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Abstract

In this paper we propose several goodness-of-fit tests based on robust measures

of skewness and tail weight. They can be seen as generalisations of the Jarque-Bera

test (Bera and Jarque, 1981) based on the classical skewness and kurtosis, and as

an alternative to the approach of Moors et al. (1996) using quantiles. The power

values and the robustness properties of the different tests are investigated by means

of simulations and applications on real data. We conclude that MC-LR, one of our

proposed tests, shows the best overall power and that it is moderately influenced by

outlying values.

1 Introduction

The third and fourth moments of a distribution are called the skewness and kurtosis. For

any distribution F with finite central moments µk up to k = 3, the skewness is defined as

γ1(F ) =
µ3(F )

µ2(F )3/2
.
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Skewness describes the asymmetry of a distribution. A symmetric distribution has zero

skewness, an asymmetric distribution with the largest tail to the right has positive skewness,

and a distribution with a longer left tail has negative skewness.

For any distribution F with finite central moments µk up to k = 4, the kurtosis is defined

as

γ2(F ) =
µ4(F )

µ2(F )2
.

There is no agreement on what it really measures. Strictly speaking, kurtosis measures both

peakedness and tail heaviness of a distribution relative to that of the normal distribution.

Consequently, its use is restricted to symmetric distributions. Finite-sample versions of γ1

and γ2 will be denoted by b1 and b2.

The classical skewness and kurtosis coefficient have some common disadvantages. They

both have a zero breakdown value and an unbounded influence function, and so they are

very sensitive to outlying values. One single outlier can make the estimate become very large

or small, making it hard to interpret. Another disadvantage is that they are only defined on

distributions having finite moments.

In Section 2 we propose several measures of skewness and of left and right tail weight for

univariate continuous distributions. Their interpretation is clear and they are robust against

outlying values. Contrary to the kurtosis coefficient, the tail weight measures can be applied

to symmetric as well as asymmetric distributions. In Section 3 we introduce some robust

goodness-of-fit tests. Section 4 and 5 include simulation results while Section 6 applies the

tests on real data. Finally, Section 7 concludes.

2 Robust measures of skewness and tail weight

Assume we have independently sampled n observations Xn = {x1, x2, ..., xn} from a contin-

uous univariate distribution F . We will consider the medcouple (MC), a robust skewness

measure, proposed in Brys et al. (2003) and extensively discussed in Brys et al. (2004a). It

is defined as

MC(F ) = med
x1<mF <x2

h(x1, x2)

with x1 and x2 sampled from F , mF = F−1(0.5) and the kernel function h given by

h(xi, xj) =
(xj −mF )− (mF − xi)

xj − xi

.
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This estimator has a breakdown value of 25% and a bounded influence function.

Furthermore, we consider the left medcouple (LMC) and right medcouple (RMC), respec-

tively the left and right tail weight measure, as defined in Brys et al. (2004c). To construct

these measures we have applied the medcouple to respectively the left and right half of the

samples:

LMC(F ) = −MC(x < mF ) and RMC(F ) = MC(x > mF ),

yielding a breakdown value of 12.5%.

Finite sample versions will be denoted by MCn, LMCn and RMCn. These measures can

be computed at any distribution, even when finite moments do not exist. Their computation

can be performed in O(n log n) time due to the fast algorithm described in Brys et al. (2004a).

They satify all natural requirements of skewness or tail weight measures including location

and scale invariance. More details can be found in the cited references.

3 Description of the tests

In this section we discuss goodness-of-fit tests for the following null and alternative hypoth-

esis:  H0 : The sample is drawn from a distribution F

H1 : The sample is not drawn from a distribution F

In this paper we will investigate the performance of the tests at F taken to be the χ2
2

distribution, the Student t3 distribution and the Tukey’s class of gh-distributions (Hoaglin

et al., 1985). When a random variable Z is standard gaussian distributed, then

Yg,h =


(egZ−1)

g
e

hZ2

2 g 6= 0

Ze
hZ2

2 g = 0

is said to follow a gh-distribution Gg,h with parameters g ∈ IR and h ≥ 0. The parameter g

controls the skewness of the distribution, whereas h effects the tail weight.

Bera and Jarque (1981) proposed a normality test using the classical skewness and kur-

tosis coefficient. As been stated in Moors et al. (1996), under the normality assumption

(γ1 = 0 and γ2 = 3) we can write:

√
n

 b1

b2

 →D N2

 0

3

 ,

 6 0

0 24


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which leads to the Jarque-Bera test statistic:

T = n

(
b2
1

6
+

(b2 − 3)2

24

)
≈ χ2

2.

This test can be viewed as a special case of the following generalization. Let w =

(w1, w2, ..., wk)
t be estimators of ω = (ω1, ω2, ..., ωk)

t, such that

√
n

(
w1 ... wk

)t
→D Nk (ω, Σk)

then, under H0, the generalized test statistic T

T = n(w − ω)tΣ−1
k (w − ω) ≈ χ2

k.

We can thus easily construct new goodness-of-fit tests, analogous to Brys et al. (2004b).

Taking k = 2, w1 = b1 and w2 = b2 leads to the generalized Jarque-Bera test (JB) with

ω1 = γ1 and ω2 = γ2. A test based on the medcouple (MC) given in Brys et al. (2004a) has

k = 1 and w1 = MC. Secondly, Brys et al. (2004b) propose to use the test of LMC or RMC

with k = 1 and w1 = LMC or w1 = RMC. Combining the skewness and respectivily the

left and right tail weight of a distribution leads to MC-L and MC-R with k = 2, w1 = MC,

and respectivily w2 = LMC and w2 = RMC. Next, we can define a test based on the left

and right medcouple (LR) with k = 2, w1 = LMC and w2 = RMC. Finally, we propose a

goodness-of-fit test MC-LR where k = 3, w1 = MC, w2 = LMC and w3 = RMC.

We will also include a test proposed in Moors et al. (1996). This test (MOORS) fits in the

framework of the above generalisation by using w1 = F−1(0.75)+F−1(0.25)−2F−1(0.5)
F−1(0.75)−F−1(0.25)

as a robust

measure of skewness and w2 = F−1(0.875)−F−1(0.625)+F−1(0.375)−F−1(0.125)
F−1(0.75)−F−1(0.25)

as a robust measure of

kurtosis. By using only quantiles of the data this test is resistant to 12.5% outliers in the

data. This is the same as for all tests based on LMC and/or RMC.

Table 1 shows the values of ω and Σk for several distributions F for the generalized

Jarque-Bera test, the MOORS test and the MC-LR test. By using the latter it is possible

to write down ω and Σk for the other goodness-of-fit tests based on MC. Table 1 is derived

from the influence function of the estimators, as described in Brys et al. (2004a) and in Brys

et al. (2004c).

4 Simulation study at uncontaminated distributions

We investigate the seven proposed tests by generating m = 1000 samples of size n = 100

and n = 1000 from a wide range of distributions. Note that in all Figures in this Section
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ω(JB) Σk(JB) ω(MOORS) Σk(MOORS) ω(MC-LR) Σk(MC-LR)

G0,0

(
0

3

) (
6 0

0 24

) (
0

1.23

) (
1.84 0

0 3.14

) 
0

0.199

0.199




1.25 0.323 −0.323

0.323 2.62 −0.0123

−0.323 −0.0123 2.62


χ2
2

(
2

9

) (
72 720

720 8.06e(3)

) (
0.262

1.31

) (
1.78 −0.152

−0.152 5.09

) 
0.338

−0.109

0.333




1.27 0.360 −0.310

0.360 2.75 −1.87e(−5)

−0.310 −1.87e(−5) 2.54


t3

(
−
−

) (
− −
− −

) (
0

1.40

) (
1.87 0

0 4.62

) 
0

0.297

0.297




1.36 0.221 −0.221

0.221 2.58 −0.0231

−0.221 −0.0231 2.58



Table 1: Asymptotic mean ω and covariance matrix Σk of the (joint) distribution of several

measures of skewness and tail weight, used in the JB test, the MOORS test and the MC-LR

test. (Note that 1e(3) stands for 1000.)

and in Section 5 the upper panel represents the results for n = 100 and the lower panel

shows them for n = 1000. Under the null hypothesis of G0,0, the alternatives are taken to

be Gg,h with (g, h) = (0, 0.1), (0.1, 0), (0.1, 0.1), while under the null of χ2
2, the alternatives

are χ2
k with k = 1, 3, 4 and under the null of t3, they are tk with k = 1, 2, 4. The results

were summarised by looking at p-value plots and size-power curves proposed by Wilk and

Gnanadesikan (1968) and recently reviewed by Davidson and MacKinnon (1998).

A p-value plot represents the empirical distribution function F (p) of the p-values ob-

tained by the simulation of the goodness-of-fit test at the null distribution. As in this case

significance values are supposed to be uniformly distributed, we expect this line to be as

close to the 45 degree line as possible. A confidence bound is plotted across this bissectrice

to take into account of sampling errors:[
p− 1.96

√
p(1− p)

m
; p + 1.96

√
p(1− p)

m

]
A size-power curve plots the empirical distribution function of the p-values at the null

distribution against its counterpart at an alternative distribution. In this way we are able to

compare tests with different size values as could be detected by a p-value plot. A powerful

test will have a size-power curve converging very rapidly towards one.

Let us first discuss the given tests concerning their p-value plots of Figure 1 in which the

left, middle and right panel respectively show the p-value plot with G0,0, t3 and χ2
2 as null

distribution. As all curves on the p-value plot are close to the 45 degree line, we may accept

our tests to be well defined. Only the JB tests aberrates from the confidence bound. This is

due to the slow rate of convergence of b1 and b2 to the bivariate normal limiting distribution
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of γ1 and γ2, a remark already made in Moors et al. (1996). Note that the JB test is omitted

at the t3 distribution because of the inexistence of the third and fourth moment in this case.
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Figure 1: The p-value plots with G0,0 (left panel), t3 (middle panel) and χ2
2 (right panel) as

null distribution. The upper panel represents n = 100 and the lower panel n = 1000.

In Figures 2-4 size-power plots are drawn. In Figure 2 the JB test clearly outperforms

all other tests. It can easily be seen that a slightly right skewed alternative (left panel) is

not very well detected by LMC, RMC and LR as they only use measures of tail weight. The

middle panel illustrates the incapability of MC to detect a heavier tailed distribution. A

right skewed and fat tailed distribution (right panel) again is difficult to detect using only

LMC. Of our proposed measures MC-LR presents the best power values. The MOORS test

only has higher power values on the middle panel of Figure 2.

Secondly, we consider Figure 3 which shows the size-power plot of the given tests at

the fat-tailed null distribution t3. Again the MC test cannot detect deviations from the
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Figure 2: The size-power curve at the null distribution of G0,0 and at the alternative distri-

butions G0.1,0 (left panel), G0,0.1 (middle panel) and G0.1,0.1 (right panel).

null distribution as all alternatives also have zero skewness. Here, the MOORS test is most

optimal, followed by LR and MC-LR. The JB test is omitted because of the inexistence of

the third and fourth moment at the t3 distribution.

In case χ2
2 is taken as the null distribution, we obtain in Figure 4 the resulting size-power

plot. Here, the MC-LR test and the MC-R test appear to be the best one, although at

n = 100 they are sometimes outperformed by the JB test.

5 Simulation study at contaminated distributions

In this section we want to compare the proposed tests with respect to their robustness.

To this end, we generated here contaminated m = 1000 samples of size n = 100 and

n = 1000 of a distribution F by taking a sample of size n(1− ε) of that distribution F and
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Figure 3: The size-power curve at the null distribution of t3 and at the alternative distribu-

tions t1 (left panel), t2 (middle panel) and t4 (right panel).

adding a contaminated sample of size nε. The latter can be N(F−1(0.5) + 2 ∗ F−1(0.999)−
F−1(0.001), 0.1) (right contamination, RC), N(F−1(0.5), F−1(0.999)−F−1(0.001)) (symmet-

ric contamination, SC), N(F−1(0.5) + 2 ∗F−1(0.001)−F−1(0.999), 0.1) (left contamination,

LC) or N(F−1(0.5), F−1(0.51)−F−1(0.49)) (central contamination, CC). Here we have taken

ε = 0.01 and ε = 0.02.

We will restrict ourselves to two tests, namely the MOORS test and MC-LR. The other

proposed robust alternatives are omitted due to their lower power values. Furthermore, it is

straightforward to see that the JB goodness-of-fit test is not able to handle outlying values

in a robust way. Indeed, as this test is based on moments of the data, it cannot cope right,

symmetric or left contamination. An exception is made at central contamination, because

in that case the third and fourth moment is only slightly changed, and the JB test remains

well defined here.
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Figure 4: The size-power curve at the null distribution of χ2
2 and at the alternative distribu-

tions χ2
1 (left panel), χ2

3 (middle panel) and χ2
4 (right panel).

From Figures 5 and 6 it is straightforward to see that the MOORS test and the MC-LR

test behave fairly correct in presence of outliers. When ε increases the MC-LR test deviates

more strongly than the MOORS test from the confidence bound, especially at n = 1000

(lower panel of Figure 6). Nevertheless, compared to the generalized Jarque-Bera test, the

MC-LR test is extremely better able to handle outlying values.

6 Applications

In this section we analyse four data sets which illustrate the robustness of the MOORS and

the MC-LR test compared to the JB test.

The first data set comes from the Associated Examining Board in Guilford (Cresswell,
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Figure 5: The p-value plot at the null distribution of G0,0 (left panel), of t3 (middle panel),

and of χ2
2 (right panel), contaminated case with ε = 0.01.

1990) and contains a sample of 1000 scores of students on the writing of a paper. From the

normal QQ-plot of Figure 7(a) and the boxplot in Figure 7(b) the assumption of normality

seems appropriate. Only four minor outliers are visible on the boxplot. In Table 2 the non-

robustness of the JB test is illustrated. Normality is rejected at the 5% significance level

when the outliers from the boxplot are included, but is accepted when they are excluded.

On the contrary, the MOORS test and our proposed MC-LR test is based on the majority

of the data and so they behave the same in both situations. As could be expected, they all

detect normality in this data set.

The stars data set (Rousseeuw and Leroy, 1987) contains the light intensity and the

surface temperature of 47 stars in the direction of Cygnus. A scatter plot of the data and

the robust LTS regression line (Rousseeuw, 1984) are shown in Figure 8(a). In regression,
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Figure 6: The p-value plot at the null distribution of G0,0 (left panel), of t3 (middle panel),

and of χ2
2 (right panel), contaminated case with ε = 0.02.
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Figure 7: The Guilford data: (a) normal QQ-plot; (b) boxplot.
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JB MOORS MC-LR

Guilford, outliers included 0.039 0.496 0.975

Guilford, outliers excluded 0.087 0.497 0.995

Stars, outliers included 0.000 0.867 0.290

Stars, outliers excluded 0.301 0.320 0.377

Baseball, outliers included 0.000 0.261 0.104

Baseball, outliers excluded 0.919 0.717 0.213

Procter, outliers included - 0.573 0.652

Procter, outliers excluded - 0.491 0.606

Table 2: Significance of the goodness-of-fit tests, with outliers included or excluded.

it is important to check normality of the residuals. Figure 8(b) and Figure 8(c) contain

the normal QQ-plot and the boxplot of the LTS residuals, from which five clear outliers

are visible. Table 2 shows again that the JB test lead to very different conclusions whether

or not these outliers are included in the data. Both MOORS and MC-LR are not highly

influenced by these outliers and confirm the normality assumption. We should be careful in

interpreting these results as this data set is very small and consequently the robust tests are

known to be very conservative. But still, this example shows the non-robustness of the JB

test.
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Figure 8: The Stars data: (a) Scatter plot with LTS regression line; (b) normal QQ-plot of

the residuals; (c) boxplot of the residuals.

The baseball data (Reichler, 1991) consists of 162 major league baseball players who

achieved true free agency. This means that the player could sell his services to the highest
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bidding team. A player is expected to handle in two possible directions. Or he plays badly

in the year of his free agency, because he is unhappy with his current team and he will play

much better in the next year. Or he pushes his performance in his free agency year in order

to get to a better team, but then he will play less well the next year. Here, we wanted to

test whether the batting average (hits per at bat) at the free agency year and at the next

year is bivariate normally distributed. Therefore we calculated the robust distances given

by

(x− µ̂)tΣ̂−1(x− µ̂)

in which µ̂ and Σ̂ are the Minimum Covariance Estimator (MCD) estimates of location and

scale (Rousseeuw, 1984). If the data follow a bivariate normal distribution, these robust

distances are approximately χ2
2 distributed. On the χ2

2 based QQ-plot of Figure 9 we no-

tice two prominent outliers. With these outliers included, the generalized Jarque-Bera test

rejects the null hypothesis, but the robust tests accept that the majority of the distances

are χ2
2 distributed. When excluding these two extreme values, both the JB and the robust

tests accept the null hypothesis, which implies that the original data are bivariate normally

distributed. We thus see that the JB test rejects the null hypothesis only in the presence of

the two outliers.
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Figure 9: The Baseball data: χ2
2 based QQ-plot of the robust distances.

From Datastream we collected the daily logaritmic returns of the Procter & Gamble

stock from Januari 2000 to December 2003, leading to a univariate data set consisting of

1004 values. From the t3 based QQ-plot of Figure 10, we could believe these data to be

likewise distributed. Indeed, both the MOORS and the MC-LR test do not reject the null

hypothesis, which is probably due to the majority of points which follow closely the imaginary

line on the QQ-plot. Excluding the extreme value didn’t change the results.
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Figure 10: The Procter & Gamble data: t3 based QQ-plot.

7 Conclusion

In this paper we discussed several goodness-of-fit tests in terms of robustness. The commonly

used Jarque-Bera test of normality was extended to become a goodness-of-fit test. Main

advantage of the generalized Jarque-Bera test is that its power values are reasonably high.

But, by means of p-value plots and size-power curves we noted that this test often fails to lead

to a correct actual size, due to the slow rate of convergence towards the limiting distribution.

Moreover, the test cannot be performed at distributions without finite moments, and as it

is based on moments of the data it is strongly influenced by the presence of outlying values.

Therefore Moors et al. (1996) proposed to replace the classical skewness and kurtosis

coefficient by robust alternatives, leading to the MOORS test. We conducted a similar

approach by using the measures proposed in Brys et al. (2004a) and in Brys et al. (2004c).

Combining the medcouple (MC), a robust skewness measure, with left and right tail weight

measures (LMC and RMC), we constructed the MC-LR test, which came out to be the best

of our proposed robust goodness-of-fit tests. Indeed, it appeared to be well defined at the

null distribution and it also appeared to be quite powerful. Compared to the MOORS test

the MC-LR test has often higher power values, and comparable sensitivity towards outliers.

In practice, we recommend to perform both the JB test and the robust MC-LR test. If

they give contradictory answers, this can either be due to the failure of the JB test in the

presence of outliers, or due to the conservative behaviour of the MC-LR test. In that case,

a further investigation of the data is required.
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