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Abstract Frame theory is closely intertwined with signal processing through a canon
of methodologies for the analysis of signals using (redundant) linear measurements.
The canonical dual frame associated with a frame provides a means for reconstruction
by a least squares approach, but other dual frames yield alternative reconstruction
procedures. The novel paradigm of sparsity has recently entered the area of frame
theory in various ways. Of those different sparsity perspectives, we will focus on the
situations where frames and (not necessarily canonical) dual frames can be written as
sparse matrices. The objective for this approach is to ensure not only low-complexity
computations, but also high compressibility. We will discuss both existence results

and explicit constructions.
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1 Introduction

Efficient signal analysis and processing is one of the great scientific challenges to
date due to the ever increasing amounts of data generated in the context of various
applications. Recently, sparsity has entered the scene as a novel paradigm allowing
the development of highly efficient methodologies for signal processing. The main
objectives of this approach are dimension reduction, high compressibility of data,
and low-complexity computations.

1.1 Mathematical Signal Processing

In mathematical signal processing, the canonical first step is the computation of lin-
ear (adaptive or non-adaptive) measurements associated with a carefully designed
representation system. To be precise, for a signal x € R” and a spanning sequence
(@), C R", we compute coefficients ¢ € R” by

x—=ci=Px=({x,¢;)), with @ = (@y|...|@n) € R, (1.1)

The case when m = n and (¢;)" | constitutes an orthonormal basis for R” is very
well studied. More recently, one has considered the following two fundamentally
different, more intricate objectives for the transform in (1.1), which go beyond the
setting of orthonormal bases. One objective is dimension reduction, i.e., m < n, of
which compressed sensing is a prominent representative. Another objective is robust
analysis, i.e., m > n, on which frame theory focuses.

Both cases face the crucial question of whether it is possible to recover x from
the measurement coefficients ¢ = @*x. In the undercomplete case (m < n), convex
optimization is often used, as for instance is the case in compressed sensing (see
the survey paper Kutyniok (2013) and the book Eldar and Kutyniok (2012)). In the
overcomplete case (m > n), least squares is a typical approach, which frame theory
traditionally follows. Thus reconstruction is typically performed by computing

(@D*) 'd)c. (1.2)

In this survey paper, we from now on focus on the overcomplete scenario with the
objective of deriving a robust analysis. However, with sparsity entering the picture,
as we will see, least squares is not always the preferred method of reconstruction.

1.2 Frame Theory

Frame theory — the theory of overcomplete (redundant) Bessel systems — dates back
to work by Duffin and Schaeffer (1952) on non-harmonic Fourier series. Its success
story in signal processing started in the 1980’s with the seminal work by Daubechies
et al. (1986). At that time it was recognized that not only can redundancy of (¢;)",
ensure robustness of ((x, ¢;))" | against noise or erasures, but the restrictions of form-
ing an orthonormal basis are often too strong for the construction of many systems.
Since the groundbreaking work by Daubechies et al. (1986) was published, frames
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have become a key notion in signal processing. It should be emphasized that frame
theory is not only widely used in the finite dimensional setting (cf. Casazza and Ku-
tyniok (2013)), but also in infinite dimensions. However, in this survey paper we
focus on finite frames.

In signal processing with frames, three main steps can be identified. The first step
is decomposition with frames, which is performed by the mapping in (1.1). Main
objectives for this step are the design of frames @ that can easily be stored and that
allow for a low-complexity computation of ®*x.

The second step is the analysis of the signal based on the frame coefficients
¢ = @*x. Depending on the processing goal (feature detection, inpainting, transmis-
sion, etc.), the frame @ needs to be designed accordingly, for instance, by encoding
the needed features in the large coefficients. Another main issue in signal process-
ing is linear or non-linear operators A : R” — R™ applied to the measurements ®*x
during the analysis or transmission process. Examples for such operators are era-
sure operators associated with a diagonal matrix with diagonal entries either O or 1,
thresholding operators which set to zero all entries smaller (in absolute value) than
a given value, or the operator which takes the absolute value of each entry leading
to the problem of phase retrieval. Hence one goal in such settings is to minimize the
error max [, [|x — ((@P*) ' ®)AP*x]|,.

The third step consists in reconstruction of the original or manipulated signal,
which is for instance done by (1.2), where ¢ could be either the original or modified
frame coefficients depending on the analysis step. Again, low-complexity computa-
tions are one concern. As a consequence, it is often desirable to choose a frame ¥, a
so-called dual frame, different from (@@*)~!® for reconstruction. The reconstruc-
tion is then performed by computing ¥ec. This alternative reconstruction approach
leads to design questions regarding the dual frame Y.

The above considerations show the richness of the tasks in frame theory, which
is also reflected in the large number of commonly used frame constructions, e.g.,
equiangular frames, harmonic frames, Gabor frames, wavelet frames, and shearlet
frames.

1.3 Desideratum: Sparsity

Sparsity has become an important paradigm in both numerical linear algebra and
signal processing. The sparsity of a vector x = (x1,...,x,)" € R" is measured by

xllg :=#{i € {1,....n} 1 x; £ 0},

and x is called k-sparse, if ||x||o < k. Along the same lines, sparsity of a matrix means
that many of the matrix entries vanish, i.e., the quantity

Do :=#{(i,]) : @ij # 0}, for @ = ¢; j] € R™"". (1.3)

being small. Sparsity nowadays plays two conceptually very different roles. On the
one hand, sparse representations guarantee efficient storage and processing of data.
For example, multiplying a vector with a sparse matrix requires less operations and
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the sparse representation of a signal can be directly used for efficient compression. On
the other hand, sparse representations epitomize structural simplicity. In fact, many
problems in signal processing are intrinsically ill-posed, so only such structural as-
sumptions on the solution make accurate and stable solutions possible. Key examples
are in the theory of compressed sensing as introduced in parallel by Donoho (2006)
and Candes et al. (2006) in 2006. In this context, also weaker versions of sparsity
such as compressibility or the behavior of the error of the best k-term approximation
are frequently used.

Both these usages of sparsity have direct connections to frame theory. For the first
usage, this connection can be made in two different ways. Firstly, one can aim to de-
sign frames and dual frames to form sparse matrices themselves, with the goal of an
efficient decomposition and reconstruction process. Secondly, the additional freedom
coming from the redundancy when working with frame representations rather than
basis representations can allow the derivation of sparser representations of a vector.
The second usage appears in frame theory as a design question for the measurement
matrix in compressed sensing, which computes ®x for some x in the higher dimen-
sional space R™.

In this survey, we focus on the very first connection, that is, sparsity of the frame
and dual frame matrices as a means to ensure a more efficient decomposition and
reconstruction process. However, the inverse problems viewpoint on sparsity also
plays an important role, as finding sparse frames under certain constraints has many
structural similarities to finding sparse solutions to inverse problems.

Frames as sparse matrices were first analyzed in 2011 by Casazza et al. (2011b),
whereas sparse duals were first considered and discussed independently by Krahmer
et al. (2013) and Li et al. (2013). For both situations, results on the optimal sparsity
were derived, existence results were proven, and algorithms provided.

1.4 Outline

We provide an introduction to frame theory in Section 2. In Section 3, we then fo-
cus on sparse frames and discuss optimality results, existence results, and explicit
constructions. Similar considerations will be undertaken in Section 4, but this time
focusing on sparsity of the associated dual frames.

2 Basics of Frame Theory
We start with reviewing the basic definitions and notations of frame theory, which

will be used in the sequel. For more details and additional information, we refer the
reader to the books by Christensen (2008) and Casazza and Kutyniok (2013).

2.1 Frames

For simplicity we present the definitions and most of the results in this survey paper
solely for the real case. The only exceptions are results on frames related to Fourier
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and Gabor expansions in Section 4 as such frames have particularly efficient repre-
sentation over C. Independent of this distinction, we remark that all results in this
survey paper also hold for the complex case.

A frame is a family of vectors which ensures stability of the map introduced in
(1.1). The precise definition is as follows.

Definition 2.1 A family of vectors (¢;)7", in R" is called a frame for R", if there
exist constants 0 < A < B < o such that

m
Allx|? < Y [x, @) > <Bjx||* forall x € R". 2.1
i=1

The constants A and B are called lower and upper frame bound for the frame, respec-
tively. If A = B is possible in (2.1) then (¢;)" | is called an A-tight frame. If A=B =1
it is called a Parseval frame, as in this case, (2.1) is a direct analog to Parseval’s iden-
tity. If there exists a constant ¢ such that ||¢;|| = ¢ for all i = 1,2,...,m, then (¢;)!",
is an equal-norm frame. If ¢ = 1, (@;)I", is a unit-norm frame. Finally, the values
({x, ;) are called the frame coefficients of the vector x with respect to the frame
(@7

For a given frame @ = (¢;)!, and a fixed orthonormal basis (e j);f:l, we let @
denote the n x m frame matrix, whose ith column is the coefficient vector of ¢;. Note
that with a slight abuse of notation, we denote both the frame and the corresponding
frame matrix by @. The condition (2.1) for a frame then reads

Allx|)? < ||@*x||*> < B||x||* forall x € R".

Several useful observations are combined in the following result. Since the proofs
are straightforward, we leave them to the reader.

Lemma 2.2 Let (¢;)7", be a family of vectors in R".

(i) If (@;)!, is an orthonormal basis, then (@;)!" | is a Parseval frame. The converse
is not true in general.
(ii) (@), is a unit-norm Parseval frame if and only if it is an orthonormal basis.

Simple examples of equal-norm Parseval frames for m > n are given by any con-

catenation of orthonormal bases. A standard example for an equal-norm Parseval
frame which does not have this structure is the frame in R? given by

(Vi) i (5) v ()

Due to the shape of its vectors in R?, this frame is typically called the Mercedes-Benz
frame.
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2.2 The Frame Operator

Given a frame (¢;)”,, its signal processing performance is determined by the fol-
lowing three operators. We remark that the first operator was already introduced in

(1.1).
Definition 2.3 Let @ = (¢;)", be a frame in R".

(i) The associated analysis operator embeds R" into R™ and is given by

m
i=1’

x> @x = ((x,9)) xe R
(i) The associated synthesis operator is defined to be the adjoint of the analysis
operator, thus mapping R"” back to R". Consequently, it is given by

crPc=) cipp, c=(c); €R™.

m
i=1

(iii) The associated frame operator is the map S : R” — R”" defined as the composi-
tion of these two operators, that is,

m
Sx = PP*x = Z(x, o), xR

i=1

The following result is well-known; a proof can be found for example in Chris-
tensen (2008), In the sequel, I, will always denote the identity matrix on R”.

Theorem 2.4 The frame operator S of a frame (@;)"" for R" with frame bounds A
and B is a positive, self-adjoint invertible operator satisfying

A-1, <S<B-I,.

2.3 Reconstruction Strategy

We next aim to reconstruct the original signal from the image under the analysis op-
erator. This can be achieved by application of a linear operator by using Theorem 2.4
as the following result shows.

Theorem 2.5 Let @ = (¢;)"", be a frame for R" with frame operator S. Then, for
every x € R", we have

x=S8"1Sx=((00*) ' ®)(P*x) = i@c, ?)S " .
i=1

This is the well-known least squares reconstruction. Due to the redundancy of
the frame, other matrices ¥ € R"*™ exist which satisfy the reconstruction condition
Y d* = [,. For those, we have the following terminology.
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Definition 2.6 Let @ = (¢;)!, be a frame for R” with frame operator S. Then the
system (S~1g;)" | = (@P*)~ & is called the canonical dual frame. In general, every
frame ¥ = (y;)", for R" satisfying

x=¥YP'x= Z’@c7 o)y, xeR"

i=1

is referred to as an (alternate) dual frame for P.

The set of all dual frames can be explicitly expressed. This classical result is due
to Li (1995).

Proposition 2.7 (Li (1995)) Let @ = (@), be a frame for R". Then, every dual
frame ¥ = (y;)!, for @ is of the form

Y= (00*) ' ®+ LI, — P(PD*) D), where L€ R™™. (2.2)

We remark that the canonical dual frame plays no special role in (2.2) in the sense
that, if ¥ is just some dual, then all duals are obtained by

Y=Yy L(l,— PP,

where L € R,
If @ forms an A-tight frame, then by Theorem 2.4, the frame operator is a multiple
of the identity. This leads to the reconstruction formula

3

x=A"'®(@x) =AY (x,0) 0

1

Il
—_

In this case, the canonical dual frame coincides with A~'®. This shows that from a
signal processing perspective, tight frames are highly desirable.

2.4 Expansion in Frames

From Theorem 2.4 we can also deduce a different representation formula, which can
be regarded as an expansion of x in terms of the frame (¢;)}" ;.

Theorem 2.8 Let @ = (¢;)!", be a frame for R" with frame operator S. Then, for
every x € R", we have

x=88"x=(®D*)(PDP") 'x = D(PP*) ' P)x= i<x,5*1<p,-><pi.
i=1

The specifically chosen sequence of coefficients ((@@*)~!®) x is the one being
minimal in the £, norm among all coefficient sequences.
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Proposition 2.9 Let ® = (¢;)I" | be a frame for R" with frame operator S, and let
x € R". If ¢ = (c;)*, are scalars such that x = &c = Y" | ¢;@;, then

lellz = [1((@@") ™' @) "xll3 +[lc — ((@P*) ' @) x[3

Z|xS o) \2+Z|c, (x, S 1) |%.

For a proof of Proposition 2.9 we again refer to Christensen (2008). Proposi-
tion 2.9 immediately implies that for any sequence ¢ = (¢;);_, satisfyingx =Y, c;;,
we have

(STl @) P = | (@) @) x5 < [lefl3

™=

1

unless ¢ = ((@P*) 1) x

2.5 Construction of Tight Frames

As already noted, due to their advantageous reconstruction properties, it is particu-
larly desirable to construct tight frames. We distinguish between two different cases:
the situation where a given frame shall be modified to become a tight frame, and the
situation where one aims to design a frame satisfying certain desirable properties.

In case a frame is already given, there exists a very straightforward way to modify
it in order to turn the frame into a Parseval frame.

Proposition 2.10 Ler @ = (¢;)" | be a frame for R" with frame operator S. Then
(ST, = (@@") 2o
forms a Parseval frame.
Proof This follows from
(@D*) 20 ((0d") 1 2d) = (0d*) 1 2dd* (dd*) /2 =1,
and the definition of a Parseval frame. a

However, various properties of the frame such as the direction of the frame vectors
is destroyed during the process. A much more simple procedure, which can also be
regarded as preconditioning by a diagonal matrix, is to scale each frame vector to
generate a Parseval frame. Characterizing conditions — also of geometric type — for a
frame to be scalable in this sense were obtained by Kutyniok et al. (2013).

If no frame is given, but only the dimension of the space n, and the number of
frame vectors m, there are also explicit algorithms to construct a corresponding tight
frame. A specific algorithm which accomplishes this goal will be described in Sec-
tion 3.1. The algorithm is of special relevance to this paper as the frames constructed
are particularly sparse.
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3 Sparse Frames

In this section, we will study our guiding problem in the most general context: How
sparse can a frame be when the embedding and ambient dimensions n and m are
given? We will ask this question in regard to the following definition of a sparse
frame.

Definition 3.1 Let (¢;)’}_; be an orthonormal basis for R". Then a frame (¢;);, for
R" is called k-sparse with respect to (e;);_;, if, for each i € {1,...,m}, there exists
Ji C€{1,...,n} such that

¢; € span{e; : j € Ji}
and

n
Y il =k

Note that according to this definition, a frame being k-sparse is the same as the
associated frame matrix having at most k£ non-vanishing entries, hence this definition
is in line with (1.3). The main goal of this section will be to find optimally sparse
frames in the sense of the following definition.

Definition 3.2 Let (e j);le be an orthonormal basis for R”, let .%# be a class of frames
for R" consisting of m frame vectors, and let (¢;)7~, € .%. Then (¢;)", is called
optimally sparse in F with respect to (e;)j_;, if there exists ky € N such that (¢;)}2,
is ky-sparse with respect to (e;)_; and there does not exist a frame (y;)2; € .7

which is k;-sparse with respect to (e j);!:l for any kp < k.

Without any additional constraints, an optimally sparse frame will always be
given by the canonical basis extended by zero vectors. However, since the first n
frame coefficients of a vector will carry all the information, the frame representation
cannot be called redundant. A way to circumvent this issue is to require the frame
vectors to be unit norm, i.e., ||@;|, = 1. This normalization ensures that the frame
coefficients carry equal information. Even then an optimally sparse frame is easily
found by extending the canonical basis by m — n copies of the first (or any other)
basis vector. The resulting frame, however, has another drawback: Its redundancy is
distributed very unevenly. In the direction of the repeated frame vector it is indeed
very redundant, whereas in all other directions the frame is not redundant at all. The
spatial distribution of the redundancy is studied by Bodmann et al. (2011), and the au-
thors show that this is reflected in the spectrum of the frame operator. Consequently,
we will fix the spectrum of the frame operator as an additional constraint.

Arguably the most natural case is that the desired redundancy is evenly dis-
tributed, which corresponds to a spectrum consisting of a single point and hence a
tight frame. Thus our main focus in the remainder of this section will be on the class
of frames

F(n,m) = {® € R"" : @ is a unit norm, tight frame}.

In Remark 3.8 we will, however, briefly discuss extensions to more general spectra.
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3.1 Spectral Tetris — an Algorithm to Construct Sparse Tight Frames

Frames in .% (n,m) are characterized by having a frame matrix with orthogonal rows
with norm 4/m/n and columns with norm one. Constructing a sparse unit norm, tight
frame hence reduces to satisfying these constraints using as few entries of the matrix
as possible and setting the remaining entries to zero. The objective of the spectral
tetris algorithm, as introduced by Casazza et al. (2011a), is to accomplish these goals
in a greedy fashion, determining the frame matrix entries subsequently in a recursive
way. Its only requirement is that m/n > 2; for such dimension pairings it constructs
a unit-norm tight frame (¢;)7", for R". The frame bound then automatically equals
m/n. The detailed steps are provided in Algorithm 1. We remark that an extension to
arbitrary spectra of the frame operator is described in Calderbank et al. (2011).

Algorithm 1 STTF: Spectral Tetris for Tight Frames
Input: (i) Dimension n € N, (ii) Number of frame elements m € N with m/n > 2, (iii) An ONB (ej);f:l.
Output: Frame STTF(n,m).

1: Initialize: i <— 1, A} < m/n

2: for j=1:ndo

30 Ajyr < m/n.

while 2; 0 do
if 1; < 1 then

4
S:
6: (pi(—\/%-ej+\/lf%~€j+1.
7
8

Aj Aj
Pivt <\ 7 e —\1=F ejpr

: i i+2.
9: lj+1 (*A,_j+17(272.]‘).
10: Aj 0.
11: else
12: Qi < ej.
13: i—i+1.
14: lj (72.]7 1.
15: end if
16: end while
17: end for

18: STTF(n,m) < {@;}1",.

By construction, the frames resulting from Algorithm 1 will always be rather
sparse. Indeed, the two cases which the algorithm distinguishes in the if-else state-
ment correspond to adding a column with either one non-vanishing entry or two non-
vanishing entries. Thus in any case, the frame has sparsity at most 2m, which is small
compared to the total number of mn matrix entries. The intrinsic sparsity of the algo-
rithmic procedure is best visualized by the spectral tetris frame given in Example 3.7
below.

Our goal for the remainder of this section is first to find a lower bound for the opti-
mal sparsity within the class .% (n,m) and then to show that the spectral tetris frames,
when they exist, in fact obtain this lower bound. As we will see in the following sub-
section, a factor that determines the optimal sparsity and that is consequently a key
proof ingredient is whether the dimension pairing allows for block decompositions.
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3.2 Block Decompositions of Frame Matrices

Recall that Algorithm 1 returns a frame consisting only of 1-sparse and 2-sparse
vectors. Hence the only way one can expect to find an even sparser frame would be
to have fewer 2-sparse vectors than the output of Algorithm 1. So it is logical to ask
for the minimal number of 2-sparse vectors that a frame of given embedding and
ambient dimensions must have. Spectral tetris frames contain at most 2n — 2 frame
vectors which are 2-sparse, but can contain less. In the latter case, the frame matrix
has a block decomposition of order at least 2 in the sense of the following definition.

Definition 3.3 Let n,m > 0, and let (¢;)7", be a frame for R". Then we say that
the frame matrix @ = (¢;)"., has block decomposition of order 1, if there exists a
partition {1,...,m} =1 U... Ul such that, for any i; € I;, and i € I;, with {; # {5,
we have supp @;, Nsupp ¢;, = 0 and 1) is maximal.

The following result now connects the block decomposition order of a frame ma-
trix with the greatest common divisor of the dimension and the number of frame
vectors.

Proposition 3.4 (Casazza et al. (2011b)) Let m >n > 0 and @ = (¢;)1", € F (n,m).
Then the frame matrix ® has block decomposition of order at most gcd(n, m).

Proof Assume (¢;)!" | € % (n,m) has block decomposition of order 7, and let a cor-
responding partition be given by {1,...,m} =L U...Ul,. Foreach ¢ =1,...,n, let
S¢ be the common support set of the vectors (¢;);cz,. In other words, we have k € S;
if and only if k € supp ¢; for some i € I,. Further, let r;, denote the kth row of the
frame matrix of (¢;)"; note that [|r¢||* = 2 as the frame is tight. Then Sy,...,Sy is
a partition of {1,...,n} and, for every £ = 1,...,m, we have by the fact that (¢;)""
consists of unit norm vectors and by our choice of Iy and Sy that

#e= Y ol = ¥ Il = ¥ = = s,

kel = kes,

The second equality holds since we, after permutation of the columns, can write the
frame matrix of (¢;)!, as @ = [®Py,..., Py ], where Py has zero entries except on the
rows indexed by /; and the columns indexed by Sy, for £ = 1,...,7n. As each #[; is
an integer, one must have #S;, > m for all £, and hence we obtain 1) < m <
gcd(n,m). O

3.3 A Lower Bound for Sparsity within .% (n,m)

The main result of this section, Theorem 3.5, is a lower bound on the achievable
sparsity of frames in the class .% (n,m). With Theorem 3.6 in the next section, we
will see that this lower bound is actually realizable for any n,m € N in the range
m > 2n.
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Theorem 3.5 (Casazza et al. (2011b)) Let m > n > 0. Suppose that (¢;)i-, € F (n,m).
Then

|Pllg = m+2(n— ged(n,m)),
where @ is the frame matrix of (@;);-, with respect to any orthonormal basis.
Proof Let @ denote the frame matrix of a frame in .% (n,m) with respect to a fixed
orthonormal basis. For the sake of brevity, in the sequel we will use the phrase that
two rows of @ have overlap of size k, if the intersection of their supports is a set of
size k. Note that, since the rows of @ are orthogonal, it is not possible that two rows
of @ have overlap of size one.

We first consider the case where gcd(n,m) = 1. Pick an arbitrary row r; of &.
Since, by Proposition 3.4, @ has block decomposition of order one, there exists a
row r, whose overlap with r; is of size two or greater. Similarly, there has to exist
a row different from r; and r, which has overlap of size two or greater with either
ry or rp. Iterating this procedure will provide an order ry,rs,...r, such that, for each
row 7, there exists some k < j such that r; has overlap of size two or greater with ry.
Since all columns in & are of norm one, for each column v, there exists a minimal
J for which the r;th entry of the vector v is non-zero. This yields m non-zero entries
in @. In addition, each row r, through r, has at least two non-zero entries coming
from the overlap, which are different from the m entries just accounted for, since these
entries cannot be the non-zero entries of minimal index of a column due to the overlap
with a previous row. This sums up to a total of at least 2(n — 1) non-zero coefficients.
Consequently, the frame matrix has at least m + 2(n — 1) non-zero entries.

We now consider the case where gcd(n,m) =1 > 1. By Proposition 3.4, the ma-
trix @ has block decomposition of order at most 1. Performing the same construction
as above, we see that there exist at most 1) rows r; (including the first one) which do
not have overlap with a row ry for k < j. Thus the frame matrix ¢ must at least con-
tain m + 2(n — 1) non-zero entries. O

3.4 Optimally Sparse Unit Norm Tight Frames

Having set the benchmark, we now prove that frames constructed by spectral tetris
in fact meet the optimal sparsity rate. For this, we remind the reader that the tight
spectral tetris frame as constructed by Algorithm 1 is denoted by STTF(n,m).

Theorem 3.6 (Casazza et al. (2011b)) Let m > 2n > 0. Let (e./')?:l be an orthonor-
mal basis for R". Then the frame STTF(n,m) constructed using (e j)';.:] is opti-
mally sparse in % (n,m) with respect to (e j)';zl. That is, if @ is the frame matrix

of STTF (n,m) with respect to (ej);?:l, then

1Pl = m+2(n— ged(n,m)).
Proof Let (¢;)"" | be the frame STTF(n,m), and let @ be the frame matrix of (¢;)7" ,
with respect to (e j);le. We start by showing that @ has block decomposition of order

n = ged(n,m). For this, we set np =mo =0 and n; = j%, mj = j%, 1<j<7n;in
particular this entails kyy = n and my = m.
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n
STTF(n;,m;) and STTF(n,m) coincide; indeed, the corresponding steps are identi-
cal. Continuing the computation of STTF(n,m) will set the remaining entries of the
first m; vectors and also the first n; entries of the remaining vectors to zero. Thus, any
of the first n; vectors has disjoint support from any of the vectors constructed later on.
Repeating this argument for n; until n;, we obtain that @ has a block decomposition
of order 7; the corresponding partition of the frame vectors being

As I = ','1’—11, the first n; entries of the first m; coefficient vectors resulting from

n
U{(pmif]‘H PR '7(pmi}'
i=1

To compute the number of non-zero entries in @, we leti € {1,...,1} be arbitrar-
ily fixed and compute the number of non-zero entries of the vectors @, |, 1+1,..., On,.
Spectral tetris ensures that the support of each of the rows n;—1 + 1 up to n; — 1
intersects the support of the subsequent row on a set of size two, as otherwise an ad-
ditional block would be created. Thus, there exist 2(n; —n;—; — 1) frame vectors with
two non-zero entries. The remaining (m; —m;_;) — 2(n; — n;—; — 1) frame vectors
will have only one entry, yielding a total number of (m; —m;_1) +2(n; —ni—1 — 1)
non-zero entries in the vectors @, | 11,..., On,.

Summarizing, the total number of non-zero entries in the frame vectors of (¢;)7" ,

(mi—mi_1)+2(nj—ni1—1) = (i (mi—mi—1)> +2 (nn B (i 1))

is

=

14

which, by Theorem 3.5, is the optimal sparsity. g

The following example shows that an optimally sparse frame from . (n,m) is, in
general, not unique.

Example 3.7 Let n =4 and m = 9. Then, by Theorem 3.5, the optimal sparsity is
9+2(4—1) = 15. The following matrices are frame matrices with respect to a given
orthonormal basis of two different unit-norm tight frames in R*:

00 Z_\/E 1
@, 8 s V4 4

3.1

and
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Clearly, both frame matrices satisfy || P ||, = ||P2]|, = 15, hence the corresponding
frames are optimally sparse in % (4,9). We remark that @, is the frame matrix of
STTF(4,9).

Remark 3.8 Tight frames have the special property that their spectrum uniquely de-
fines the frame operator. While it is shown in Casazza et al. (2011b) that given a diag-
onal frame operator a variant of Algorithm 1 for non-tight frames always constructs
the optimally sparse frame associated to that operator, there may exist a sparser frame
associated with a non-diagonal frame operator having the same spectrum. Hence in
such cases spectral tetris does not always find the sparsest frame of a given spectrum.

Remark 3.9 For redundancy smaller than 2, the picture is less clear. It has been
shown by Casazza et al. (2013) and Lemvig et al. (2013) that the spectral tetris al-
gorithm works even in certain cases where m < 2n. However, to our knowledge, a
systematic analysis of optimal sparsity for low redundancy has not been performed.

4 Sparse Dual Frames

In this section we will take a different viewpoint regarding sparsity, and we now ask
how sparse a dual frame of a given, fixed frame can be. This viewpoint is motivated
by the fact that in many cases the decomposition frame (¢;)”" , is given by the ap-
plication at hand, e.g., by the way of measuring the data. In these situations, one is
then interested in choosing a good dual frame of (¢;)!" , for the reconstruction pro-
cess. Notice again how the redundancy of frames plays a key role here since in the
non-redundant case we would only have one option for exact reconstruction.

Again, the goal will be to achieve sparsity in the sense of Definitions 3.1, with the
goal of allowing for efficient matrix-vector multiplication, just this time for the dual
frame (Note that in contrast to the previous section, the basis used for representing
the dual frame is the same as for the frame at hand and hence fixed). In other words,
we are interested in the following minimization problem:

min||¥|, st @Y =1, 4.1)

where the frame @ is given. In line with Definition 3.2, we name the solutions of (4.1)
optimally sparse duals; note that as for optimally sparse frames, these solutions are,
in general, not unique. In the following two subsections we will focus on analyzing
the possible values of the objective function ||¥'||, in (4.1), and in the final subsection
we will comment on the problem of finding the minimizers.

4.1 Optimal Sparsity of Dual Frames
In this subsection we investigate the possible sparsity levels in the set of all dual
frames. We start with a simple upper bound.

Lemma 4.1 (Li et al. (2013); Krahmer et al. (2013)) Suppose ® is a frame for R".
Then there exists a dual frame ¥ of ® with

2
[¥llo < n™.
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Proof LetJ C {1,2,...,m} be such that #J = n and the corresponding frame vectors
(¢;)iey are linearly independent. Such a set always exists, as in order to form a frame,
the columns of @ must span R”". Let (y;);c; be the unique (bi-orthogonal) dual of
(¢1)ics, and set y; = 0 for i ¢ J. Then we obviously have ||¥|, < n?. |

Without additional assumptions on the frame, only the trivial lower bound ||¥||, >
n on the dual frame sparsity can be established (see Li et al. (2013)); this bound is
achieved if and only if the frame contains the canonical basis vectors. To precisely
determine the optimal sparsity in the set of all duals of a given frame, we thus need
to take further properties of the frame into account. In particular, the spark of the
frame matrix plays an important role. Recall that the spark of a matrix @ € R"*™ is
defined as the smallest number of linearly dependent columns of @ and is denoted by
spark (@). For an invertible n x n matrix &, one sets spark (@) = n+ 1. In fact, we
will need the following refined version of the spark.

Definition 4.2 Let @ € R"*"™. Then spark; () denotes the size of the smallest set
I c{l,...,m} of column indices such that the columns with indices in / of the matrix
@ are linearly independent while the columns with indices in I of the (n — 1) x m
submatrix @) of @ with the jth row deleted are linearly dependent.

‘We can now state the main result of this subsection.

Theorem 4.3 (Krahmer et al. (2013)) Suppose P is a frame for R". Then the opti-
mally sparse dual frame ¥ of P satisfies

n

1®lp = ) spark; ().

j=1

Proof Let ¥ be an optimally sparse dual of &. Fix j € {1,...,n}, and let (p,EJ ) denote
the kth column of &), Since & and ¥ are assumed to be dual frames, we have
that @) (l//j )* = 0,,—1 holds, where l//j denotes the jth row of ¥ and 0,_; the zero
vector in R"~!. This shows that (g’)) tesupp i
other hand, the frame vectors () kesuppy/ Must be linearly independent, as otherwise
one of these columns would be a linear combination of the others, which would allow
for the construction of ¥/ with supp §/ C suppy/ such that & (/)" = e;. This in
turn would imply that the frame, whose frame matrix is obtained from ¥ by replacing
the row W/ by ¥/ is also a dual frame of @, so ¥ is not the optimally sparse dual,
contradicting our assumption. Therefore we obtain | supp y/| > spark (@) which, in
turn, implies that [|¥||, > ¥}_, spark; (®).

To complete the proof we need to show existence of a dual frame that meets this
lower bound. To that intent, fix j € {1,...,n}, and let S be a set of size spark; (P)
such that (¢ ).cg is a set of linearly independent columns of @ such that the corre-
sponding columns of @) are linearly dependent. That is, there exist (M) ges such
that Yyes A (@U)) = 0, but (Lies i) = a # 0. This leads us to define y/ via

i A ifkes,
Y, = .
0 ifke{l,....m}\S,

must be linearly dependent. On the
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as this definition yields @(y/)* = e;. Therefore, the matrix ¥ with rows ¥/, j €
{1,...,n}, corresponds to a dual frame which is }_, spark; (®)-sparse. O

By definition we have spark; (@) > spark (@) for every j = 1,...,n. Hence,
we immediately have the following useful corollary of Theorem 4.3.

Corollary 4.4 Suppose P is a frame for R". Then any dual frame ¥ of P satisfies

1¥lo > Y spark (@),
j=1

4.2 n?-Sparse Duals

By Lemma 4.1 we know that it is always possible to find a dual frame with sparsity
level n2. The result below states that for a large class of frames this is actually the best,
or rather the sparsest, one can achieve. Recall that an n X m matrix is said to be in
general position if any sub-collection of n (column) vectors is linearly independent,
that is, if any n X n submatrix is invertible. Such matrices are sometimes called fu/l
spark frames, such as in Alexeev et al. (2012), since their spark is maximal, i.e., n+ 1.

Theorem 4.5 (Krahmer et al. (2013)) Suppose @ is a frame for R" such that the
submatrix ®\9) is in general position for every j=1,...,n. Then any dual frame ¥
of ® satisfies

¥y > n*. 4.2)

In particular, the optimally sparse dual satisfies |P'||, = n*

Proof Since @) is in general position, we have spark (®()) = n for each j =
1,...,n. By Corollary 4.4, this implies (4.2). Finally, by Lemma 4.1, we can con-
clude that the optimally sparse dual frame satisfies |||, = n*. O

Remark 1 The proof of Theorem 4.3 entails that for a frame & in general position,
every support set consisting of n locations in each of the n rows of the dual frame
matrix is realized by a dual frame of &®. Thus a way to find n>-sparse duals of such
a frame is to fix a sparsity pattern (for example at random) and find a dual frame
supported in this set row by row via inverting n x n submatrices of @. This approach
has been introduced and discussed in Li et al. (2013) under the name zero-forcing. As
an alternative approach to find n2-sparse dual frames, Li et al. (2013) also propose
£1-minimization.

We now illustrate Theorem 4.5 with a number of examples of frames which are
well-known to be in general position, and which thus do not allow for dual frames
with less than n> non-vanishing entries.
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Example 4.6 For any n,m € N with m > n, leta; >0, i=1,...,n with a; # a; for
alli# j,andletb; € R, j=1,...,m with b; # b;, j # i. Generalized Vandermonde
frames are defined by:

by b

all alz...allgm
b = .

B g

It is well-known, see e.g., Gantmacher (1959, §8.1), that the submatrix ®U) is in
general position for every j=1,...,m, which, by Theorem 4.5, implies that optimally
sparse duals of @ are n*-sparse.

As previously mentioned the results in this paper also hold for complex frames.
The next two examples are frames for C" whose sparsest dual has sparsity n°.

Example 4.7 Let n € N, and let m be prime. Let @ be a partial FFT (Fast Fourier
Transform) matrix of size n X m, that is, @ is constructed by picking n rows of an
m x m DFT (Discrete Fourier Transform) matrix at random. Recall that the m x m
DFT matrix is defined by (e=2"/%/™)y; t<,u—1. We remark that @ is a tight frame.
Moreover, any @) is in general position, as the determinant of any (n—1) x (n—1)
submatrix of @ is non-zero which is a consequence of Chebotarev theorem about
roots of unity stating that any minor of an m x m DFT matrix is non-zero whenever m
is prime; see Stevenhagen and Lenstra (1996) and Pakovich (2007). Our conclusion
is again that the sparsest dual frame ¥ of & satisfies ||¥||, = n’.

Example 4.8 For n € N prime and m = n?, Krahmer et al. (2008) showed that for
almost every g € C", the Gabor frame with n time bins and n frequency bins generated
by g (see Section 4.3) has a frame matrix with no zero minors. For this reason, the
optimally sparse duals of such Gabor frames have sparsity r>.

In fact, the property of having a sparsest dual with sparsity n” is a very generic
property in the sense that the set .4 (n,m) of all frames of m vectors in R" whose
sparsest dual has n”> non-zero entries contains an open, dense subset in R and
has a compliment of measure zero. Let &?(n,m) be the set of all frames ¢ which
satisfy spark (@) =n forall j=1,...,n. By Corollary 4.4 we have that 22 (n,m) C
A (n,m). We are now ready to state the result saying that “most” frames have a
sparsest dual with sparsity level n?.

Lemma 4.9 Suppose m > n. Then the set & (n,m) is open and dense in R"*™, and
P (n,m)¢ is of measure zero.

Proof Note that @ = [xt ¢lxeq1,...n} e{1,...my € & (n,m) if and only if & has full-rank
and the polynomials in x ¢ given by det ([<15(j)]1) are non-zero foreach j € {1,...,m}
and I € S, where S is the collection of all subsets of {1,...,m} of size n — 1. Here
[@)]; € R=Dx("=1) denotes the matrix @) restricted to the columns in the index
set 1. This shows that &2 (n,m) is open in the Zariski topology'. Since the set &2 (n,m)

! For the definition of the Zariski topology, we refer to the book by Hartshorne (1977).
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is non-empty by Example 4.6, it is thereby open and dense in the standard topology,
see Alexeev et al. (2012). Finally, since &2 (n,m)° is a proper subset and closed in the
Zariski topology, it is of measure zero. O

By Lemma 4.9, we can conclude that any frame of m vectors in R” is arbitrarily
close to a frame in A" (n,m).

Theorem 4.10 (Krahmer et al. (2013)) Every frame is arbitrarily close to a frame

whose sparsest dual 'V satisfies |||, = n2.

Another consequence of Lemma 4.9 is that for many randomly generated frames,
the sparsest dual has sparsity level || ¥||, = n%. As an example, this holds when the
entries of @ are drawn independently at random from a standard normal distribution
or when the frame is obtained by a small Gaussian random perturbation of a given
n X m matrix.

4.3 Sparse Gabor dual frames of Gabor frames

A special case studied by Li et al. (2013) is the scenario that both the frame and
its dual frame are Gabor frames. To define a Gabor frame, denote by S : C* — C”
the shift operator given by (zo,...,z0—1)" — (21,-.-,2u—1,20)" and by M : C" — C"
the modulation operator given by (2o, ...,z,_1)" — (z0,€2™/"zy,...,e2=1/ng ),
Then for p,q both divisors of n, the discrete Gabor system with ¢ time bins and

p frequency bins generated by a vector g € C" is given by (Mj “’Sk“g)if:l, where
o =2 and a = 2. If such a system is a frame for C", it is called a Gabor frame

(Wexler and Raz, 1990; Grochenig, 2001). Gabor frames are of great importance
for signal processing, as the Gabor frame coefficients can be interpreted as the local
frequency content of a signal. As it turns out, a Gabor frame always has a Gabor dual,
that is, a frame that is also a Gabor frame; if m = pq > n, they have even infinitely
many Gabor duals. The generator ¥ € C" of a dual Gabor frame is called a dual Gabor
window.

A main result of Li et al. (2013) gives upper and lower bounds for the sparsity of
Gabor duals of Gabor frames. Here the relevant quantity is the sparsity of the dual
frame generator as it directly determines the sparsity of the dual frame. Then the
sparsity bounds are as follows.

Theorem 4.11 (Li et al. (2013)) Let @ be the Gabor frame with q time bins and p
frequency bins generated by g € C". The sparsest dual Gabor window y € C" satisfies

2

n n
~<|vllo < — (4.3)
q pq
and
np < ||¥]lo < n?, (4.4)

where ¥ = (M-f“’Sk“}/)?”gzl.
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Proof The dual frames of @ that have Gabor structure are characterized by the
Wexler-Raz relations from Wexler and Raz (1990), which states that two generators
g and v are a pair of dual Gabor windows if and only if

ﬂ<}/,M/"IS]‘1’g>:5,-5k for j=0,...,0—1land k=0,...,a—1.
n .

These equations can be rewritten as a set of a linear systems of the form

G,-I?zlel, i=0,....,a—1,
p
where
8i 8ita  t 8italg-1) N
G = g,"+p gi+.a+p gi+a(q'fl)+p and T— 71'.+a
Bitp(o—1) 8itvatp(o—1) " &italg—1)+p(w—1) Yita(g—1)-

We refer to the proof of Theorem 3.3 by Li et al. (2013) for the details of the above
derivation. Since each of the linear systems G;I; = %el, i=0,...,a—1, consists of ®
equations with g unknowns, the sparsest solution to G;I; = %el has sparsity between
1 and o, that is, 1 < ||I7]|, < @. Since ||y]|, = a||L{||, and |¥]l, = pq||7lly, the two
estimates (4.3) and (4.4) follow. a

Example 4.8 shows that when n € N is prime, and one has n time bins as well
as n frequency bins, the statement of Theorem 4.11 holds for almost all generators
g € C". Note that in this case the lower and upper bound agree, hence the result is
sharp.

For sparsity to be interpreted as localization in the application scenario, the non-
zero entries of the generator are required to be located in adjacent positions. We say
that suppg is connected to refer to this property of a generator g. The next result
shows that if this is the case, then there exists a dual Gabor window Y that meets the
lower sparsity bound of Theorem 4.11.

Theorem 4.12 (Li et al. (2013)) Let @ be the Gabor frame with q time bins and
p frequency bins generated by g € C". Suppose that suppg is connected and a <
#{suppg} < q. Then the sparsest dual Gabor window y € C" satisfies ||Y||, = a and
[[¥llo = ng, where ¥ = {Mj“’Sk“y}i’Zzl.

Proof Since suppg is connected and a < #{suppg} < ¢, each column of G; has at
most one non-zero entry. Moreover, at least one of the entries in the first row of G; is
non-zero; let k be the corresponding column index. Then I; = (p- giﬂ(k,l))’lek isa

one-sparse solution to G;I; = %el foreachi=0,...,a—1. O

Comparable results can be derived for other regimes of the parameters and other
support sizes of g. For details, we refer the reader to Li et al. (2013).
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5 Discussion and Future Directions

Comparing the problems discussed in Sections 3 and 4, one observes that the cor-
responding optimally sparse solutions behave very differently. For optimally sparse
frames, a large fraction of the entries vanishes (only between m and 2m entries will
not vanish), hence there is a limited number of degrees of freedom and the result-
ing frames are structurally very similar. For optimally sparse duals, in contrast, the
sparsity can vastly vary. For duals of frames in general position, the minimal number
of non-vanishing entries is n> and the minimizer, in general, non-unique. As a conse-
quence, there is a large number of degrees of freedom that allows for structurally very
different solutions. For example, the n> non-vanishing entries could be concentrated
in few columns or evenly distributed over all columns.

Consequently, potential future research directions relating to the two problems
are rather different:

For sparse frames, we understand the cases presented above where m > 2n quite
well. But as mentioned in Remark 3.9, the low redundancy cases are open. Also, a
more general question can be posed, namely the design of sparse frames with addi-
tional design specifications. One example for such specifications is low coherence,
which was used as a design criteria for Steiner equiangular tight frames in the work
of Fickus et al. (2012).

Regarding sparse duals, we have a complete characterization of the achievable
sparsity levels, but the question remains which of the many structurally different op-
timally sparse duals is best from a computational viewpoint. As mentioned above, a
dual frame with all n> non-vanishing entries contained in a few columns discards all
of the redundant information, so intuitively it is less desirable than distributing the
entries evenly over the columns. Hence it is important for a complete understanding
to quantify this preference for one optimally sparse dual frame over the other in order
to decide between two duals in case such an intuitive judgment is not possible. As
the number of possible optimally sparse duals is very large, a satisfactory answer to
this question must also involve algorithms to find duals which are at least close to the
desired optimum. Furthermore, it would be interesting to find concrete examples of
frame classes that allow for duals which are considerably sparser than in the generic
case.
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