
Lazy lasso for local regression

Diego Vidaurre • Concha Bielza •
Pedro Larranaga

Abstract Locally weighted regression is a technique that predicts the response for
new data items from their neighbors in the training data set, where closer data items are
assigned higher weights in the prediction. However, the original method may suffer
from overfitting and fail to select the relevant variables. In this paper we propose com­
bining a regularization approach with locally weighted regression to achieve sparse
models. Specifically, the lasso is a shrinkage and selection method for linear regression.
We present an algorithm that embeds lasso in an iterative procedure that alternatively
computes weights and performs lasso-wise regression. The algorithm is tested on three
synthetic scenarios and two real data sets. Results show that the proposed method out­
performs linear and local models for several kinds of scenarios.

Keywords Lasso • 11-regularization • Variable selection • Loess •
Locally weighted regression • Sparse models • Lazy lasso •
Nonparametric variable selection

1 Introduction

Let X\,..., Xp denote independent covariates and Y a response variable. Multiple
linear regression is a widely used method for determining the influence of the covariates
on the response. This influence is modelled by a linear combination of some of the
covariates, chosen to minimize a least squares function.

D. Vidaurre (E3) • C. Bielza • P. Larranaga
Computational Intelligence Group, Departamento de Inteligencia Artificial,
Universidad Politécnica de Madrid, Madrid, Spain
e-mail: diego.vidaurre@fi.upm.es

C. Bielza
e-mail: mcbielza@fi.upm.es

P. Larrañaga
e-mail: pedro.larranaga@fi.upm.es

mailto:diego.vidaurre@fi.upm.es
mailto:mcbielza@fi.upm.es
mailto:pedro.larranaga@fi.upm.es

L e t ^ = {(x(1\y(1'>), (x(2\y(2)),..., (x(n\ y{n))} be a data set containing a set of
n points in the covariates space and the response, wherex^ = (x[, x2 , • • •, xp)

T.
Let X denote the n x p matrix whose /th row is the p-vector x^ and let y =

(yW, y(2) , . . . , y(")) be the vector of responses. Provided data are standardized, the
common linear regression model assumes a relationship such that

y = xp + c, (1)

where /? = (/Si, P2, • • •, Pp)T are the regression coefficients. It is assumed that the
stochastic unobserved component e is distributed

e; ~ TV (0, af\ i = l,...,n. (2)

Hence, there are p parameters j3\,..., fip to be determined. Ordinary least squares
(OLS) estimate such parameters by minimizing the sum of the squares of the distances
from the true response to the fitted response:

xgrtnp^lyM-^xfPj\ . (3)

Typical model assumptions are Gaussianity, independence and homogeneity of
variance of the components of e. Since OLS is based on empirical loss minimiza­
tion, it might overfit the data. Regularization techniques add a penalization term to
the usual regression. This prevents overfitting, reduces the variance of the estimates
and gives rise to more interpretable models. Two widely used methods are ridge
regression (Hoerl and Kennard 1970) and the least absolute shrinkage and selection
operator (Tibshirani 1996). We focus here on the least absolute shrinkage and selection
operator, commonly referred to as lasso or l\ -regularization. A significant property of
the lasso is its ability to move many regression coefficients to zero, performing vari­
able selection (sparse models) at the same time as prediction. Like ridge regression,
the lasso has a better prediction stability than OLS. For a recent overview of the lasso
see (Hesterberg et al. 2008). The LARS algorithm (Efron et al. 2004) is a variable
selection and regression method that could be considered an efficient version of the
forward stagewise regression algorithm (Weisberg 1980). With a slight modification,
LARS very efficiently solves the lasso.

Thanks to the variable selection capability, /i-regularization is widely used in
practice, especially when p is much greater than n. These scenarios have become of
increasing importance in the last decades. Problems related to computational biology,
like genomics and proteomics (Larrañaga et al. 2006) or neuroscience (Kass et al.
2005), are of special interest. High variance and overfitting are major issues when
dealing with this kind of data. L\ -regularization and variants have been shown to be
particularly helpful in this setting, where very simple models are preferred; see, for
example, (Ma et al. 2007; Grosenick et al. 2008). This is supported by a large amount
of theoretical work; see for example (Donoho 2006; Meinshausen and Yu 2009).

However, the response variable cannot be always predicted by means of a simple
linear function of the covariates. In this case, some kind of nonlinear analysis may be
required. In general, nonlinear regression procedures (Seber and Wild 1989) intend to
fit data to any selected equation, finding the values of the parameters that minimize
the sum of the squared distances from the true response to the estimated curve.

Regression trees (RTs) (Breiman et al. 1984) are a particular kind of nonlinear
regression model that also perform variable selection. Basically, RTs recursively divide
the space into smaller regions, depending on the value of certain variables. At each
leaf of the tree there is a simpler, linear regression, or just a single response.

Another effective alternative is to employ some form of local learning or non-
parametric approach (Fan 1992; Ruppert and Wand 1994), which does not make any
assumption on the form of the global function. A common method is loess, a locally
weighted regression procedure built on classical least squares regression (Cleveland
1979; Cleveland and Devlin 1988). In loess, for each point in the covariate space, there
is a neighborhood containing the point where the regression surface is well approx­
imated by a function from a parametric class. A weighted residual sum of squares,
instead of the residual sum of squares, is minimized. The weights are provided by a
function of the distances between the data and the point of interest, attaching more
importance to closer points. Locally weighted regression avoids the e homoscedasticity
assumption.

There have been some attempts to combine local learning and variable selection
with regularization. A recent nonparametric procedure involving variable selection is
the regularization of derivative expectation operator, referred to as rodeo (Lafferty
and Wasserman 2008), which explicitly keeps one different bandwidth parameter for
each variable, indicating the size of the neighborhood for this variable. This method
performs simultaneous bandwidth and variable selection by computing the infinitesi­
mal change in the estimation as a function of the bandwidths, and then thresholding
these derivatives to achieve a sparse estimate. Following a greedy strategy, rodeo
updates the bandwidths at each step, so that the bandwidths of relevant variables are
shrunk more whereas the bandwidths of irrelevant variables remain larger. To compute
this update, a p x p matrix inversion is required at each step. Although the rodeo is
proved to have nice theoretical properties, it assumes that relevance of the variables
depends just on how much they depart from the linear model. This can lead to a wrong
estimation in specific scenarios.

A lasso penalty has been built into the varying coefficient model with local kernel
estimation (Wang and Xia 2009). Each data item is associated with a univariate index
variable, ranging between 0 and 1, so that data items with similar indexes will also have
similar regression coefficients. All vectors of regression coefficients, one per data item,
arejointly estimated. Some appealing theoretical properties of the proposed algorithm
are shown. Since the closeness between data items is supposed to be known a priori,
there is no need to calculate distances. Hence this approach evades the problems stated
below.

A different form of local analysis is spatial analysis, where the influence of the
covariates on the response follows different patterns according to the spatial location
of the data, typically 2-dimensional coordinates representing the data items. The expan­
sion method (Jones and Casetti 1992) is a local procedure allowing the parameters

to be functions of other attributes, such as location. Another well-known algorithm
is geographically weighted regression (GWR) (Fotheringham et al. 2002). In GWR,
weights are assigned to data so that nearer data items are given more importance than
further data items. The main difference from loess is that the distances are computed
on separate spatial coordinates rather than on the covariate space. In the field of spatial
analysis, the recent geographically weighted lasso (GWL) (Wheeler 2009) introduces
a lasso-wise penalization on the GWR-estimated coefficients.

Our contribution is a method based on lasso for both local prediction and local
variable selection. Some of the estimated local regression coefficients will be exactly
zero, making variable selection more explicit than for rodeo. The setting is a scenario
where usual linear regression is not appropriate, and a local approach would appear
to be better suited. The proposed algorithm makes use of LARS to solve the lasso.
Unlike GWL (and just like loess), there is no explicit spatial coordinates for each data
item, and the distances between data items are calculated in the covariate space.

A possible naive approximation would be to add an l\-penalty to the locally
weighted regression so as to reach a sparse solution (some regression coefficients
equal to zero). This implies that we have to calculate the weights (distances) before
performing variable selection. However, ideally, only relevant covariates should be
involved in the weights calculation. If the solution is sparse, there will be several irrel­
evant covariates involved in the weights calculation, yielding an incorrect weighting
scheme and a rather inaccurate prediction. The problem is that distances are calcu­
lated prior to the regression, and hence before we know what variables are relevant
for prediction.

To overcome this obstacle, we suggest an iterative algorithm that alternates variable
selection and distance computation. At each step, distances are computed using the cur­
rent variables in the model, and weights are assigned to data for the next l\-regression.
We use a single overall bandwidth parameter, and the effective bandwidth of each
variable is adaptively adjusted in the distance calculation stage. Besides, since, at each
step, only a subset of the variables is involved, unlike rodeo, we mostly avoid large
matrix inversions. Also, we devise a validation procedure that implies no additional
cost.

In the framework of functional data analysis, the stepwise algorithm proposed by
Ferraty et al. (2010) is related to ours. Whereas Ramsay and Silverman (2005) have
popularized the functional data analysis field, the first nonparametric contributions
are described by Ferraty and Vieu (2006) and more recently by Ferraty et al. (2010).
Now, we have an infinite (or very high) dimensional functional variable and a scalar
response. The goal is to reduce the very high set of predictors to a set of highly predic­
tive points, called design points. This method performs a greedy, forward addition of
variables guided by the cross-validated error. At each step, the variable that, together
with the variables currently in the model, most improves the accuracy is selected. A
backward deletion process is subsequently applied.

There are, however, substantial differences between this method and ours. First,
Ferraty et al's method is not a lazy approach, that is, it is not focused on a certain point
of interest and considers the whole data set. Hence, the goals are different, although
both algorithms could be adapted to pursue any objective. Second, the estimation
procedure and the search strategy also differ. Ferraty et al. (2010) take the weighted

least squares estimation at each step. Instead, we obtain a weighted h -regularized
estimation, choosing the extent of regularization that most improves the model. Given
that the whole l\-regularization path can be obtained at the same cost that a least
squares fit, and since their method performs one least squares fit per candidate vari­
able at each step, our method is computationally more efficient when the number of
variables is high. This is supported also for a cheap validation procedure. Furthermore,
whereas their method adds one variable at a time (and deletes one variable at a time
afterwards), our method can add and delete several variables at each step, possibly
enlarging the number of different visited models. Finally, we compute the adaptive
bandwidths directly as a function of the importance of each variable. Ferraty et al.
(2010), on the other hand, perform a heuristic search for this purpose.

Our method is appropriate when the influence of the covariates on the response is
sparse and nonlinear. Since the algorithm is computationally more expensive linear,
simpler methods, the analyst should first check that it is adequate. For example, data
nonlinearity could be examined by charting the response against some of the variables
separately, for example by a scatter plot matrix with all the pair-wise scatter plots of
the variables in a matrix format. If p is high, such a procedure could be tedious. In this
case, there is a need for a sparser estimation, which is the other goal of the algorithm.

The paper is organized as follows. Section 2 describes local regression and
LARS/lasso in detail. Section 3 states the novel algorithm, called the lazy lasso.
Section 4 includes the set of experiments used to test the algorithm. Finally, in Sect. 5
we sum up the paper with conclusions and future work.

2 Foundations

2.1 Local regression

The local regression method was originally devised for time series, where events
that are close in time are expected to share common patterns. Although the locally
weighted regression paradigm is not limited to local linear fitting, we will work in this
paper with linear functions only. The loess procedure (Cleveland 1979) is a popular
locally weighted regression technique. Devlin (1986) discussed a number of mathe­
matical properties of loess. Hastie and Loader (1993) listed some advantages of using
local regression. For example, local regression overcomes the biasing problems of
other methods, generalizes easily to high-order polynomials fitting, and is relatively
insensitive to data design.

Assuming standardized data, loess estimates the regression coefficients for
x(l\ I £ {1, . . . ,«} by minimizing

RSS«HpV) = ¿ Ul) - ¿ s f / j f) . gr (<*(*« *<'>)), (4)

w h e r e ^l) = {fi[, p2 > • • • > Pp >T a r e m e regression cofflcients for the point of
interest x^l\ x e (0, 1] is the bandwidth constant that determines the size of the

neighborhood of x^ to be included in the regression, gt(-) is a weight function and
d(-) is a distance function.

Let w'1' = (w[',..., u>n ')T be the vector of weights, with components

w¡l) =Jgr(d(x(i\xW)), i = l,...,n, (5)

and let W^ be the diagonal matrix related to the local regression for x^l\ whose
elements are w\ . Then, the vector of coefficients can be estimated as

f] = (xT (w«>) T W^xY1 XT (W^Y W®y = {zTz) " ' ZTv, (6)

where Z = W^X and v = W^y are the weighted covariate matrix and the weighted
response vector, respectively.

There are four key aspects when considering loess: the parametric family to be
locally fitted, the fitting criterion, the weight function and the bandwidth (Cleveland
and Loader 1996).

As mentioned above, we are focusing on the linear parametric family. Assuming the
experimental errors (Eq. (2)) to be uncorrelated and Gaussian-distributed, least squares
is a natural choice for the fitting criterion. On the whole, the parametric family and
the fitting criterion depend on assumptions concerning the nature of the data and the
distribution of the response.

Regarding the weight function, any weight function that satisfies the properties
listed in (Cleveland 1979) may be used. Specifically, gT(-) must be a nonincreasing,
symmetric and positive function defined in R+ .

Finally, the choice of the bandwidth is crucial. This parameter controls how narrow
or wide the neighborhood used to make the estimation is. Nature of the data, cardinality
and dimension are important for correct bandwidth selection. For instance, the curse
of dimensionality states that as the dimension p increases, the points quickly become
sparse. In this case it is a good idea to increment the bandwidth to offset this effect. The
bandwidth may be set beforehand at a constant value, chosen as a function of the kth
nearest neighbor (Cleveland 1979) (k needs to be selected) or adaptively selected for
each new data item (Fan and Gijbels 1992). Adaptive selection is particularly appro­
priate for online training (Cleveland and Loader 1996) and has some advantages in
any case.

A key issue is the adequacy of local regression for high dimensionality settings.
Fowlkes (1987) presented some validation tests to rate the adequacy of smoothing in
binary logistic regression for high dimensions. This is equivalent to the loess smoothing
procedure. In short, his analysis shows that the results are still reliable for high values
of p if n is large enough, although the inclusion of irrelevant variables has quite a
negative effect on the smoothing process. This is precisely the point we tackle in this
paper.

tn

r
cu

di
f i
U
í!
Cl)
N

T3
01
(1
r
01

C/J

o

o o
LO -

Fig. 1 Regularization path for the Diabetes data set

2.2 LARS/lasso

Nowadays, lasso is meeting with great acceptance in the machine learning research
community. At the time of writing, the original reference (Tibshirani 1996) had
received over 3,500 cites according to Google Scholar. The lasso estimate is

n I p \ p
0 = a r g M n , £ y W - ^ x f f t + * X > ¿ | . (7)

¿=1 \ 7=1 " / 7=1

Unlike ridge regression, the lasso forces regression coefflcients to become exactly
zero as the tuning parameter A is increased. In this way it simultaneously performs
variable selection and parameter estimation. The complete solution of the lasso for
all values of X forms the regularization path. Figure 1 depicts the regularization path
for the Diabetes data set (Efron et al. 2004). The Y-axis represents the magnitude for
the regression coefflcients and the X-axis represents the sum of absolute coefflcients.
Each coefficient is represented by a different line.

The regularization path usually starts with a large A, where all coefflcients are equal
to zero. As A decreases, one coefficient at a time is made different from zero, although,
from time to time, any non-zero variable may also exit the model. For variable selection
purposes, we are concerned with a finite set of A values only, specifically the A values
that lead to changes in the number of non-zero coefflcients. The increments on the
coefflcients between two consecutive values of X in such a set are linear. This property
means that the regularization path is referred to as npiecewise linear path.

The lasso is a quadratic programming problem with a linear inequality constraint.
With slight modifications, however, the LARS algorithm (Efron et al. 2004) is able to
calculate the whole lasso regularization path for a given problem with the same cost as
OLS. In short, LARS is an iterative algorithm that starts with an empty set of selected
variables (non-zero regression coefflcients) and adds one variable to this set at each
step. This is the variable with the highest absolute value of the correlation with the
current residuals. The vector of correlations is

500 1000 1500 2000 2500

Sum of absolute coefficients

3000 3500

XT(y-y), (8)

where j is the predicted response based on the covariates of the set of selected variables.
The coefficients of the variables in the set of selected variables are increased in the
direction of the OLS fit based on these variables. A new variable is selected when its
correlation with the residuals equals that of the elements of the current set of selected
variables. The whole set of selected variables has the same correlation with the resid­
uals.

Regarding the mathematical properties, there is a great deal of theoretical work
supporting the lasso. For example, Knight and Fu (2000) demonstrated the consis­
tency of the lasso for fixed p and n -> oo, that is, they show that the lasso selects the
true sparse model under these conditions. Zhao and Yu (2006) discussed the consis­
tency of the lasso under certain conditions in the large p setting. This is important,
because the lasso is specially suitable when n is not big compared to p. There are
also some variations on the original lasso that improves its properties, e.g. (Zou 2006;
Foster et al. 2008).

3 The lazy lasso

3.1 The algorithm

Cleveland and Devlin (1988) discussed the need to incorporate a variable selection
procedure into the loess methodology if required, i.e. if we suspect the presence of
irrelevant variables. Taking up this argument, we present an algorithm that combines
h-regularization with the usual locally weighted regression paradigm.

A first possible approach is equivalent to the GWL algorithm (Wheeler 2009), that
is, directly applying a set of weights to the data set and then launching LARS. LARS
thus solves a weighted lasso problem, simultaneously performing variable selection
and local-level regression. The weights would be obtained from some transformation
of the distances of each data item to the point of interest *^ . As in loess, the distances
are calculated in the covariate space. Although this is simple and easy to implement,
the distance calculation involves irrelevant variables. Therefore, we claim that this
method is naive and ineffective, and it is expected to lead to incorrect predictions and
incorrect feature selections. This effect will be more pronounced for a large number
of irrelevant variables. We will call this method the naive lazy lasso.

We assume the hypothesis of local homoscedasticity for e in (2), that is, er; is
supposed to be constant within a certain neighborhood. We are interested in the set of

local regression coefficients /? minimizing

±(w^-±wPx^pA +X±\Pj\, (9)

where

w\l) =Jgr(ds(x(i\x(')), i = l,...,n. (10)

We define the distance function as

ds(x^,x^) = l>(xf-xf)2 , i = l,...,n, (11)

where vector 8 is defined so that the distance calculation attaches more importance
to relevant variables. The simplest choice is to set Sj = 1 if Xj is relevant for the
prediction of the response, and Sj = 0 otherwise. A more convenient definition sets
Sj as a smooth function of j3j:

lPjl (12)

so that Xy=i &j = P-In both cases, j3j = 0 leads to Sj = 0, and irrelevant variables
are not included in the distance calculation. 8 can be considered a vector of adaptive
bandwidths.

Since this problem cannot be solved analytically, we propose an iterative procedure,
the lazy lasso, that calculates distances based on the current 8 vector at each step.

In the first iteration, we let Sj = 1, V/ e { 1 , . . . , p}. We calculate distances from
Eq. (11) and weights from Eq. (10). As in loess, we weight the data set. Then, the
LARS algorithm is run on this weighted data set to solve the minimization in (9).
From the resulting LARS regularization path, we select the best vector of regression
coefficients according to some criterion (see below for details). We update 8 according
to this vector of regression coefficients using (12). Distances and weights are again
recalculated using the new 8 vector, and the data set is weighted. Subsequently, LARS
is run again over this weighted data set. The algorithm alternates LARS and weights
calculation until some stopping criterion is met. Here, we stop the process when there
is no improvement in the best score for a given number of iterations.

The pseudocode in Algorithm 1 roughly outlines the method. Here, d is a vector
of distances, path is the LARS regularization path and /?* is the best set of regression
coefficients at each iteration. The evaluate(-) and best(-) functions are based on the
validation procedures that we detail in the next section. In the pseudocode, we obtain
5 from Eq. (12). The algorithm terminates if there is no improvement in the best score
for K iterations.

To keep the local homoscedasticity assumption for the weighted data set, we have
chosen gx{-) as a k-nearest neighborhood function. This function assigns w¿ = 1 for
the xn data items closest to x^ and w¿ = 0 otherwise. Hence, the weighted data
set is just a subset of the original data set with constant er¿ for because they are the
closest points. As discussed below, local homoscedasticity is a requirement for the
validation procedure. Although other functions, like the Epanechnikov function or
the tricube function, are much more frequent in local regression, the weight function
mainly affects the visual quality of the regression curve and does not significantly influ­
ence the prediction accuracy (Loader 1999). However, both the Epanechnikov and the
tricube functions alter the data set so that we cannot assume er; to be homogeneous
within a certain neighborhood.

Algorithm 1 lazy lasso
Input: training data set 3> with p variables and n data items
Input: bandwidth r and stopping criterion parameter K
Input: weight function g(-) and distance function d(-)
Input: point or", whose response is to be predicted

Output: set of coefficients /} and estimated response y">
Initialization:
Sj := l , for ; = l,...,p
overallBest := oo ; toStop := 0
repeat

Calculate all distances d; := dg(x^'\x"')t for i = 1 , . . . , r
wV := V^d)
W^> := n x.n diagonal matrix, W¡- = v>- , for i = 1 , . . .

Z := W(l>X
v := W^y
path := LARS(Z, v)
0* := best (path; Z, v)
«; :=/>l /J ; l /2^/ = i l / i ; ' l , far i = l , . . . , n

score := evaluate^*; Z, v)
if score > overallBest then

toStop := toStop + 1
else

toStop := 0
overallBest := score

end if
until toStop = K
y(D:=X(l)Tfl(l)

3.2 Validation procedures

Validation plays a crucial role in the lazy lasso. On the one hand, a specific point of the
regularization path must be selected from each LARS run. On the other hand, a final
solution should be selected from the final lazy lasso sequence. Hence, the number of
solutions for evaluation can be considerably large. An efficient evaluation method is
thus required. In addition, we do not know in advance the proper bandwidth x for the
incoming point x^X The procedure recommended for finding a specific x value for x®
should be data-driven and adaptive.

We first deal with model selection along the LARS regularization path. Since we
assume local homoscedasticity and we have used the ̂ -nearest neighborhood function
to weight the data set, we can now reasonably assume er; to be constant for the weighted
data set (that is, within this neighborhood of x^).

The Mallows' Cp statistic (Mallows 1973), which needs er; = a for all /, is
defined as

RSS(B)
CP = f^-n + 2v, (13)

where RSS(J3) is the residual sum of squares and v is the effective degrees of free-

dom of the model. Since we are interested only in /? , we use the usual Cp naturally
adapted for local fitting at point x^ (Cleveland and Loader 1996):

RSS® (pil)) . s

Cf = ^ '- - tr (w (/)J + 2v, (14)

where tr(W^) = XiLi w\ • A reasonable estimator for the (constant) local noise

variance a ^ is

¿V)2 = ° v ' (15)
tr (wiD) - v ' U 3 J

where RSS{¿\p(l)) corresponds to the X = 0 (OLS) fit of the LARS regulariza-
tion path. Finally, an unbiased estimation v for the lasso is the number of non-zero
predictors in the model (Zou et al. 2007). Note that the ^-nearest neighborhood
weighting scheme also simplifies the estimation of v. Therefore, the Cp assess­
ment requires no additional computations, since a^ , v and RSS0 '{ft) are LARS
products.

From the above, we can evaluate the solutions that LARS outputs for a given
weighted data set. This corresponds to the best(-) function in Algorithm 1. Unfortu­
nately, this procedure does not work for comparing solutions from different LARS
runs. This is because we do not have a universal a ^ estimation for different weighting
schemes.

Leave-one-out cross-validation through a local version of the prediction sum of
squares (PRESS) procedure (Allen 1974) is a common and computationally efficient
choice for validation in local learning; see (Cleveland and Loader 1996; Loader 1999)
for details. It does not need a a'1' estimation. The PRESS statistic is defined as

7\l) — X I V J J PRESS{1) = -7- V ^ — - ^ - , (16)
1 = 1

where//is the hat matrix, such that v = Hv = HW^y. Diagonal elements Ha quantify
the influence of the observed response on the fitted response for each data item. H
has no direct closed form for the lasso but can be derived from a linear approximation
to the lasso fit (Tibshirani 1996). Transforming the lasso penalty into a Lagrangian
penalty J \ P2¡/\P)'I, Hbecomes

H = Z(ZTZ + XB-y1ZT, (17)

where B is a diagonal matrix such that Bjj = \J3j \ and B~ is the B pseudoinverse.
Note that, in the evaluation of (14), we could calculate v as tr(H). However, this is

computationally expensive and, as noted by Efron et al. (2004), the accuracy gain is
often negligible.

Note that Eq. (16) includes a weighted residual sum of squares for all data items

*('). In principle, it should involve calculating fi for each i. However, the PRESS

statistic can make efficient use of p instead of p for each data item. In this paper,
moreover, we use the ^-nearest neighborhood function, so weights are either 1 or 0.
Therefore, the numerator in (16) is just the usual residual sum of squares within some
neighborhood oix^. Equation (16) is the evaluate(-) function in Algorithm 1.

4 Experiments

In this section we will describe some experimental results on synthetic and real data
sets that illustrate the behaviour of the lazy lasso and the naive lazy lasso algorithms,
compared to the lasso, loess, regression tree (RT) and rodeo.

We perform leave-one-out validation. For each data set (with n instances), we have
built n models; for each model, the point of interest is one different data item, whose
response is unknown, and the n - 1 remaining data items make up the data set itself.

4.1 Synthetic data sets

The algorithms have been tested on several data sets, generated from three different
nonlinear controlled models: ml, ml and m3. Model ml represents the scenario of a
single sparse nonlinear function. The sparse condition is expected to be detrimental
for loess, which calculates the distances over all variables including the irrelevant
ones. Models m2 and m3 are a more complex case, where the function generating
the response and the sparsity pattern vary across the data set. Roughly speaking, the
response may be obtained either from a single function for the entire data set (ml) or
from different functions for different locations in the covariate space (m2 and m3).

From each model, we have simulated 50 data sets. All generated data sets have
n = 2,000 samples.

The three models have p = 100 covariates, but only some covariates are relevant.
Whereas for ml the subset of relevant covariates is constant for the whole data set,
this subset varies across the data set in m2 and m3. For ml, all covariates are sampled
from a Gaussian distribution with mean \x = 0 and standard deviations a = 1. For m2
and m3, whereas irrelevant covariates are sampled from a Gaussian distribution with
mean \x = 0, relevant covariates have been sampled from a Gaussian distribution with
non-zero mean (see below). Standard deviation is equal to 1 for all covariates in m2
and m3.

The prediction function for model ml is

(i) (i)2 , c • (¿) i (O (¿) i - 1

yy' = x\' +5smx2'+ x3'x4'+e¿, i = l,...,n,

where e¡ ~ JV(0, 0.25) for all data data items. Relevant covariates in ml are thus
Xj, j e {1, 2, 3, 4}, and irrelevant covariates are Xj, j £ {1, 2, 3,4}.

Models ml and m3 have four different prediction functions, indexed, say, by
z = 1,2,3,4. These prediction functions have an equal probability of 1/4 of
generating responses. For model m2 such prediction functions are linear:

" ~~ Z X 3 (z - l) + l + U - :) X 3 (2 - l) + 2 X3(z- l)+3 + fc" <• — 1>¿>:>>í*:

whereas for model m3, they are nonlinear:

y = X3(z-1)+1 + ^S i n X3(z-l)+2 + X3(z-l)+3 + € ' ' 2 = 1 , 2 , 3 , 4 .

Hence, there are three relevant covariates for each data item, and covariates Xj,
j e {13, . . . , 100} are always irrelevant.

As mentioned earlier, for models m2 and m3, relevant covariates are sampled from
a Gaussian distribution with non-zero mean [if, specifically, when z = 1, \x}• = - 3
(j = 1, 2, 3); whenz = 2, ¡xj = - 1 (; = 4, 5, 6); whenz = 3, ¡XJ = 1 (; = 7, 8, 9);
and when z = 4, \x}• = 3 (j = 10, 11, 12). Regarding the noise term e¡, we set
(Tj = 0.2 for z = 1, 3 and at = 0.4 for z = 2, 4.

Firstly, we ran a set of tests using constant bandwidths for all the data items in each
data set. We experimented with values ranging from 2p/n (= 0.1) to Sp/n (= 0.4).
Figure 2 summarizes the results over the 50 data sets. Rows correspond, respectively,
to models ml, m2 and m3. The charts in the left column illustrate the mean error
against the bandwidth. The charts in the right column illustrate the mean number of
selected variables against the bandwidth. We display the output of lasso and RT as
a reference. Rodeo is not considered here because the bandwidth selection is always
adaptive.

The proposed iterative algorithm outperforms the naive approach and the other
algorithms in most cases. Excepting ml, where RT error is lower than lazy lasso error
for bandwidths over 0.28, lazy lasso accuracy is always the best. The improvement
over loess is specially remarkable. The difference between lazy lasso and naive lazy
lasso accuracies is also significant. This is more marked for m3, which turns out to
be the most difficult data set. On the other hand, the number of selected variables is
similar for the lazy lasso and the naive lazy lasso, and much lower than for the lasso.
Interestingly, the number of selected covariates for the lazy lasso and the naive lazy
lasso approximates that of RT when the bandwidth moves up from the lowest values.
Although not shown in the Fig. 2 for space reasons, the number of correctly selected
variables does not vary much for different bandwidths.

Figure 3 shows the boxplot of the error and number of selected variables for an
adaptive bandwidth. Table 1 shows the mean number (and standard deviation) of
correctly selected variables. Even though lasso and RTs do not need a bandwidth
parameter, both have been included for comparison purposes.

Regarding prediction performance, the lazy lasso achieves by far the lowest mean
error and the lowest standard deviation in all cases. This can be interpreted as a
measure of robustness. Furthermore, the lazy lasso is shown to have a good variable
selection ability. It selects a higher number of correct variables than the other methods,
excepting rodeo, at the expense, however, of selecting more irrelevant variables than
the naive lazy lasso and RT. Although rodeo selects always all the relevant variables,

0.1 0.16 0.22 0.28 0.34 0.4 0.16 0.22 0.28 0.34

Fig. 2 Evolution of the mean error (left) and the mean number of selected variables (right) for an increasing
bandwidth, for ml (top), ml (middle) and m3 (bottom). Solid lines with open circle represent the lazy lasso,
dashed lines with plus symbol represent the naive lazy lasso, dotted lines with multi symbol represent loess,
solid straight lines represent the lasso and dashed-dotted straight lines represent RT. Loess is not in the
right-hand plots because it does not select variables

it clearly selects, with lasso, the highest total number of variables. The differences are
statistically significant.

From this synthetic setting, we conclude that the devised lazy lasso algorithm can
outperform other nonlinear methods like loess, RT, rodeo or the naive lazy lasso.
Given that the lasso is a linear method, its performance is, as expected, worse for the
presented scenarios.

4.2 Pumadyn data set

Now, we test the algorithm on the Pumadyn data set, a realistic simulation of the
dynamics of a Puma 560 robot arm. It is available from the Delve Repository.1

http://www.cs.toronto.edu/~delve/data/datasets.html.

http://www.cs.toronto.edu/~delve/data/datasets.html

n — i — i — i — i — i — r
0 5 10 15 20 25 30

i — i — i — i — i — i — r
0 5 10 15 20 25 30

Error

rodeo -

RT-

lasso -

nLL-

L L -

>-CD-<

ra--
o--<

\

ml

rodeo -

R T -

lasso -

nLL-

L L -

^

1
h--n}--^
i

r{[] —1 m2

10 20 30 40

rodeo

RT

lasso

nLL

LL

H I H
O -
i i i h"IZ
, i i

D--H
i i
0 20

KD<
1

r "

*

&

i
40

-

H

m3

i i i
60 80 100

^

m3

0 10 20 30 40 50

Selected variables

T 1 1 1 1 r
0 10 20 30 40 50 60

Fig. 3 Boxplots of the error (top) and total number of selected variables (bottom), for models ml, m2 and
m3. Tested algorithms are the lazy lasso with adaptive bandwidth (LL), the naive lazy lasso with adaptive
bandwidth (nLL), the lasso, RT and rodeo

Table 1 Mean and standard deviations of the number of correctly selected variables (out of four) for models
ml, ml and mi

LL Naive LL Lasso RT Rodeo

ml

ml

mi

3.3 (±0.9)

2.8 (±0.4)*

2.8 (±0.5)*

1.2 (±0.4)

2.0 (±0.3)

2.2 (±0.6)

1.5 (±0.7)

2.7 (±0.4)

2.7 (±0.5)

1.9 (±0.2)

1.2 (±0.5)

1.6 (±0.6)

4.0 (±0.0)*

2.8 (±0.34)*

2.8 (±0.34)*

The best result for each row is highlighted in bold. The symbol * is added when the difference to the second
best method is statistically significant with a significance level of 0.05

Pumadyn is a family of data sets rather than a single data set. The number of
covariates may be eight or 32. The data may be either linear or non-linear. Finally,
the amount of noise in the output can be set to moderate or high. All combinations of
these three parameters are possible, but we confine our study to the non-linear option.
However, we introduce a new parameter: the number of incorporated irrelevant vari­
ables, i.e., randomly generated variables not related to the response. Let po be the
number of variables of the original data set (eight or 32). We have generated new data
sets by adding po, 2po and 3po irrelevant variables to each original data set. All data
sets have n = 8, 192 data items.

Figure 4 shows the result of the experiments. The bandwidth is selected adaptively
for the local algorithms. We ran a leave-one-out validation scheme. We do not show
the number of correctly selected variables here because it is not clear which variables

16 24 32

i
i
F

o

CM
O -

o

o o _

« • - • ' '

4I :r__-^- ,fc. 9

128

0)
.Q

0)
¿2

< * -
o _

CO -

.y-y V

128

Fig. 4 Evolution of the mean error (left) and the mean number of selected variables (right) for different
amounts of artificially added variables in Pumadyn data sets. Each row corresponds to some amount of
noise (moderate (m) or high (h)) and some number of variables in the original data set (8 or 32). The X-axis
represents the total number of variables in the data set, including those artificially added. Solid lines with
open circle represent the lazy lasso, dashed lines with triangle represent the naive lazy lasso, dotted lines
with plus symbol represent loess, dashed-dotted-lines with multi symbol represent the lasso, dashed lines
with Diamond represent RT and dashed-dotted-lines with inverted triangle lines represent rodeo

from the original set are really relevant. In general, all the algorithms have mostly
discarded the added irrelevant variables.

As observed, the proposed method generally produces lower estimation errors than
loess, the lasso and the naive approximation. The results for RT are also very com­
petitive, and rodeo, although selects more variables than the others, performs very
well in the 32 variables data sets. Note that loess performances are better than the
lasso for the moderate (m) noise data sets, whereas the lasso is better for the high (h)
noise case. As expected, the more flexible the model is, the more likely it is to be
affected by noise. Interestingly, the lazy lasso outperforms the lasso and loess in both
cases.

Regarding the number of selected variables, there is not a dominant method. RT and
lazy lasso select a reasonable amount of variables in most data sets. Rodeo often selects
more variables than the other approaches. On average, the lasso appears to select more
variables than the proposed local methods. Loess does not perform variable selection.

4.3 Starplus data set

In this section we report algorithm performance on the StarPlus data set,2 extracted
from the neuroscience field. This is functional magnetic resonance imaging (fMRI)
data collected at Carnegie Mellon University.

Experiments are conducted on six subjects and forty trials per subject. For each
trial, the subject is shown a picture for 4 s and a sentence for 4 s. The objective is to
discriminate between these two mental states: "picture" or "sentence" Each data item
matches a unique 3-dimensional image. Images are captured every 0.5 s. Hence, each
trial has 16 useful images. Briefly, there are six data sets, one per subject, and they all
have n = 40 x 16 = 640 data items. On the other hand, each image has a number
of voxels, split into 25 localized regions of interest (ROIs). In this paper, instead of
considering each individual voxel, we will use the mean activation of voxels at each
ROL Therefore, our data set has p = 25 covariates.

The brain's inherent complexity moves us to consider nonlinear models. This is pos­
sible thanks to the dimensionality reduction resulting from the use of ROIs instead of
individual voxels. In addition, a sparse model is helpful to identifying which brain
regions are involved in this task. These factors make the lazy lasso adequate for
modeling this kind of data.

Table 2 presents the results. For each data set, we performed n tests, each excluding
a different image from the training set. We model the response as either - 1 for the
"picture" state or 1 for the "sentence" state. This way, classification is based on the
sign of the response. For each data item, the error is 0 if it is correctly classified
and 1 otherwise. The ratio of incorrectly classified images and the mean and stan­
dard deviation of the total number of selected ROIs is reported for each subject. We
do not show the number of correctly selected variables because it is not clear which
are relevant beforehand. We tested the statistical significance of the best prediction
performance and best number of selected ROIs with regard to the second best method.
The significance level was set to 0.05.

As observed, lazy lasso accuracy is not on average better than lasso accuracy. The
lazy lasso achieves a better accuracy for three subjects, whereas the lasso is better for
the other three subjects. Furthermore, these differences are not statistically significant.
However, both algorithms are slightly better than loess and RT, while rodeo obtains
the best accuracies. The naive lazy lasso accuracy is definitely poorer. Although not
shown in Table 2, the difference of accuracy between the lazy lasso and the naive lazy
lasso is significant in four out of six cases (04847, 05675, 05680 and 05710).

The big difference between the lazy lasso and loess, lasso, RT and rodeo is the
number of selected ROIs. The lazy lasso selects much fewer ROIs than the lasso, RT
and rodeo. Loess does not perform variable selection at all. Hence, at the cost of an
insignificant loss of accuracy compared to the lasso, the lazy lasso exhibits a finer
variable selection ability. The naive lazy lasso selects the lowest number of ROIs, but
its accuracy is poor.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo- 81/www/.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo

Table 2 Ratio of incorrectly classified images (top) and the total number of selected variables (bottom) for
the StarPlus data set

Subject

Error

04799

04820

04847

05675

05680

05710

LL

0.49

0.47

0.35

0.39

0.32

0.39

Naive LL

0.5

0.5

0.45

0.46

0.39

0.52

Number of selected variables

04799

04820

04847

05675

05680

05710

4 (±6)

4.9 (±5.7)

7.2 (±7.5)

7.6 (±7.2)

5.3 (±4.4)

8 (±7.2)

1.4 (±2.7)*

1.4 (±2.3)*

2.5 (±4)*

2.2 (±3.9)*

2.9 (±3.1)*

2.1 (±3.7)*

Loess

0.47

0.45

0.39

0.43

0.37

0.45

-
-
-
-
-
-

Lasso

0.43

0.44

0.4

0.38

0.35

0.4

19.8 (±0.7)

9 (±0.3)

24.9 (±0.3)

11.4 (±0.8)

22.7 (±0.6)

15.4 (±1.5)

RT

0.44

0.46

0.46

0.42

0.34

0.41

18.9 (±1.3)

18.3 (±1)

17.5 (±1.3)

19.2 (±0.7)

15 (±1.7)

19.8 (±1.1)

Rodeo

0.44

0.30*

0.31

0.41

0.35

0.35

8.0 (±1.6)

17.5 (±0.5)

9.2 (±0.4)

10.1 (±1.5)

6.5 (±4.0)

10.1 (±6.7)

Tested algorithms are the lazy lasso with adaptive bandwidth (LL), the naive lazy lasso with adaptive band­
width (Naive LL), loess with adaptive bandwidth, the lasso, RT and rodeo. The best result for each row is
highlighted in bold. The symbol * is added when the difference to the second best method is statistically
significant with a significance level of 0.05. Loess has been omitted from the variable selection report
because it does not perform variable selection

Summing up, the lazy lasso has also been proven to work well in real environments.
It often outperforms the naive lazy lasso, the lasso, loess and RT, especially in complex
scenarios.

5 Discussion

In this paper, we propose an iterative lazy variable selection and shrinkage method
that relies on a traditional locally weighted regression paradigm and /i-regularization.
We prove the usefulness of the procedure on three synthetic scenarios, several data
sets derived from the Pumadyn real data set and the StarPlus data set. The lazy lasso
is particularly appealing for sparse data sets.

On the regularization side, we provide a method for dealing with nonlinear data.
Although LARS can be extended to tackle nonlinear functions, higher-order terms have
to be defined in advance. On the local regression side, we provide a variable selection
functionality. Local regression is known to be less useful in high-dimensional settings,
due to the curse of dimensionality. Bias and variance cannot be kept at low and reason­
able levels, respectively, when the number of data items in the local neighborhood is
small compared to the number of variables. By reducing the dimension, our approach
makes local regression more applicable in these cases.

Our approach is lazy in the sense that there is no overall model valid for all future
data items. Hence, as happens with locally weighted regression, we need to run the

whole algorithm each time a new data item is presented. Flexibility for dealing with
nonlinearity and better prediction and variable selection performance are the advan­
tages gained in exchange for a more expensive computation when compared with
non-lazy techniques. Although this procedure is lazy, if computation time is a primary
concern, the analyst can somehow extrapolate the incoming data items to the closest
data items in the data set, whose regression coefficients have already been estimated.
If these data items are close enough, they are likely to share the same set of relevant
variables.

Note also that the nature of the data is an important concern for deciding the
adequacy of the proposed methods. Specifically, the methods would excel when the
relation between covariates and response is sparse and nonlinear. Some preliminary
tests should be run to check the adequacy of the method for a particular data set.

The lazy lasso has potential applications in the context of functional data analysis,
where predictors are points on the continuum (Ramsay and Silverman 2005; Ferraty
and Vieu 2006; Ferraty and Romain 2010). In this field, the objective is rather a global
model that selects a set of highly predictive design points than a local estimation. As
shown by Barrientos-Marin et al. (2010), however, the functional data estimation can
be considerably benefited from some form of local analysis. To take advantage of this
fact, for example, one could obtain a local model with the lazy lasso for each train
data instance or for some selected subset. Then, those points (predictors) that have not
been selected in any model, or have been selected in few models, could be discarded.
Note that an adequate distance function had to be defined for dealing with functional
data. To cope with the computational burden, we could apply some early stopping in
the lazy lasso process and bound the number of selected variables at each step.

More future work will revolve around the adaptation of the algorithm to multi-
response regression, the use of recent variations of the lasso and any improvements on
the current algorithm. Robustness is also a major concern. There are robust versions
that prevent the harmful effects of outliers for both loess (Cleveland 1979) and the
lasso (Khan et al. 2007). Methods that make the proposed algorithm more robust need
to be investigated.

Acknowledgments Research partially supported by the Spanish Ministry of Science and Innovation
project TIN2010-20900-C04-04, Consolider Ingenio 2010-CSD2007-00018 and Cajal Blue Brain. We
thank the anonymous referees and the associated editor for valuable comments about nonparametric
variable selection and functional data analysis, which have definitely contributed to the improvement of
this paper.

References

Allen DM (1974) The relationship between variable selection and data augmentation and a method for
prediction. Technometrics 16:125-127

Barrientos-Marin J, Ferraty F, Vieu P (2010) Locally modelled regression and functional data.
I Nonparametr Stat 22:617-632

Breiman L, Friedman J, Ohlsen R, Stone C (1984) Classification and regression trees. Wadsworth, Monterey
Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc

74:829-836
Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local

fitting. J Am Stat Assoc 83:596-610

Cleveland WS, Loader C (1996) Smoothing by local regression: principles and methods. In: Statistical
theory and computational aspects of smoothing. Physica-Verlag, Heidelberg, pp 10—49

Devlin S J (1986) Locally-weighted multiple regression: Statistical properties and its use to test for linearity.
Tech. rep., Bell Communications Research, Piscataway

Donoho D (2006) For most large underdetermined systems of equations, the minimal Zj-norm solution is
the sparsest solution, commun Pure Appl Math 59:797-829

Efron B, Johnstone I, Hastie T, Tibshirani R (2004) Least angle regression. Ann Stat 32:407-499
Fan J (1992) Design-adaptive nonparametric regression. J Am Stat Assoc 87:998-1004
Fan J, Gijbels I (1992) Variable bandwidth and local linear regression smoothers. Ann Stat 20:2008-2036
Ferraty F, Romain Y (2010) The oxford handbook of functional data analysis. Oxford university press,

Dordrecht
Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, Berlin
Ferraty F, Hall P, Vieu P (2010) Most-predictive design points for functional data predictors. Biometrika

97:807-824
Foster SD, VerbylaAP, PitchfordWS (2008) A random model approach for the lasso. Comput Stat 23:217-

233
Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the Analysis of

spatially varying relationships. Wiley, Chichester
Fowlkes EB (1987) Some diagnostics for binary logistic regression via smoothing. Biometrika 74:503-515
Grosenick L, Greer S, Knutson B (2008) Interpretable classifiers for fmri improve prediction of purchases.

IEEE Trans Neural Syst Rehabil Eng 16:539-548
Hastie T, Loader C (1993) Local regression: automatic kernel carpentry. Stat Sci 8:120-143
Hesterberg T, Choi NM, Meier L, Fraley C (2008) Least angle and l\ penalized regression: a review. Stat

Surv 2:61-93
Hoerl A, Kennard R (1970) Ridge regression: biased estimates for nonorthogonal problems. Technometrics

12:55-67
Jones JP, Casetti E (1992) Applications of the expansion method. Routledge, London
Kass RE, Ventura V, Brown EN (2005) Statistical issues in the analysis of neuronal data. J Neurophysiol

94:8-25
Khan JA, Aelst SV, Zamar RH (2007) Robust linear model selection based on least angle regression. J Am

Stat Assoc 102:1289-1299
Knight K, Fu W (2000) Asymptotics for lasso-type estimators. Ann Stat 28:1356-1378
Lafferty J, Wasserman L (2008) Rodeo: Sparse, greedy nonparametric regression. Ann Stat 36:28-63
Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano J, Armañanzas R, Santafé G, Pérez

A, Robles V (2006) Machine learning in bioinformatics. Brief Bioinform 7:86-112
Loader C (1999) Local regression and likelihood. Springer, Berlin
Ma S, Song X, Huang J (2007) Supervised group lasso with applications to microarray data analysis. BMC

Bioinformatics 8:1-17
Mallows CL (1973) Some comments on Cp. Technometrics 15:661-675
Meinshausen N, Yu B (2009) Lasso-type recovery of sparse representations for high-dimensional data. Ann

Stat 37(l):246-270
Ramsay J, Silverman BW (2005) Functional data analysis. Springer, Berlin
Ruppert D, Wand M (1994) Multivariate locally weighted least squares regression. Ann Stat 22:1346-1370
Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B 58:267-288
WangH,XiaY (2009) Shrinkage estimation of the varying coefficient model. J Am Stat Assoc 104:747-757
Weisberg S (1980) Applied Linear Regression. Wiley, New York
Wheeler DC (2009) Simultaneous coefficient penalization and model selection in geographically weighted

regression: the geographically weighted lasso. Environ Plan A 41:722-742
Zhao P, Yu B (2006) On model selection consistency of lasso. J Mach Learn Res 7:2541-2567
Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418-1429
Zou H, Hastie T, Tibshirani R (2007) On the degrees of freedom of the lasso. Ann Stat 35:2173-2192

