
Comput Stat (2010) 25:341–361
DOI 10.1007/s00180-009-0180-x

ORIGINAL PAPER

Penalized regression with individual deviance effects

Aris Perperoglou · Paul H. C. Eilers

Received: 21 April 2009 / Accepted: 13 November 2009 / Published online: 3 December 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The present work addresses the problem of model estimation and com-
putations for discrete data when some covariates are modeled smoothly using splines.
We propose to introduce and explicitly estimate individual deviance effects (one for
each observation), constrained by a ridge penalty. This turns out to be an effective
way to absorb model excess variation and detect systematic patterns. Large but very
sparse systems of penalized likelihood equations have to be solved. We present fast
and compact algorithms for fitting, estimation and computation of the effective dimen-
sion. Applications to counts, binomial, and survival data illustrate practical use of this
model.

Keywords Generalized linear models · Smoothing · Effective dimension ·
Penalized regression

1 Introduction

Generalized linear models (GLM) have made regression and smoothing with counts
or binary observations a standard tool of statistics. In contrast to a normal response,
the variance follows implicitly from the Poisson or binomial distribution and, given
the data, it is completely determined by the estimated expected values. In many appli-
cations, however, data show excess variability that is not easily captured by the model.
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This variability is attributed sometimes in overdispersion, when the observed variance
is larger than the theoretical one, or in some hidden patterns in the data.

A similar problem occurs in smoothing. When the effective bandwidth is chosen
by cross-validation or with an information criterion like AIC (Akaike 1974), it will
generally come out too small. Formally this makes sense: optimal cross-validation
detects systematic high-frequency components in the data, which should be exploited
when predicting left out observations. However, from the subject matter we may
know that it is reasonable to assume a smooth trend and we would like to have
more or less objective guidance on the amount of smoothing needed to compute
it.

There have been several proposals for dealing with overdispersion, the simplest one
being correction of the covariance matrix by a constant φ, assuming var(yi ) = φui

with φ estimated by equating the Pearson X2 statistic from a binomial fit to its degrees
of freedom (Williams 1982), and ui the theoretical variance under the assumed model.
Another way is to assume a parametric form for φ which will lead to a mixing dis-
tribution. For example, in binomial data, the variance of the response probability
πi is defined as var(πi ) = φpi (1 − pi ). The variability of πi can also be modeled
by a beta distribution with parameters αi and bi and φi = 1/(αi + bi + 1) which
leads to the beta binomial model (Crowder 1978). When data come from a Poisson
distribution the mean equals the variance. In such a case, the mean could follow a
gamma distribution with mean µ and variance φµ. This mixture leads to the negative
binomial model. Efron (1986) introduced the use of double exponential families in
generalized linear regression, in which a second parameter is introduced to control
the variance. A different approach to deal with overdispersion is to assume a more
general form for the variance function using additional parameters. These models are
using quasi-likelihood methods for estimation and are described by several authors
Hinde and Demetrio (1998), McCullagh and Nelder (1989). For a general discus-
sion on overdispersion refer to Collet (2003, Chap. 6), Agresti (1996) and Morgan
(1992).

Overdispersion may also rise as a result of unexplained heterogeneity. To account
for this heterogeneity a random effects model can be fitted to the data. Generalized lin-
ear mixed models (GLMM) were proposed as a general framework by Breslow
and Clayton (1993). They include an unobserved vector of random effects in a
GLM, assumed to arise from a normal distribution, and use an approximation of
the marginal quasi-likelihood based on Laplace’s method, leading to equations based
on penalized quasi-likelihood. Lin (1999) extended the idea by using smoothing
cubic splines to propose generalized additive mixed models, in the spirit of Hastie and
Tibshirani (1990). To avoid the complex numerical integration required to estimate
the model, they proposed a double penalized marginal quasi-likelihood also based on
a Laplace approximation. Schall (1991) proposed a general algorithm for the estima-
tion of random effects and dispersion parameters applicable in GLMs, regardless of
the structure of the linear predictor, and without the need to specify the distribution
of the random effect. In his application section, he used random effects to explain
extra-binomial variation, however, he did not examine this case in detail. Lee (1996)
proposed a broader class of models, in which the random vector is not restricted to
be normal, and a hierarchical likelihood to estimate it, without the integration that is
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needed in the marginal likelihood techniques; they broadened this class of models in
Lee and Nelder (2001). All of the above approaches deal with the problem of overdis-
persion, depending on different backgrounds of the same problem. However, some of
them are computationally hard to apply, especially in large datasets and some other
involve complicated mathematical procedures.

The present work addresses the problem of model estimation for discrete data when
some covariates are modeled smoothly using splines. We introduce an extra term in
the model to capture excess variability. Our approach is based on penalized likeli-
hood, using individual deviance effects as an extra parameter in the linear predictor
for each observation. This makes the number of parameters in the model larger than
the number of observations. In order to be able to estimate such a large number of
parameters, we add a ridge penalty on the deviance effects. This removes collinearity
in the estimating equations and at the same time reduces the effective model dimen-
sion drastically. To optimize the weight of the penalty, AIC, AICc (Hurvich and Tsai
1989; Hurvich et al. 1998) or REML methods can be used. This setting provides a
tool to deal with a range of problems, including hierarchical structures and smooth-
ing.

An important merit of our proposal is simplicity. In contrast to random effects
modelling, no assumptions are made for the distribution of the deviance effects, and
the ridge penalty provides a way of avoiding integration and complex approximation
of a marginal likelihood. We consider individual deviance effects not as a device for
absorbing overdispersion; these effects serve as an explanatory tool in complex statis-
tical applications, where other approaches are becoming computationally demanding
or theoretically too complicated. As an explanatory tool, deviance effects should be
examined, in order to reveal hidden patterns. In a sense, deviance effects can be seen as
residuals. In most cases, these effects will reveal possible bias in the model and indi-
cate the source and nature of increased variation or they might indicate whether there
is overdispersion present in the data. However, deviance effects are not just residuals,
since their inclusion in the model might improve the fit and the behavior of smoothing
parameters.

Implementation of individual deviance effects is straightforward, but it leads to
large systems of equations. However, they are extremely sparse and structured in such
a way that we can use explicit shortcuts. These shortcuts not only improve the speed
of computation by orders of magnitude, but (in the case of Poisson regression) also
reveal interesting relationships with the negative binomial distribution.

The paper is structured as follows. In Sect.2, we introduce the individual deviance
effects for regression and smoothing for counts, binomial data and survival analysis,
followed by a section on inference and the the choice of penalty weights. In Sect. 4, we
discuss an algorithm for efficient computation. Applications and simulation studies
are presented in Sect. 5 and a discussion follows in the last section. Details of the
sparse matrix calculations are presented in the Appendix.

As an acronym for our approach we have invented PRIDE: Penalized Regression
with Individual Deviance Effects. Note that individual here means unit of observa-
tion, like an observed count; it does not mean that a parameter is connected to each
individual counted.
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2 Penalized regression with individual deviance effects

Count data are often encountered in applications. It is natural to assume that numbers
of events can be fitted with a Poisson model. This model relates the expected value of
Y,E(Y ) = µ, to the systematic component η by the canonical link, log(µ) = η. Let
counts yi , i = 1, . . . ,m be a realization of a Poisson distribution. Then the probability
of yi is given by:

pi = µ
yi
i e−µi /yi !

and the log-likelihood is proportional to:

l =
m∑

i=1

(yiηi − µi ) (1)

Consider the Xm×p matrix of p covariates and the systematic component of the
model log(µ) = η = Xβ, with β the vector of unknown but estimable coefficients.

The optimization of (1) leads to a system of linear equations which can be solved
with iterative weighted linear regression as:

(X ′W̃ X)β̂ = X ′(y − µ̃)+ X ′W̃ β̃

which is equivalent to (X ′W̃ X)β̂ = X ′W̃ z̃, where W is a diagonal matrix containing
the weights µ and z̃ = W̃ −1(y − µ̃) + η and tilde denotes an approximate solution,
i.e., the values that are computed at the intermediate steps before final convergence of
the iterative algorithm.

To account for potential model bias and randomness, we propose to include a vector
of ‘deviance’ effects γ to the systematic component η such as:

η = Xβ + γ (2)

Equation (2) is the central idea of PRIDE regression. The systematic part of a gener-
alized linear model Xβ is enriched by a vector of effects, one for each observation.
Once the covariate information is in the model, we suggest to estimate a set of effects
that will describe deviances of the model estimates from the real data. These deviance
effects are model parameters that will model variation that is not explained by the
covariates and detect sources of potential bias. To maintain identifiability, we subtract
a ridge penalty term from the log-likelihood:

l∗ =
m∑

i=1

(yiηi − µi )− κ

m∑

i=1

γ 2
i /2. (3)

A ridge penalty is necessary in (3) to constrain the deviance effects. With the inclusion
of the γ vector the model becomes overparameterized and some of the parameters will
be overestimated. The ridge penalty handles the increased number of parameters that
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are controlled by the penalty weight. In the case of a well defined model, in which all
the important covariates are included in the model and no systematic bias is present,
then all variation of the model will be well explained by the systematic part Xβ. Then
the deviance effects should be small -or even zero. Inclusion of the ridge penalty will
be shrunk towards zero, as the penalty weight gets larger. On the other hand, when
the covariates do not fully describe the data, or there are hidden patterns in the data,
then the extra variation should be described by the individual effects. In such cases
the penalty weight should be small.

Setting the partial derivatives equal to zero gives the following system of penalized
equations:

X ′(y − µ) = 0, y − µ = κ I

where I is an identity matrix of the proper dimensions. One then iteratively solves the
following system of weighted regression, with W = diag(µ):

(
X ′W̃ X X ′W̃
W̃ X W̃ + κ I

) (
β̂

γ̂

)
=

(
X ′W̃ z̃
W̃ z̃

)
. (4)

This is a large but sparse system: its size is equal to the size of β plus the num-
ber of observations. However, with some matrix algebra we can avoid computational
problems. For details see Sect. 4. Moreover, we can eliminate γ quite easily:

γ̂ = (W̃ + κ I )−1W̃ (z̃ − X β̂).

If we introduce W ∗ = κ(W̃ + κ I )−1W̃ , we have κγ̂ = W ∗(z̃ − X β̂).With this result
we can derive, via simplification of

(X ′W̃ X)β̂ + X ′W̃ γ̂ = (X ′W̃ X)β̂ + X ′W̃ (W ∗(z̃ − X β̂)/κ) = X ′W̃ z̃,

that

(X ′W ∗ X)β̂ = X ′W ∗ z̃.

These are the same equations as for fitting a generalized linear model without over-
dispersion, with a change of weights and the addition of γ to z.

A common method of dealing with overdispersion in count data is by a mixture
model. The assumption is that the mean of a given individual, say Z , arises from
a gamma distribution in the population, with E(Z) = µ and the variance propor-
tional to the square of its mean. This mixture of Poisson and gamma distributions
leads to a negative binomial model, where the mean value of Y is E(Y ) = µ as
in a Poisson, and the variance is var(Y ) = µ + µ2/ψ for some nonnegative con-
stant ψ. Note that, for large ψ the model approaches the Poisson model. McCullagh
(McCullagh and Nelder, 1989, Chapter 9), describe how to fit such a model via quasi-
likelihood, and Thurston et al. (2000) discuss an extension for negative binomial addi-
tive models. McCullagh and Nelder write the canonical parameter as log(µ/(µ+ κ))
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McCullagh and Nelder (1989, p. 326, Table 9.1) and Thurston et al. (2000) describe
an algorithm to fit the model with weights κµ/(µ+ κ). This bears a striking similar-
ity with our approach where the weight matrix W ∗ can be used, which is given as a
diagonal of w∗

i = κwi/(wi + κ) and wi = µi .

2.1 Smoothing with P-splines and PRIDE

Eilers (1996) proposed generalized linear smoothing with penalized B-splines for data
pairs (xi , yi ), with non-normal y. The linear predictor is η = Bα, where B = [bi j ] is
a matrix of B-splines, bi j = B j (xi ). The log-likelihood is modified by a penalty based
on differences of α. This model can also be extended with individual deviance effects
as before. In the case of Poisson regression this leads to the penalized log-likelihood

l∗ =
m∑

i=1

(yiηi − µi )− λ
∑

k

(
dαk)
2/2 − κ

∑

i

γ 2
i /2. (5)

Here η = Bα + γ and d, the order of the differences, generally will be 2 or 3. The
weighted regression equations are very similar to (4), with B taking the place of X
and X ′W X replaced by B ′W B + λD′D, where D is a matrix such that Dα = 
dα.

2.2 Binomial data

The scoring algorithm in (4) applies to a whole class of generalized linear mod-
els, as detailed by McCullagh and Nelder (1989). Suppose, we have binomial data
(yi , ti ), where y denotes the number of “successes” and t the number of trials. Let
E(Yi ) = µi = ti pi , the canonical link pi = 1/(1+exp(−ηi )),with pi the probability
of success. The weights are wi = ti pi (1 − pi ). Again individual deviance effects can
be introduced by setting η = Xβ + γ, in the case of regression, or η = Bα + γ, in
the case of P-spline smoothing.

2.3 Smoothing of life tables

Survival data can come as pre-grouped data, when there is a natural unit of account-
ing, like years. When individual survival times and censoring status are given, we
can follow Efron (1988) and introduce (narrow) time intervals. In each interval the
number of subjects at risk is counted, as well as the number of events. The relationship
between time and probability of an event can then be estimated with a parametric or
semi-parametric model.

Let r j be the number of people at risk in interval j and let y j be the number of events
in the same interval. Then we can write a generalized linear model for the probability
of an event p j as:

log

(
p j

1 − p j

)
= η j = Bα
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In practice the probabilities are small and then it will be advantageous to switch to a
Poisson model, in which we model the expectation, µ j , of y j

logµ j = η j = Bα + log(r j )

where log(r j ) is an offset term. Here B is a B-splines basis and a difference penalty
is put on α.

2.4 Optimal penalty weights

A common technique for finding an optimal value of the smoothing parameter λ is
to combine the deviance and effective degrees of freedom of a fitted model in Ak-
aike Information Criterion (AIC). We have found that AIC served us well in many
applications, although AIC has a reputation for under-smoothing, especially in models
with large numbers of parameters. Once individual deviance effects are included in
models, optimization of AIC generally indicates a relatively small effective dimension
(compared to the nominal number of parameters, which includes the deviance effects).
The use of corrected AIC does not change results much.

Another approach comes from generalized linear mixed models (GLMM). A gen-
eral algorithm for the estimation of the fixed and random effects and components of
dispersion in GLMMs was proposed by Schall (1991). The proposed algorithm can
be adapted here to estimate the optimal values of the penalties. Consider the model in
Sect. 2.1 with log-likelihood function given by (5), let H denote the hat matrix and Hd

the lower right submatrix of the hat matrix, corresponding to the individual deviance
effects. Then the optimal value of the ridge penalty can be computed as:

κ̂ = tr(Hd)/γ
′γ

Similarly, the weight of the penalty for the smoothing splines can be given as:

λ̂ = tr(Hs)/αD′
αDαα

with tr(Hs) the trace of the upper left submatrix of the hat matrix. Throughout this
work, we will refer to this approach for computing the optimal weight as Schall’s
algorithm.

3 Efficient computation

The penalized likelihood equations and the iterative solution algorithm lead to large
linear equation systems. Unless one tries very small values of κ, numerical stability
problems do not occur, even though the number of equations is larger than the number
of observations. The ridge penalty stabilizes the computation, as is borne out by the
effective dimension, which turns out to be much smaller than the number of equations.

Solving the system (4) can lead to efficiency problems. If the number of observa-
tions becomes larger than, say, 1,000, the demands on memory and computation time
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could become a problem, if one would simply store and repeatedly solve the system.
However, using our proposed algorithm the computations can become efficient even
in very large data sets.

On convergence we also need the inverse of the matrix on the left-hand side of (4),
to compute the standard errors. Furthermore we need an additional matrix product
to compute the effective dimension. In the Appendix, we describe how to exploit the
extreme sparseness of the equations to speed up the computations, without explicitly
forming the matrices. Note that we compute the diagonal of the inverse of a sparse
matrix; standard sparse matrix software will not work here.

4 Applications

4.1 Number of faults in fabric rolls

Bissel (1972) reported a data set on the number of faults in rolls of fabric. Assuming
that the number of faults is proportional to the length of a roll, Poisson regression
on the logarithm of length of roll (x) as the explanatory variable should provide a
reasonable fit, see Hinde (1982). The estimated intercept is −4.173 (se = 1.135) and
coefficient of log(x) is 0.997 (se = 0.176). The residual deviance of the model is 64.5
with 30 degrees of freedom, indicating overdispersion. A negative binomial model
gives −3.795 (1.457) for the intercept and 0.938 (0.228) for the coefficient of log(x).
The residual deviance of the negative binomial model was reduced to 30.67 while the
dispersion parameter was estimated to be 8.667.

To illustrate the mechanism behind our methodology consider the simple model,
where only a constant is added to the model and there is no information available on
the length of the fabric rolls. Then the fit will be a straight line (as shown in upper
left plot of Fig. 1) with deviance effects corresponding to the distance of each point
from the fitted line. The weight of the penalty for that model is 3.981. When the fabric
length is included in the model the weight of the penalty becomes 9.549, and the devi-
ance effects are smaller this time (1, middle right plot). However, the model can be
further improved by taking the logarithm of the fabric length. The optimum weight of
the penalty was κ = 8.912. With the inclusion of the deviance effects and log(x) the
intercept is estimated as −3.651(1.436) and the coefficient of log(x) as 0.910 (0.225).
These results are very similar to those obtained with the negative binomial model.
However, further comparison could be made on the basis of AIC. The simple Poisson
model has AIC = 191.84. The negative binomial model has AIC = 181.39 while the
PRIDE model has AIC = 179.339.

In the bottom graph the fit has become better, and the deviance effects even smaller.
A visual investigation of the deviance effects may indicate which model provides a
better fit to the data. A better fit should result in smaller deviance effects.

4.2 Simulation studies

In order to assess how the PRIDE models perform in cases that the data arise from a
specific theoretical model, a series of simulation studies was performed. We simulated
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Fig. 1 Fabric fault data. Results of three models; upper graph data and fitted line η = β0 + γ and a plot
of deviance effects, middle graph data and fitted line η = β0 + β1 X + γ and a plot of deviance effects,
bottom graph data and fitted line η = β0 + β1 log(X)+ γ and a plot of deviance effects

data coming from a negative binomial model. The framework within which the
data were simulated was similar to the example of the fabric data. We simulated
100 counts arising from a negative binomial model, based on an explanatory var-
iable, and variance var(Y ) = µ + µ2/ψ with parameter ψ chosen from the set
of different values {2, 4, 6, 8, 10, 20}. For each different parameter the data were
created on the theoretical model with µ = 1 + 0.5 log(x) and each setting was
repeated a thousand times. Three different models were fitted on the data, a simple
Poisson model, a negative binomial and a PRIDE model. The results are presented in
Table 1.

As expected, a simple Poisson model does not perform well, especially for small
values of the ψ parameter, where it underestimates the standard errors, and the num-
ber of cases where the true value of the coefficient was in the interval created from
the estimated coefficient plus or minus two times the standard errors, was small. On
the other hand, the negative binomial model corrected the standard errors and gave
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Table 1 Results of 1,000 simulations on 100 cases simulated from a negative binomial model with µ =
1 + 0.5 log(x) where β0 = 1 and β1 = 0.5 are the true values of coefficients and ψ (the parameter of the
negative binomial distribution) was chosen from the set {2, 4, 6, 8, 10, 20}

β̂0 β̂1 ψ̂ Coverage (%)

ψ = 2 Poisson 0.974(0.141) 0.509(0.075) 74.4

neg. bin. 0.969(0.246) 0.512(0.137) 2.12 94.8

PRIDE 0.789(0.314) 0.495(0.176) 1.46 94.1

ψ = 4 Poisson 0.989(0.140) 0.504(0.074) 82.8

neg.bin 0.987(0.200) 0.506(0.110) 4.38 94.9

PRIDE 0.933(0.209) 0.493(0.112) 4.19 95.3

ψ = 6 Poisson 0.986(0.140) 0.506(0.074) 86.8

neg.bin. 0.985(0.183) 0.506(0.101) 6.77 95.4

PRIDE 0.958(0.185) 0.497(0.102) 6.78 95.5

ψ = 8 Poisson 0.991(0.140) 0.501(0.074) 87.8

neg.bin. 0.991(0.172) 0.501(0.094) 9.73 94.7

PRIDE 0.976(0.173) 0.494(0.094) 9.81 95.0

ψ = 10 Poisson 0.987(0.139) 0.506(0.074) 90.7

neg.bin. 0.987(0.166) 0.506(0.090) 71.28 94.9

PRIDE 0.976(0.167) 0.501(0.091) 113.19 94.9

ψ = 20 Poisson 0.995(0.140) 0.502(0.074) 93.7

neg.bin. 0.994(0.154) 0.503(0.083) 2174.9 95.9

PRIDE 0.991(0.154) 0.500(0.083) 2951.2 96.2

Standard errors of the estimated coefficients are given in parentheses. The last column presents the number
of times that the true value of the constant lay within the estimated confidence interval of the coefficient
(95% nominal coverage)

estimates for the coefficients closer to the real ones. Even though the negative bino-
mial is the true model from which the data rise, the PRIDE model performs very
satisfactory and in some cases better (with regard to coverage). The PRIDE model
corrects the estimated standard errors, gives better estimates for the coefficients but
also estimates the ψ better than the negative binomial model, with the only exception
when ψ = 2. It has been noted at the last paragraph of Sect. 2, when fitting a PRIDE
model to overdispersed count data the weights that are used are the same with the
ones suggested by Thurston et al. (2000). Thus, the estimated κ from PRIDE models
should be similar to ψ parameter estimated from the negative binomial model. In the
last row of the table, we also present a case when ψ = 20 to simulate a case where
the model approximates a Poisson model. As one should expect, when ψ gets larger,
the coverage and estimates from a simple Poisson model improve.

4.3 Comparison of gynaecological practices

The data arise from a project on quality comparison of gynecological practices in the
Netherlands. The study monitors the performance of about 140 centers from 1988 up
to recent date, with respect to different aspects of childbirth. In this section, we only
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Table 2 Estimated coefficients
for fixed effects and their
standard errors (left) from a
linear mixed model

Data were fitted using R and
lmer4 library. The right part of
the table presents estimated
coefficients (and standard errors)
from a PRIDE model with
κ = 1.17

Coef St.err Coef St.err

Constant 12.733 1.125 11.991 1.094

Xweek −0.317 0.042 −0.300 0.041

Xblood −0.009 0.003 −0.009 0.004

Xweigth −0.002 0.000 −0.002 0.000

Xsex −0.196 0.128 −0.191 0.125

Xzek −0.302 0.239 −0.274 0.235

consider data from 1998 and concentrate on the mortality of pre-term infants (from 32
up to 37 weeks). The covariates are: weight of the child (Xweight), pregnancy length
in weeks (Xweek), gender of the child (Xsex), blood pressure (Xblood) and a binary
indicator of whether the mother had some sort of illness before giving birth (Xzek).

In 1998, in 114 centers, 2,212 infants were born prematurely. We only considered
cases with full records, leaving a data set of 2,067 births which contained 561 deaths.
The mean number of births per center is 18.13 and the overall mortality rate is 27.1%.

First we checked whether an individual deviance effect per child made sense. This
was not the case: AIC indicated an essentially infinitely high value of κ.This is a funda-
mental issue, since in the binomial case with clusters of size 1 the individual deviance
effects are not identifiable, and that forces the penalty to infinity. This is equivalent to
what McCullagh and Nelder (1989, page 125) describe, that overdispersion cannot be
fit to binomial data with ni = 1.

We introduced deviance effects for the centers, leading to the linear predictor η =
Xβ + Cθ, where C is an indicator matrix connecting a child to a center, and X the
matrix of covariates. According to AIC the optimal value of log10κ is 1.17.

To compare the results we fitted the data using a linear mixed effect model (Pinheiro
and Bates 2000, p. 146). The variance of the random effect was estimated 1.14. Table 2
presents the estimated coefficients of the mixed model with their standard errors, along
with the estimated coefficients (and standard errors) from the PRIDE fit.

It is instructive to compare the results of a simple regression model, which implies
fixed center effects, with the results of the PRIDE fit and the mixed model. As Fig. 2
shows, strong shrinking takes place, especially for the more extreme center effects.
By visual inspection, the deviance effects appear to shrunk towards zero more than
the corresponding random center effects, however, the differences are subtle.

Lack of space does not allow a further analysis of these data. We note, however,
that the estimated deviance effects and their standard errors allow the implementa-
tion of probabilistic ranking procedures (van Houwelingen et al. 2004; Spiegelhalter
1999; Goldstein and Spiegelhalter 1996; Thomas et al. 1994). We will report on this
elsewhere.

4.4 Digit preference in demographic data

Age heaping is a common phenomenon in demography, caused by age misstatement in
data registration when reliable records are not available. Many people tend to misstate
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Fig. 2 Random center effects versus fixed center effects for the gynecological practices data. Triangle
centers with death rate lower than 0.08, estimated by mixed model. Times centers with death rate upper
than 0.85, estimated by mixed model. Circ centers with death rates in between 0.08 and 0.85, estimated by
mixed model. Doplus centers with death rate lower than 0.08, estimated by PRIDE model. Bigtriangledown
centers with death rate upper than 0.85, estimated by PRIDE model. Diamondsuit centers with death rates
in between 0.08 and 0.85, estimated by PRIDE model

their age (or their year of birth) in favor of numbers ending in multiples of five. To
illustrate this, Fig. 3 shows empirical data of the observed deaths of the male Greek
population in 1960. The raw data are presented in the upper right histogram (as vertical
narrow bars). For ages over 45, we observe large heaps every 5 years.

The Poisson smoother was constructed as follows. Define yi the number of death
at age i, and E(yi ) = µi , then the model is η = log(µ) = Bα where B is a B-spline
bases. The size of y is small and intervals have equal widths, so if we evaluate a
zero-degree B-spline basis B at midpoints we get the identity matrix I. A difference
penalty λ|Dα|2 on α controls the amount of smoothness. The upper left graph shows
the graph of AIC, indicating a small value of λ, leading to the quite rough line in
the upper right graph, which essentially follows the data. A first indication that the
problem stems from the counts at ages that are multiples of five, can be seen in the
lower right graph. The counts at multiples of five have been replaced by the average of
the preceding and the following age. The optimal smooth curve already looks better,
but it still shows spurious detail.

This phenomenon, also known as digit preference, can lead to complicated and mis-
leading patterns. Eilers (2004) describe systematic ways of dealing with the problem,
accounting for transfers of counts from “unpopular” to “popular” ending digits. Here
we take the simple route of adding a deviance effect: logµ = η + γ.
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Fig. 3 Number of deaths versus Age of the Greek male population in 1960. Optimal weight of the penalty
for raw data λ = 3.98 (upper graph), and for interpolated (lower graph) λ = 50.11, based on AIC criterion

We fitted the data using both the AIC and Schall’s algorithm to compute the weight
of the penalty. Results are presented in Fig. 4. A contour plot illustrates the dependence
of AIC on λ and κ. The best choice is log10 λ = 3.4 and log10 κ = 1.8, based on a two
dimensional grid search. The profile plots show the behavior of AIC for optimal values
of the parameters. Following the AIC indicated weight the smoothed histogram now
looks much more realistic. On the other hand, the smoother from Schalls algorithm was
still influenced by the digit preference. The pattern of the deviance effects emphasizes
digit preference: large positive values at multiples of five flanked by negative values.

Another approach of modelling the data is by the use of Generalized Additive Mod-
els (GAMs) as suggested by Wood (2008). We used the library mgcv in R to fit the
data. When specifying the model, the degrees of freedom for the smoothing spline
has to be given as well. In Fig. 5 we present the GAM fits for a different number of
degrees of freedom. The GAM model follows the digit preference when the number
of knots is larger than 40 knots. In all cases, the PRIDE fit is added to the graphs for
comparisons. In conclusion, the PRIDE fit either outperforms the GAM fit or, when
the number of knots is ‘correctly’ specified, it performs equally well.
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Fig. 4 a Histogram of empirical data and smoother, solid line AIC smoother, dashed line smoother based
on Schalls algorithm, b Values of individual deviance effects γ for different ages

4.5 Survival of Mediterranean flies

We will now extend the idea of adjusting for overdispersion in Poisson counts to the
field of survival analysis. As an example consider data which consist of lifetables for
46 cohorts of female Mediterranean flies (Ceratitis capitata). Each cohort consisted of
about 4,000 flies which were put in a cage and for each cage, the number of flies alive
at the beginning of each day was recorded. The flies were observed for up to 174 days
in some cohorts, and the number of deaths for each cohort was recorded at the end of
each day. For a detailed analysis of the data see Müller et al. (1997). We restrict our
analysis in two cohorts from the study chosen at random.

The model is essentially the same as for the age distribution that we discussed
before. The response is the number of flies dying per day. The number at risk, r, is
introduced as an offset E(y) = Bα + log(r) + γ. We used both AIC and Schall’s
algorithm to determine the optimal value of the penalty weights. Figure 6 (right) shows
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Fig. 5 Histogram of empirical data and smoother for different number of knots in a GAM fit. Dashed line
denotes the smoother coming from a PRIDE fit

an example where the size of the deviance effects are small, as is also indicated by the
large value of κ (251, determined by AIC), while the difference amongst the fit using
AIC and Schall’s algorithm are only visible in the last few days of the follow up. In
cohort 2 one can see quite large deviance effects (κ = 39.81) with an absolute value
up to 0.45. Apparently, there is clustering in dying (and not dying) of the medflies.
This means that on certain episodes the hazard increases or decreases by a factor of
almost 1.6(exp(0.45) = 1.57).

5 Discussion

We have introduced a simple device, individual deviance effects, to model overdis-
persion, account for model bias and randomness in generalized linear regression and
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Fig. 6 Hazard and smoothed hazard of flies in cohort 2 (left side) and 5 (right side), along with histograms
of the corresponding deviance effects

smoothing. Although the nominal number of parameters is increased enormously this
way, a ridge penalty makes all parameters identifiable, reduces the effective model
dimension, and stabilizes computations. A very large system of estimating equations
results from our model, but it is extremely sparse and we have shown how to solve it
efficiently, deriving explicit formulas for components of partitioned matrices.

We have considered a number of simple, but realistic, applications. We have shown
that PRIDE models can work as an approximation of the negative binomial distribu-
tion, in the example of the fabric data. Experiments in large life tables (over 100 years,
100 ages) have also shown good results (Iain Currie, personal communication). Fitting
the model is no more complicated than for the Poisson model, because only the effec-
tive weights change. On convergence, the fast algorithm we describe in the Appendix
allows efficient computation of effective dimension and standard errors of the fitted
values.

For larger problems one would run into problems, unless one uses very smart
generalized linear mixed model software. Our approach has been used on life tables
with 100 by 100 cells. The sparse algorithm keeps memory use and computation time
small. Most standard software will not be able to handle 104 random effects. The
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computational approach used in this paper provides a useful tool in a wide area of
applications. A nice application of our algorithm can be found in Eilers et al. (2008).

We propose individual deviance effects mainly as an exploratory tool. After fitting,
one should study plots of its elements, to detect local patterns their size and direction.
This might suggest patterns in the data that can be caught by modified models. Success-
ful modification should lead to a stronger weight of the penalty, with correspondingly
smaller deviance effects.

The improvements of estimated standard errors are obtained at relatively low com-
putational costs. One could set up full-scale (generalized linear) mixed model machin-
ery, specify a distribution for and use any of the established algorithms to estimate its
variance. The deviance effects will then, of course, become bona fide random effects.
Our κ is the inverse of their variance. For exploration little would be gained, and
changes in estimated standard errors will be small too.

When presenting this work to colleagues, we sometimes experienced that the adjec-
tive “individual” in PRIDE caused confusion, especially in the context of counts or
proportions. We emphasize that it does not point to the subjects (faults, flies or men)
that make up the counts, but the individual observational units (fabric rolls, days or
ages intervals) to which the counts are connected. In other words: the individual rows
in the regression model η = Bα for the linear predictor.

One of the referees suggested to produce standard errors for the individual effects in
the fabric faults example in order to demonstrate whether these are due to randomness
in the data and use a hypothesis test to check. Le Cessie and van Houwelingen (1995)
specified a score test for testing the fit of a regression model with random effects, with-
out the need of specifying a distribution for the random vector. Consider the regression
model with individual deviance effects and assume that the vector γ is a random effects
vector with mean 0 and covariance σ 2 R, with matrix R to describe the dependency
structure amongst the random effects. To test whether a simple model without the
random effect is adequate we use the score statistic for testing H1:σ 2 = 0 versus
HA:σ 2 > 0. The derivation is based on the quadratic form Q = (Y −µ1)

′ R(Y −µ1),

which leads to the goodness of fit statistic:

T = (Y − µ1)
′ R(Y − µ1)− trace(RV )

[∑
i R2

i i (µ4i − 3µ2
2i )+ 2trace(RV RV )

]1/2 = Q − E(Q)

s.e.(Q)
(6)

with µ j i the j th central moment of Yi and V = cov(Y ). The distribution of Q can
be approximated with a scaled chi-squared distribution, cχ2

ν where χ2 is a chi-square
distribution with ν degrees of freedom, and the constants c and ν are obtained by
equating the mean and variance of Q and cχ2

ν , yielding c = var(Q)/[2E(Q)] and
ν = 2[E Q]2/var[Q].

This statistic is valid in an ideal world where the true value of the parameters is
known. In reality one has to adjust the test for the estimation of the parameters. It can
be verified that (Y − µ̂) equals to first order Y − µ̂1 = (I − H)(Y − µ1) with H the
hat matrix, leading to the statistic

Q̂ = (Y − µ̂1)
′ R(Y − µ1) ≈ (Y − µ1)

′(I − H)′ R(I − H)(Y − µ1)

123



358 A. Perperoglou, P. H. C. Eilers

One then has to adjust for the estimation of the parameters by using (I − Ĥ)′ R(I − Ĥ)
instead of R to compute the mean and standard error of Q̂.This simple test can be used
for testing whether the deviance effects should be included in the model. In the fabric
faults example the score test gave a scaled Chi-square statistic with a value of 66.46,
with 25.66 degrees of freedom and scale parameter c = 10.39, giving a p-value less
than <0.0001.

Although our approach shows similarities with mixed modelling we stress that
PRIDE models do not estimate random effects. In contrast to the quasi-likelihood
approach, we prefer the appropriate exponential family distribution, like Poisson or
binomial. Established information criteria, like AIC, corrected AIC or BIC can be
computed, because the proper likelihood is available. Of course our proposed meth-
odology could be translated to mixed model methodology, and use for instance REML
methods to estimate the variance of the deviance effect.

Mixed models treat the random effects as parameters and require modelling and
distributional assumptions for their estimate. These assumptions are part of the overall
modelling of the data, and as such, they should be checked whether they hold or not.
In our approach, we have to deal with a penalty which is chosen for modelling conve-
nience and it is not open to the usual model criticism using tests on the significance
of the random effects.

The estimating strategy of PRIDE models can be closely related to penalized quasi
likelihood (PQL). In fact the penalized likelihood defined in (1) is actually an extended
likelihood (Pawitan 2001, p 429) and can be written in a more general form as:

L(θ, y) = pθ (x |y)pθ (y)

where pθ (x |y) is the pure likelihood term and pθ (y) is the information that y is
random. In our penalized likelihood, the penalty term is equivalent to pθ (y) and is
derived by assuming normality for the deviance effects. This likelihood is essentially
the same as the h−likelihood, defined by Lee and Nelder (1996), while in smoothing
literature it is known as quasi-likelihood (Green and Silverman 1993). However, Lee
and Nelder chose to estimate the variance of the random effect using restricted max-
imum likelihood estimates (REML) whereas we can also use AIC for optimizing a
penalty which is related to deviance effects. Moreover, Lee and Nelder defined their
likelihood to work in a special class of conjugate hierarchical models where the dis-
tribution of the random effect is conjugate to the conditional distribution of y given
that random effect. In our approach, although the likelihood is like being derived on
the assumption of normality of the deviance effects, in practice normality need not to
hold and no distributional assumptions have to be met.

The proposed methodology could easily be extended to handle hierarchical struc-
tures. Whatever the linear component of the model would be, individual parameter
vectors could be added to account for overdispersion due to different causes. Such an
extended model would involve multiple ridge penalties, one for each set of deviance
effects. Methods for extending the proposed methodology on correlated and multivar-
iate deviance effects can be derived, as well interactions of the fixed with the deviance
effects, and is currently a topic of research.
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One can look at PRIDE as taking conditional modelling to the limit. The analysis
of the fabric fault data illustrates this. We get essentially the same results as from a
negative binomial (NB) fit, which is a marginal model, without the complications of
the NB likelihood. There the deviance effects showed no obvious pattern. We could
have used NB smoothing for the Greek mortality data and perhaps we would have
found a pleasing trend. However, we could only look at residual plots and we would
not have isolated the digit preference pattern that the deviance effects represent.

For the time, we suggest PRIDE modelling as an explanatory tool for applied stat-
isticians. However, we have pointed the reader to the similarities of our approach with
existing literature, mainly in the area of overdispersion modelling. There is still work
to be done in order to provide the theoretical basis of our approach on the basis of infer-
ence. On small simulation studies the results suggest that PRIDE modelling provide
better estimates for standard errors than simple GLMs or joint–likelihood models.
However, a more detailed study is needed to illustrate whether PRIDE models are
actually better in estimating standard errors than using conventional quasi-likelihood
techniques, or whether they produce less bias.
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Appendix: Efficient computation

Consider a PRIDE model with systematic component η = Bα + γ where B is the
basis matrix, α the corresponding coefficients, a penalty α′ Pα and individual deviance
effects γ. We have to invert a partitioned information matrix:

[
B ′W B + P B ′W
W B W + κ I

] [
S11 S12
S21 S22

]
=

[
I 0
0 I

]

It follows that

S11 =
[
(B ′W B + P)− B ′W (W + k I )−1W B

]−1 = (B ′W ∗ B + P)−1,

with W ∗ a diagonal matrix having w∗
i i = κwi i/(κ +wi i ). This is a small matrix with

size equal to the number of basis functions. We also have:

S22 = [
(W + κ I )− W BS11 B ′W

]−1 = (W + κ I )−1 + (W ∗/κ)BS11 B ′(W ∗/κ),

where we have used the Morrison–Woodbury matrix inversion lemma:

(A + P Q R)−1 = A−1 − A−1 P(P ′ A−1 R + Q−1)−1 R A−1
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The off-diagonal submatrices follow directly:

S21 = S′
12 = −(W ∗/κ)BS11.

For the estimation of the effective dimension of the model the trace of the hat
matrix is needed. That means multiplying the inverse of the information matrix, with
the information matrix without the penalties as given by:

H =
[

S11 S12
S21 S22

] [
B ′W B B ′W
W B W

]
=

[
H11 H12
H21 H22

]

Working in the same way as before:

H11 = S11 B ′W B + S12W B = S11(B
′W B − B ′W ∗W B) = S11 B ′W ∗ B.

H22 = S21 B ′W + S22W = (W ∗/κ)− (W ∗/κ)BS11 B ′W ∗

In the practical implementation one should handle large diagonal matrices as vectors.
Pre-multiplication, as in W B,with such a matrix should be implemented as scaling of
the rows of B by the corresponding elements of the vector w that forms the diagonal
of W. The code fragment below, for Ror S+, uses these devices.

v <- kappa * w * (Fm <- 1/(w+kappa))
G1 <- rep(v, ncol(X)) * X
S11 <- solve(t(X) %*% G1 + P)
G2 <- rep((v / kappa), ncol(X)) * X
G3 <- G2 %*% S11
L1 <- rowSums(G3*G2)
S22 <- Fm + L1
R11 <- S11 %*% t(X) %*% G1
R22 <- (v / kappa)- L1 * kappa
tr <- sum(diag(R11)) + sum(R22)
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