sj
s = {Ij

h : Ij
h ⊆ xj

s}. The weight function qs defined on the subset of
elementary intervals Sj

s which discretizes the interval xj
s is then defined as:

qs : Sj
s −→ [0, 1]

Ij
h ∈ Sj

s −→ qs(I
j
h) =

|Ij

h
|

bj
s−aj

s

(15)

where |Ij
h| is the length of the interval Ij

h. Notice that, ∀Ij
h ∈ Sj

s , qs(I
j
h) ≥ 0

and that
∑

Ij

h
∈Sj

s
qs(I

j
h) = 1.

An example is given in Figure 1. Let us consider four intervals xj
1, xj

2, xj
3 and

xj
4 (describing a set E of four objects on a variable Yj). The set of elemen-

tary intervals {Ij
1 , Ij

2 , Ij
3 , Ij

4 , Ij
5} is shown and, because the set of elementary

intervals which discretize the interval xj
1 is {Ij

1 , Ij
2}, their associated weights

are q1(I
j
1) = α and q1(I

j
2) = 1− α.
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Figure 1: Elementary intervals construction

4.2.2 Definition of the “two components” dissimilarity

As in the first method, where we compared two intervals xj
1 and xj

2 (for
each variable j) by the Hausdorff distance, here we compare the couples
pj
1 = (xj

1, q1) and pj
2 = (xj

2, q2) by a “two components” dissimilarity measure,
noted as d2c, and defined as:

d2c(p
j
1, p

j
2) = dci(x

j
1, x

j
2) + dcd(q1, q2) (16)

where dci is a dissimilarity which measures the difference in “position” be-
tween two intervals, and dcd is a dissimilarity between two weight functions q1

and q2 which express the difference in content between two intervals (De Car-
valho & Souza (1998)).

The first “component” of the dissimilarity d2c is the dissimilarity dci between
two intervals xj

1 = [aj
1, b

j
1] and xj

2 = [aj
2, b

j
2] defined by:

dci(x
j
1, x

j
2) =

|(x̄j
1 ∩ x̄j

2) ∩ (xj
1 ⊕ xj

2)|

|xj
1 ⊕ xj

2|
(17)

where:

- |.| the length of an interval

- xj
1 ⊕ xj

2 = [min(aj
1, a

j
2),max(bj

1, b
j
2)]

- x̄j
s =]−∞, aj

s[ ∪ ]bj
s,+∞[ the complementary set of xj

s in ℜ
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Another formulation of this dissimilarity is:

dci(x
j
1, x

j
2) =

{
|min(bj

1
,bj

2
)−max(aj

1
,aj

2
)|

max(bj

1
,bj

2
)−min(aj

1
,aj

2
)

if xj
1 ∩ xj

2 = ∅

0 otherwise
(18)

Notice that, according to the dci component, there is difference in “position”
between two intervals only when the intersection between them is empty.

The second “component” of d2c is the dissimilarity dcd between the two weight
functions q1 and q2 defined, respectively, on subsets Sj

1 and Sj
2 of elementary

intervals which discretizes xj
1 and xj

2:

dcd(q1, q2) =
1

2
(

∑

{Ij

h
:Ij

h
∈Sj

1
,Ij

h
/∈Sj

2
}

q1(I
j
h) +

∑

{Ij

h
:Ij

h
∈Sj

2
,Ij

h
/∈Sj

1
}

q2(I
j
h)) (19)

Notice that 0 ≤ dcd ≤ 1, with dcd = 0 if xj
1 = xj

2 and dcd = 1 if xj
1 ∩ xj

2 = ∅.

Finally the dissimilarity d2 between the two couples p1 and p2 is the sum of
the dissimilarities d2c computed with respect to the p variables Yj ’s:

d2(p1, p2) =

p
∑

j=1

d2c(p
j
1, p

j
2) =

p
∑

j=1

(dci(x
j
1, x

j
2) + dcd(q1, q2)) (20)

4.2.3 The prototype

The prototype G of a cluster C is now a vector where the components are p
couples (Γj , q). The components of the prototype are defined in the following
way:

- Γj may be defined in two different ways (see Figure 2):

(a) Γj = [mins∈C aj
s,maxs∈C bj

s] is an interval “generalizing” the in-
tervals xj

s = [aj
s, b

j
s], for s ∈ C;

(b) Γj = {xj
s : s ∈ C}.

In both the cases the intervals can be considered discretized, in the
pre-processing step, into elementary intervals, as above described.

- q is defined as g =







1

card(C)

∑

{h,s:Ih∈Sj
s and s∈C}

qs(I
j
h)

0, otherwise

Because in the definition (b) of Γj the result is not an interval, the prototype
is not, in this particular case, represented in the same description space as
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Figure 2: The two different ways to define Γ

the objects of the cluster. The dissimilarity d2 cannot be directly used to
compare an object s and the prototype G. For this reason, we propose to
replace in d2 and, more precisely, in d2c (in 16) the first component dci by:

d∗ci(x
j
s,Γ

j) =

|(x̄j
s ∩ (

⋂

s′∈C

x̄j
s′)) ∩ (xj

s ⊕ (
⋃

s′∈C

xj
s′)|

|xj
s ⊕ (

⋃

s′∈C

xj
s′))|

(21)

with xj
s ⊕ (

⋃

s′∈C

xj
s′) = [min(aj

s, min
s′∈C

aj
s′),max(bj

s,max
s′∈C

bj
s′)]

The comparison function D (used in the allocation step of the algorithm)
between an object s and the prototype G is then defined by:

d∗2(ps, G) =

p
∑

j=1

(d∗ci(x
j
s,Γ

j) + dcd(qs, q)) (22)

Remark: Because ps and G are not in the same description space, d∗2 is not
a dissimilarity function but a “matching” function.

Moreover, the prototype G here defined doesn’t minimize the adequacy func-
tion (as in the representation step of the dynamic cluster algorithm). For
this reason this second clustering approach is not a proper dynamic cluster
method and an exchange algorithm is performed.

4.2.4 The algorithm

The algorithm used in the second method is based on the exchange algorithm
(Chavent et al. (2003)). At each iteration of this algorithm the n objects are
considered one after the other and are assigned to the cluster such that the
decrease of the ∆ criterion is maximum. As in the first version of the well
known k-means algorithm, the prototypes are updated at each moving of an
object from one cluster to another:
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EXCHANGE ALGORITHM:

a) Initialization: Start from a random partition P = (C1, . . . , Ci, . . . , Ck)

c) allocation step

- test←− 0

- for s = 1 to n do:

∗ Find the cluster Cm to which s belongs

∗ If card(Cm) 6= 1 for l = 1, ..., k and l 6= m

· perform the new prototypes Gm of Cm − {s} and Gl of
Cl ∪ {s}

· perform the criterion ∆l =
k∑

i=1

∑

s′∈Ci

D(ps′ , Gi) where D

can be d2 or d∗2 according to the selected type of prototype

∗ find the cluster Cl∗ such that

l∗ = arg min
l=1,...,k

∆l

∗ if l∗ 6= m move s to Cl∗

· test←− 1

· Cl∗ = Cl∗ ∪ {s} and Cm = Cm − {s}

b) if test = 0 then stop, otherwise go to b)

5 Interpretation

The aim of this section is to provide the user with various criteria to measure
and interpret the quality of the partition or the quality of the clusters of the
partition. These criteria are obtained by generalizing some criteria proposed
in Celeux et al. (1989) for a partition P of n points xs of ℜp weighted by
ps and performed by dynamical clustering. All these criteria are based on
the decomposition of the total inertia into within-cluster and between-cluster
inertia. In order to simplify our presentation we take ps = 1 (∀s = 1, ..., n)
and, in this particular case, the inertia is the total sum of squares (TSS)
of the ℜp points around their mean. The decomposition of the total sum
of squares (TSS) into the within-cluster (WSS) and between-cluster (BSS)
sum of squares is:

n∑

s=1

d2(xs, G)

︸ ︷︷ ︸

TSS

=
k∑

i=1

∑

s∈Ci

d2(xs, Gi)

︸ ︷︷ ︸

WSS

+
k∑

i=1

nid
2(Gi, G)

︸ ︷︷ ︸

BSS

(23)
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where d is the squared Euclidean distance, G is the mean of the n points
xs ∈ E, Gi is the mean of the points xs ∈ Ci and ni = card(Ci).

A well known result is that the mean G of a cluster C is the point g ∈ ℜp

which minimizes the following adequacy criterion:

fC(g) =
∑

s∈C

d2(xs, g)

In the first clustering method proposed in section 4.1 we generalized the idea
of the mean G of a cluster C to the idea of a prototype G which minimizes
the adequacy criterion:

fC(g) =
∑

s∈C

D(xs, g) (24)

where D = d1 is based on the Hausdorff distance and the solution G =
(ĝ1, ..., ĝp) is a vector of intervals (defined in section 4.1.2).

The TSS (or the total inertia) and the WSS (or the within-cluster inertia)
defined in (23) can then be generalized by using a prototype Gi of a cluster Ci

which optimizes the adequacy criterion (24) for a specific comparison function
D. We then have :

• WSS =
k∑

i=1

∑

s∈Ci

D(xs, Gi) =
k∑

i=1

fCi
(Gi) which is then equal to the

criterion ∆(P,L) given in (1).

• TSS =
n∑

s=1

D(xs, GE) which is the adequacy criterion fE(GE) defined

in (24) with GE is the prototype of the whole set of n objects in E .

Of course, the equality (23) is not true after generalization. The gain of inertia
obtained by replacing the propotype G of E by the k prototypes (G1, ..., Gk)
of the partition P is no more the between-cluster inertia (or BSS). The gain
of homogeneity obtained by replacing the n objects by the k prototypes is
simply defined as the difference between fE(GE) and ∆(P,L).

Finally the three following criteria will be used to interpret a partition and
its clusters:

- fCi
(Gi) which is a measure of homogeneity of the cluster Ci;

- ∆(P,L) which is a measure of within-cluster homogeneity of the parti-
tion P ;

- fE(GE) which is a measure of total homogeneity of the set E.
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Remark : Because in the second method the prototypes are not defined by
the minimization of an adequacy criterion, the criteria given below can not
be applied to interpret a partition obtained using this algorithm.

5.1 Interpretation of the partition

In this section we give a criterion to globally measure the quality of a k-
clusters partition and two criteria to interpret this partition according to a
variable Yj .

The quality of a partition is measured by the gain of homogeneity obtained
by replacing the n objects of E by the k prototypes of P and normalized by
the total homogeneity fE(GE) :

Q(P ) = 1−
∆(P,L)

fE(GE)
(25)

This criterion takes its values between 0 and 1. It is equal to 1 when all the
clusters are reduced to single objects or to identical objects. It is equal to
0 for the one-cluster partition E. Because this criterion decreases with the
number of clusters it can only be used to compare two partitions having the
same number of clusters. Because a k-clusters partition is better than another
partition in k clusters if the criterion ∆(P,L) is smaller, this partition will
be better if Q(P ) is bigger. For classical quantitative data

Q(P ) =
BSS

TSS
= 1−

WSS

TSS

is called the part of inertia of E explained by P . The criterion Q(P ) measures
in the same way the part of the homogeneity of E explained by P .

Similarly, we define the quality of the partition for each variable Yj as:

Qj(P ) = 1−

k∑

i=1

f̃Ci
(ĝj

i )

f̃E(ĝj
E)

(26)

which is the part of the homogeneity of the variable Yj explained by P .
This criterion measures the power of discrimination of the variable Yj to the
partition P . Moreover because the quality of P , Q(P ), is a weighted average
of the values Qj(P ):

Q(P ) =

p
∑

j=1

f̃E(ĝj
E)

fE(GE)
Qj(P ) (27)
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this criterion also measures the importance of the variable Yj in the con-
struction of the partition. Finally the criteria Qj(P ) must be compared to
Q(P ).

5.2 Interpretation of the clusters

The quality of a cluster Ci of E is defined by:

Q(Ci) = 1−
fCi

(Gi)

fCi
(GE)

(28)

This criterion measures the gain of homogeneity of the cluster Ci obtained
when replacing the prototype GE by the prototype Gi in the calculation of
the homogeneity.

The contribution of a cluster Ci to the within-cluster homogeneity of P is
defined by:

K(Ci) =
fCi

(Gi)

∆(P,L)
(29)

The sum of the k contributions is obviously 1.

A final criterion that is useful to interpret a cluster according to a variable
Yj is:

Qj(Ci) = 1−
f̃Ci

(ĝj
i )

f̃Ci
(ĝj

E)
(30)

This criterion measures the part of discrimination power of the variable Yj

taken into account by Ci. In other words this criterion helps the user to find
the variables which characterize the cluster Ci. Because the quality of the
cluster, Q(Ci), is a weighted average of the values Qj(Ci):

Q(Ci) =

p
∑

j=1

f̃Ci
(ĝj

E)

fCi
(GE)

Qj(Ci) (31)

the values of the criterion Qj(Ci) have to be interpreted by comparison with
the value Q(Ci). In other words we will consider that a variable Yj charac-
terizes the cluster Ci if Qj(Ci) > Q(Ci).

6 Application to the 60 meteorological stations

in China

The criteria proposed to interpret a partition have been applied to an interval
data set extracted from the Long-Term Instrumental Climatic Database of



15

the People’s Republic of China. This Database contains among other vari-
ables the temperatures observed in 60 meteorological stations in China. In
order to compare the 60 meteorological stations according to their tempera-
tures, a natural representation of each station is to describe each month by
an interval of minimal and maximal temperatures (see Table 1). Here we
worked with the temperatures of the year 1988 and we built an interval data
table of 60 rows and 12 columns corresponding to the 60 stations and the 12
months of the year.

On this data set we applied the first clustering method based on the Hausdorff
distance in order to interpret the results with the criteria proposed in the
previous section.

The number of clusters of the partitions was fixed to 5. The first algorithm
was repeated 50 times with different initializations and the best 5-clusters
partitions (i.e. minimizing ∆(P,L)) were retained. We computed the quality
criterion Q(P ) defined in (25) for the best partition and we found that this
partition explained 64,33% of the homogeneity.

In order to know a little bit more about the clusters of the best partition we
performed their quality Q(Ci) (× 100) and their contribution K(Ci) (× 100)
defined in (28) and (29) (see Table 2).

i size Q(Ci) K(Ci)

1 10 78.57 13.82

2 13 66.05 25.26

3 17 47.68 27.99

4 13 7.68 18.82

5 7 79.11 14.11

Table 2: Quality (× 100) and contribution (× 100) of the clusters Ci of the
best partition

Because the homogeneity of a cluster naturally increases with the number of
objects, this information has to be taken into account in the interpretation
of these criteria. For this reason we compare here the cluster C2 with the
cluster C4 both of which have 13 objects. We first notice that in Table 2
Q(C2) = 66, 05% whereas Q(C4) = 7, 68%. We have seen that the quality of a
cluster (× 100) is the percentage of gain of homogeneity obtained by replacing
the global prototype GE by the cluster prototype Gi. This criterion also
measures the adequacy between the two prototypes GE and Gi. This means
that here the cluster C2 is more “atypical” than C4 or, in other words, that
the objects of C4 are more similar to the “average” object GE . Concerning
the contributions we have K(C2) = 25, 26% and Q(C4) = 18, 82%. This
means that cluster C4 is more homogeneous than C1.
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Finally, in order to interpret the partition or the clusters according to the
variables, we computed, for the best partition and for each variable Yj , the
criterion Qj(P ) defined in (26) and, for the 5 clusters of the best partition,
the criterion Qj(Ci) defined in (30) (see Table 6).

Variable Qj Qj(C1) Qj(C2) Qj(C3) Qj(C4) Qj(C5)

January 69.50 82.85 70.17 56.13 11.28 79.39

February 66.18 77.62 63.61 48.43 8.45 82.82

March 64.52 78.69 64.75 44.60 14.03 78.31

April 64.36 72.31 71.39 40.78 6.36 84.75

May 61.68 69.56 67.23 37.89 7.34 79.97

June 53.36 77.41 63.91 32.88 5.55 66.87

July 46.31 74.50 50.00 31.79 4.73 62.26

August 47.19 75.76 53.99 28.04 3.24 46.54

September 61.10 78.18 65.58 28.16 6.85 76.59

October 70.41 82.98 75.09 49.59 7.20 83.37

November 70.63 79.55 73.60 61.02 4.22 84.67

December 71.33 82.01 62.55 68.39 11.23 81.86

Threshold 64.33 78.57 66.05 47.68 7.68 79.11

Table 3: Quality (× 100) of each variable (month), to the best partition and
its clusters Ci

Because a variable Yj can be considered as discriminant for a partition P if
Qj(P ) > Q(P ) and for the cluster Ci if Qj(Ci) > Q(Ci), we have indicated in
bold in Table 6 the values of Qj(p) and Qj(Ci) which verify these conditions.
Finally we see, in Table 6, that globally, the less discriminant variables are
June, July and August i.e. the three summer months.

7 Conclusion

The two methods shown above can be considered as the most suitable gen-
eralization of the classical DCA to the analysis of data expressed as intervals
of real values. In fact, the generalization of DCA to such a kind of data
could be formalized in a different way. The proposed approaches synthesize
the case of classes represented by an element belonging to the same space as
the objects to be clustered, as well as the case of classes that synthesize the
characteristics of the elements of a class.

As we have seen, the search for the partitions of objects described by interval
variables can be achieved by an optimization process as general as for the
DCA on classical data. Like for DCA in the classical context, the best fitting
between the representation and the allocation function is formalized by the
criterion, which is a guarantee of coherent results. Even if the proposed
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approaches appear different a priori, the results are quite similar because
the model of the prototype, chosen in each approach, characterizes the same
notion of coherence of a class.

In conclusion, we can remark that the choice of the kind of prototype usually
guides the choice of the clustering method.
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