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Abstract

We consider the problem of constructing nonlinear regression models in the case
that the structure of data has discontinuities at some unknown points. We propose
two-stage procedure in which the change points are detected by RVM at the first
stage, and the smooth curve are effectively estimated along with the technique
of regularization method at the second. In order to select tuning parameters in
the regularization method, we derive a model selection and evaluation criterion
from information-theoretic viewpoints. Simulation results and real data analyses
demonstrate that our methodology performs well in various situations.

Key Words and Phrases: Basis expansion, Change point, Information criterion,
Relevance vector machine, Nonlinear regression, Regularization.

1 Introduction

Nonlinear regression model based on basis expansions is a useful tool to analyze data with

complex structure. The essential idea behind basis expansions is to express a regression

function as a linear combination of known functions, called basis functions (Konishi and

Kitagawa, 2008; Hastie et al., 2009). In constructing the model, the basis functions are

chosen according to the structure of data. For example, B-splines (Eilers and Marx,

1996; de Boor, 2001; Imoto and Konishi, 2003) and radial basis functions (Bishop, 1995;

Kawano and Konishi, 2007; Ando et al., 2008), In particular, Gaussian basis functions

have been widely used to construct nonlinear regression models. In applying these models,

it is assumed that the structure of data is smooth.
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However, the underlying true structure which is generating data cannot be smooth at

some points where jump discontinuity may occur. Thus, the application of a usual nonlin-

ear regression model described above will lead difficulty of obtaining effective information

from the data in which the mean structure is suddenly changed.

Roughly speaking, the approaches for the change point problems can be classified

whether one change point exists or more than one. As examples of the former style, kernel-

based estimation methods have been proposed by Muller (1992) and local polynomial

methods have been used by Loader (1996). As examples of the latter style, Qiu (2003)

and Gijbels et al. (2007) proposed a jump-preserving curve fitting procedure based on

local piecewise-linear kernel estimation. Although Qiu (2003) and Gijbels et al. (2007)

are free from assumption of knowing the number of jumps, they leads very rough result

functions even in continuity regions.

In order to overcome this difficulty, we propose the method of appropriately estimat-

ing a nonlinear structure with the change points by applying RVM (Tipping, 2001) and

regularization method. We present a two-stage procedure to fit discontinuous regression

curve.

In the first stage, RVM is applied to the regression model with discontinuous basis

functions, and the candidates for the change points are detected. When using RVM, most

coefficients in the model are estimated exactly zero so that we can narrow down candidates

for change points. In the second stage, the regularization method is applyed to nonlinear

regression model with normal Gaussian basis functions in order to get the smooth curve

expect for change points. The regularization or shrinkage method has been widely used

to overcome unstability and ill-posed problems arising in a maximum likelihood or a least

squares procedure, and it has been proved successful in several fields, including image

processing and machine learning (see, e.g., Hastie et al., 2009; Bishop, 2006). It imposes a

penalty with respect to parameters of objective functions that are utilized in optimization

problems, and various kinds of penalties have been proposed (Frank and Friedman, 1993;

Tibshirani, 1996; Fan and Li, 2001; Candes and Tao, 2007). One of the most commonly

used penalty methods is ridge regression (Hoerl and Kennard, 1970), which imposes an

L2 norm penalty on regression coefficients. The ridge regression achieves good prediction
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performance through a bias-variance trade-off.

It is a crucial issue to determine the tuning parameters, including the number of ba-

sis functions, a smoothing parameter and a hyperparameter associated with Gaussian

basis functions. To choose these parameters, we derive model selection criterion from

information-theoretic viewpoint. The proposed nonlinear modeling procedure is investi-

gated through the numerical examples.

This paper is organized as follows. Section 2 describes the framework of nonlinear re-

gression model based on basis expansions. In Section 3 we present a method of detecting

change points by using RVM. Section 4 provides the discontinuous nonlinear regression

model. In section 5 we introduce regularization method imposing L2 norm penalty. Sec-

tion 6 provides a model selection criterion for evaluating statistical models estimated by

the regularization method. In Section 7 we investigate the performance of our nonlinear

regression modeling techniques through Monte Carlo simulations and real data analyses.

Some concluding remarks are presented in Section 8.

2 Nonlinear regression model with basis expansions

Suppose that we have n independent observations {(yα, xα);α = 1, 2, · · · , n} , where yα are

random response variables and xα are explanatory variables. We consider the regression

model

yα = u(xα) + ϵα, α = 1, 2, · · · , n, (1)

where u(·) is an unknown smooth function and ϵα are independently, normally distributed

with mean zero and variance σ2. It is assumed that the function u(·) can be expressed as

a linear combination of basis functions bj(x) (j = 1, 2, · · · ,m) in the form

u(x;w) = w0 +
m∑
j=1

wjbj(x) = wTb(x) , (2)

where b(x) = (1, b1(x), · · · , bm(x))T is a vector of basis functions and w = (w0, w1,· · · ,

wm)
T is an unknown coefficient parameter vector. A variety of basis functions are used

according to the structure of data.

3



One of the many basis functions is Gaussian basis function given by

bj(x) = exp

{
−(x− cj)

2

2h2j

}
, j = 1, 2, · · · ,m, (3)

where cj is the center of the basis function, h
2
j is a parameter that determines the dispersion

and || · || is the Euclidian norm. However, basis functions (3) often yield inadequate

results because of the lack of overlapping among basis functions. In order to overcome

this problem, Ando et al. (2008) proposed the use of Gaussian basis functions with a

hyperparameter, i.e. functions of the form

bj(x) = exp

{
−(x− cj)

2

2νh2j

}
, j = 1, 2, · · · ,m, (4)

where ν is a hyperparameter that adjusts the dispersion of basis functions. Ando et al.

(2008) showed that nonlinear models with these basis functions were effective in capturing

the information from the data.

However, the models with these basis functions will lead to smooth curve estimates,

even though change points are present. Therefore, they will be oversmoothed and change

points will not be visible in resulting curve. In order to overcome this problem, we use

discontinuous basis functions.

3 Detecting change points and estimation

For n independent observations {(yα, xα);α = 1, · · · , n}, the nonlinear regression model

based on basis functions ϕj(x) (j = 1, · · · , n) is expressed as

yα = wT
c ϕ(xα) + ϵα, α = 1, · · · , n, (5)

where ϕ(xα) = (1, ϕ1(xα), · · · , ϕn(xα))
T , wc = (w0c, w1c,· · · , wnc)

T and ϵα are error

terms. If the error terms ϵα are independently and normally distributed with mean 0

and variance β−1 (β > 0), the nonlinear regression model (5) has a probability density

function

f(yα|wc, β) =
1√

2πβ−1
exp

[
−{yα −wT

c ϕ(xα)}2

2β−1

]
, α = 1, · · · , n. (6)
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Fig. 1: The basis function ϕ(x). It is discontinuous at the center of the basis function.

For a explanatory variable x, we use discontinuous Gaussian basis functions given by

ϕj(x) =


exp

(
−||x− xj||2

h2c

)
, (x < xj)

0, (x = xj)

− exp

(
−||x− xj||2

h2c

)
, (x > xj)

, j = 1, 2, · · · , n, (7)

and Figure 1 shows this basis function ϕ(x). The discontinuous Gaussian basis function

ϕ(x) flips at the center of the basis function, and then the point whose absolute value of

coefficient is large can be considered to be the candidate for change point. Because, it

means the points behind and before the center greatly stop away from each other.

Next we suppose that the parameter vector w has a Gaussian prior density

π(wc|α) = (2π)−
n
2 |A|

1
2 exp

(
−1

2
wT

c Awc

)
, (8)

where α = (α0, · · · , αn)
T is an (n+ 1) hyperparameter vector and A = diag(α0, · · · , αn).

Using Bayes’ theorem, we see that the posterior distribution for the weights w has Gaus-

sian density

π(wc|y,α, β) = (2π)−
n
2 |Σ|−

1
2 exp

{
−1

2
(wc − µ)TΣ−1(wc − µ)

}
,
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where the posterior covariance matrix and mean are respectively

Σ = (βΦTΦ + A)−1, µ = βΣΦTy, (9)

where Φ = (ϕ(x1)
T , · · · ,ϕ(xn)T )T .

The values of hyperparameters α, β are determined by using maximization of marginal

likelihood function

p(y|α, β) =
∫
f(y|wc, β)p(wc|α)dwc, (10)

where f(y|wc, β) =
∏n

α=1 f(yα|wc, β). Setting the derivatives of marginal likelihood to

zero, we obtain estimators of α, β given by

α̂j =
γj
µ2
j

, β̂−1 =
||y − Φµ||2

n−
∑

k γk
, j = 0, · · · , n, k = 0, · · · , n. (11)

where γj = 1−αjΣjj, µj is (j+1)-th element of µ and Σjj is (j+1)-th diagonal element of

Σ. Because these estimators depend on each other, we need re-estimation of (9) and (11).

As mentioned above, the technique for estimation by the sequential computation based on

the maximizing marginal likelihood using ARD prior (Neal, 1996) is known as relevance

vector machine (RVM; Tipping, 2001). Using RVM, most coefficients are estimated to be

exactly zero. It can be thought that the point corresponding to the coefficient estimated

to be 0 except for intercept is a candidate for the change point. So, we can narrow down

candidates for change points, and we set up the vector of discontinuous basis functions

those have non-zero coefficients given by

ϕT̂ (xα) = (ϕτ1(x), · · · , ϕτnt
(x))T , (12)

where T̂ = {τ1, · · · , τnt} is a set of candidates for change points, nt is the number of them,

and ϕτk (k = 1, · · · , nt) is a discontinuous basis function (7) whose center is τk.

4 Discontinuous nonlinear regression model

Although the discontinuous basis functions help to detecting change points, the smooth

curve cannot be gained by using only such basis functions. Therefore, we assume the

nonlinear model involving continuous basis functions as below.
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For n independent observations {(yα, xα);α = 1, · · · , n}, the nonlinear regression

model based on basis functions bj(x) (j = 1, · · · , n) given in Section 2 is expressed as

yα = wTb(xα) + ϵα, α = 1, · · · , n, (13)

where b(xα) = (1, ψ1(xα), · · · , ψm(xα),ϕT̂ (xα)
T )T , w = (w0, w1, · · · , wm+nt)

T and ϵα are

error terms. If the error terms ϵα are independently and normally distributed with mean

0 and variance σ2, the nonlinear regression model (13) has a probability density function

f(yα|w, σ2) =
1√
2πσ2

exp

[
−{yα −wTb(xα)}2

2σ2

]
, α = 1, · · · , n. (14)

For smooth parts in estimated curve except for the change points, we use Gaussian basis

functions (4) as basis function ψ(x).

Unknown parameters in the regression model (13) include the coefficient parame-

ters wj (j = 1, · · · ,m), the centers cj and dispersion parameters h2j . In order to avoid

local minimum and identification problems (Moody and Darken, 1989), the centers cj

and dispersion h2j are determined by using the k-means clustering algorithm. The data

set of observations of the explanatory variables {x1, · · · , xn} is divided into m clusters

{C1, · · · , Cm}; centers cj and dispersions h2j are determined by

ĉj =
1

nj

∑
xα∈Cj

xα, ĥ2j =
1

nj

∑
xα∈Cj

||xα − cj||2, (15)

where nj is the number of observations included in the the j-th cluster Cj. Replacing cj

and h2j in equation (3) by ĉj and ĥ
2
j respectively, we obtain a set of m basis functions

ψj(x; ĉj, ĥ
2
j) = exp

(
−||x− ĉj||2

2νĥ2j

)
, j = 1, 2, · · · ,m. (16)

And then, the coefficient parameters wj (j = 0, 1, · · · ,m) are estimated by the maximum

penalized likelihood method.

5 Estimation based on regularization

The maximum likelihood estimates of the coefficient vectors w and σ2 are respectively

given by

ŵ = (BTB)−1BTy, σ̂2 =
1

n
(y −Bŵ)T (y −Bŵ),
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where B= (b(x1)
T , · · · , b(xn)T )T and y = (y1, · · · , yn)T . However, when fitting a non-

linear model to data with a complex structure the maximum likelihood method often

yields unstable estimates and leads to overfitting. We therefore estimate w and σ2 by

the method of regularization. Instead of using the log-likelihood function, we consider

maximizing the penalized log-likelihood function

lλ(θ) =
n∑

α=1

log f(yα|w, σ2)− nλ

2
wTKw, (17)

where θ = (wT , σ2)T , λ (> 0) is a smoothing parameter that controls the smoothness of

the fitted model and K is a known (m+nt+1)-th square matrix (Konishi and Kitagawa,

2008). The typical form of K is given by K = Im+nt+1 for the identity matrix or K =

DT
2D2 for a second-order difference matrix. Then, the maximum penalized likelihood

estimates of w and σ2 are respectively given by

ŵ = (BTB + nλσ̂2K)−1BTy, σ̂2 =
1

n
(y −Bŵ)T (y −Bŵ). (18)

Note that these estimators depend on each other. Therefore, we provide an initial value

for the variance σ2
x(0) first, then ŵ and σ̂2

x are updated until convergence. The ridge

estimators continuously shrink the coefficients as λ increases.

6 Model selection criteria

The statistical model estimated by the regularization method depends upon the number

of basis functions m, the value of the smoothing parameter λ and the value of the hy-

perparameter ν in the Gaussian basis functions. It is a crucial issue to determine these

values appropriately.

Konishi and Kitagawa (1996) introduced evaluation criteria of statistical models that

can be applied to the evaluation of statistical models estimated by various types of esti-

mation procedures such as the robust and penalized likelihood procedures. By using the

result, the model selection criterion for evaluating the statistical model constructed by

Gaussian basis functions is given by

GIC = n{log (2π) + 1}+ n log σ̂2 + 2tr{R−1Q}, (19)
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where R and Q are (m+ nt + 2)-th square matrices and are, respectively, given by

R =
1

nσ̂2

 B′B + nλσ̂2K
1

σ̂2
B′Λ1n

1

σ̂2
1′
nΛB

n

2σ̂2

 , (20)

Q =
1

nσ̂2

 1

σ̂2
B′Λ2B − λKŵ1′

nΛB
1

2σ̂4
B′Λ31n −

1

2σ̂2
B′Λ1n

1

2σ̂4
1′
nΛ

3B − 1

2σ̂2
1′
nΛB

1

4σ̂6
1′
nΛ

41n −
n

4σ̂2

 (21)

with 1n = (1, · · · , 1)T and Λ = diag(y1−ŵ′b(x1), · · · , yn−ŵ′b(xn)). We select the optimal

value of the number of basis functions, a regularization parameter and a hyperparameter

that minimize GIC.

7 Numerical examples

In this section, Monte Carlo simulations and real data analysis were conducted to investi-

gate the effectiveness of our proposed nonlinear regression modeling. In all experiments,

we use an identity matrix as K in (17) and we fixed the value of hc in (7) by sufficiently

large. In addition, the model selection criterion GIC was used for choosing the number

of basis functions m, a regularization parameter λ, hyperparameter ν, and combination

of appropriate change points.

7.1 Simulation study

For the first simulation study, repeated random samples {(xα, yα);α = 1, · · · , n} with

n = 100 were generated from a true regression model yα = u(xα) + ϵα. The design points

xα are points that divides equally [0, 1] and the errors ϵα are independently, normally

distributed with mean 0 and standard deviation η = 0.2. We considered the following

true regression model:

u(x) = sin (2πx) + I(x ≥ x50), (22)

where I is an indecator function, that is, I(x ≥ a) = 0 (x < a), I(x ≥ a) = 1 (x ≥ a) and

x50 ; 0.495.

In Figure 2 the left panel shows the true curve (22) and the right panel shows the

estimated curve obtained by our proposed nonlinear regression modeling procedure. In
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Fig. 2: The true curve generating data (left) and estimated curve using our proposed
procedure (right).

this study, we made the points that corresponded to two high ranks of absolute values of

coefficients estimated by RVM the candidates for the change points.

We performed 100 repetitions, and then it was 88 times that the point of about true

change point x50 selected as a change point. In these 88 cases, the mean of selected point

as jump point was 0.491 and the standard deviation was 7.74 × 10−3. We observe that

our modeling procedure captures the true structure effectively.

7.2 Real data analysis

7.2.1 Nile data

The data consists of the 100 measurements of annual flow of the Nile river at Ashwan

from 1871 to 1970 (Cobb, 1978). Cobb (1978) and Muller (1992) sugget that a change

occurs in the year 1898 and the same point was selected as change point by GIC. We

made the points that corresponded to two high ranks of absolute values of coefficients

estimated by RVM the candidates for the change points.

Figure 3 shows the Nile data and estimated curve obtained by our proposed method

and estimated curve is smooth except for the change point. We observed that our modeling

procedure captures change points and nonlinear structure of the data.
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Fig. 4: Penny thickness data

7.2.2 Penny thickness data

The data consists of 90 measurements in mils (; 0.025 mm) of the thickness of 90 US

Lincoln pennies (Scott, 1992). There are two measurements each year, from 1945 through

1989, and we use the mean of each year, that is, n = 45 like Gijbels et al. (2007).

Speckman (1994) found that there were changes in thickness around the years 1958 and

1974 using their jump detection procedure. We made the points that corresponded to

three high ranks of absolute values of coefficients estimated by RVM the candidates for

the change points.

Figure 4 shows the Penny thickness data and the result curve estimated by our pro-

posed method. We observed that our modeling procedure captures the structure of the

data.

8 Concluding remarks

We have proposed a discontinuous nonlinear regression modeling procedure along with the

technique of RVM and regularization method. The proposed methods assume unknown

number of jump points, and we have used the discontinuous basis functions to detect mul-

tiple change points. Furthermore, we have used the normal Gaussian basis functions to get

smoothness excluding change points. In order to choose optimal values of adjusted param-
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eters and combination of change points, we presented the model selection criterion from

information-theoretic approaches. The normal Gaussian basis function regression model

has been widely used to draw information from data with complex structure. However,

using only normal Gauusian basis funciton will lead to over smooth curve estimates. The

simulation results reported here demonstrate the effectiveness of the proposed modeling

strategy in terms of prediction accuracy.
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