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Abstract This paper adds to an important aspect of Partial Least Squares (PLS)
path modeling, namely the convergence of the iterative PLS path modeling algorithm.
Whilst conventional wisdom says that PLS always converges in practice, there is no
formal proof for path models with more than two blocks of manifest variables. This
paper presents six cases of non-convergence of the PLS path modeling algorithm.
These cases were estimated using Mode A combined with the factorial scheme or the
path weighting scheme, which are two popular options of the algorithm. As a conclu-
sion, efforts to come to a proof of convergence under these schemes can be abandoned,
and users of PLS should triangulate their estimation results.

Keywords Partial least squares path modeling - PLS - Convergence
Mathematics Subject Classification (2000) 62J99 Linear inference,

regression - 91B82 Statistical methods; economic indices and measures -
91E45 Measurement and performance

1 Introduction

For decades, researchers have applied partial least squares path modeling to ana-
lyze complex relationships between latent variables. Many fields of research have
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embraced the specific advantages of Partial Least Squares (PLS) path modeling, for
instance behavioral sciences (cf. Bass et al. 2003) as well as many disiplines of busi-
ness research, such as marketing (cf. Fornell 1992; Ulaga and Eggert 20006), strategy
(cf. Hulland 1999), and management information systems (cf. Gefen and Straub 1997,
Chin et al. 2003). Moreover, PLS path modeling has become a valuable tool in corpo-
rate practice, as shown by the use of PLS path modeling in companies such as L’ Oréal
and GfK.

The popularity of PLS among scientists and practitioners results from four genu-
ine advantages: Firstly, PLS path modeling can be used when distributions are highly
skewed (Bagozzi and Yi 1994), because “there are no distributional requirements”
(Fornell and Bookstein 1982). Herman O. A. Wold, who developed PLS path model-
ing, positioned it as “soft modeling” as opposed to covariance-based structural equation
modeling, which relies on rather “hard” assumptions. Secondly, PLS path modeling
can be used to estimate relationships between latent variables with several indicators
when sample size is small (Chin and Newsted 1999). As the PLS path modeling algo-
rithm consists of OLS regressions for separate subparts of the focal path model, the
complexity of the overall model hardly influences sample size requirements. Thirdly,
modern easy-to-use PLS software with graphical user-interface, like SmartPLS (Ringle
et al. 2007) and PLS-Graph (Soft Modeling, Inc 1992-2002), have contributed to the
attractiveness of PLS. Fourthly, PLS is preferred over covariance-based structural
equation modeling when improper or non-convergent results are likely (so called hey-
wood cases, cf. Krijnen et al. 1998), as for instance in more complex models, when
the number of latent and manifest variables is high in relation to the number of obser-
vations, and the number of indicators per latent variable is low. The idea that PLS
“ensures against improper solutions” (Fornell and Bookstein 1982, p. 440) goes along
with a strong belief among researchers: the belief that the PLS path modeling algorithm
converges. For instance, Hanafi (2007, p. 280) states that “convergence [..] is always
verfied in practice”. Tenenhaus et al. (2005, p. 169) sum up the current knowledge
about the convergence of the PLS path modeling algorithm by saying that conver-
gence is “guaranteed only for the two-block case, but practically always encountered
in practice even with more than two blocks”. Even though the PLS path modeling
algorithm may converge in practice, there is concern about the missing proof of its
convergence (cf. Hwang and Takane 2004), inspiring researchers to search for this
proof.

In this contribution, I show that it will be impossible to deliver a general proof for
the convergence of the PLS path modeling algorithm for more complex models. More
specifically, I will present several datasets for which the PLS path modeling algorithm
does not converge.

This paper is structured as follows. Section 2 provides a brief introduction into
the PLS path modeling algorithm. Section 3 summarizes the literature on the conver-
gence of the PLS path modeling algorithm. Section 4 describes the data generation
procedure by means of which six datasets were found that led to a non-convergence
of the PLS path modeling algorithm. Moreover, it reports how the path model was
estimated precisely, and how the algorithm behaved in the six cases. Finally, Sect. 5
draws conclusions for scientists interested in the development and application of PLS
path modeling as well as for users of PLS path modeling in general.
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Fig.1 A simple PLS path model

2 PLS path modeling

Partial Least Squares is a family of alternating least squares algorithms, or ‘prescrip-
tions’, which extend principal component and canonical correlation analysis. The
method was designed by Herman Wold (1966, 1973, 1974, 1982, 1985a,b, 1989) for
the analysis of high dimensional data in a low-structure environment and has under-
gone various extensions and modifications. This paper builds on Wold (1982) basic
algorithmic design and some extensions developed by Lohméller (1989).

2.1 The nature of PLS path models

Partial Least Squares path models are formally defined by two sets of linear equa-
tions: the inner model and the outer model. The inner model specifies the relation-
ships between unobserved or latent variables, while the outer model specifies the
relationships between a latent variable and its observed indicators or manifest vari-
ables. However, the various streams of literature do not always employ the same
terminology. For instance, publications addressing CBSEM (e.g., Rigdon 1998) often
refer to “structural models” and “measurement models”’; whereas those focusing on
PLS path modeling (e.g., Lohmoéller 1989) use the terms “inner model” and “outer
model” for similar elements of the cause-effect relationship model. As this paper
deals with PLS, related terminology is used. Figure 1 depicts an example of a PLS
path model.

Without a loss of generality, it can be assumed that latent and manifest variables
are standardized so that the location parameters can be discarded in the following
equations. The inner model for relationships between latent variables can be written
as:

E=EB+7Z, ey

where Z is the vector of latent variables, B denotes the matrix of path coefficients, and
Z represents the inner model residuals. The basic PLS design assumes a recursive inner
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model that is subject to predictor specification. Thus, the inner model constitutes a
causal chain system (i.e. with uncorrelated residuals and without correlations between
the residual term of a particular endogenous latent variable and its predictor variables).
Predictor specification reduces Eq. 1 to:

E(

&

=) —
&)

@

B. 2

PLS path modeling includes two different kinds of measurement models: Mode A and
Mode B. The choice of a certain mode is subject to theoretical reasoning and in most
cases results from a decision to define a measurement model as reflective or formative
(see e.g. Diamantopoulos and Winklhofer 2001).

Reflective measurement models assume causal relationships from the latent vari-
able to the related manifest variables. Within a certain block of manifest variables,
each manifest variable x is modeled as a linear function of its latent variable & plus a
residual &:

x = A +e, 3)

where X represents the loading coefficient. The outer relationships are also subject
to predictor specification, implying that there are no correlations between the outer
residuals and the latent variable of the same block. This reduces Eq. 3 to:

E(x|§) = A&. (4)

Formative measurement models assume causal relationships from the manifest vari-
ables to the latent variable. For one block of manifest variables, the linear relationships
are given as follows:

E=Xm+v. (5)
Predictor specification reduces Eq. 5 to:

E¢IX) = X7 (6)

2.2 The PLS path modeling algorithm

The PLS algorithm is essentially a sequence of regressions in terms of weight vectors.
The weight vectors obtained at convergence satisfy fixed point equations; see Dijkstra
(1981, 2009) for a general analysis of such equations and ensuing convergence issues.
The basic PLS algorithm, as suggested by Lohmoller (1989), includes the following
three stages: (1) iterative approximation of latent variable scores, (2) estimation of
outer weights, outer loadings and path coefficients, and (3) estimation of location
parameters.

The debate of convergence of the PLS algorithm focuses solely on the first stage,
which is the core of the PLS algorithm. According to Tenenhaus et al. (2005), the first
stage of the PLS path modeling algorithm consists of four steps:
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Step #1:  Outer approximation of the latent variable scores. Outer proxies of the latent
variables, é,‘l’ , are calculated as linear combinations of their respective indi-
cators. These outer proxies are standardized; for example, they have a mean
of zero and a standard deviation of one. The weights of the linear combina-
tions result from Step #4 of the previous iteration. When the algorithm is
initialized, and no weights are yet available, any arbitrary non-trivial linear
combination of indicators can serve as an outer proxy of a latent variable.

Step #2: Estimation of the inner weights. Inner weights are calculated for each
latent variable in order to reflect how strongly the other latent variables
are connected to it. There are three schemes available for determining the
inner weights. Wold (cf. 1982) originally proposed the centroid scheme.
Later, Lohmoller (1989) developed the factor weighting and path weight-
ing schemes. The centroid scheme uses the sign of the correlations between
a latent variable—or, more precisely, the outer proxy—and its adjacent la-
tent variables; the factor weighting scheme uses the correlations. The path
weighting scheme pays tribute to the arrow orientations in the path model.
The weights of those latent variables that explain the focal latent variable
are set to the regression coefficients yielded from a regression of the focal
latent variable (regressant) on its latent repressor variables. The weights of
those latent variables, which are explained by the focal latent variable, are
determined in a similar manner as in the factor weighting scheme. Regard-
less of the weighting scheme, a weight of zero is assigned to all non-adjacent
latent variables.

Step #3:  Inner approximation of the latent variable scores. Inner proxies of the latent
variables, é,i are calculated as linear combinations of the outer proxies of
their respective adjacent latent variables, using the afore-determined inner
weights.

Step #4: Estimation of the outer weights. The outer weights are calculated either
as the covariances between the inner proxy of each latent variable and its
indicators (in Mode A, reflective), or as the regression weights resulting
from the ordinary least squares’ regression of the inner proxy of each latent
variable on its indicators (in Mode B, formative).

These four steps are repeated until the change in outer weights between two iterations
drops below a predefined limit. The algorithm terminates after Step #1, delivering
latent variable scores for all latent variables. Loadings and inner regression coef-
ficients are then calculated in a straightforward way, given the constructed indices
and using Eqgs. 4 and 5. In order to determine the path coefficients, a (multiple) linear
regression is conducted in respect of each endogenous latent variable. The endogenous
variable’s scores are regressed on the latent predictor variable scores.

3 Current knowledge about the convergence of the PLS path
modeling algorithm

Considering that Wold developed the PLS path modeling algorithm decades ago, it is
surprising that the literature on its convergence is rather scarce. Tenenhaus and Vinzi
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(2005) sum up the current knowledge stating that convergence is “always verified in
practice but mathematically proven only for the two-block case”. For the two-block
case, PLS regression (cf. Garthwaite 1994) can play the role of PLS path modeling.
In this case, not only is the convergence proven, but also the outcomes of the PLS
algorithm are known (Tenenhaus et al. 2005): depending on the options chosen, the
PLS path modeling algorithm delivers a generalized canonical analysis (Horst 1961;
Carroll 1968), a multiple factor analysis (Escofier and Pages 1994), or a redundancy
analysis (Israels 1984; Fornell et al. 1988).

Hanafi (2007) points out that there are two main procedures of the PLS path model-
ing algorithm: the original procedure as invented by Wold (1982, 1985a), and a modi-
fied procedure developed by Lohmoller (1989). Lohmoller’s procedure computes the
latent variable scores of each latent variable E,E’H) (1 <k < K) atiteration (i + 1) as

a function of all the latent variable scores E,fi) obtained during the previous iteration
(7). In contrast, Wold’s procedure relies always on the most recent information avail-

able. For calculating latent variable scores E,fiﬂ) at iteration (i + 1) for example, the

procedure uses the latent variable scores é,g”l) that have been generated within the

present iteration if these are available; otherwise, the latent variable scores & ,5’) from
the previous iteration are used instead. Table 1 illustrates the difference between the
two procedures.

The advantage of Lohmdéller’s procedure is that it can efficiently be calculated by
means of matrix algebra. This is the major reason why most PLS software applications,
such as SmartPLS (Ringle et al. 2007), PLS-Graph (Soft Modeling, Inc 1992-2002),
SPAD (Test and Go 2006), and LVPLS [Lohmdéller 1987, including its extensions
PLS-GUI (Li 2005) and VisualPLS (Fu 2006)], have implemented this procedure.
The advantage of Wold’s procedure is its monotony properties. As Hanafi (2007)
demonstrates for the case of Mode B, Wold’s procedure is monotonically conver-
gent. Moreover, Wold’s procedure reaches a stable solution faster. These properties
of Wold’s procedure result in a better performance in terms of convergence speed
compared to Lohmdoller’s procedure.

In a first attempt to approach a proof of convergence of the PLS path modeling
algorithm, Hanafi and Qannari (2005) present a procedure that follows the same

Table 1 Comparison of Wold’s and Lohmoller’s procedure of the PLS path modeling algorithm for an
example with three latent variables

Iteration Lohmoller’s procedure Wold’s procedure
51(i)’§2(i)’53(i) Sl(i)’éz(i)’%(i)

i1 §1(i+l) — (gl(i)fz(i)’%(i)) El(i+1> - f (Sl(i),sz(i)’géi))
52(i+1) =f (E](i)’ %_2(1')’ E3(i)) éz(i+l) =f (gl(i+l)’§2(i)’%_§i))
53(i+1) = (gl(i)’ gz(i)’ 53(1')) €3(i+1) —f (El(i+l)»52(i+l)»53(i))
él(H—])v 52(i+1)’ §3(i+1) €1(i+1)’€2(i+1)’§3(i+1)
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purpose as PLS path modeling with Mode B, and converges. In a second attempt,
Hanafi (2007) succeeds in finding a proof of convergence of the PLS path model-
ing algorithm for more than two blocks of manifest variables. However, this proof is
limited to the following conditions:

1. Wold’s procedure is used.

2. Mode B applies to all measurement models.

3. Either the centroid scheme or the factorial scheme serves as inner weighting
scheme.

For all other conditions, i.e. Lohmoller’s procedure, Mode A or mixed measurement
models, or the path weighting scheme, there is no proof of convergence of the PLS
path modeling algorithm for more than two blocks of manifest variables.

4 Six cases of non-convergence of the PLS path modeling algorithm

As part of an extensive Monte Carlo simulation study about some particular behavior
of the PLS path modeling algorithm, I found six datasets that made the PLS path
modeling algorithm not converge. In order to facilitate a better understanding of the
nature of this data, I will describe both the underlying population model and the data
generation process.

All of the six datasets stem from a population model with two exogenous latent
variables &; and & and one endogenous latent variable &3. The direct effects have
coefficients of 0.3 and 0.5, respectively. Moreover, the model contains a multiplica-
tive interaction of the two exogenous latent variables having a coefficient of 0.3. As is
common for PLS path modeling, the latent variable scores are standardized, i.e. they
have a mean of zero and a variance of one. In mathematical notation, the model reads
as follows:

£3=03-614+05-5£+03-& & +¢ &,5&~N©O,1) ¢~N(0,057) (7)

The latent variable scores serve as point of departure for creating reflective manifest
variables. For each latent variable £ ;, two manifest variables x j; and x ;> are generated.
All manifest variables x j, have equal loadings A = V0.5 22 0.7 and a normal-distrib-
uted unique error term:

Xin=A-E+&jn jn~N(@©,05) Vje{l,2,3}he(l,2} (8)

Population parameters like those chosen are realistic for PLS path models and can
be found for instance in technology acceptance studies (cf. Chin et al. 2003). For six
different sample sizes, 20, 50, 100, 150, 200, and 500 observations, respectively, 500
datasets are generated. In total, this results in 3,000 different datasets characterized
by the specified population model.

I analyzed the 3,000 datasets by means of PLS path modeling. However, the PLS
path model for the analyses differed from the population model in that it neglected the
interaction effect, i.e. only the direct effects of the exogenous latent variables &; and
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Fig. 2 Estimated model

&> on the endogenous latent variable &3 were estimated. Neglecting to analyze nonlin-
ear and in particular interaction effects is a typical and widely observed phenomenon
in social and business science. Figure 2 depicts the estimated model. In the light of
the estimated model, it becomes obvious that all datasets conform to the so-called
“rule of ten”, which says that the number of observations should at least be ten times
the number of independent variables of the most complex regression occurring in the
model (Chin 1998). During the PLS estimation phase, regressions occur in the mea-
surement model as well as in the structural model. In the present case, the structural
model requires the most complex regression containing two independent variables.
The recommended minimal number of observations is therefore twenty.

All computations, i.e. the simulation data generation as well as the PLS path model
estimation, were done with R (version 2.5.1; R Development Core Team 2007). The
used PLS path modeling algorithm is an immediate implementation of the exhaustive
description provided by Tenenhaus et al. (2005). They refer to the PLS path model-
ing algorithm as developed by Lohmoller (1989). For all floating comma operations,
I used double.

Three selected options are worth mentioning. Firstly, for the inner estimation,
I applied the path weighting scheme as suggested by Lohmdéller (1989). Currently,
this inner weighting scheme is widely recommended because it is the only scheme
that takes into account the causal order within the structural model. Secondly, as initial-
izations of the outer estimates of the latent variables, I used the first indicator of each
block as suggested by Wold (1982, p. 13) and concretized by Tenenhaus et al. (2005):

§j = xji 9

Remarkably, Tenenhaus et al. (2005) point out that “[t]he starting step of the PLS algo-
rithm consists in beginning with an arbitrary [non-trivial, the author] vector of weights,
w;,”. Thirdly, the sum of absolute changes in weights from one iteration to another
was tracked and compared with a threshold of 107>, If it falls below this threshold, the
algorithm is terminated. This particular stop criterion is suggested by Wold (1982), and
often implemented in PLS path modeling software. In any case, an iteration counter
assures that the algorithm would stop after a maximum of 500 iterations.
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This is what happens with six datasets. That means that in six occasions the PLS path
modeling algorithm does not converge within 500 iterations. Doubling the iteration
limit to 1,000 does not change the result; the PLS path modeling algorithm still does
not converge. This surprising finding calls for a triangulation. Two different PLS path
modeling software applications, SmartPLS (version 2.0 M3, Ringle et al. 2007, with
a special extension for latent variable initialization) and XLSTAT-PLSPM (Addinsoft
SARL 2007-2008) come to identical results, namely that for the six datasets the PLS
path modeling algorithm does not converge. A closer look at the six datasets reveals
that five datasets contain twenty observations, and one contains fifty observations. All
of the datasets can be downloaded from the CS online repository.

In order to learn more about the generalizability of the phenomenon of non-con-
vergence, I assessed the sensitivity of the PLS estimation in regard to changes in the
weighting scheme, the latent variable initialization, and the structural model specifica-
tion. First I tested whether the results would remain identical if I applied inner weight-
ing schemes other than the path weighting scheme. Using the centroid scheme, i.e.
Wold’s initial suggestion, as inner weighting scheme, the PLS path modeling algorithm
converges for all of the six datasets. However, applying the factorial scheme, it turned
out that some of the six datasets caused non-convergence of the PLS path modeling
algorithm, too. Moreover, I examined whether different latent variable initializations
evoked the same outcomes. As alternative initializations of the outer estimates of the
latent variables, I used the sum of the indicators of each block:

&= xjn (10)
h

Not only is the sum of the indicators a popular proxy for latent variable scores, it
is also the standard option of SmartPLS. Using the sum of the indicators, the PLS
path modeling algorithm converged for all of the six datasets. Finally, I altered the
specification of the structural model. I included an additional arrow pointing from &;
to &>, in that way making the path model a complete graph. Under this condition, in
all six cases convergence was achieved.

Figure 3 depicts the development of the stop criterion, i.e. the sum of absolute
changes in weights (the first couple of iterations are omitted for better visibility).
Obviously, the sum of absolute changes in weights does not converge towards zero
for any of the six datasets. The datasets show quite a different behavior. For some
of them, the stop criterion seems to converge towards a non-zero constant value. For
others, the stop criterion seems to follow a periodical pattern. The second dataset prob-
ably exhibits the most worrying behavior: At the beginning, the stop criterion heads
towards a local minimum (0.002889), before it rises again and enters into a phase of
oscillation between values of 0.012531 and 0.135129. Besides the non-convergence,
another issue should attract attention: the local minimum at the beginning. Had the
stop criterion been higher, say 0.005 instead of 107>, a researcher would never have
known that PLS had not come to a stable solution. A hypothetical researcher would
also have come to this conclusion if he or she had used a different convergence crite-
rion, namely the sum of squared changes in weights from one iteration to another as
recommended for instance by Wold (1982).
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5 Dicussion

In order to get a complete insight into the results of the present study, it is indispensable
to be aware of its limitations. Firstly, the present study is limited in that it only provides
counterexamples that use Mode A for all measurement models. Nothing can be said
about the convergence of PLS path modeling when measurement models with Mode
B are used. Secondly, the inner weighting scheme seems to be of importance when it
comes to the issue of convergence. Whilst some models did not converge when the
path weighting scheme was used, and some when the factorial scheme was used, all
models did converge under the centroid scheme. Therefore, the choice of the inner
weighting scheme deserves more attention from PLS researchers and users than it
has received up to now in literature. Thirdly, from the perspective of graph theory, the
estimated model is not a complete graph, because it does not have an arrow connection
between the latent variables &1 and &;. If the graph is completed, i.e. the missing arrow
is added, the PLS path modeling algorithm (with path weighting scheme) converges. It
remains open whether the PLS path modeling algorithm always converges or not if the
focal PLS path model forms a complete graph. Fourthly, one cannot completely rule
out the possibility that a lack of numeric precision has caused the non-convergence.
Although the phenomenon of non-convergence occurred on three independent soft-
ware implementations, one must recognize that all three implementations use the same
numeric precision, namely double. Still, taking into account that the computational
precision encompassed thirteen digits while non-convergence unfolded itself already
at the third digit, the chance is very low that non-convergence happens only due to
numeric imprecision. Fifthly, this study could not give an answer to the question why
the algorithm has not converged. This question remains open, and requires further
research. As a point of departure, one could use the six datasets of this study, and
observe in depth the behavior of the PLS path modeling algorithm.

Despite the limitations, there are several valid conclusions that can be drawn. Firstly
and most importantly, this contribution is the first one ever that reports a case of non-
convergence of PLS path modeling. I could show that PLS does not always converge.
The further search for a proof of convergence, at least for the general PLS path mod-
eling algorithm, can thus be abandoned. Table 2 cumulates the knowledge about the
convergence of the PLS path modeling algorithm. Secondly, I found that contrary to
common belief, the initialization of the latent variable scores does play a role. In case
of all six datasets, convergence could be obtained for some initializations (e.g., average
over the indicators), but not for the one used. This has an implication in particular for
PLS path modeling software developpers. They should choose the average of the indi-
cators as the standard initialization of the latent variable scores. Last but not least, the
PLS path modeling algorithm forms part of a wider family of algorithms, the so-called
fix-point estimation techniques. It is known that some algorithms of this family do not
converge (cf. Lyttkens 1973). For those algorithms of that family whose convergence
has not been proven so far, it may be more promising to look for counterexamples
than to try proving convergence.

For users of PLS path modeling, several recommendations have to be spelled out.
Practical convergence does not necessarily mean that the PLS algorithm has come to
stable estimates. As the second case of non-convergence illustrated, it is well possible
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Table 2 Convergence of the PLS path modeling algorithm

Algorithm Inner weighting One or two latent variables More than two latent variables
sch
eme Mode A Mode B Mode A Mode B
Wold Centroid scheme Converges Converges Not proven Converges
Factorial scheme Converges Converges Not proven Converges
Path weighting Converges Converges Not proven Not proven
scheme
Lohméller Centroid scheme Converges Converges Not proven Not proven
Factorial scheme Converges Converges Does not always Not proven
converge
Path weighting Converges Converges Does not always Not proven
scheme converge

that the stop criterion may be fulfilled at a certain point, although the algorithm in
fact would not converge if it were allowed to continue. Furthermore, users should not
specify their path models in a way too similar to the example model. In particular, users
should avoid applying the path weighting scheme, estimating incomplete models, and
using only one indicator as initial proxy of the latent variable scores. In order to gain
confidence in the stability of the PLS estimates, users should triangulate the PLS path
modeling results, i.e. estimate the same model with all inner weighting schemes, and
compare the results. Finally, it should be noted that the non-convergence of PLS path
modeling does not mean that researchers in behavioral, social, and business science
should not use PLS any more. Many of the most important psychometric methods,
as for instance common factor analysis or covariance-based structural equation mod-
eling, face the issue of non-convergence. It is just that users must learn how to deal
with it. Yet, the so far prevailing assumption that PLS always converges has to be
withdrawn.
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