Penalised spline support vector classifiers:
computational issues

BY J.T. ORMEROD, M.P. WAND AND INGE KOCH

School of Mathematics and Statistics,
University of New South Wales, Sydney 2052, Australia

14th May, 2007

ABSTRACT

We study computational issues for support vector classification with penalised spline
kernels. We show that, compared with traditional kernels, computational times can be
drastically reduced in large problems making such problems feasible for sample sizes
as large as ~10%. The optimisation technology known as interior point methods plays a
central role. Penalised spline kernels are also shown to allow simple incorporation of
low-dimensional structure such as additivity. This can aid both interpretability and per-
formance.

Some keywords: Additive Models; Interior Point Methods; Low-dimensional Structure;
Low-rank Kernels; Semiparametric Regression; Support Vector Machines.

1 Introduction

Support vector classifiers (SVC) are a relatively new family of classifiers that are enjoy-
ing increasing use and success and, according to some accounts (e.g. Breiman, 2001), are
superseding neural network classifiers. Expositions of support support vector classifica-
tion include Burges (1998), Cristianini & Shawe-Taylor (2000) and Schélkopf and Smola
(2002). Different members of the family of support vector classifiers are distinguished by
their kernel, a positive definite symmetric function on R? x R? where d is the dimension
of the predictor space, and choice of a few parameters such as the scale of the kernel. A
drawback of many of the commonly used kernels is that fitting algorithms are at least
O(n?) where n is the size of the training set (Simon, 2004; Hush, Kelly, Scovel & Stein-
wart, 2006). This can hinder their application to large problems, although remedies based
on approximation ideas have been proposed by, for example, Smola & Schélkopf (2000),
Williams & Seeger (2001) and Scholkopf & Smola (2002, Chapter 10).

Recently, Pearce & Wand (2006) showed how the design structure of low-rank semi-
parametric regression models (e.g. Ruppert, Wand & Carroll, 2003) can be used in the
support vector classification context. The basic ingredients are kernels arising from pe-
nalised splines. Such kernels have the following advantages:

e They are low-rank in the sense that their eigen-decomposition involves only K non-
zero eigenvalues where K is the number of spline basis functions and is typically
much smaller than n. An alternative way of describing the low-rank property is

that the Gram matrix factorises into the product of an n x K matrix and its trans-
pose. The low-rank property lends itself to the use of interior point methods (Fine &
Scheinberg, 2001; Scholkopf & Smola, 2002 and Ferris and Munson, 2003). While
interior point methods can be used for any choice of kernel, in the case of low-rank
kernel representations the cost of each iteration is accelerated from O(n?) to O(nK?)
operations. This can be a drastic improvement upon common support vector classi-
tiers making problems with n even in the hundreds of thousands feasible. Further-
more, optimality conditions for interior point algorithms are much more closely
satisfied by interior point methods than decomposition type algorithms such as
SMO (Scholkopf & Smola, 2002, Chapter 10). Implementation of these algorithms
for penalised spline kernels is the central focus of this paper.

e The incorporation of low-dimensional structure such as additivity is relatively straight-
forward (Hastie & Tibshirani, 1990). Hastie, Tibshirani and Friedman (2001; Sec-
tions 2.5 and 12.3.4) demonstrate that classifiers that allow for low-dimensional
structure can perform better than those that do not. Classifiers with low-dimen-
sional structure are also more interpretable.

e They correspond to a finite-dimensional kernelisation of the original feature space.
This permits easier software management. Further details on this aspect are given
in Section 2.

A possible disadvantage of low-rank kernels is that the set of basis functions is finite
and may not be as flexible as a full-rank kernel. However, several studies on low-rank
splines and kernels (e.g. Schoenberg, 1968; Wahba, 1990; Hastie, 1996; Fine & Scheinberg,
2001, Scholkopf & Smola (2002) and Wood, 2003) have shown that the difference between
low-rank and full-rank performance is often minimal.

Some discussion on the choice of low-rank kernels is in order. Most of the work in
this area is for spline smoothing, rather than general reproducing kernel methods, but the
principles are the same. There are two general approaches to construction of low-rank
splines. One is to start with a full-rank kernel and then derive low-rank approximations
(e.g. Hastie, 1996; Smola & Scholkopf, 2000; Williams & Seeger, 2001; Scholkopf & Smola,
2002; Wood, 2003). The other is to simply devise a ‘sensible’ low-rank spline algorithm
(e.g. Eilers & Marx, 1996; Nychka et al., 1998; Ruppert et al., 2003; Yau, Kohn & Wood,
2003). Each have their advantages and disadvantages, but the latter can have significant
computational advantages and are more readily interpretable (as illustrated in Figure 1).
Details are given in Section 2.

The main purpose of this article is to show how interior point methods can be used to
facilitate fast fitting of penalised spline support vector classifiers. The resulting classifier
has linear storage requirements and, storage aside, is able to train massive training sam-
ples in reasonable time. We also describe some novel classification models based on low-
dimensional thin plate splines and additivity structures which can have interpretability
advantages.

The next section gives an overview of penalised spline support vector classifiers. In
Section 3 we describe their efficient computation via interior point methods. Section 4
makes some comparisons between penalised spline and common support vector classi-
fiers in terms of computational time and predictive accuracy. Some concluding discussion
is given in Section 5.

2 Penalised Spline Support Vector Classifiers

Denote the training data by (x;,v;), 1 < i < n, were x; € R? and y; € {—1,1}. This cor-
responds to two-class classification. Multiclass problems can be handled by application
of two-class classification to various class pairs (e.g. Hastie, Tibshirani and Friedman,
2001, Section 12.3.7). We seek classifiers f : R — R such that a new observation x € R¢
is classified according to sign{ f(x)}. Throughout we assume the ‘classical’ n >> d situ-
ation. The reverse situation, sometimes labelled ‘high dimension, low sample size’, has
received considerable recent attention, particularly in computational genomics (e.g. Du-
doit, Fridyland and Speed, 2002). However penalised spline kernels are more suited to
classical classification problems.
Penalised spline classifiers may be based on various full-dimensional or low-dimensional

‘models’ for f. For illustratory purposes take d = 5 with x = (x1,...,z5). Possible mod-
els for f(x1,zo,x3, 24, 5) are

(A) f(x1,x9, 23,24, T5) (general quinvariate function)
B) fi(w1) + fa(z2) + f3(23) (additive function of all 5 variables)
+fa(za) + f5(25)
©) fi(z1) + f3(x3) + fazy) (additive function of only 3 variables)
(D) fi2(x1,22) + f345(w3, 24, 25) (sum of bivariate and trivariate functions)
(E) fi(z1) + Baxy (additive function of 2 variables, but one linear)

Note that the models (C) and (E) correspond to the situation where some of the predic-
tors are deemed to have negligible predictive power for classification. Such parsimonious
models are important in certain applications (most notably, data mining) where identifi-
cation of the driving factors behind a particular outcome is of intrinsic interest.

Commonly used kernels in support vector classification software correspond to the
full model (A). Penalised spline kernels can be tailored to any such model. The kernel
arises from the basis functions used to model f. There are several families of basis func-
tions that can be used to construct penalised spline models (e.g. Ruppert et al., 2003,
Section 3.7). Here we will limit discussion to a class of radially symmetric basis func-
tions based on thin plate splines (French, Kammann and Wand, 2001). Suppose that a
d’-dimensional function is required where 1 < d’ < d and let m be an integer such that
2m > d'. Then, for x' € R?, we consider models of the form

p/ K’
Fnar () = Bibs(x) + > urhi(¥')
j=1 k=1

where {¢;} is the set of all p’ = (dur:lf”l) d’-dimensional polynomials in the components
of x’ with degree less than m and

(X)) = Yp(x'sm, d', &) = k™ entry of [r,e (X — K:)][Fma (ki — ki)Y
1<i<K' 1<,/ <K’
Here)
. (X/) _ HX/H2mfd d/ odd
T LK P log || d even
and K1,...,Kg’ € R? is a set of K’ knots. Full-rank thin plate spline models use K = n

and k; = x}, 1 < k < n where the x)_are the d’-variate sub-vectors of the x;, corre-

sponding to x’ € R?. Throughout we use ||v|| = vVvTv to denote the length of the vector
v.

One common approach to low-rank spline smoothing (e.g. Ruppert et al., 2003) is to
use K < n knots and choose the £, to ‘mimic’ the x/s. A simple strategy is to draw a
random sample of size K from the x/s. Alternatively, one can use deterministic rules
that aim to somehow ‘fill the space’ of the z/s. For one-dimensional fitting (d' = 1)
taking kj ~ (k/K)th sample quantile of the unique x}’s achieves this aim. For higher
dimensions distance-design algorithms such as those used by Nychka and Saltzman (1998)
can be used. Let D be a subset of observed points x; called design points and C be a subset
of observed points z; called candidate points with D N C = ¢. Then the coverage of C by
points in D is given by

(1/0)
Cop(D) = (Z da(m,D)b> 1)

xzeC
where

(1/a)
dq(, D) = (Z Hw—UH“> 2)
u€D
and a < 0 and b > 0. Minimising C,,; fills the space around the data. Minimisation is
conducted by making pairwise swaps of points in D with points in C until the coverage
Cqp does not decrease. If we choose D to be our set of knots then this procedure requires
at least O(Kn?) computations and O(nK) storage. Note that as @ — —oo and b — o0
minimising C,; converges to the minimax space filling designs discussed in Johnson,
Moore and Ylvisaker (1990) and with a — —oo and b = 1 converges to the criteria used
by the CLARA and PAM algorithms of Kaufman and Rousseeuw (1990). Note that the
implementation of CLARA lowers computational speed by examining subsamples of the
data. By doing this CLARA achieves approximate clustering in O(SK ?n) computations

(assuming S subsamples of size O(K)).

For general penalised spline support vector classification the model for f dictates the
set of spline basis functions which, in turn, dictates the kernel. In the d = 5 example with
m = 2 thin plate splines, model (C) leads to

K1 K3
fox) = Po+ B+ unte(®1;2,1,5") + Baws + Y ugkth(rs; 2,1, 5%)
k=1 k=1
Ky
+Bama + Y ugpth (22,1, 57)
k=1
where k7 = (ﬁ{, ey /si(j) is a set of univariate knots corresponding to xz; (j = 1,3, 4). The
kernel for this model is
K
,CC(Sa t) = 1+s1t1 + s3t3 + s4tq + Z wk(sl; 2’]-7 K'l)wk(tl; 27]-7 Hl)
k=1
K3 K4
+ Z wk($3; 27 17 ﬁg)wk(tiﬁ 27 17 K/3) + Z 1/%(84; 27 17 K/4)1/}k(t4; 27 17 /4’4)
k=1 k=1

fors = (81,... ,85),13 = (tl,... ,t5) € R5.
Model (D) has spline basis representation

K12
fo(x) = Bo+Blalwr 2" + > wwthr(z1, 72;2,2,6'%)
k=1

4

K3ys

+B3slws wa 5] + Y usasetr(ws, 74, 7532, 3, 5)
k=1

345

where £'? denotes a set of knots in the (1, z3) space and k°*° denotes a set of knots in

the (z3, x4, x5) space. The corresponding kernel is

Ki2
,CD(S, t) =1 + STt + Z ’l/)k(sl, 595 2, 2, Klm)’l/Jk(tl, tQ; 2, 2, K.12)
k=1
K345
+ Z wk($37 S4, S5, 27 37 5345)¢k(t37 t47 t57 27 37 E345)'
k=1

Once the model, or kernel, is decided upon then there are two more choices to be
made for penalised spline support vector classifiers:

(1) the subset of basis functions that are unpenalised, and

(2) the number of distinct penalisation parameters and their allocation to the penalised
basis functions.

In support vector classification it is usual to just leave the intercept 5y unpenalised. In
spline smoothing all of the polynomial terms are usually left unpenalised. We will use
X for the design matrix of unpenalised terms and Z for the design matrix of penalised
terms. The respective coefficients will be denoted by 8 and u. The ith fitted value is then

f(xi) = (XB + Zu);.

If only the intercept is penalised then X is a column of ones and 8 = 3. Let

L
Zu = Z ZgUg
(=1

for some partition Z1, . . ., Zy, of Z such that each u, has its own penalty parameter \,. The
‘natural’ choice for the Z, is that for which each predictor variable has its own smoothing
parameters. So for model (D) with only 3 being unpenalised we would have L = 2,

Z1 = [v1i 22 Yr(@10, 2552, 2, K2)]1<i<n
1<k<Ki2

and

Zo = [x3; T4i T5i kT30, Tai, T5i; 2, 3, K54°)]

1<k<K3zu5

1<i<n-

The penalised spline support vector classifier minimises

n L
S {1 —u(XB+Zu)i} + > Aefugl”.
i—1 =1

This is equivalent to the constrained optimisation problem

min 3¢ Mrlfuel? + T, &
B,u

3)
subjectto §; > 0, y;(XB +Zu); > 1 —¢; foralll <i<n.

5

This problem, in turn, leads to the quadratic programming problem

min(—1Te + ;o' Da)
a
(4)

subjectto 0 < a; <1, forall 1 <i <n, and Xao®y)=0

where
D= %(ny) ©®(ZA'Z") and A =diag(M\i1,...,AL1)

Here A ® B denotes the element-wise product of equal-sized matrices A and B and 1 is
the vector of ones of appropriate length. See Pearce & Wand (2006) for details. Since the
Gram matrix admits the factorisation

1ZA'ZT = ZZ" where Z=Z(2A)Y?
the quadratic programming problem becomes

min[-1Ta + 3a™{(yy") © (2Z7)}e]
)

subject to0 < o; < 1, forall 1 <i <n, and X" (a ®y) = 0.

The ‘bottom line” of this section is that penalised spline support vector classifiers are
just ordinary hyperplane support vector classifiers with the original features x; € R4
replaced by z; € RE, 1 <i<mn, corresponding to the rows of Z (with K denoting the
number of columns in Z). This makes software management relatively simple since only
y, X and the n x K matrix Z need to be passed to a quadratic programming routine.
Software for general support vector classifiers either needs to deal with O(n?) storage of
the Gram matrix or evaluate the kernel inside an algorithm such as Sequential Minimal
Optimisation (SMO) (e.g. Cristianini & Shawe-Taylor, 2000). An even bigger payoff is
the fact that the Gram matrix ZZT has rank K. The next section summarises an efficient
algorithm for solving the problem when this is the case.

3 Interior Point Methods

Interior Point Methods (IPM) are one of the most important developments in optimisa-
tion in the last two decades. In this section we provide the minimal information needed to
code a reasonably efficient interior point method for support vector classification. More
efficient methods exist, but they involve extra complexity which obscure the main ideas.
Extensive literature exists on interior point methods. For an introduction the reader is
referred to Wright (1997), Nocedal & Wright (1999) and Boyd & Vandenberghe (2004).
For interior point methods in the context of support vector machines the reader is re-
ferred to Fine & Scheinberg (2001), Scholkopf & Smola, (2002), Ferris & Munson (2003)
and Vandenberghe & Comanor (2003).

3.1 Description

Interior point methods have been developed to solve most convex programming prob-
lems (see Boyd & Vandenberghe, 2004). However, unless special structure is available,
these methods are restrictive when the dimension of the optimisation problem becomes
large.

Our goal is to solve the dual optimisation problem (5). Its corresponding primal prob-
lem may be written

. 2 n)
Suin, lall* + >, & o

subject to &;, (; > 0, y;(XB + Zu)l +&—¢G=1, foralll<i<n

where € = (&1,...,§,) and ¢ = ((1,...,¢n). Note that this problem corresponds to (3)
but with Z replaced by Z and the introduction of slack variables ¢;, 1 < i < n. For
compactness of notation we define

A = X"diag(y), and V = Z'diag(y).

IPMs start with an initial guess and iteratively find better solutions until some conver-
gence criteria is reached. They focus on a system of quadratic equations made up of the
primal constraints, dual constrains and the perturbed complementary slackness condi-
tions induced by a log barrier function (see Boyd & Vandenberghe, 2004). These condi-
tions are

ViVa+ATg+¢—-¢ =1 (Primal Feasibility)
Aa =1 (Dual Feasibility)
(a; —1)¢; =t (Perturbed Complementary Slackness)
a;¢; =1t (Perturbed Complementary Slackness)

)

where ¢ is some positive constant. Let the solution of such a system of equations be a,
B, &€ and ¢ and let P* denote the optimal value of the primal objective (6). Then it can be
shown (Boyd & Vandenberghe, 2004) that

la'viva-1Ta - P* < 2nt.

Hence reduction of ¢ leads to solutions of the original and the perturbed problems be-
coming closer.

Let o), gU), ¢ £0) denote the values of a, 8, ¢ and £ after the jth iteration of the
interior point method. A “cold” initial point is calculated using

az(o) =¢ B0 =0, £§0) = max(e,s;) and CZ-(O) = max(e,fi(o) —8;)

where s = 1 — VI'Va — ATB and ¢ is a small constant, say ¢ = 10~2. This is a good
starting point when the number of support vectors is small.

The system of equations (7) cannot be easily solved. Instead, in the spirit of Newton’s
method, we linearise around our current point by substituting

oV + A, B9+ AB, €9 +A¢ and ¢V 4+ A¢

into (7) and “solve” the resulting equations, in this order, to get the search direction vector
(Aa, AB, AL, AQ):

AB ={AT(VTV+D)"'A}(ATr; — 1),
Aa =r5— (VIV+D)1AAB,
R () S NSIN €)) 8)
AG =13 CZ Aaz/ai)
A& =ri+¢"Aai/(1-a”)

where
ri1 =1-VTval) - ATRU) _¢() 4 ¢U),
ry =—Aal),
T3, — (t — AazACz)/
T4 = (t + AO[ZA&)/
rs = (VTV + D)il

o) _ AJ') 9)
(1- Z) &,
(

r —|—r3 —ry4)

and

D = diag{¢")/(1 — o) + ¢ jal}.

1<i<n

Newton’s method substitutes
Aa=AB=A =A(=0

into (9) for a given value of ¢t and then uses the values in (9) to calculate (8). However
a similar method, the predictor-corrector method, usually accelerates the convergence
of the algorithm (Mehrotra, 1992). In order to calculate the Newton predictor-corrector
direction Aa, AB, A and Al we

1. find ry,...,ry by substituting a, gl W), ¢U) t =0, A =0, A8 =0, A =0
and A(= 0 into (9) and then calculate (8); and

2. recalculate r3 and ry by substituting), gU), £U), ¢() and the values of Aa, A,
A¢ and A(from Step 1 into (9) and then recalculate (8).

Once we have a search direction we take the maximum step size 7 € (0, 1) such that
0<a +7Aa<1,£69 +7A¢ > 0and ¢Y) + 7A¢ > 0. This method of finding the step
size is called simple dampening. Other step lengths exist (see Mészaros, 1999). Once the
step size 7 is found we update our values using

alt) = ol 4 (1 — e)TAa
Ut = gU) 4 (1 —e)rAB
Ut = £0) 4 (1 —e)7AL
¢UtD) = ¢0) 4 (1—e)TAL

(10)

The factor (1 — ¢) is included to ensure numerical feasibility. At each iteration we
reduce ¢ using

a@DT @) 41— Te®)(1— T_,_)
((n(10+7)2 A - (11)

We stop when
aWT¢l) 4 (1 — a)Tel)

(12)
for some tolerance § > 0.

3.2 Iteration Cost

For support vector machines it is common to have K, d < n. All steps are less than cubic
in the number of operations so we can effectively ignore costs that do not involve n.

The main cost in IPMs for support vector classification is solving systems of the form
(VTVa + D) = b. Forming V'V explicitly is expensive both computationally and in
terms of storage. If we form VTV explicitly then factorising VTV + D requires O(n?)

operations and O(n?) storage. Much cheaper alternatives include use of the Sherman-
Morrison-Woodbury formula and product form Cholesky factorisation. Each require
O(nK?) operations and O(nK) storage. The Sherman-Morrison-Woodbury formula is

VIV+D) =D !'-D'VI1+ VD Vv~ lvD L (13)

Note that I + VD 'VT is generally positive definite and can be factorised efficiently
using Cholesky factorisation in O(K?) operations. However the main cost in calculating
(13) is calculating VD ~!VT which requires O(nK?) operations. Product form Cholesky
factorisation is more numerically stable but its description is more involved. Details on
this approach are given in Fine and Scheinberg (2001).

3.3 Number of iterations

The overall complexity of the algorithm greatly depends on the number of iterations be-
fore convergence criteria are satisfied. The number of iterations depends on the choice
of starting point, the method used to find the search direction, the step-size used to find
the next iterate and how the parameter ¢ is reduced. It can be shown that a naively coded
IPM with a Newton predictor-corrector step direction gives a theoretical bound of O(n) it-
erations for convergence (Boyd & Vandenberghe, 2004). State-of-the-art algorithms have
been shown to have a worst case complexity of O(y/n). However, extensive numerical ex-
perience shows that the number of iterations for IPMs is almost constant. See, for example,
Fine & Scheinberg (2001).

4 Comparisons

Most of this section deals with additive functions of all variables as described in model
(B). For these models we present some time comparisons based on different implementa-
tions. We compare the misclassification rates arising from different kernels for a number
of well-known data sets. Lastly we present some preliminary results on extensions to
bivariate models.

4.1 Kernels and Settings

We compare the performance of three different kernels. These are

1. the linear kernel (referred to as linear)

K(s,t) =s’t;

2. the radial basis function kernel (referred to as RBF)
K(s,t) = exp(—[s — t]*)
for some v > 0; and

3. the truncated lines penalised spline kernel (referred to as PSVC)

K;

K(s,t) :ZZ S5 = Kjk)+(t = Kjk)+,

]:1 =

[y

where, for 1 < k < K, ki is the kth knot for the jth predictor.

Note that the linear and truncated lines penalised spline kernel can be seen as dif-
ferent cases of model (B) whereas the RBF kernel is an example of models of type (A).
Having decided upon the kernels, we make the following choices for the subset of basis
functions and penalisation parameters.

EL)th sample quantile of

e K; = 20 knots for each predictor, with &, equal to the (K+

the unique predictor values.

Linear and intercept terms are unpenalised for the penalised spline so that

X = [1 Ti1l .- xid]lgign

The intercept term is unpenalised for the radial basis function and linear kernels.

We use v = 1/d as the default value in the svm() function of the R package €1071.

Choices for the smoothing parameters A are given separately in the following sec-
tions.

Note that the svm() function in R is restricted to the case where only the intercept
term is unpenalised. For the more general case one may need to resort to standard convex
quadratic programming software such as that provided by the quadprog package in R.

In the computations described in the next sections, we use the standardised or scaled
data.

4.2 Timing Comparisons

We compare the computation times of two different MATLAB implementations of the in-
terior point method described in Section 3 with the R package quadprog (Turlach &
Weingessel, 2006) which has a Fortran back-end for penalised spline support vector
classifiers using the PSVC kernel described in Section 4.1. The two different MATLAB
implementations differ in the method used to ‘invert’ VTV + D. The first implemen-
tation ‘inverts’ VTV + D using MATLAB’s inbuilt \ (backslash) operator. We refer to
this method as FULL. The second implementation ‘inverts’ VTV + D using Sherman-
Morrison-Woodbury’s formula (13). We refer to this implementation as SMW. The MATLAB
implementations terminate when the duality gap is smaller than 10~%. The R package
guadprog is an active-set method and so cannot be compared in terms of inverting the
VTV + D matrix. The quadprog package stops when no constraints are violated in the
active set.

We base the time comparisons on the 4 dimensional ‘skin of the orange” setting de-
scribed in Section 12.3.4 of Hastie, Tibshirani & Friedman (2001). The “skin of the orange’
data is generated by simulating two classes of points. Each data point from the first
class is simulated from 4 independent standard normally distributed random variables
X1, X9, X3, X4 while each data point from the second class is simulated from 4 inde-
pendent standard normally distributed random variables X, X5, X3, X4 conditioned on
9< 3 X?<16.

Of particular interest is the effect of the sample size on computing times. For this
reason we use sample sizes n = 200, 1000 and 5000. In all simulations other than the case
of n = 5000 for R’s QP method, we used 50 runs. For the largest sample size with R the
times are based on 10 runs only. The mean times and standard errors are given in Table
1. We choose the smoothing parameters Aj, ..., \; for the penalised spline SVC so that
each function has approximately 6 degrees of freedom.

10

QP FULL
QP FULL SMW o SN

n=200 0.49 (0.0007) 0.53 (0.0004) 0.05 (0.0007) 9.80 10.06
n=1,000 68.51(0.1401) 4.95(0.0145) 0.50 (0.0016) 137.02 9.90
n=5000 9210.57 (4.9080) 511.76 (0.1773) 3.98 (0.0027) 231421 128.58

Table 1: Average times in seconds for the 4 dimensional ‘skin of the orange’ example using the
two MATLAB implementations of the interior point method FULL and SMW and direct quadratic
programming (QP) over 50 trials. Standard errors are given in brackets.

The computations were performed on dual Opteron 2.0 GHz CPUs with 4 GB RAM
and MATLAB version 7.01 and R version 2.0.0. In addition to the mean times in seconds
and their standard errors, we also show ratios of times with the SMW implementations in
the last two columns of Table 1 . The ratios provide further insight, because they are less
dependent on changes in the computing environment. Nevertheless, the average times
themselves give a real life aspect to the problem in that they indicate how long a user
would have to wait for classifications in 2007 using a typical computing environment.

The comparisons in Table 1 show that huge time and storage savings can be obtained
from using custom built convex quadratic programming solvers for low-rank kernels. In
particular it has been possible to solve support vector classification problems with more
than 10° training points, a task which would be practically impossible for general convex
quadratic programming problems.

4.3 Performance Comparisons

We return to the three kernels listed in Section 4.1 and compare their performance for a
number of well known real data sets which are available on the UCI Machine Learning
Repository (Blake & Merz, 1998). In addition we have included the 2-dimensional Checker
data which can be obtained on-line (Ho and Kleinberg, 1996), and the Skin (‘skin of the
orange’) data sets of Hastie et al. (2001).

As all data sets have labels, classification performance of the three kernels is measured
in terms of the misclassification rate. In our calculations we choose the smoothing (or
‘cost’) parameter for the linear and radial basis SVCs via 10-fold cross-validation using
Ai = Afor all i and A being chosen from 50 logarithmically equally spaced points between
2715 and 21°.

Our results are reported in Table 2 . We calculate the mean misclassification rate over
50 runs based on 10-fold cross-validation. We then determine the minimum over all 50
values of the smoothing parameter. This minimum value is our quoted misclassification
rate. Standard errors at the minimum are given in brackets. The table lists the data sets
together with their sample size and dimension or number of features, so the quantity d
in the table refers to the dimension and does not count the labels as a dimension.

We also calculated average misclassification rates based on 50 runs with random 25%
and 40% subsets of the data held back for testing. However these results were fairly
similar to those given in Table 2 and so are not included.

Table 2 shows that the classification performance of PSVC, the additive penalised
spline SVC, is comparable with (or better than) that of the RBE, the radial basis SVC, in
all cases other than the Checker data set.

In addition, as previously stated, the use of the truncated lines penalised spline (and
similar) kernels are inherently more interpretable. Figure 1 provides an illustration of a
penalised spline support vector machine classification. The model is an additive function

11

Data n d Linear RBF PSVC
Balance 625 4 476(0.13) 1.75(0.08) 0.63 (0.04)
Bupa 345 6 30.29 (0.50) 29.43 (0.46) 26.00 (0.40)
Checker 1000 2 48.60(0.23) 3.10(0.04) 39.10(0.13)
Cmc 1473 10 31.44 (0.09) 28.95 (0.08) 27.26 (0.07)
Haberman 306 3 26.11(0.50) 26.42(0.49) 24.18 (0.43)
Pid 768 9 22.03(0.17) 23.18(0.19) 22.67(0.19)

Skin200 200 4 4450(042) 4.50(0.35) 5.00 (0.29)
Skin1000 1000 4 48.20(0.30) 4.20(0.05) 4.00 (0.05)
Votes 435 16 4.09(0.18) 3.41(0.09) 3.86(0.17)
Whbed 569 31 2.89(0.08) 2.90(0.07) 2.92 (0.04)

Table 2: Average (standard error) misclassification rates based on 10-fold cross-validation using
a Linear, RBF and PSVC.

of 16 predictors of spam versus ordinary e-mail, with spam messages coded as +1 and
ordinary messages coded as —1. See Hastie, Tibshirani and Friedman (2001) for a descrip-
tion of the these ‘spam’ data. Each panel shows the slice of the classification surface for
the labelled predictor, with all other predictors set to their medians. Assuming the model
in some way reflects reality, it appears, for example, that frequency of the word ‘free” has
a monotonic effect on classification while frequency of exclamation marks (ch?!) has a
non-monotonic effect. Thus increasing the word ‘free” in an email increases the chance
the email will be classified as spam whereas the chances increase or decrease depending
on how many exclamation marks are already in the email. In some classification con-
texts, the type of relationship may be important for interpretation. Note that Figure 1 is
visually similar to Figure 9.1 in Hastie, Tibshirani and Friedman (2001) with differences
occurring mainly where data are sparse.

4.4 Extension to Bivariate Models

In the previous section we compared misclassification rates for a number of different
kernels. In all cases (apart from the Checker example) PSVC performed at least as well as
the other kernel methods and often better. For this reason we focus on penalised spline
kernels and consider bivariate models such as

Fop@ (@p1)s Tp2) + Fo@)p) (@p@), Tpa)) + FoG)p6) (Zp(5) Tp(e)) (14)

where (p(1),...,p(d)) is a permutation of (1,...,d). This model is most similar to model
(D), but is restricted to bivariate functions.

The design matrix consists of the constant term only, so that X is a vector of ones, and
the Z matrix is extended to contain linear, mixed and quadratic terms. We consider three
different forms for Z:

e 7, contains mixed terms Tp(j)Tp(j+1) only;
e 7, contains linear terms and mixed terms;
e Z3 contains linear, quadratic and mixed terms.

More specifically, we consider the entries in the Z matrix which arise from the linear,
mixed and quadratic contributions. Let Z;,, denote the design matrix of the linear terms.

12

our over remove internet

| e—rerrr—— ~ S «

IS) /T_ IS ﬁ o 7& o W

a a al a

| | | |

< < < <~]

[B R N R ! [T T T T [I R R R R R
0 1 2 83 4 5 6 0 1 2 3 4 0 1 2 3 4 01 2 83 4 5 6

free business hp hpl

O =] m———rrm——— R ——— o = srr——n o —f s

T e - .

[s\) [a\) (a\) a

| | | |

s < < N— - v\

[S R E— P f f T T [e p s B e
0 2 4 6 8 10 0 1 2 3 4 0O 2 4 6 8 10 0 2 4 6 8 10

george 1999 re edu

P - : o m—mr———— O S—— JR——

o o _— o _— o _—

| | | |

i \ . . .

[e e e [T f 1 T [N [1 t f T
0.0 0.2 0.4 0.6 0 1 2 3 4 0 2 4 6 8 10 0 2 4 6 8

ch! ch$ CAPMAX CAPTOT

)
I
\k
(

4 2
4 -2

1 1 T T T T
0 200 600 1000 0 1000 3000

o
N
i
(o2
©
-
o
o
N
w
IS

Figure 1: A penalised spline support vector classifier for the ‘spam’ data. An additive model
version is used. The tick-marks show the predictor values: spam messages along the top, normal
messages along the bottom.

The ith row of Z,,, consists of the terms
(l'ij_’fjk)Jr fOI‘ 1 S]Sd, 1§k‘§KJ (15)

Similarly let Z,.q denote the design matrix of the quadratic terms. The ith row of Z .4
consists of the terms

(acij — K'/jk)+2 fOI‘ 1 gj S d, 1 é k S Kj. (16)
Finally, terms of the form
(@ip(j) = Fp(yk)+ X (Tip(i+1) = Fp(i+1)1) 45 - - (Tip() = Fpiye) + X (Tip(j41) — “p(j+1)z<p<j+1)1)7+

forp(j) =1,3,...d -1, 1 <k < K,,(;) contribute to the ith row of the design matrix Z,
of the mixed terms. Here p(j) and p(j + 1) denote consecutive terms of the permutation
in (14). Using this notation, the three different Z matrices are

Zl - Zmix
22 - [Zlin Zmix]
Z3 - [Zlin unad Zmix]' (18)

In analogy with the one-dimensional results we calculate the best misclassification
rate over a range of \ values (same as in the univariate case) via 10-fold cross-validation.

13

Data n d 1-d Results 2-d Results Selected Model
Iris 150 4 3.33(0.29) 1.33(0.23) 7z,
Checker 1000 2 39.1(0.13) 26.3(0.18) Zs
Bupa 345 6 26.0(0.40) 23.7 (0.49) Z

Table 3: Mean misclassification rates based on 10-fold cross-validation with bivariate PSVC.
Standard errors are given in brackets.

We apply these models to three different data sets: the well known Iris data set; the
Checker data set; and the Bupa liver data set. We have not used the 4-dimensional Balance
data set since the univariate PSVC results show a very low misclassification rate, and big
improvements are therefore not expected.

The Iris data have 4 variables and 3 classes. Here we label the first and second species
as one class and compare this combined class to the third species. The Checker data are
bivariate, so no selection of combinations of variables is necessary.

The Bupa liver data have 6 dimensions. We calculate all 15 combinations of pairwise
models with Z. These results vary greatly, and some combinations do not perform better
than the additive model. As a second step we use models Z5 and Z3. The lowest mis-
classification rate is again lower than for the univariate case, and comparable to the best
misclassification rate obtained with model Z;.

Table 3 displays the bivariate results. As in the univariate case the misclassification
rate is the minimum of the mean classification rates, where the minimum is taken over the
values of the smoothing parameter A. The means are based on 10-fold cross validation,
and the corresponding standard errors are given in brackets. The table also includes the
1-dimensional misclassifications obtained with PSVC. For the complete Checker example
and for the Bupa liver data we have made use of the values given in Table 2 .

These preliminary results demonstrate that the misclassification rate can be reduced
considerably when employing bivariate models.

5 Discussion

Support vector classifiers are increasingly used in classification problems. Pearce & Wand
(2006) considered low-rank semiparametric regression models in the context of support
vector classification such as kernels which arise from penalised splines. In this paper we
examined computation issues relating to such penalised spline kernels, with emphasis
on efficient interior point methods for support vector classification. Our comparison of
different implementations showed that large savings in time and storage can be made
when using custom built convex quadratic programming solvers for low-rank kernels.

For real data sets and univariate models we compared a number of different ker-
nels and demonstrated that penalised spline kernels can perform as well as radial basis
kernels. In addition, the penalised spline kernels enjoy an easy interpretability. Our pre-
liminary results with bivariate models and penalised spline kernels show that further
improvements in classification rates can be obtained when more complex models are
considered.

14

Acknowledgement

Partial support has been provided by a University of New South Wales Faculty Research
Grant.

References
Blake, C. and Merz, C. (1998). UCI repository of machine learning databases.
http://www. ics.uci.edu/ mlearn/MLRepository.html.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Breiman, L. (2001). Statistical modeling: the two cultures (with discussion). Statistical
Science, 16, 199-231.

Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2, 121-167.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press.

Dudoit, S., Fridlyand, J. and Speed, T.P. (2002). Comparison of discrimination methods
for the classification of tumors using gene expression data. Journal of the American
Statistical Association, 97,77-87.

Eilers, PH.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties
(with discussion). Statistical Science, 11, 89-121.

Ferris, M. C. and Munson, T. S. (2003). Interior point methods for massive support vector
machines. SIAM Journal on Optimization, 13, 783-804.

Fine, S. and Scheinberg, K. (2002). Efficient svm training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2, 243-264.

French,].L., Kammann, E.E. andWand, M.P. (2001). Comment on paper by Ke and Wang.
Journal of the American Statistical Association, 96, 1285-1288.

Hastie, T. (1996). Pseudosplines. Journal of the Royal Statistical Society, Series B, 58, 379-396.
Hastie, T. J. and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman & Hall/CRC

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). The Elements of Statistical Learning,
Data Mining, Inference, and Learning. New York, NY: Springer.

Ho, T. K. and Kleinberg, E. M. (1996). Building projectable classifiers of arbitrary complexity.
In Proceedings of the 13th International Conference on Pattern Recognition, 880—
885, Vienna, Austria
http://cm._bell-labs.com/who/tkh/pubs.html.

Hush, D., Kelly, P, Scovel, C. and Steinwart, I. (2006). QP Algorithms with Guaranteed

15

Accuracy and Run Time for Support Vector Machines. Journal of Machine Learning
Research, 7, 733-769.

Johnson, M.E., Moore, L.M. and Ylvisaker, D. (1990). Minimax and maximin distance
designs. Journal of Statistical Planning and Inference, 26, 131-148.

Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. New York: Wiley.

Mehrotra, S. (1992). On the Implementation of a Primal-Dual Interior Point Method.
SIAM Journal on Optimization, 2, 575-601.

Mészaros, Cs. (1998). The BPMPD interior point solver for convex quadratic program-
ming problems. Optimization Methods and Software, 11&12, 431-449.

Mészaros, Cs. (1999). Steplengths in infeasible primal-dual interior point methods of
quadratic programming, Operations Research Letters, 25, 39-45.

Nocedal,]. and Wright, S.J. (1999). Numerical Optimization. New York, NY: Springer.

Nychka, D., Haaland, P.,, O’Connell, M., Ellner, S. (1998). FUNFITS, data analysis and
statistical tools for estimating functions. In Case Studies in Environmental Statistics
(D. Nychka, WW. Piegorsch, L.H. Cox, eds.), New York: Springer-Verlag, 159-179.

Nychka, D. & Saltzman, N. (1998). Design of Air Quality Monitoring Networks. In Case
Studies in Environmental Statistics (D. Nychka, Cox, L., Piegorsch, W. eds.), Lecture
Notes in Statistics, Springer-Verlag, 51-76.

Pearce, N.D. and Wand, M.P. (2006). Penalised Splines and Reproducing Kernel Methods.
The American Statistician, 60, 233-240.

Ruppert, D., Wand, M. P. and Carroll, R.J. (2003). Semiparametric Regression. New York:
Cambridge University Press.

Schoenberg, I. (1968). Monosplines and quadrature formulae. In Theory and Application of
Spline Functions, (Greville, T. ed.), Madison: University of Wisconsin Press.

Scholkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press, Cambridge, MA.

Simon, H. U. (2004). On the complexity of working set selection. In Proceedings of the 15th
International Conference on Algorithmic Learning Theory.
http://eprints.pascal-network.org/archive/00000125/.

Smola, A.J. and Schélkopf, B. (2000). Sparse greedy matrix approximation for machine
learning. In Proceedings of the 17th International Conference on Machine Learning. San
Francisco: Morgan Kaufmann.

Vandenberghe, L. and Comanor, K. (2003). A sequential analytic centering approach to
the support vector machine. In Proceedings of SPIE Advanced Signal Processing Algo-
rithms, Architectures, and Implementations XIII, 209-218, August 6-8, 2003, San Diego,
California, USA.

16

Turlach, B.A. and Weingessel, A. (2006). quadprog 1.4-8. R package.
http://cran.r-project.org.

Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: STAM.

Williams, C.K.I. and Seeger, M. (2001). Using the Nystrom method to speed up kernel
machines. In Advances in Neural Information Processing Systems, 13, (Leen, T.K. and
Diettrich, T.G. eds.), 682-688, Cambridge USA: MIT Press.

Williams, C. and Seeger, M. (2001). Using the Nystroem Method to Speed Up Kernel
Machines. Neural Information Processing Systems, 13, 682—688.

Wood, S.N. (2003). Thin-plate regression splines. Journal of the Royal Statistical Society,
Series B, 65, 95-114.

Wright, S. J. (1997). Primal-Dual Interior-Point Methods. Philadelphia, PA: STAM.

Yau, P., Kohn, R. and Wood, S. (2003). Bayesian variable selection and model averaging in
high-dimensional multinomial nonparametric regression. Journal of Computational
and Graphical Statistics, 12, 1-32.

Appendix: R Code

This script demonstrates how to fit the spam dataset using a truncated linear spline kernel
with the R package LowRankQP. Code for an interpretable plot (Figure 1) is also provided.
Load the data and normalise each variable.

i brary(LowRankQP); |ibrary(El enttatlLearn); data(spam

n <- nrow spam

use.vars <- c¢(5,6,7,8,16,17, 25, 26, 27, 37, 45, 46, 52, 53, 56, 57)
spam <- spanfsanpl e(1l:n), c(use.vars, ncol (span)]

d <- ncol (spam - 1

nmu <- mean(spani, 1:d])

si gma <- sd(spani, 1:d], na. r i=TRUE)

X <- (spanf,1l:d] - mu)/signm

y <- 2*as.matrix((spani,d+1l] =="spant')+0) - 1

Create an R function to calculate the basis functions to be used.

Cal cul ateBasi s <- function(x, knots)
{
X <- as.matrix(cbind(rep(l, nrowx)), x))
nKnots <- 0O
for (i in 1:ncol(x))
nKnots <- nKnots + length(knots[[i]])
Z <- matrix(0, nrowx), nKnot s)
s <1
for (i in 1:d)
{
Zi <- outer(x[,i],knots[[i]],"-")
Z[,s:(s+length(knots[[i]])-1)] <- Zi*(Zi >0)
s <- s + length(knots[[i]])
}
i st(X=X Z2=2)

17

Set up the inputs for the quadratic program & solve using LowRankQP.

| anbda <- 0.4279488; nKnots <- 20; knots <- c()
for (i in 1:d)
knots[[i]] <- quantile(unique(x[,il]),
seq(0, 1, I engt h=nKnot s+2) [- c(1, nKnot s+2)])
resl <- Cal cul at eBasi s(x, knot s)
A <- resl$X*as.vector(y)
\% <- resl$Zras.vector(y)/sqrt(2*l anbda)
res2 <- LowRankQP(V,rep(-1,n),t(A),rep(0,ncol (A)),rep(l,n),
met hod="SMN/, ver bose=TRUE, ni t er =200)
al pha <- t (V)% % es2%$al pha
beta <- res2$beta

Set up labels and corresponding horizontal ranges for each variable.

data. | abels <- c("our","over", "renove","internet","free",

"busi ness”, "hp","hpl", "george", "1999", "re", "edu","ch!",

"ch$", " CAPMAX", " CAPTOT")
data.ran <- c()
data.ran[[1]]<-c(0,6);data.ran[[2]]<-c(0,4);data.ran[[3]]<-c(0, 4);
data.ran[[4]]<-c(0,6);data.ran[[5]]<-¢(0, 10);data.ran[[6]]<-c(0, 4);
data.ran[[7]]<-c(0, 10);data.ran[[8]]<-¢(0,10);data.ran[[9]] <-c(0,4);
data.ran[[10]]<-¢(0,4);data.ran[[11]]<-c(0,10);data.ran[[12]]<-c(0, 8);
data.ran[[13]]<-¢(0, 10);data.ran[[14]]<-c(0, 4);
data.ran[[15]] <-¢(0, 1000); data.ran[[16]]<-c(0, 4000)

Plot slices of the classification surface for different variables as described in Section 4.3.

n. pl ot <- 300
nmedi an. data <- matrix(1, n.plot, 1) % %redi an(x)
par (nfrow=c(4,4))
for (i in 1:16)
{
plot.x <- seq((data.ran[[i]][2]-mu[i])/sigma[i],
(data.ran[[i]][2]-nu[i])/sigma[i],|ength=n.plot)
pl ot. data <- medi an. dat a
plot.data[,i] <- plot.x
pl ot . x <- sigma[i]*plot.x+muf[i]
res3 <-Calcul ateBasi s(pl ot. data, knot s)
pl ot . f <-res3$X% Ybet a+(res3$Z/ sqrt (2*1 anbda)) % %l pha
plot(c(data.ran[[i]][1],data.ran[[i]][2]).
c(-7.5,7.5,type="n", bty="1", x|l ab="",
ylab="",ylimec(-5,5), mai n=data. | abel s[i])
lines(plot.x,plot.f,lwd=2,col ="bl ack")
lines(plot.x,matrix(0,n.plot,1),lwd=0.5,col ="bl ack")

18

