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Abstract
Cluster analysis has been widely used to explore thousands of gene expressions from microarray
analysis and identify a small number of similar genes (objects) for further detailed biological
investigation. However, most clustering algorithms tend to identify loose clusters with too many
genes. In this paper, we propose a Bayesian tight clustering method for time course gene
expression data, which selects a small number of closely-related genes and constructs tight clusters
only with these closely-related genes.
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1 Introduction
Clustering methods can be categorized into heuristic and model-based frameworks. Methods
in heuristic frameworks identify clusters based on non-probabilistic measures. The K-means
(Hartigan and Wong 1979) and hierarchical (Johnson and Wichern 2002) algorithms belong
to this framework. Methods in model-based frameworks cluster objects based on
probabilistic measures. As one of the most popular methods in this framework (Basford and
McLachlan 1985; Basford et al. 1997), there is the mixture model

(1)

where Yi is the response variable of the ith object, K is the number of components, ξk is the
mixing probability of component k and f (Yi|θk) is the probability density function of
component k with parameter θk. This model has been studied for microarray data analyses in
numerous papers (Ghosh and Chinnaiyan 2002, McLachlan et al. 2002; Datta and Datta
2003; Ouyang et al. 2004). Recently, the product partition model (Crowley 1997) have been
proposed as alternative model-based approaches using the cluster likelihood:
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(2)

where ω is a fixed unknown partition of n objects, c(ω) is the number of clusters within ω,
k is a set of object indices for cluster k, and Y k is the data of objects in cluster k. Note that

partition ω is a free parameter, which should be estimated, and ω determines c(ω). Then,

, and i ∩ j = ∅ when i ≠ j. These methods assume that the data
vectors are partitioned into c(ω) clusters according to ω and the clusters are independent of
each other. While the mixture model (1) is constructed with a known number of clusters, the
cluster likelihood (2) contains a partition ω as a parameter to be estimated. In other words,
pre-specification of the number of clusters is not needed in the cluster likelihood approach.

As microarray technology became more easily available, biologists can measure gene
expressions consecutively over time and examine temporal changes of these expressions.
Naturally, many new statistical methods have been developed to cluster genes based on
these temporal changes (profiles) in both heuristic (Peddada et al. 2003; Hakamada et al.
2006; Lukashin and Fuchs 2001) and model-based (Schliep et al. 2003; Luan and Li 2003;
James and Sugar 2003; Tseng and Wong 2005; Ma et al. 2006; Leng and Muller 2006; Ng et
al. 2006) frameworks as follows.

1. Heuristic framework: Peddada et al. (2003) grouped profiles into, so-called,
clusters of inequality profiles. For example, suppose a cluster contains profiles with
monotonically increasing temporal trends, which can be characterized with
inequalities among means at each time point. Similarly, various types of clusters
are pre-specified with inequalities, then profiles are clustered based on bootstrap-
based criterion. Hakamada et al. (2006) developed a method that cluster profiles
based euclidian distances. Lukashin and Fuchs (2001) applied K-means algorithm
to temporal profiles.

2. Model-based framework: Leng and Muller (2006) applied functional discriminant
analysis considering profiles as independent realizations of a smooth stochastic
process. Luan and Li (2003), James and Sugar (2003), Ng et al. (2006), Ma et al.
(2006) developed the mixture of mixed effect models to cluster temporal profiles.
In their models, f (Yi|θk) in (1) is specified with a mixed effect model. Particularly,
James and Sugar (2003) emphasized application of their model to sparsely and
irregularly measured time course data. The Bayesian objective function approach in
Booth et al. (2008) and the hidden Markov model in Schliep et al. (2003) are
developed based on the cluster likelihood function (2).

3. Costa et al. (2004), Thalamuthu et al. (2006) and Ma et al. (2006) compared
clustering methods for time course data using simulation studies.

As the main example of this paper, we analyze the corneal wound healing data, in which
expressions of 646 genes are measured twice at irregular 12 time points, using 24 rats (= 2
replicates × 12 time points). The goal of this paper is to identify clusters that contain a small
number of genes with very similar temporal patterns. We consider that two types of gene
sets, closely-related and weakly-related genes, are included in a microarray experiment
either intentionally or unintentionally. If a gene has a close relationship with any other
gene(s), we will call it a closely-related gene. Otherwise, we will call it a weakly-related
gene. Usually, among thousands of genes on a microarray slide, a large portion of genes are
weakly-related. These weakly-related genes tend to increase noise in search of the optimal
partition (or clusters) without providing significant amounts of information (Tseng and
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Wong 2005). Therefore, direct application of conventional methods will provide large and
loose clusters that consist of both closely- and weakly-related genes. However, this is not a
desirable result, because biologists typically want to conduct further biological research on a
small number of closely-related genes after gene expressions are explored with microarray
analyses. To overcome this problem, Tseng and Wong (2005) proposed so-called tight
clustering method for cross-sectional data. The main idea of Tseng and Wong (2005) is to
construct tight clusters only with closely-related genes, which is a small portion of the whole
data set. Their algorithm can be summarized as follows:

Step 1. With the given number of clusters κ, apply K-means algorithm to subsets (e.g.
70% of genes) of the original data from resampling.

Step 2. Construct candidate tight clusters with genes tends to be together in these
resampled subsets.

Step 3. Apply Step 1 and 2 with different κ in a certain range.

Step 4. Identify the final tight clusters that tend to be stable even when κ changes.

Performance of this tight clustering method (Tseng and Wong 2005) was demonstrated by
Thalamuthu et al. (2006). In this paper, we propose a new tight clustering algorithm for time
course gene expression data. Our tight clustering algorithm selects closely-related genes that
have high relevance probabilities and then identifies clusters of only closely-related genes
using a Bayesian objective function approach (Booth et al. 2008).

In Sect. 2, the Bayesian model and the objective function (Booth et al. 2008) are described
in detail with an example of the corneal wound experiment. In Sects. 3 and 4, we discuss a
stochastic search algorithm that maximizes a Bayesian objective function and provides
simulation studies on this search algorithm. In Sect. 5, we explain how to calculate relevance
probabilities and propose the tight clustering algorithm for time course data. To distinguish
from tight clustering, we will call algorithms that do not employ the idea of tight clustering,
plain clustering methods. In Sect. 6, our tight clustering method is applied to the corneal
wound data.

2 Bayesian modelling and objective function
We look at an example of the corneal wound healing data to explain the Bayesian model and
the objective function by Booth et al. (2008). In the experiment, 2 replicates of 646 gene
expressions were measured at each of 12 time points (day 0, 1, 2, 3, 4, 5, 6, 7, 14, 21, 42 and
98) with a corneal wound. In our cluster analysis, the time variable is relabeled with orders
1, 2, …, 12. Justification of relabeling will be discussed in Sect. 6. Because we are interested
in the temporal changes of gene expressions rather magnitudes of expressions, gene profiles
are centered at the mean of each profile for our analysis.

Averages of two replicates are calculated for each gene at each time point. Then, average
expressional profiles of 646 genes are drawn in Fig. 1. Although the patterns of profiles are
not easily distinguishable, it seems that there are at least two clusters with increasing and
decreasing gene expression patterns in the right end part of the profiles. Also, temporal
patterns are not simple enough to use a parametric regression approach and there does not
seem to be any periodic pattern. Therefore, within the clustering model, we use the
penalized regression spline to explain the mean temporal trend of gene profiles within each
cluster.

Given ω, let  denote a set of cluster-specific parameter vectors θk. Then, the
marginal posterior distribution of ω is
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(3)

where f (Y|θ, ω) is the sampling distribution of the whole data set, f (Y k|θk) is the cluster
specific sampling distribution, and π(·) denotes a prior distribution. In the analysis of corneal
wound data, f (Y k|θk) is set to be the normal probability density function, of which the
mean is the cluster-specific penalized regression spline. Booth et al. (2008) proposes
obtaining the optimal partition ω* that maximizes the marginal posterior probability π(ω|Y).
Because the normalizing constant of π(ω|Y) is difficult to calculate, Obj(ω) is used as the
actual objective function in optimizing π(ω|Y). In Sect. 2.1, f (Y k|θk) is specified in detail
with the penalized regression spline. In Sect. 2.2, π(θk|ω) and π(ω) are specified. Finally, in
Sect. 2.3, the Bayesian objective function is calculated for our clustering model.

2.1 Penalized regression spline for profiles within a cluster: f (Y k|θk)
In our clustering model, all profiles in cluster k are assumed to have a common smooth
underlying trend and independent and identically distributed normal errors with a common
variance. Detailed explanation of modeling profiles within a cluster is given as follows.
Denote the gene expressions by

where , and Yijt is the expression of
gene i in the jth replication at time point t. Similarly, define the time variables

, and xijt = t, and error terms

. To explain a temporal
profile in cluster k, we use the penalized regression spline:

(4)

where  with
knots τl’s, m+ = max(0, m), Uk = (u1k,…, uLk)T, 0p is the column vector with p zeros, Ip is

the p × p identity matrix, and . If profiles consist of a short time course
data, such as 3 time points, the regression spline is not recommended. Then, the simple
linear or quadratic regression had better be used instead of the regression spline. The time
variable xij is the same for every gene i and replicate j in the corneal wound data. For

notational simplicity, assume that k = {1,…, nk}. Also, let  X k = 1nkr
⊗ X and Z k = 1nkr ⊗ Z, where 1nkr is a column vector of ones with nkr elements. Then,
within cluster k, the penalized regression spline method estimates parameters by minimizing
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(5)

To implement this penalization in the Bayesian framework, two approaches have been
widely used. First, the Bayesian Lasso approach of Tibshirani (1996) uses double
exponential priors for Uk, which makes finding the posterior distribution mode equivalent to
minimization of (5). Second, Ruppert et al. (2003) suggests using the mixed model, of which
BLUP (best linear unbiased prediction) is equivalent to the estimates of the penalized
regression spline. We use the second approach in this paper by changing a fixed effect Uk in

(4) to a cluster-specific random effect  where IL is the L × L identity
matrix.

For data analysis and simulation studies in this paper, we employ a flexible quadratic
regression spline by setting q = 2 and L = p − 2 (one knot at each interior time point).
Because the cluster memberships are unknown, it is difficult to get a good prior information
on the mean temporal trend of profiles in each cluster. Therefore, the clustering model
should contain a flexible spline function with a large number of knots so that it can explain
any temporal trend. Also, to prevent a unnecessary wiggly fit, we constrained the influence
of knots with the penalty function (Ruppert et al. 2003).

Let . Then, the linear mixed model for cluster k can be expressed as:

(6)

where

.

Then, within cluster k, the likelihood function is

2.2 Priors: π(ω) and π (β, σ2|ω)
As for the partition parameter ω, we use Crowley’s prior (Crowley 1997):

(7)

where nk is the number of genes in cluster k and ϱ(> 0) is the tuning parameter for the size of
clusters. Large values of ϱ makes the prior give high probabilities to partitions with a large
number of clusters.

For , we use a non-informative prior,
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(8)

2.3 Bayesian objective function: Obj(ω)
The marginal posterior distribution of ω is

Also,

where

. Thus,

(9)

Note that the marginal posterior distribution (9) varies with the scale of Y. For example,
when the scale of Y changes to aY

Therefore, to make (9) invariant to the scale of Y, we set α = (q + 1)/2.

3 Stochastic search for the optimal partition
Because ω is not a continuous variable, many popular numeric search algorithms, i.e. the
Newton–Rapson method, may not be applied. Also, the space of ω is very large, because the
Bell number (Bn, the number of all possible partitions) grows rapidly with n (super-
exponentially). For example, when n is 10, the Bell number is approximately 105. When n is
75, the Bell number becomes approximately 1078, which is a rough estimate for the number
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of atoms in the observable universe. The corneal wound data has n = 646 genes, which, in a
practical sense, have an infinite number of possible partitions. Therefore, searching for the
optimal partition ω* is a challenging problem.

To search for the optimal partition, Booth et al. (2008) proposed to generate random
partitions from the posterior function π(ω|Y), which is proportional to our objective function
Obj(ω), and select a partition that has the highest Obj(ω). This algorithm tends to generate
many partitions that are close to the mode of the posterior distribution, which makes the
search algorithm efficient. This is so-called Markov Chain Monte Carlo (MCMC)
optimization (Jerrum and Sinclair 1996). If the number of objects is not large or only a small
number of partitions have high posterior probability π(ω|Y), then the optimal partition can
be easily found. Otherwise, the algorithm may work slowly or may find only a suboptimal
partition within a reasonable time. However, according to our experience, these suboptimal
partitions are close enough to the optimal partition in practical applications.

Here is a detailed description on the MCMC optimization algorithm (Booth et al. 2008).
Within the optimization algorithm, a biased random walk (Metropolis-Hastings algorithm)
generates the targeting Markov chain of random partitions from π(ω|Y). Suppose that the
biased random walk is iterated R times. Let ωi be the partition in the ith iteration, c(ωi) be the
number of clusters in ωi,  be the partition with the highest value of the objective function

during the first i iterations, and  be the best partition that is found by an application
of the optimization algorithm. Then, consider the following algorithm:

Algorithm 1

Step 1. Choose an initial partition ω1 and set  and i = 1.

Step 2. Generate a candidate partition ω′:

– If c(ωi)=1, select one uniform random object out of n and make it as a new
singleton cluster (one profile in one cluster). This makes two clusters with 1
and n − 1 objects.

– If c(ωi) ≥ 2, select one uniform random object.

– If the selected object is a singleton cluster, move it to one of c(ωi) − 1
clusters with probability 1/(c(ωi) − 1).

– Otherwise, move it to one of other clusters with probability 1/c(ωi) or make
its own singleton cluster with probability 1/c(ωi).

Step 3. Accept ω′ with probability min(1, π  /π(ω)). If accepted, ωi+1 = ω′.
Otherwise, ωi+1 = ωi.

Step 4. If . Otherwise, . Set i = i + 1 and repeat
Steps 2, 3 and 4.

Note that, if R is not large enough, ω̃* may not be the same as the optimal partition ω*. In
this paper, Algorithm 1 is applied three times for each data set of interest. If all chains
provide the same ω̃*, then ω̃* is considered as ω*.

4 Simulation studies on stochastic search algorithm
Simulation studies are conducted with the corneal wound data, to check the convergence-in-
distribution of the biased random walk in Algorithm 1 and to examine the needed number of
iterations before Algorithm 1 finds the optimal partition.
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4.1 Convergence of the biased random walk
To examine the convergence or performance of the biased random walk algorithm, it is
necessary to start chains with fair and non-informative initial partitions. As one of the most
reasonable initial partitions, we may consider a uniform random partition that is drawn
randomly with a probability of 1/Bn. However, the generation of a uniform random partition
is a challenging problem when the partition space is very large. In this subsection, we
describe an algorithm to generate uniform random partitions with a large n, and demonstrate
the convergence of chains using the corneal wound data.

Generation of uniform random partitions with a large n—Let ℙn be the set of all
possible partitions of ℕn ≔ {1, …, n}. Also, let Π denote a uniform random partition such
that P(Π = π) = 1/Bn for all π ∈ ℙn, so Π has the uniform distribution on ℙn. Here we
describe a method of simulating a random uniform partition Π.

Let M be a random variable on the set {1, 2,…, n} with probabilities given by

(10)

for m = 1, 2,…, n. Pitman (1997) gave an algorithm for drawing a value of Π, which goes as
follows. First, draw a value of M = m from (10), then randomly distribute n balls with labels
ℕn into the m different urns. Note that some of the urns may end up empty. After excluding
empty urn(s), the resulting partition has the uniform distribution on ℙn.

Unfortunately, this method does not work well with large n because computation of the
distribution (10) requires the evaluation of large factorials, which results in numerical
difficulties. However, it is possible to circumvent this problem by approximating (10) to a
high degree of accuracy and drawing M from this approximation. Based on this this idea, we
propose a new algorithm as follows (See the Appendix for detailed calculation of this
algorithm).

Algorithm 2:

Step 1. Choose ε > 0, which controls the degree of approximation. Here we use ε =
10−30

Step 2. Calculate lm = n log m − log Γ(m + 1) for m ∈ {1, 2,…, n} and set

Step 3. Find

Step 4. Draw M* with probabilities given by

(11)
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for m ∈ {1, 2, …N}.

Uniform random partitions are generated with n = 646 as in the corneal wound data. Then,
the number of clusters in each partition is counted to draw the histogram in Fig. 2. Most
uniform random partitions have from 120 to 143 clusters with mean 131.3 and variance 4.62.
The gray line in Fig. 2 shows the distribution of the number of bins, m in (11), which has
mean 132.3 and variance 4.72.

Convergence-in-distribution with the corneal wound data—When multiple chains
are simulated with a good MCMC algorithm, they get mixed well regardless of the initial
partitions. Using the biased random walk, five chains are started from four non-informative
partitions (two uniform random partitions, one partition with n = 646 singleton clusters and
one partition that has only one cluster for all objects) and one informative partition (with 200
clusters found using the K-means algorithm).

The Bayesian objective function (9) has two parameters, λ and ϱ, that should be set before
Algorithm 1 starts. To estimate λ, which is the smoothing parameter or the ratio of two
variances in the linear mixed model (6), we clustered profiles into an arbitrary number of
groups, K = 40, with K-means algorithm, and fitted the linear mixed model to the grouped
data assuming a homogeneous error variance across clusters. From this procedure, we got an
estimate λ̂ = 1.31. Even though λ̂ depends on K, λ̂ is robust to K as long as K is not close to 1
or n. For example, λ̂ = 1.27 when K = 20, and λ̂ = 1.33 when K = 200. Also, the resulting
optimal partition is usually not sensitive to a small variation of λ̂, such as ±0.2. For the
tuning parameter in Crowley’s prior, log(ϱ) = 8 is chosen. Detailed discussion about the
selection of log(ϱ) is in Sect. 6.

Simulation histories of the five chains are shown with the number of clusters on Fig. 3a, and
with the objective function Obj(ω) on Fig. 3b. Because most uniform random partitions have
a similar number of clusters, around 131, and similar values of Obj(ω1) ≈ −2,300, two initial
partitions are overlapped on Fig. 3(a, b). Note that uniform random partitions have very low
initial values of the objective function, which indicates that they are very non-informative
partitions. On the contrary, the initial partition from K-means algorithm has the highest
objective function value, Obj(ω1) = 4,597. Even when five chains have very different initial
partitions, Fig. 3 shows that the biased random walk results in excellent agreement at
convergence, and good mixing over the stationary distribution after 106 iterations.
Therefore, we consider that 2 × 106 iterations are enough to be a burn-in period in analyzing
the corneal wound data.

The convergence-in-distribution does not guarantee that Algorithm 1 can find the optimal
partition ω* within a reasonable time. For example, in Table 1, the algorithm (R = 3 × 106)
is applied to the corneal wound data twice with log(ϱ) = 0, 3, 5, 8, 10, 13, 15 and 20.
Regardless of the value of log(ϱ), two chains provide different ω̃*’s, which have different
Obj (ω̃*)’s and different numbers of clusters. However, two Obj (ω̃*) are very close to each
other, considering that this search is conducted in almost infinite space of a discrete
parameter. More details of Table 1 will be discussed in Sect. 6.

4.2 Number of iterations before the optimal partition is found
To examine the relationship between the number (n) of gene profiles to be clustered and the
number (R*) of iterations before the optimal partition ω* is found by Algorithm 1, data sets
are simulated by randomly selecting n gene profiles from the corneal wound data without
replacements. Then, three long chains with 5 × 107 iterations are simulated for each data set
using the biased random walk. If these three chains have the same ω̃*, we consider that the
optimal partition ω* = ω̃* is found for a simulated data set. The average of three R*’s,
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Avg(R*), is reported in Table 2. For example, for the first simulated data set with randomly
selected n =20 profiles, the same ω̃* is found by three chains after 6,220 iterations on
average. In total, 5 data sets are simulated with n = 20. The other four data sets have
Avg(R*) = 1,637, 663, 4,439 and 934. All Avg(R*)’s are less than 104 when n = 20. When n
increases to 50, Avg(R*)’s have magnitude 106 or 107 with the first four simulated data sets.
With the fifth simulated data set, the same optimal partition is not found by three chains,
which indicates that more than 5 × 107 iterations are needed. When n = 100, the optimal
partition is not found with any data set within 5×107 iterations. It seems that Avg(R*)
increases super exponentially as the Bell number does (Bn=100 ≈ 10115). Our C program
spent about 8 h to iterate 5 × 107 times for each data set with n = 100. Therefore, it is
practically impossible to find the optimal partition of 646 gene profiles within a reasonable
time. There can be two major reasons that make the optimization algorithm slow. First, the
discrete space of partitions is too large with n ≥ 100. Second, there seems to be many
suboptimal partitions, of which Obj(ω)’s are close to Obj(ω*). This may happen when many
weakly-related genes are included in the data set and cause loose clusters. Also, weakly-
related genes have a tendency to change cluster memberships easily during MCMC
iterations, because they don’t make significant contributions to the objective function. In the
next section, we propose a tight clustering algorithm that selects a small number of closely-
related genes and applies Algorithm 1 to only these genes.

5 Tight clustering algorithm
Recall that, during the biased random walk of Algorithm 1, a candidate partition ω′ is
generated by moving one object (gene) in the current partition ωi. If a gene is closely-related
with other genes in the current cluster and build a tight cluster, then this gene have low
chances to move during iterations. We will consider a gene to be stable, when a gene doesn’t
move at all or change only a small number of times over MCMC iterations of Algorithm 1.

Let the relevance probability (RP) of a pair of genes be the probability of an event that two
genes in a pair belong to one cluster together in a random partition. In the Bayesian
objective function approach framework, RP can be estimated easily by counting how often
two genes are together in a chain of the biased random walk. Because closely-related genes
tend to stay together within a cluster over the course of MCMC iterations, they have high
RP’s. Our definition of relevance probability is slightly different from the original concept
by Hartigan (1991) where the relevance probability is the probability having a set of genes
(objects) as a cluster in a random partition. It is inappropriate to use Hartigan’s definition of
RP for finding closely-related genes because there can be too many possible clusters,  For
example, when Hartigan’s definition of RP is used to find closely-related genes in corneal
wound data, RPs of 2646 − 2 ≈ 2.9 × 10194 (the number of all possible non-empty subsets)
possible clusters must be calculated for a simulation chain. When our definition of RP is

used, RPs of only  pairs must be calculated.

Here, we propose the following tight clustering algorithm:

Algorithm 3
Step 1. Select log(ϱ*) that makes a small number of genes stable in a chain of the biased
random walk.

Step 2. Apply Algorithm 1 with log(ϱ*) and estimate RP’s of all possible pairs.

Step 3. Apply Algorithm 1 with only closely-related genes (RP≥ η) to construct tight
clusters.
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In Step 1, we suggest selecting a value of log (ϱ*) that makes a small number of genes stable
because this makes a small number of genes have high RP’s in Step 2. However, an analytic
optimization for log (ϱ*) is very difficult. Therefore, we suggest running Algorithm 1 with
different log(ϱ) values to calculate the number of stable genes. The cutoff value η of RP in
Step 3 can be considered as a tuning parameter that determines the tightness of clusters. If η
is close to 1, Algorithm 3 will select a small number of genes that construct very tight
clusters. If η is close to 0, Algorithm 3 will select most genes without constructing tight
clusters. Based on our experience with real data and simulation studies, we suggest setting η
= 0.80 for reasonably tight clusters.

To check performance of the tight clustering algorithm (Algorithm 3), we conducted
simulation studies with the following six true clusters:

where ε1i, ε2i, ε3i, ε4i and ε5i have independent and identical normal distributions with mean

0 and variance , ε6i has the independent and identical normal distribution with mean 0 and

variance , and xi = 1, 2,…, 6. Four sets of simulations are considered with different σA and
σB. In each set, we simulated 60 profiles (10 profiles from each cluster) 100 times. Then, our
tight clustering and plain Bayesian objective function approaches (Booth et al. 2008) with
various tuning parameter log(ϱ)’s are compared in Table 3. In Step 1 of the tight clustering
algorithm, we chose log(ϱ*) for each simulated data set by examining the number of stable
genes when log(ϱ) = −10, −8, −6, −4, −2 and 0. In general, log(ϱ) is a very important
parameter in the clustering algorithm, controlling the number of clusters. However, when
two values of log(ϱ) differed by less than 2 in our simulation experience, the same or very
similar clusters were found. In this paper, we will consider a pair of profiles to be correctly
clustered if the pair is in the same cluster of the simulation model and is grouped together by
the clustering algorithm or if two profiles in the pair are in different clusters of the
simulation model and are not grouped together. Otherwise, we will consider the pair to be
incorrectly clustered. There are Npairs = n(n − 1)/2 possible pairs, where n is the number of
profiles to be clustered. In the plain clustering, n = 60 and Npairs = 1,770 for every simulated
data set. However, in the tight clustering, n and Npairs varies with simulated data because
only closely-related profiles are interested for clustering and the number of closely-related
profiles varies with data. We define that the percentage classification error rates of pairs is:

where i = 1, …, Npairs and
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See Table 3. For the first set of simulations, we set σA = σB = 0.5. These are relatively small
standard deviations that make clustering algorithms find correct clusters easily. Tight
clustering method has the lowest error rate of 6.0% with a standard error of 0.8%. Among
plain clusterings, the lowest error rate, 8.8%, is gained when log(ϱ) = −10. Recall that a
higher ϱ makes the algorithm choose a large number of small clusters. When log(ϱ) = 5, the
algorithm provides the same optimal partition of n singleton clusters for all 100 simulated
data sets. A simulated data set has 270 (= 45 × 6) pairs that have two profiles from the same
true cluster. Therefore, when all profiles are separated as singleton clusters, the error rate
becomes 15.3%(= 100 × 270/1,770). When we increase the standard deviations to σA = σB =
0.7, the tight clustering algorithm achieves the lowest error rate again, 13.7%. When the
standard deviations are as large as σA = σB = 1.0, it is practically impossible to get good
clustering results because most parts of the true clusters overlap each other. Therefore, the
error rates are high for both tight and plain clustering methods. In this case, the plain
clustering method with log(ϱ) = 5 works the best, only because it separates all profiles as
singletons and gains an error rate of 15.3%. However, this is not a desirable result because it
does not provide any non-singleton cluster. As the last set of simulations, we considered σA
= 0.7 and σB = 3.0, which makes cluster 6 relatively diffused. The tight clustering method
worked the best in this case. Compared to simulations with σA = σB = 0.7, it seems
clustering was easier because 6 with σB = 3.0 is not similar to other clusters with σA = 0.7.

Overall, we found that the tight clustering method has lower error rates compared to plain
clustering when true clusters are reasonably separated. This result can be easily expected
because tight clustering uses only closely-related profiles (genes) and excludes weakly-
related profiles that may cause erroneous clusters.

6 Analysis of the corneal wound data
In the corneal wound experiment, gene expressions are measured at day = 0, 1, 2, 3, 4, 5, 6,
7, 14, 21, 42 and 98 because expressions are expected to change more intensely in the first
week and then get stabilized in the later part of experiment. In other words, a less smooth
pattern is expected in the first week. When spline knots are located with equal interval on
the real time scale (days), this change of smoothness will not be reflected. In this paper, we
suggest relabeling time points with 1,…,12 before the cluster analysis. This may not be the
optimal solution, but an easy and reasonable solution to the unequal smoothness problem.
Here, this argument is illustrated with an example of a gene profile in our data. Using the
same smoothing parameter (λ = 1.3) and knots at all interior time points, the gene profile is
fitted on real scale in Fig. 4a and on relabeled equal interval scale in Fig. 4c. Also, to make
comparison of these fits easier, Fig. 4a is redrawn with equal interval time scale in Fig. 4(b,
c) is redrawn with real time scale in Fig. 4d. When Fig. 4(a, d) (or, equivalently, Fig. 4b, c)
is compared, the difference between two spline fits are negligible from 1st (day=0) to 7th
time points (day=6). However, the later part of the profile (i.e. from 7th to 12th time points)
is overfitted in Fig. 4a, while it is fitted with a proper smooth line in Fig. 4d. Similar patterns
are found with other gene profiles. If analyst wants to use the real time scale, this overfitting
problem may be fixed by carefully choosing the number and locations of knots.

Now on, we will provide a detailed discussion about application of the tight clustering
algorithm to the corneal wound data.

Step 1
Simulation studies are conducted with log(ϱ) =0,3,5,8,10,13,15 and 20. For consistency of
comparisons, the same initial partition with 200 clusters from the K-means algorithm is used
for every simulation. Algorithm 1 is applied twice with each log(ϱ) and the movements of
genes are monitored in the last 106 iterations out of 3 × 106 total iterations. Table 1 describes
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Obj (ω̃*), c (ω̃*), and the number of stable genes, which do not move at all during the last
106 iterations. For example, from the first run with log(ϱ) = 0, we got Obj (ω̃*) = 5,280, c
(ω̃*) = 27 and 58 stable genes out of 646. When log(ϱ) gets larger, the number of clusters c
(ω̃*) increases because a larger value of log(ϱ) makes the objective function support a larger
number of clusters, and hence smaller numbers of genes per cluster. In Fig. 5, the number of
stable genes is plotted with log(ϱ). It shows that a relatively small number of genes are
stable (do not switch clusters in the last 106 iterations) when log(ϱ) is between 3 and 13.
When log(ϱ) is as large as 20, most genes have a strong tendency to stay as singleton
clusters during the iterations. This makes many genes appear stable. When log(ϱ) is as small
as 0, even weakly-related genes may stay together easily within large clusters. This also
causes many genes to appear stable. Figure 5 shows that the number of stable genes is the
minimum around log(ϱ) = 8. Therefore, log(ϱ*) = 8 is selected for the corneal wound data.

Step 2 and Step 3
After applying Algorithm 1 to the whole data with 2 × 107 iterations, the 1,169 pairs are
found to have RP≥ 0.80. Then, Algorithm 1 is applied 3 times to only the 139 closely-
related genes that compose these 1,169 pairs. The same ω̃* is found easily in all three
applications with less than 106 iterations. Recall that, when a data set of 100 profiles is
simulated in Sect. 4.2, the optimal partition ω* is not found even after 5 × 107 iterations. The
convergence is fast with closely-related genes because only a small number of genes are
considered in tight clustering and close relationships among selected genes make Obj(ω*)
much higher than any Obj(ω), where ω ≠ ω*. See Fig. 6 for the final result of our analysis.
Each cluster has a distinctive pattern and gene profiles build tight clusters. Cluster 3 and 9
seem similar, but scales distinguish them.

7 Concluding remark
A typical purpose of cluster analysis with microarray data is to identify a small number of
closely-related genes that biologists can study further in future studies. Also, weakly-related
genes make the clustering algorithm work slowly and build large and loose clusters.
Therefore, we propose to select closely-related genes using relevance probabilities and get
tight clusters only with closely-related genes.

In our tight clustering, the stochastic search algorithm (Algorithm 1) is used three times for
different purposes. In the first two applications with all gene profiles, the stochastic
algorithm is used for the selection of log(ϱ*) and the calculation of relevance probabilities of
all pairs, rather than for the search of the optimal partition. Because the stochastic algorithm
is implemented by MCMC simulation, the calculation of relevance probabilities could be
done easily. Instead of the Bayesian objective function approach, if the mixture model is
used in tight clustering, it will be difficult to calculate relevance probabilities because the
mixture model requires prior knowledge on a fixed number of components, K. Even though
K can be determined with a model selection criterion (i.e. BIC), it is difficult to measure
uncertainties in determining K and take account of it when calculating relevance
probabilities.

In addition to closely-related genes, if a small number of weakly-related genes are
interesting for biological reasons, then they can also be included in Step 3 of tight clustering
algorithm. We expect that inclusion of these weakly-related genes will not make significant
impact on the optimal partition of tight clusters, because closely-related genes build a stable
structure of clusters.

In this paper, we clustered expressions of 646 genes that are preselected by biologists.
However, in general, most microarray experiments generate 10,000–40,000 gene
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expressions at once. When the number of genes are such high, computational time can be
considered as a limitation of our approaches. For example, if genes are measured twice at 12
time points as in corneal wound data set, it takes about a week with 3.0Hz PC for our tight
clustering method to handle 1,000 or less genes (or objects). Therefore, we recommend
preselecting gene profiles that vary largely over time, using the one-way ANOVA model
with time as the covariate. For example, we may preselect genes that have the 1,000 highest
F-values. A similar approach was also proposed in Peddada et al. (2003).

Appendix
It turns out that the Pitman’s algorithm (Pitman 1997) still works if we take M to be the
random variable on the set ℕ≔ {1, 2, 3,…} with probabilities given by

for m = 1, 2, 3,…. We now describe a method for sampling from (an arbitrarily good
approximation of) M without having to calculate Bn. Specifically, given ε > 0, we find a
positive integer N = N(ε) such that P(M ≥ N + 1) < ε and we approximate M with a random
variable M* with probabilities given by P(M* = m) ∝ mn/m! for m ∈ {1, 2,…, N}. If we
choose ε small enough, there will be no discernible difference between draws from M and
draws from M*.

Fix N > 1 and note that

and

Therefore,

so
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Thus, if we can find N such that P (M = N) < ε/(2n+1n!), then

It’s easy to show that P(M = m) is decreasing for m > n. Define lm = n log m − log Γ(m + 1)
so that log P(M = m) = lm − c, where c = 1 + log Bn. Now define l* = max{l1, l2,…, ln} and
note that, for any m ∈ ℕ,

Therefore, if l* − lm > log(2n+1 n!/ε), we have

Define

We then calculate the probabilities of M* as

for m ∈ {1, 2,…, N}.
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Fig. 1.
Average gene-expressional profiles
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Fig. 2.
Histogram of uniform random partitions. Distribution of m in (11) is drawn with a gray line
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Fig. 3.
Convergence of chains with different initial partitions. a, b demonstrates the convergence
with the number of clusters and the objective function Obj(ω). Simulation history in the last
2 × 106 iterations is magnified in an insert of each figure
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Fig. 4.
Comparisons of spline fits of a randomly selected gene profile when the real time scale or
the relabeled equal interval time scale is used: (a) gene profile is fitted on the real time scale
(days), (b) plot a is redrawn with the relabeled time scale, (c) the profile is fitted on the
equal interval scale, and (d) plot c is redrawn with the relabeled time scale
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Fig. 5.
The effect of log(ϱ) in the Crowley prior on the number of stable genes. A quadratic
regression fit is provided as a reference line
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Fig. 6.
Clustered gene profiles of closely related genes. The number of genes in each cluster is
described inside parentheses. The light-colored thick lines are from the BLUP of the mixed
model (6)
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Table 2

Average number of iterations before the optimal partition is found (Avg(R*))

Simulated data set n = 20 n = 50 n = 100

1 6,220 4,075,804 >5 × 107

2 1,637 7,927,721 >5 × 107

3 663 26,765,931 >5 × 107

4 4,440 12,796,622 >5 × 107

5 934 >5 × 107 >5 × 107
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Table 3

Comparisons of tight and plain Bayes clustering algorithm based on ER: the standard deviation of ER is
denoted inside parentheses

σA/σB 0.5/0.5 0.7/0.7 1.0/1.0 0.7/3.0

Tight Clustering 6.0 (0.8) 13.7 (1.3) 26.8 (0.9) 8.8 (0.8)

log(ϱ) = −50 10.3 (0.3) 25.9 (0.9) 40.7 (0.6) 22.4 (0.9)

log(ϱ) = −30 11.1 (0.4) 26.4 (0.9) 40.6 (0.6) 22.7 (0.9)

log(ϱ) = −20 9.8 (0.3) 26.1 (0.9) 40.4 (0.6) 22.0 (0.8)

log(ϱ) = −15 9.8 (0.3) 25.3 (0.9) 40.5 (0.6) 21.5 (0.8)

log(ϱ) = −10 8.8 (0.2) 21.7 (0.8) 39.0 (0.6) 17.4 (0.7)

log(ϱ) = −5 9.8 (0.2) 17.6 (0.5) 29.8 (0.7) 14.9 (0.4)

log(ϱ) = 0 14.6 (0.1) 15.2 (0.1) 16.5 (0.2) 15.1 (0.1)

log(ϱ) = 5 15.3 (0.0) 15.3 (0.0) 15.3 (0.0) 15.3 (0.0)
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