
ar
X

iv
:1

20
9.

04
30

v2
 [

cs
.L

G
]

 2
4

A
pr

 2
01

3

Fixed-rank matrix factorizations and

Riemannian low-rank optimization∗

B. Mishra† G. Meyer† S. Bonnabel‡ R. Sepulchre†§

April 25, 2013

Abstract

Motivated by the problem of learning a linear regression model whose parameter is

a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost

function defined on the set of fixed-rank matrices. We adopt the geometric framework

of optimization on Riemannian quotient manifolds. We study the underlying geometries

of several well-known fixed-rank matrix factorizations and then exploit the Riemannian

quotient geometry of the search space in the design of a class of gradient descent and trust-

region algorithms. The proposed algorithms generalize our previous results on fixed-rank

symmetric positive semidefinite matrices, apply to a broad range of applications, scale

to high-dimensional problems and confer a geometric basis to recent contributions on

the learning of fixed-rank non-symmetric matrices. We make connections with existing

algorithms in the context of low-rank matrix completion and discuss relative usefulness

of the proposed framework. Numerical experiments suggest that the proposed algorithms

compete with the state-of-the-art and that manifold optimization offers an effective and

versatile framework for the design of machine learning algorithms that learn a fixed-rank

matrix.

1 Introduction

The problem of learning a low-rank matrix is a fundamental problem arising in many mod-

ern machine learning applications such as collaborative filtering [RS05], classification with

multiple classes [AFSU07], learning on pairs [ABEV09], dimensionality reduction [CHH07],

learning of low-rank distances [KSD09, MBS11b] and low-rank similarity measures [SWC10],

multi-task learning [EMP05, MMBS11], to name a few. Parallel to the development of these

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and

Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State,

Science Policy Office. The scientific responsibility rests with its authors. Bamdev Mishra is a research fellow

of the Belgian National Fund for Scientific Research (FNRS).
†Department of Electrical Engineering and Computer Science, University of Liège, 4000 Liège, Belgium

(B.Mishra@ulg.ac.be, Gillesmy@gmail.com, R.Sepulchre@ulg.ac.be).
‡Robotics center Mines ParisTech Boulevard Saint-Michel, 60, 75272 Paris, France

(Silvere.Bonnabel@mines-paristech.fr).
§ORCHESTRON, INRIA-Lille, Lille, France

http://arxiv.org/abs/1209.0430v2

2

new applications, the ever-growing size and number of large-scale datasets demands ma-

chine learning algorithms that can cope with large matrices. Scalability to high-dimensional

problems is therefore a crucial issue in the design of algorithms that learn a low-rank matrix.

Motivated by the above applications, the paper focuses on the following optimization problem

min
W∈R

d1×d2
r

f(W), (1)

where f : Rd1×d2 → R is a smooth cost function and the search space is the set of fixed-rank

non-symmetric real matrices,

R
d1×d2
r = {W ∈ R

d1×d2 : rank(W) = r}.

A particular case of interest is when r ≪ min(d1, d2). In Section 2 we show that the con-

sidered optimization problem (1) encompasses various modern machine learning applications.

We tackle problem (1) in a Riemannian framework, that is, by solving an unconstrained

optimization on a Riemannian manifold in bijection with the nonlinear space R
d1×d2
r . This

nonlinear space is an abstract space that is given the structure of a Riemannian quotient

manifold in Section 4. The search space is motivated as a product space of well-studied man-

ifolds which allows to derive the geometric notions in a straightforward and systematic way.

Simultaneously, it ensures that we have enough flexibility in combining the different pieces

together. One such flexibility is the choice of metric on the product space.

The paper follows and builds upon a number of recent contributions in that direction:

the Ph.D. thesis [Mey11] and several papers by the authors [MBS11a, MBS11b, MMBS11,

MMS11, MAAS12, Jou09]. The main contribution of this paper is to emphasize the common

framework that underlines those contributions, with the aim of illustrating the versatile frame-

work of Riemannian optimization for rank-constrained optimization. Necessary ingredients

to perform both first-order and second-order optimization are listed for ready referencing. We

discuss three popular fixed-rank matrix factorizations that embed the rank constraint. Two

of these factorizations have been studied individually in [MBS11a, MMS11]. Exploiting the

third factorization (the subspace-projection factorization in Section 3.3) in the Riemannian

framework is new. An attempt is also made to classify the existing algorithms into various

geometries and show the common structure that connects them all. Scalability of both first-

order and second-order optimization algorithms to large dimensional problems is shown in

Section 6.

The paper is organized as follows. Section 2 provides some concrete motivation for the

proposed fixed-rank optimization problem. Section 3 reviews three classical fixed-rank matrix

factorizations and introduces the quotient nature of the underlying search spaces. Section 4

develops the Riemannian quotient geometry of these three search spaces, providing all the

concrete matrix operations required to code any first-order or second-order algorithm. Two

basic algorithms are further detailed in Section 5. They underlie all numerical tests presented

in Section 6.

3

2 Motivation and applications

In this section, a number of modern machine learning applications are cast as an optimization

problem on the set of fixed-rank non-symmetric matrices.

2.1 Low-rank matrix completion

The problem of low-rank matrix completion amounts to estimating the missing entries of

a matrix from a limited number of its entries. There has been a large number of research

contributions on this subject over the last few years, addressing the problem both from a

theoretical [CR08, Gro11] and from an algorithmic point of view [RS05, CCS10, LB09, MJD09,

KMO10, SE10, JMD10, MHT10, BA11, NS12]. An important and popular application of the

low-rank matrix completion problem is collaborative filtering [RS05, ABEV09].

Let W⋆ ∈ R
d1×d2 be a matrix whose entries W⋆

ij are only given for some indices (i, j) ∈ Ω,

where Ω is a subset of the complete set of indices {(i, j) : i ∈ {1, . . . , d1} and j ∈ {1, . . . , d2}}.

Fixed-rank matrix completion amounts to solving the following optimization problem

min
W∈Rd1×d2

1
|Ω|‖PΩ(W) − PΩ(W

⋆)‖2F

subject to rank(W) = r,
(2)

where the function PΩ(W)ij = Wij if (i, j) ∈ Ω and PΩ(W)ij = 0 otherwise and the norm

‖ · ‖F is Frobenius norm. PΩ is also called the orthogonal sampling operator and |Ω| is the

cardinality of the set Ω (equal to the number of known entries).

The rank constraint captures redundant patterns in W
⋆ and ties the known and unknown

entries together. The number of given entries |Ω| is of O(d1r+d2r−r2) which is much smaller

than d1d2 (the total number of entries in W
∗) when r ≪ min(d1, d2). Recent contributions

provide conditions on |Ω| under which exact reconstruction is possible from entries sampled

uniformly and at random [CR08, KMO10]. An application of this is in movie recommenda-

tions. The matrix to complete is a matrix of movie ratings of different users; a very sparse

matrix with few ratings per user. The predictions of unknown ratings with a low-rank prior

would have the interpretation that users’ preferences only depend on few genres [Net06].

2.2 Learning on data pairs

The problem of learning on data pairs amounts to learning a predictive model ŷ : X ×Z → R

from n training examples {(xi, zi, yi)}
n
i=1 where data xi and zi are associated with two types

of samples drawn from the set X ×Z and yi ∈ R is the associated scalar observation from the

predictive model. If the predictive model is the bilinear form ŷ = x
T
Wz with W ∈ R

d1×d2
r ,

x ∈ R
d1 and z ∈ R

d2 , then the problem boils down to the optimization problem,

min
W∈R

d1×d2
r

1

n

n
∑

i=1

ℓ(xT
i Wzi, yi), (3)

where the loss function ℓ penalizes the discrepancy between a scalar (experimental) observa-

tion y and the predicted value ŷ.

4

An application of this setup is the inference of edges in bipartite or directed graphs. Such

problems arise in bioinformatics for the identification of interactions between drugs and target

proteins, micro-RNA and genes or genes and diseases [YAG+08, BY09]. Another application

is concerned with image domain adaptation [KSD11] where a transformation x
T
Wz is learned

between labeled images x from a source domain X and labeled images z from a target domain

Z. The transformation W maps new input data from one domain to the other. A potential

interest of the rank constraint in these applications is to address problems with a high-

dimensional feature space and perform dimensionality reduction on the two data domains.

2.3 Multivariate linear regression

In multivariate linear regression, given matrices Y ∈ R
n×k (output space) and X ∈ R

n×q

(input space), we seek to learn a weight/coefficient matrix W ∈ R
q×k
r that minimizes the

discrepancy between Y and XW [YELM07]. Here n is the number of observations, q is the

number of predictors and k is the number of responses.

One popular approach to multivariate linear regression problem is by minimizing a quadratic

loss function. Note that in various applications responses are related and may therefore, be

represented with much fewer coefficients [YELM07, AFSU07]. This corresponds to finding

the best low-rank matrix such that

min
W∈Rq×k

r

‖Y −XW‖2F .

Though the quadratic loss function is shown here, the optimization setup extends to other

smooth loss functions as well.

An application of this setup in financial econometrics is considered in [YELM07] where

the future returns of assets are estimated on the basis of their historical performance using

the above formulation.

3 Matrix factorization and quotient spaces

A popular way to parameterize fixed-rank matrices is through matrix factorization. We

review three popular matrix factorizations for fixed-rank non-symmetric matrices and study

the underlying Riemannian geometries of the resulting search space.

The three fixed-rank matrix factorizations of interest all arise from the thin singular value

decomposition of a rank-r matrix W = UΣV
T , where U is a d1 × r matrix with orthogonal

columns, that is, an element of the Stiefel manifold St(r, d1) = {U ∈ R
d1×r : U

T
U = I},

Σ ∈ Diag++(r) is a r × r diagonal matrix with positive entries and V ∈ St(r, d2). The

singular value decomposition (SVD) exists for any matrix W ∈ R
d1×d2
r [GVL96].

3.1 Full-rank factorization (beyond Cholesky-type decomposition)

The most popular low-rank factorization is obtained when the singular value decomposition

(SVD) is rearranged as

W = (UΣ
1

2)(Σ
1

2V
T) = GH

T ,

5

W G

H
T

U

B V
T

= =

St(r, d1)

U

Y
T

=

R
d1×r
∗

≻ 0

St(r, d1)

St(r, d2)R
d2×r
∗

R
d1×d2
r

R
d2×r
∗

R
d1×r

∗
× R

d2×r

∗
/GL(r) St(r, d1)× S++(r)× St(r, d2)/OG(r) St(r, d1)× R

d2×r

∗
/OG(r)∼ ∼ ∼

R
d1×d2

After taking into account the symmetry, the search space is

Product space R
d1×r

∗
× R

d2×r

∗
St(r, d1)× S++(r)× St(r, d2) St(r, d1)× R

d2×r

∗

Full-rank Polar Subspace-projection

Figure 1: Fixed-rank matrix factorizations lead to quotient search spaces due to intrinsic

symmetries. The pictures emphasize the situation of interest, i.e., the rank r is small compared

to the matrix dimensions.

where G = UΣ
1

2 ∈ R
d1×r
∗ , H = VΣ

1

2 ∈ R
d2×r
∗ and R

d×r
∗ is the set of full column rank

d× r matrices, also known as full-rank matrix factorization. The resulting factorization is not

unique because the transformation,

(G,H) 7→ (GM
−1,HM

T), (4)

where M ∈ GL(r) = {M ∈ R
r×r : det(M) 6= 0}, leaves the original matrix W unchanged

[PO99]. This symmetry comes from the fact that the row and column spaces are invariant to

the change of coordinates. The classical remedy to remove this indeterminacy in the case of

symmetric positive semidefinite matrices is the Cholesky factorization, which imposes further

(triangular-like) structure in the factors. The LU decomposition plays a similar role for the

non-symmetric matrices [GVL96]. In a manifold setting, we instead encode the invariance

map (4) in an abstract search space by optimizing over a set of equivalence classes defined as

[W] = [(G,H)] = {(GM
−1,HM

T) : M ∈ GL(r)}, (5)

instead of the product space R
d1×r
∗ × R

d2×r
∗ . The set of equivalence classes is denoted as

W := W/GL(r). (6)

The product space R
d1×r
∗ ×R

d2×r
∗ is called the total space, denoted by W. The set GL(r)

is called the fiber space. The set of equivalence classes W is called the quotient space. In

the next section it is given the structure of a Riemannian manifold over which optimization

algorithms are developed.

3.2 Polar factorization (beyond SVD)

The second quotient structure for the set R
d1×d2
r is obtained by considering the following

group action on the SVD [BS09],

(U,Σ,V) 7→ (UO,OT
ΣO,VO),

6

where O is any r × r orthogonal matrix, that is, any element of the set

O(r) = {O ∈ R
r×r : OT

O = OO
T = I}.

This results in polar factorization

W = UBV
T ,

where B is now a r × r symmetric positive definite matrix, that is, an element of

S++(r) = {B ∈ R
r×r : BT = B ≻ 0}. (7)

The polar factorization reflects the original geometric purpose of singular value decomposition

as representing an arbitrary linear transformation as the composition of two isometries and a

scaling [GVL96]. Allowing the scalingB to be positive definite rather than diagonal gives more

flexibility in the optimization and removes the discrete symmetries induced by interchanging

the order on the singular values. Empirical evidence to support the choice of S++(r) over

Diag++(r) (set of diagonal matrices with positive entries) for the middle factor B is shown

in Section 6.3. The resulting search space is again the set of equivalence classes defined by

[W] = [(U,B,V)] = {(UO,OT
BO,VO) : O ∈ O(r)}. (8)

The total space is now W = St(r, d1) × S++(r) × St(r, d2). The fiber space is O(r) and

the resulting quotient space is, thus, the set of equivalence classes

W = W/O(r). (9)

3.3 Subspace-projection factorization (beyond QR decomposition)

The third low-rank factorization is obtained from the SVD when two factors are grouped

together,

W = U(ΣV
T) = UY

T ,

where U ∈ St(r, d1) and Y ∈ R
d2×r
∗ and is referred to as subspace-projection factorization.

The column subspace of W matrix is represented by U while Y is the (left) projection or

coefficient matrix of W. The factorization is not unique as it is invariant with respect to the

group action (U,Y) 7→ (UO,YO), whenever O ∈ O(r). The classical remedy to remove this

indeterminacy is the QR factorization for which Y is chosen upper triangular [GVL96]. Here

again we work with the set of equivalence classes

[W] = [(U,Y)] = {(UO,YO) : O ∈ O(r)}. (10)

The search space is the quotient space

W = W/O(r), (11)

where the total space is W := St(r, d1)×R
d2×r
∗ and the fiber space is O(r). Recent contribu-

tions using this factorization include [BA11, SE10].

7

x̄

ȳ

x = [x̄]
W = W/ ∼

W

Hx̄W

Vx̄W

TxW

π

ξ̄x̄

ξx

Rx̄(ξ̄x̄)

x̄+

x+

Rx(ξx)

Figure 2: Visualization of a Riemannian quotient manifold. The points ȳ and x̄ in the total

space W belong to the same equivalence class and they represent a single point [x] in the

quotient space W. π : W → W is a Riemannian submersion. The subspaces Vx̄W and

Hx̄W are complementary spaces of Tx̄W. The horizontal space Hx̄W provides a matrix

representation to the abstract tangent space TxW of the Riemannian quotient manifold. The

mapping Rx̄ maps a horizontal vector onto the total space.

4 Fixed-rank matrix spaces as Riemannian submersions

The general philosophy of optimization on manifolds is to recast a constrained optimization

problem in the Euclidean space R
n into an unconstrained optimization on a nonlinear search

space that encodes the constraint. For special constraints that are sufficiently structured, the

framework leads to an efficient computational framework [AMS08]. The three total spaces

considered in the previous section all admit product structures of well-studied differentiable

manifolds St(r, d1), R
d1×r
∗ and S++(r). Similarly, the fiber spaces are the Lie groups GL(r)

and O(r). In this section, all the quotient spaces of the three fixed-rank factorizations are

shown to have the differential structure of a Riemannian quotient manifold.

Each point on a quotient manifold represents an entire equivalence class of matrices in the

total space. Abstract geometric objects on the quotient manifold can be defined by means

of matrix representatives. Below we show the development of various geometric objects that

are are required to optimize a smooth cost function on the quotient manifold. Most of these

notions follow directly from [AMS08, Chapters 3 and 4]. In Table 1 to 5 we give the matrix

representations of various geometric notions that are required to optimize a smooth cost func-

tion on a quotient manifold. More details of the matrix factorizations, full-rank factorization

(Section 3.1) and polar factorization (Section 3.2) may be found in [MMBS11, Mey11]. The

corresponding geometric notions for the subspace-projection factorization (Section 3.3) are

new to the paper but nevertheless, the development follows similar lines.

8

W = GH
T

W = UBV
T

W = UY
T

Matrix

representation

(G,H) (U,B,V) (U,Y)

Total space W R
d1×r
∗ ×R

d2×r
∗ St(r, d1)× S++(r) × St(r, d2) St(r, d1)× R

d2×r
∗

Group action (GM
−1,HM

T) (UO,OTBO,VO) (UO,YO)

M ∈ GL(r) O ∈ O(r) O ∈ O(r)

Quotient space

W

R
d1×r
∗ × R

d2×r
∗

/GL(r)

St(r, d1)× S++(r)× St(r, d2)

/O(r)

St(r, d1)× R
d2×r
∗

/O(r)

Table 1: Fixed-rank matrix factorizations and their quotient manifold representations. The

action of Lie groups GL(r) and O(r) make the quotient spaces, smooth quotient manifolds

[Lee03, Theorem 9.16].

4.1 Quotient manifold representation

Consider a total space W equipped with an equivalence relation ∼. The equivalence class of

a given point x̄ ∈ W is the set [x̄] = {ȳ ∈ W : ȳ ∼ x̄}. The set W of all equivalence classes

is the quotient manifold of W by the equivalence relation ∼. The mapping π : W → W is

called the natural or canonical projection map. In Figure 2, we have π(x̄) = π(ȳ) if and only

if x̄ ∼ ȳ and therefore, [x̄] = π−1(π(x̄)). We represent an element of the quotient space W by

x = [x̄] and its matrix representation in the total space W by x̄.

In Section 3 we see that the total spaces for the three fixed-rank matrix factorizatons are

in fact, different product spaces of the set of full column rank matrices R
d1×r
∗ , the stet of

matrices of size d1 × r with orthonormal columns St(r, d1) [EAS98], and the set of positive

definite r × r matrices S++(r) [Bha07]. Each of these manifolds is a smooth homogeneous

space and their product structure preserves the smooth differentiability property [AMS08,

Section 3.1.6].

The quotient spaces of the three matrix factorizations are given by the equivalence rela-

tionships shown in (6), (9) and (11). The canonical projection π is, thus, obtained by the

group action of Lie groups GL(r) and O(r), the fiber spaces of the fixed-rank matrix factor-

izations. Hence, by the direct application of [Lee03, Theorem 9.16], the quotient spaces of

the matrix factorizations have the structure of smooth quotient manifolds and the map π is a

smooth submersion for each of the quotient spaces. Table 1 shows the matrix representations

of different fixed-rank matrix factorizations considered earlier in Section 3.

4.2 Tangent vector representation as horizontal lifts

Calculus on a manifold W is developed in the tangent space TxW, a vector space that can

be considered as the linearization of the nonlinear space W at x. Since, the manifold W

is an abstract space, the elements of its tangent space TxW at x ∈ W call for a matrix

representation in the total space W at x̄ that respects the equivalence relationship ∼. In

other words, the matrix representation of TxW should be restricted to the directions in the

9

W = GH
T

W = UBV
T

W = UY
T

Tangent

vectors in

W

(ξ̄G, ξ̄H) ∈

R
d1×r × R

d2×r

(ZU,ZB,ZV) ∈

R
d1×r × R

r×r × R
d2×r :

UTZU + ZT
U
U = 0,

Z
T
B

= ZB,

V
T
ZV + Z

T
V
V = 0

(ZU,ZY) ∈

R
d1×r × R

d2×r :

UTZU + ZT
U
U = 0

Metric

ḡx̄(ξ̄x̄, η̄x̄,)

Tr((GT
G)−1ξ̄T

G
η̄G)

+Tr((HTH)−1ξ̄T
H
η̄H)

Tr(ξ̄T
U
η̄U)

+Tr(B−1ξ̄BB−1η̄B)

+Tr(ξ̄T
V
η̄V)

Tr(ξ̄T
U
η̄U)

+Tr((YTY)−1 ξ̄T
Y
η̄Y)

Vertical

tangent

vectors

(−GΛ,HΛT) :

Λ ∈ R
r×r

(UΩ,BΩ−ΩB,VΩ) :

Ω
T = −Ω

(UΩ,YΩ) :

Ω
T = −Ω

Horizontal

tangent

vectors

(
ζ̄G, ζ̄H

)
∈ R

d1×r × R
d2×r :

ζ̄T
G
GHTH = GTGHT ζ̄H

(ζU, ζB, ζV) ∈ Tx̄W :

(ζT
U
U+B−1ζB − ζBB−1

+ζT
V
V) is symmetric

(ζU, ζY) ∈ Tx̄W :

ζT
U
U+ (YTY)−1ζT

Y
Y

is symmetric

Table 2: Matrix representations of tangent vectors. The tangent space Tx̄W in the total

space is decomposed into orthogonal subspaces, the vertical space Vx̄W and the horizontal

space Hx̄W. The Riemannian metric is chosen by picking the natural metric for each of the

space, Rd1×r
∗ [AMS08, Example 3.6.4], St(r, d1) [AMS08, Example 3.6.2] and S++(r) [Bha07,

Section 6.1]. The Riemannian metric ḡx̄ makes the matrix representation of the abstract

tangent space TxW unique in terms of the horizontal space Hx̄W.

tangent space Tx̄W in the total space W at x̄ that do not induce a displacement along the

equivalence class [x].

On the other hand, the tangent space at x̄ of the total spaceW admits a product structure,

similar to the product structure of the total space. Because the total space is a product space

of Rd1×r
∗ , St(r, d1) and S++(r), its tangent space W at x̄ embodies the product space of the

tangent spaces of Rd1×r
∗ , St(r, d1) and S++(r), the characterizations of which are well-known.

Refer [EAS98, Section 2.2] or [AMS08, Example 3.5.2] for the characterization of the tangent

space of St(r, d1). Similarly. the tangent spaces of Rd1×r
∗ and S++(r) are R

d1×r (Euclidean

space) and Ssym(r) (the set of symmetric r × r matrices) respectively.

The matrix representation of a tangent vector at x ∈ W relies on the decomposition of

Tx̄W into complementary subspaces, vertical and horizontal subspaces. The vertical space

Vx̄W is the tangent space of the equivalence class Tx̄π
−1(x). The horizontal space Hx̄W, the

complementary space of Vx̄W, then provides a valid matrix representation of the abstract

tangent space TxW [AMS08, Section 3.5.8]. The tangent vector ξ̄x̄ ∈ Hx̄W is called the

horizontal lift of ξx at x̄. Refer to Figure 2 for a graphical illustration.

A metric ḡx̄(ξ̄x̄, ζ̄x̄) on the total space defines a valid Riemannian metric gx on the quotient

manifold if

gx(ξx, ζx) := ḡx̄(ξ̄x̄, ζ̄x̄) (12)

where ξx and ζx are the tangent vectors in TxW and ξx̄ and ζx̄ are their horizontal lifts

10

W = GH
T

W = UBV
T

W = UY
T

Matrix represen-

tation of the am-

bient space

(ZG,ZH) ∈

R
d1×r × R

d2×r

(ZU,ZB,ZV) ∈

R
d1×r × R

r×r × R
d2×r

(ZU,ZY) ∈

R
d1×r × R

d2×r

↓ Ψx̄

Projection onto

Tx̄W

(ZG,ZH) (ZU −USym(UTZU),

Sym(ZB),

ZV −VSym(VT
ZV))

(ZU −USym(UTZU),

ZY)

↓ Πx̄

Projection of a

tangent vector

η̄x̄ ∈ Tx̄W onto

Hx̄W

(η̄U +GΛ, η̄H −HΛ
T)

where Λ is the

unique solution to

the Lyapunov equation

ΛT (GTG)(HTH)

+(GTG)(HTH)ΛT =

(GT
G)HT η̄H

−η̄T
G
G(HTH)

(η̄U −UΩ, η̄B − (BΩ−ΩB),

η̄V −VΩ)

where Ω is the unique solution

to the Lyapunov equation

ΩB2 +B2Ω =

B(Skew(UT η̄U)

−2Skew(B−1η̄B)

+Skew(VT η̄V))B

(η̄U −UΩ,

η̄Y −YΩ)

where Ω is the

unique solution to

(YT
Y)Ω̃+ Ω̃(YT

Y)

= 2Skew((YTY)(UT η̄U)(YTY))

−2Skew((η̄T
Y
Y)(YTY))

and

(YT
Y)Ω+Ω(YT

Y)

= Ω̃

Table 3: The matrix representations of the projection operators Ψx̄ and Πx̄. Ψx̄ projects

a matrix in the Euclidean space onto the tangent space Tx̄W. Πx̄ extracts the horizontal

component of a tangent vector ξ̄x̄. Here the operators Sym(·) and Skew(·) extract the sym-

metric and skew-symmetric parts of a square matrix and are defined as Sym(A) = A+AT

2 and

Skew(A) = A
T−A

2 for any square matrix A.

11

in Hx̄W. The product structure of the total space W again allows us to define a valid

Riemannian metric by picking the natural metric for Rd1×r
∗ [AMS08, Example 3.6.4], St(r, d1)

[AMS08, Example 3.6.2] and S++(r) [Bha07, Section 6.1]. Endowed with this Riemannian

metric, W is called a Riemannian quotient manifold of W and the quotient map π : W → W

is a Riemannian submersion [AMS08, Section 3.6.2]. Once Tx̄W is endowed with a horizontal

distribution Hx̄W (as a result of the Riemannian metric), a given tangent vector ξx ∈ TxW

at x on the quotient manifold W is uniquely represented by the tangent vector ξ̄x̄ ∈ Hx̄W in

the total space W that satisfies Dπ(x̄)[ξ̄x̄] = ξx. The matrix characterizations of the Tx̄W ,

Vx̄W and Hx̄W and the Riemannian metric ḡx̄ for the three considered matrix factorizations

are given in Table 2.

Table 3 summarizes the concrete matrix operations involved in computing horizontal vec-

tors. Starting from an arbitrary matrix (with appropriate dimensions), two linear projections

are needed: the first projection Ψx̄ is onto the tangent space of the total space, while the

second projection Πx̄ is onto the horizontal subspace. Note that all matrix operations are

linear in the original matrix dimensions (d1 or d2). This is critical for the computational

efficiency of the matrix algorithms.

4.3 Retractions from the tangent space to the manifold

An iterative optimization algorithm involves computing a (e.g. gradient) search direction and

then “moving in that direction”. The default option on a Riemannian manifold is to move

along geodesics, leading to the definition of the exponential map (see e.g [Lee03, Chapter 20]).

Because the calculation of the exponential map can be computationally demanding, it is

customary in the context of manifold optimization to relax the constraint of moving along

geodesics. The exponential map is then relaxed to a retraction, which is any map Rx̄ : Hx̄W →

W that locally approximates the exponential map on the manifold [AMS08, Definition 4.1.1].

A natural update on the manifold is, thus, based on the update formula

x̄+ = Rx̄(ξ̄x̄) (13)

where ξ̄x̄ ∈ Hx̄W is a search direction and x̄+ ∈ W. See Figure 2 for a graphical view.

Due to the product structure of the total space, a retraction is obtained by combining the

retraction updates on R
d1×r
∗ [AMS08, Example 4.1.5], St(r, d1) [AMS08, Example 4.1.3] and

S++(r) [Bha07, Theorem 6.1.6]. Note that the retraction on the positive definite cone is

the exponential mapping with the natural metric [Bha07, Theorem 6.1.6]. The cartesian

product of the retractions also defines a valid retraction on the quotient manifold W [AMS08,

Proposition 4.1.3]. The retractions for the fixed-rank matrix factorizations are presented in

Table 4. The reader will notice that the matrix computations involved are again linear in the

matrix dimensions d1 and d2.

4.4 Gradient and Hessian in Riemannian submersions

The choice of the metric (12), which is invariant along the equivalence class [x̄], and of the

horizontal space (as the orthogonal complement of Vx̄W in the sense of the Riemannian

12

W = GH
T

W = UBV
T

W = UY
T

Retraction

Rx̄(ξ̄x̄) that

maps a

horizontal

vector ξ̄x̄ onto

W

(G+ ξ̄G,

H+ ξ̄H)

(uf(U+ ξ̄U),

B
1

2 exp(B− 1

2 ξBB
− 1

2)B
1

2 ,

uf(V + ξ̄V))

(uf(U+ ξ̄U),

Y + ξ̄Y)

Table 4: Retraction Rx̄(·) maps a horizontal vector ξ̄x̄ on the manifold W. It provides

a computationally efficient way to move on the manifold while approximating the geodesics.

uf(·) extracts the orthogonal factor of a full column rank matrixD, i.e., uf(D) = D(DT
D)−1/2

and exp(·) is the matrix exponential operator.

metric) turns the quotient manifold W into a Riemannian submersion of (W, ḡ) [AMS08,

Section 3.6.2]. As shown in [AMS08], this special construction allows for a convenient matrix

representation of the gradient [AMS08, Section 3.6.2] and the Hessian [AMS08, Proposi-

tion 5.3.3] on the abstract manifold W.

Any smooth cost function φ̄ : W → R which is invariant along the fibers induces a

corresponding smooth function φ on the quotient manifold W. The Riemannian gradient of

φ is uniquely represented by its horizontal lift in W which has the matrix representation

gradxφ = gradx̄φ̄. (14)

It should be emphasized that gradx̄φ̄ is in the the tangent space Tx̄W. However, due to

invariance of the cost along the equivalence class [x̄], gradx̄φ̄ also belongs to the horizontal

space Hx̄W and hence, the equality in (14) [AMS08, Section 3.6.2]. The matrix expression of

gradx̄φ̄ in the total spaceW at a point x̄ is obtained from its definition: it is the unique element

of Tx̄W that satisfies Dφ̄[ηx̄] = ḡx̄(gradx̄φ̄, ηx̄) for all ηx̄ ∈ Tx̄W [AMS08, Equation 3.31].

Dφ̄[ηx̄] is the standard Euclidean directional derivative of φ̄ in the direction ηx̄ and ḡx̄ is the

Riemannian metric. This definition leads to the matrix representations of the Riemannian

gradient in Table 5.

In addition to the gradient, any optimization algorithm that makes use of second-order

information also requires the directional derivative of the gradient along a search direction.

This involves the choice of an affine connection ∇ on the manifold. The affine connection

provides a definition for the covariant derivative of vector field ηx with respect to the vector

field ξx, denoted by ∇ξxηx. Imposing an additional compatibility condition with the metric

fixes the so-called Riemannian connection which is always unique [AMS08, Theorem 5.3.1

and Section 5.2]. The Riemannian connection ∇ξxηx on the quotient manifold W is uniquely

represented in terms of the Riemannian connection in the total space W, ∇ξ̄x̄ η̄x̄ [AMS08,

Proposition 5.3.3] which is

∇ξxηx = Πx̄(∇ξ̄x̄ η̄x̄) (15)

where ξx and ηx are vector fields in W and ξ̄x̄ and η̄x̄ are their horizontal lifts in W . Here Πx̄

is the projection operator that projects a tangent vector in Tx̄W onto the horizontal space

13

W = GH
T

W = UBV
T

W = UY
T

Riemannian

gradient

gradx̄φ̄

First compute the partial

derivatives

(φ̄G, φ̄H) ∈

R
d1×r × R

d2×r

and then perform the oper-

ation

(φ̄GGTG, φ̄HHTH)

First compute the partial

derivatives

(φ̄U, φ̄B, φ̄V) ∈

R
d1×r × R

r×r × R
d2×r

and then perform the oper-

ation

(φ̄U −UT Sym(UT φ̄U),

BSym(φ̄B)B,

φ̄V −V
T Sym(VT φ̄V))

First compute the partial

derivatives

(φ̄U, φ̄Y) ∈

R
d1×r × R

d2×r

and then perform the oper-

ation

(φ̄U −UT Sym(UT φ̄U),

φ̄YYTY)

Riemannian

connection

∇ξ̄x̄
η̄x̄

Ψx̄(Dη̄x̄[ξ̄x̄] + (AG,AH))

where

AG =

−η̄G(GTG)
−1

Sym(GT ξ̄G)

−ξ̄G(GT
G)

−1
Sym(GT η̄G)

+G(GTG)
−1

Sym(η̄T
G
ξ̄G)),

AH =

−η̄H(HT
H)

−1
Sym(HT ξ̄H)

−ξ̄H(HTH)
−1

Sym(HT η̄H)

+H(HT
H)

−1
Sym(η̄T

H
ξ̄H))

Ψx̄(Dη̄x̄[ξ̄x̄]

+(AU,AB,AV))

where

AU = −ξ̄USym(UT η̄U),

AB = −Sym(ξBB−1ηB),

AV = −ξ̄VSym(VT η̄V)

Ψx̄(Dη̄x̄[ξ̄x̄]

+(AU,AY))

where

AU = −ξ̄USym(UT η̄U),

AY =

−η̄Y(YT
Y)

−1
Sym(YT ξ̄Y)

−ξ̄Y(YTY)
−1

Sym(YT η̄Y)

+ Y(YTY)
−1

Sym(η̄T
Y
ξ̄Y)

Table 5: The Riemannian gradient of the function φ̄ and the Riemannian connection at x̄ in

total space W. The matrix representations of their counterparts on the Riemannian quotient

manifold W are given by (14) and (15). Here Dη̄x̄[ξ̄x̄] is the standard Euclidean directional

derivative of the vector field η̄x̄ in the direction ξ̄x̄, i.e., Dη̄x̄[ξ̄x̄] = limt→0+
η̄x̄+tξ̄x̄

−η̄x̄
t . The

projection operator Ψx̄ maps an arbitrary matrix in the Euclidean space on the tangent space

Tx̄W and is defined in Table 3.

14

Hx̄W as defined in Table 3. In this case as well, the Riemannian connection ∇ξ̄x̄ η̄x̄ on the

total space W has well-known expression owing to the product structure.

The Riemannian connection on the Stiefel manifold St(r, d1) is derived in [Jou09, Exam-

ple 4.3.6]. The Riemannian conenction on R
d1×r
∗ and on the set of positive definite matrices

S++(r) with their natural metrics are derived in [Mey11, Appendix B]. Finally, the Rie-

mannian connection on the total space is given by the cartesian product of the individual

connections. In Table 5 we give the final matrix expressions. The directional derivative of

the Riemannian gradient in the direction ξx is called the Riemannian Hessian Hessxφ(x)[ξx]

which is now directly given in terms of the Riemannian connection ∇. The horizontal lift of

the Riemannian Hessian in W has, thus, the following matrix expression

Hessxφ(x)[ξx] = Πx̄(∇ξ̄x̄gradxφ). (16)

for any ξx ∈ TxW and its horizontal lift ξ̄x̄ ∈ Hx̄W.

5 Two optimization algorithms

For the sake of illustration, we consider two basic optimization schemes in this paper: the

(steepest) gradient descent algorithm, as a representative of first-order algorithms, and the

Riemannian trust-region scheme, as a representative of second-order algorithms. Both schemes

can be easily implemented using the notions developed in the previous section. In particu-

lar, Table 3 to 5 give all the necessary ingredients for optimizing a smooth cost function

φ : W → R on the Riemannian quotient manifold of fixed-rank matrix factorizations.

5.1 Gradient descent algorithm

For the gradient descent scheme we implement [AMS08, Algorithm 1] where at each itera-

tion we move along the negative Riemannian gradient (see Table 5) direction by taking a

step (13), and use the Armijo backtracking method [NW06, Procedure 3.1] to compute an

Armijo-optimal step-size satisfying the sufficient decrease condition [NW06, Chapter 3]. The

Riemannian gradient is the gradient of the cost function in the sense of the Riemannian metric

proposed in Table 2.

For computing an initial step-size, we use the information of the previous iteration by

using the adaptive step-size update procedure proposed below. The adaptive step-size update

procedure is different from the initial step-size procedure described in [NW06, Page 58]. This

procedure is independent of the cost function evaluation and can be considered as a zero-order

prediction heuristic.

Let us assume that after the tth iteration we know the initial step-size guess that was used

ŝt, the Armijo-optimal step-size st and the number of backtracking line-searches jt required

15

to obtain the Armijo-optimal step-size st. The procedure is then,

Given : ŝt (initial step− size guess for iteration t)

jt (number of backtracking line− searches required at iteration t) and

st (Armijo− optimal step− size) at iteration t.

Then : the initial step − size guess at iteration t+ 1

is given by the update

ŝt+1 =

2ŝt, jt = 0

2st, jt = 1

2st, jt ≥ 2.

(17)

Here s0(= ŝ0) is the initial step-size guess provided by the user and j0 = 0. This procedure

keeps the number of line-searches close to 1 on average, that is, Et(jt) ≈ 1, assuming that

the optimal step-size does not vary too much with iterations. An alternative is to choose any

convex combination of the following updates:

ŝt+1 =

update 1 update 2

2ŝt 2ŝt, jt = 0

2st 1st, jt = 1

1st 2st, jt ≥ 2.

5.2 Riemannian trust-region algorithm

The second optimization scheme we consider, is the Riemannian trust-region scheme. Anal-

ogous to trust-region algorithms in the Euclidean space [NW06, Chapter 4], trust-region

algorithms on a Riemannian quotient manifold with guaranteed quadratic rate convergence

have been proposed in [AMS08, Chapter 7]. Similar to the Euclidean case, at each iteration we

solve the trust-region sub-problem on the quotient manifold W. The trust-region sub-problem

is formulated as the minimization of the locally-quadratic model of the cost function, say

φ : W → R at x ∈ W

min
ξx∈TxW

φ(x) + gx(ξx, gradxφ(x)) +
1
2gx(ξx,Hessxφ(x)[ξx])

subject to gx(ξx, ξx) ≤ ∆2,
(18)

where ∆ is the trust-region radius, gx is the Riemannian metric; and gradxφ and Hessxφ are

the Riemannian gradient and Riemannian Hessian on the quotient manifoldW (see Section 4.4

and Table 5). The Riemannian gradient is the gradient of the cost function in the sense of the

Riemannian metric gx and the Riemannian Hessian is given by the Riemannian connection.

Computationally, the problem is horizontally lifted to the horizontal space Hx̄W [AMS08,

Section 7.2.2] where we have the matrix representations of the Riemannian gradient and

Riemannian Hessian (Table 5). Solving the above trust-region sub-problem leads to a direction

ξ̄ that minimizes the quadratic model. Depending on whether the decrease of the cost function

is sufficient or not, the potential iterate is accepted or rejected.

16

In particular, we implement the Riemannian trust-region algorithm [AMS08, Algorithm 10]

using the generic solver GenRTR [BAG07]. The trust-region sub-problem is solved using the

truncated conjugate gradient method [AMS08, Algorithm 11] which is does not require invert-

ing the Hessian. The stopping criterion for the sub-problem is based on [AMS08, (7.10)],

i.e.,

‖rt+1‖ ≤ ‖r0‖min(‖r0‖
θ, κ)

where rt is the residual of the sub-problem at tth iteration of the truncated conjugate gradient

method. The parameters θ and κ are set to 1 and 0.1 as suggested in [AMS08, Section 7.5].

The parameter θ = 1 ensures that we seek a quadratic rate of convergence near the minimum.

5.3 Numerical complexity

The numerical complexity of manifold-based optimization methods depends on the computa-

tional cost of the components listed in Table 3 to 5 and the Riemannian metric ḡx̄ presented

in Table 2. The computational cost of these ingredients are shown below.

1. Objective function φ̄(x̄) : Problem dependent.

2. Metric ḡx:

The dominant computational cost comes from computing terms like G
T
G, ξ̄T

G
η̄G and

ξ̄T
U
η̄U, each of these operations requires a numerical cost of O(d1r

2). Other matrix

operations involve handling matrices of size r × r with total computational cost of

O(r3).

3. Projecting on the tangent space Tx̄W with Ψx̄ :

It involves multiplications between matrices of sizes d1×r and r×r which costs O(d1r
2).

Other operations involve handling matrices of size r × r.

4. Projecting on the horizontal space Hx̄W with Πx̄:

• Forming the Lyapunov equations: Dominant computational cost of O(d1r
2+d2r

2)

with matrix multiplications that cost O(r3).

• Solving the Lyapunov equations: O(r3) [BS72].

5. Retraction Rx̄:

• Computing the retraction on the St(r, d1) (the set of matrices of size d1 × r with

orthonormal columns) costs O(d1r
2)

• Computing the retraction on R
d1×r
∗ costs O(d1r)

• Computing the retraction on the set of positive-definite matrices S++(r) costs

O(r3).

6. Riemannian gradient gradx̄φ̄:

First, it involves computing the partial derivatives of the cost function φ̄ which depend

on the cost function φ̄. Second, the modifications to these partial derivatives involve

matrix multiplications between matrices of sizes d1 × r and r × r which costs O(d1r
2).

17

7. Riemannian Hessian ∇ξ̄x̄gradxφ in the direction ξ̄x̄ ∈ Hx̄W on the total space:

The Riemannian Hessian on each of the three manifolds, St(d1, r), R
d1×r
∗ and S++(r),

consists of two terms. The first term is the Euclidean directional derivative of the

Riemannian gradient in the direction ξ̄x̄, i.e., Dgradxφ[ξ̄x̄]. The second term is the

correction term corresponds to the manifold structure and the metric. The summation

of these terms is projected on the tangent space Tx̄W using Ψx̄.

• Dgradxφ[ξ̄x̄]: The computational cost depends on the cost function φ and its partial

derivatives.

• Correction term: It involves matrix multiplications with total cost of O(d1r
2+ r3).

It is clear that all the geometry related operations are of linear complexity in d1 and d2;

and cubic (or quadratic) in r. For the case of interest, r ≪ min(d1, d2), these operations

are therefore computationally very efficient. The ingredients that depend on the problem at

hand are the evaluation of the cost function φ̄, computation of its partial derivatives and

their directional derivatives along a search direction. In the next section, the computations of

the partial derivatives and their directional derivatives are presented for the low-rank matrix

completion problem.

6 Numerical comparisons

In this section, we show numerical comparisons with the state-of-the-art algorithms. The

application of choice is the low-rank matrix completion problem for which a number of algo-

rithms with numerical codes are readily available. The competing algorithms are classified

according to the way they view the set of fixed-rank matrices.

We show that our generic geometries connect closely with a number of competing methods.

In addition to this, we bring out few conceptual differences between the competing algorithms

and our geometric algorithms. Finally, the numerical comparisons suggest that our geometric

algorithms compete favorably with the state-of-the-art.

6.1 Matrix completion as a benchmark for numerical comparisons

To illustrate the notions presented in the paper, we consider the problem of low-rank matrix

completion (described in Section 2.1) as the benchmark application. The objective function

is a smooth least square function and the search space is the space of fixed-rank matrices as

shown in (2). It is an optimization problem that has attracted a lot of attention in recent years.

Consequently, a large body of algorithms have been proposed. Hence, this provides a good

benchmark to not only compare different algorithms including our Riemannian geometric

algorithms but also bring out the salient features of different algorithms and geometries.

Rewriting the optimization formulation of the low-rank matrix completion, we have

min
W∈R

d1×d2
r

1
|Ω|‖PΩ(W)− PΩ(W

⋆)‖2F (19)

18

whereRd1×d2
r is the set of rank-r matrices of size d1×d2 andW

∗ is a matrix of size d1×d2 whose

entries are given for indices (i, j) ∈ Ω. |Ω| denotes the cardinality of the set Ω (|Ω| ≪ d1d2).

PΩ is the orthogonal sampling operator, PΩ(W)ij = Wij if (i, j) ∈ Ω and PΩ(W)ij = 0

otherwise. We seek to learn a rank-r matrix that best approximates the entries of W∗ for

the indices in Ω.

As mentioned before, Table 2 to 5 provide all the requisite information for implementing

the (steepest) gradient descent and the Riemannian trust-region algorithms of Section 5. The

only components still missing are the matrix formulae for the partial derivatives and their

directional derivatives. These formulae are shown in Table 6. As regards the computational

cost, the geometry related operations are linear in d2 and d2 (Section 5.3); and the evalu-

ation of the cost function, the computations of the partial derivatives and their directional

derivatives depend primarily on the computational cost of the auxiliary (sparse) variables S

and S∗ and the matrix multiplications of kind SH or S∗H shown in Table 6. The variables

S and S∗ are respectively interpreted as the gradient of the cost function in the Euclidean

space R
d1×d2 and its directional derivative in the direction ξ̄x̄. Finally, we have the following

additional computation cost.

• Cost of computing φ̄(x̄): O(|Ω|r).

• Computational cost of forming the sparse matrix S:

Computing the non-zero entries of S costs O(|Ω|r) plus the cost of updating of a sparse

matrix for specific indices in Ω. Both of these operations can be performed efficiently

by MATLAB routines [CCS10, WYZ10, BA11].

• Computational cost of forming the sparse matrix S∗: O(|Ω|r).

• Computing the matrix multiplication SH or S∗H:

Each costs O(|Ω|r). One gradient evaluation (gradx̄φ̄) precisely needs two such opera-

tions and a Hessian evaluation (∇ξ̄x̄gradxφ) needs four such operations.

• Cost of computing all other matrix products: O(d1r
2 + d2r

2 + r3).

All simulations are performed in MATLAB on a 2.53 GHz Intel Core i5 machine with 4

GB of RAM. We use the MATLAB codes of all the competing algorithms supplied by their

authors for our numerical studies. For each example, a d1 × d2 random matrix of rank r is

generated as in [CCS10]. Two matrices A ∈ R
d1×r and B ∈ R

d2×r are generated according

to a Gaussian distribution with zero mean and unit standard deviation. The matrix product

AB
T then gives a random matrix of rank r. A fraction of the entries are randomly removed

with uniform probability. Note that the dimension of the space of d1×d2 matrices of rank r is

(d1+d2−r)r and the number of known entries is a multiple of this dimension. This multiple or

ratio is called the over-sampling ratio or simply, over-sampling (OS). The over-sampling ratio

(OS) determines the number of entries that are known. A OS = 6 means that 6(d1 + d2 − r)r

of randomly and uniformly selected entries are known a priori out of a total of d1d2 entries.

We use an initialization that is based on the rank-r dominant singular value decomposition of

19

W = GH
T

W = UBV
T

W = UY
T

Cost

function

φ̄(x̄)

1

|Ω|
‖PΩ(GH

T)

−PΩ(W
⋆)‖2F

1

|Ω|
‖PΩ(UBV

T)

−PΩ(W⋆)‖2F

1

|Ω|
‖PΩ(UY

T)

−PΩ(W⋆)‖2F

Partial

derivatives

of φ̄

(SH,STG)

∈ R
d1×r × R

d2×r

where

S = 2

|Ω|
(PΩ(GH

T)

−PΩ(W
⋆))

(SVB,UTSV,STUB)

∈ R
d1×r × R

r×r × R
d2×r

where

S = 2

|Ω|
(PΩ(UBV

T)

−PΩ(W⋆))

(SY,STU)

∈ R
d1×r × R

d2×r

where

S = 2

|Ω|
(PΩ(UY

T)

−PΩ(W⋆))

Riemannian

gradient

gradx̄φ̄

from

Table 5

(SHGTG,STGHTH) (SVB−UT Sym(UTSVB),

BSym(UT
SV)B,

S
T
UB−V

T Sym(VT
S
T
UB))

(SY −UT Sym(UTSY),

S
T
UY

T
Y)

Directional derivative of the Riemannian gradient and its projection, i.e., Ψx̄(Dgradxφ[ξ̄x̄])

W = GH
T Ψx̄(S∗HG

T
G+ Sξ̄HGTG+ 2SHSym(GT ξ̄G),

S
T
∗ GH

T
H+ S

T ξ̄GH
T
H+ 2ST

GSym(HT ξ̄H))

where S∗ = 2

|Ω|
PΩ(Gξ̄T

H
+ ξ̄GH

T)

W = UBV
T Ψx̄(S∗VB+ Sξ̄VB+ SVξ̄B − ξ̄USym(UTSVB),

2Sym(BSym(UT
SV)ξ̄B) +BSym(ξ̄T

U
SV +U

T
S∗V +U

T
Sξ̄V)B,

S
T
∗ UB+ Sξ̄UB+ S

T
Uξ̄B − ξ̄VSym(VT

S
T
UB))

where S∗ = 2

|Ω|
PΩ(UBξ̄T

V
+Uξ̄BV

T + ξ̄UBV
T)

W = UY
T Ψx̄(S∗Y + Sξ̄Y − ξ̄USym(UTSY),

S
T
∗ UY

T
Y + S

T ξ̄UY
T
Y + 2ST

USym(YT ξ̄Y))

where S∗ = 2

|Ω|
PΩ(Uξ̄T

Y
+ ξ̄UYT)

Table 6: Computation of the Riemannian gradient and its directional derivative in the di-

rection ξ̄x̄ ∈ Hx̄W for the low-rank matrix completion problem (19). Ψx̄ is the projection

operator defined in Table 3 and Sym(·) extracts the symmetric part, Sym(A) = AT+A

2 .

The development of these formulae follows systematically using the chain rule of comput-

ing the derivatives. The auxiliary variables S and S∗ are interpreted as the gradient of the

cost function in the Euclidean space R
d1×d2 and its directional derivative in the direction ξ̄x̄

respectively.

20

PΩ(W
∗) [BA11]. It should be stated that this procedure only provides a good initialization

for the algorithms and we do not comment on the quality of this initialization procedure.

Numerical codes for the proposed algorithms for the low-rank matrix completion problem

are available from the first author’s homepage1. Generic implementations of the three fixed-

rank geometries can be found in the Manopt optimization toolbox [BM13] which provides

additional algorithmic implementations.

All the considered gradient descent schemes, except RTRMC-1 [BA11] and SVP [JMD10],

use the adaptive step-size guess procedure (17) and the maximum number of iterations set

at 200. For the trust-region scheme, the maximum number of outer iterations is set at 100

(we expect a better rate of convergence in terms of the outer iterations) and the number of

inner iterations (for solving the trust-regions sub-problem) is bounded by 100. Finally, the

algorithms are stopped if the objective function value is below 10−20.

In both the schemes we also set the initial step-size s0 (for gradient descent) and the

initial trust-region radius ∆0 (for trust-region) including the upper bound on the radius, ∆̄.

We do this by linearizing the search space. In particular, for the factorization W = UBV
T

(similarly for the other two factorizations) we solve the following optimization problem

s0 = argmin
s

‖PΩ((U − sξ̄U)(B − sξ̄B)(V − sξ̄V)T)− PΩ(W
⋆)‖2F ,

where ξ̄x̄ is the Riemannian gradient. The above objective function is a degree 6 polynomial

in s and thus, the global minimum s0 can be obtained numerically (and computationally

efficiently) by finding the roots of a degree 5 polynomial. ∆0 is then set to s0
43

√

ḡx̄(ξ̄x̄, ξ̄x̄).

The numerator of ∆0 is the linearized trust-region radius and the reduction by 43 considers

the fact that this linearization might lead to an over-ambitious radius. Overall, this promotes

a few extra gradient descent steps during the initial phase of the trust-region algorithm. The

radii are upper-bounded as ∆̄ = 210δ0. The integers 4 and 2 are used in the context of trust-

region radius where an update is usually by a factor of 2 and a reduction is by a factor of 4

[AMS08, Algorithm 10]. The integers 3 and 10 have been chosen empirically.

We consider the problem instance of completing a 32000× 32000 matrix W
⋆ of rank 5 as

the running example in many comparisons. The over-sampling ratio OS is 8 implying that

0.25% (2.56 × 106 out of 1.04 × 109) of entries are randomly and uniformly revealed. In all

the comparisons we show 5 random instances to give a a more general comparative view.

The over-sampling ratio of 8 does not necessarily make the problem instance very challenging

but it provides a standard benchmark to compare numerical scalability and performance of

different algorithms. Similarly, a smaller tolerance is needed to observe the asymptotic rate

of convergence of the algorithms. A rigorous comparison between different algorithms across

different over sampling ratios and scenarios is beyond the scope of the present paper.

6.2 Full-rank factorization W = GHT , MMMF, and LMaFit

The gradient descent algorithm for the full-rank factorization W = GH
T is closely related

to the gradient descent version of the Maximum Margin Matrix Factorization (MMMF) algo-

1http://www.montefiore.ulg.ac.be/~mishra/pubs.html.

http://www.montefiore.ulg.ac.be/~mishra/pubs.html

21

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

Number of iterations

C
os

t

GHT Gradient descent
MMMF Gradient descent

(a) ‖H0‖F ≈ ‖G0‖F .

0 50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

Number of iterations

C
os

t

GHT Gradient descent
MMMF Gradient descent

(b) ‖H0‖F ≈ 2‖G0‖F .

Figure 3: 5 random instances of low-rank matrix completion problems under different weights

of factors at initialization. The proposed metric (21) resolves the issue of choosing an appro-

priate step-size when there is a discrepancy between ‖G‖F and ‖H‖F , a situation that leads

to a slow convergence of the MMMF algorithm.

rithm [RS05]. The gradient descent version of MMMF is a descent step in the product space

R
d1×r
∗ × R

d2×r
∗ equipped with the Euclidean metric,

ḡx̄(ξ̄x̄, η̄x̄) = Tr(ξ̄T
G
η̄G) + Tr(ξ̄T

H
η̄H) (20)

where ξ̄x̄, η̄x̄ ∈ Tx̄W. Note the difference with respect to the metric proposed in Table 2 which

is

ḡx̄(ξ̄x̄, η̄x̄) = Tr((GTG)−1ξ̄T
G
η̄G) + Tr((HTH)−1ξ̄T

H
η̄H). (21)

As a result, the invariance (with respect to r × r non-singular matrices) is not taken into

account in MMMF. In contrast, the proposed retraction in Table 3 is invariant along the

set of equivalence classes (5). This resolves the issue of choosing an appropriate step size

when there is a discrepancy between ‖G‖F and ‖H‖F . Indeed, this situation leads to a

slower convergence of the MMMF algorithm, whereas the proposed algorithm is not affected

(Figure 3). To illustrate this effect, we consider a rank 5 matrix of size 4000 × 4000 with

2% of entries (OS = 8) are revealed uniformly at random. The Riemannian gradient descent

algorithm based on the Riemannian metric (21) is compared against MMMF. In the first case,

the factors at initialization has comparable weights, ‖H0‖F ≈ ‖G0‖F . In the second case,

we make factors at initialization slightly unbalanced, ‖H0‖F ≈ 2‖G0‖F . This discrepancy of

the weights of the factors is not handled properly with the Euclidean metric (20) and hence,

the rate of convergence of MMMF is affected as the plots show in Figure 3. The same also

demonstrates that MMMF performs well when the factors are balanced. This understanding

comes with notion of non-uniqueness of matrix factorization. In the previous example, though

we force a bad balancing at initialization to show the relevance of scale-invariance, such a

case might occur naturally for some particular cost functions and random initializations (e.g.,

when d2 ≪ d2). Hence, a discussion of choosing an appropriate metric has its merits.

22

0 50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

Number of iterations

C
os

t

GHT Gradient descent
MMMF Gradient descent
LMaFit

GHT Trust−region

0 10 20 30 40 50
10

−20

10
−15

10
−10

10
−5

10
0

Time (in seconds)

C
os

t

GHT Gradient descent
MMMF Gradient descent
LMaFit

GHT Trust−region

Figure 4: 5 random instances of rank 5 completion of 32000 × 32000 matrix with OS = 8.

LMaFit has a smaller computational complexity per iteration but the convergence seems to

suffer for large-scale matrices. MMMF and the gradient descent scheme perform similarly.

After a slow start, the trust-region scheme shows a better rate of convergence.

The LMaFit algorithm of [WYZ10] for the low-rank matrix completion problem also relies

on the factorization W = GH
T to alternatively learn the matrices W, G and H so that the

error ‖W−GH
T ‖2F is minimized while ensuring that the entries of W agree with the known

entries, i.e., PΩ(W) = PΩ(W
⋆). The algorithm is a tuned version the block-coordinate

descent algorithm that has a smaller computational cost per iteration and better convergence

than the standard non-linear Gauss-Seidel scheme.

We compare our Riemannian algorithms for the factorization W = GH
T with LMaFit

and MMMF in Figure 4. Both MMMF and our gradient descent algorithm perform similarly.

Asymptotically, the trust-region has a better rate of convergence both in terms of iterations

and computational complexity. LMaFit reached 200 iterations. During the initial few itera-

tions, the trust-region algorithm adapts itself to the problem structure and takes non-effective

steps where as the gradient descent algorithms are effective during the initial phase. Once in

the region of convergence, the trust-region shows a better behavior.

6.3 Polar factorization W = UBVT and SVP

Here, we first illustrate the empirical evidence that constraining B to be diagonal (as is the

case with singular value decomposition) is detrimental to optimization. We consider the

simplest implementation of a gradient descent algorithm for matrix completion problem (see

below). The plots shown in Figure 5 compare the behavior of the same algorithm in the search

space St(r, d1)×S++(r)×St(r, d2) (Section 3.2) and St(r, d1)×Diag++(r)×St(r, d2) (singular

value decomposition). Diag++(r) is the set of diagonal matrices of size r × r with positive

entries. The metric and retraction updates are same for both the algorithms as shown in Table

3. The difference lies in constraining B to be diagonal which means that the Riemannian

gradient for the later case is also diagonal and belongs to the space of r×r diagonal matrices,

Diag(r) (the tangent space of the manifold Diag++(r)). The matrix formulae for the factor

23

0 50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

Number of iterations

C
os

t

Symmetric positive definite
Diagonal

Figure 5: Convergence of a gradient descent algorithm is affected by making B diagonal for

the factorization W = UBV
T . The retraction updates for both the algorithms are same.

The only difference is in the computation of the Riemannian gradient on the search space of

Diag++ versus S++(r). The red curves reached 200 iterations.

B of the Riemannian gradient are therefore,

BSym(UT
SV)B when B ∈ S++(r), and

Bdiag(UT
SV)B when B ∈ Diag++(r)

where the notations are same as in Table 6 and diag(·) extracts the diagonal of a matrix,

i.e., diag(A) is a diagonal matrix of size r × r with entries equal to the diagonal of A. The

empirical observation that convergence suffers from imposing diagonalization on B is a generic

observation and has been noticed across various problem instances. The problem here involves

completing a 4000 × 4000 of rank 5 from 2% of observed entries.

The OptSpace algorithm [KMO10] also relies on the factorization W = UBV
T , but with

B ∈ R
r×r. At each iteration, the algorithm minimizes the cost function, say φ̄, by solving

min
U,V

φ̄(U,B,V)

over the bi -Grassmann manifold, Gr(r, d1)×Gr(r, d2) (Gr(r, d1) denotes the set of r-dimensional

subspaces in R
d1) obtained by fixing B and then solving the inner optimization problem

min
B

φ̄(U,B,V) (22)

for fixed U and V. The algorithm thus alternates between a gradient descent step on the

subspaces U and V for fixed B, and a least-square estimation of B (matrix completion

problem) for fixed U and V. The proposed framework is different from OptSpace in the

choice B positive definite versus B ∈ R
r×r. As a consequence, each step of the algorithm

retains the geometry of polar factorization. Our algorithm also differs from OptSpace in

the simultaneous and progressive nature of the updates. A potential limitation of OptSpace

comes from the fact that the inner optimization problem (22) may not be always solvable

efficiently for other applications.

24

0 50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

Number of iterations

C
os

t

UBVT Gradient descent
SVP Gradient descent

UBVT Trust−region

0 50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

Time (in seconds)

C
os

t

UBVT Gradient descent
SVP Gradient descent

UBVT Trust−region

Figure 6: Illustration of the Riemannian algorithms on low-rank matrix completion problem

for the factorization W = UBV
T on 5 random instances. Even though the number of

iterations of SVP and our gradient descent are similar for some instances, the timings are very

different. The main computational burden for SVP comes from computing the r dominant

singular value decomposition which is absent in the quotient geometry. Except for few sparse-

matrix computations, most of our computations involve operations on dense matrices of sizes

d1 × r and r × r (Section 5.3).

The singular value projection (SVP) algorithm of [JMD10] is based on the singular value

decomposition (SVD) W = UBV
T with B ∈ Diag++(r). It can also be interpreted in the

considered framework as a gradient descent algorithm in the Euclidean space R
d1×d2 (and

hence, not the Riemannian gradient), along with an efficient SVD-projection based retraction

exploiting the sparse structure of the gradient ξEuclidean (the gradient in the Euclidean space

R
d1×d2 , same as S in Table 6) for the matrix completion problem. A general update for SVP

can be written as

U+B+V
T
+ = SVDr(UBV

T − ξEuclidean),

where SVDr(·) extracts the dominant r singular values and singular vectors. An intrinsic

limitation of the approach is that the computational cost of the algorithm is conditioned on

the particular structure of the gradient. For instance, efficient routines exist for modifying

the SVD with sparse [Lar98] or low-rank updates [Bra06].

Both SVP and our gradient descent implementation use the Armijo backtracking method

[NW06, Procedure 3.1]. The difference is that for computing an initial step-size guess at each

iteration SVP uses d1d2
|Ω|(1+δ) with δ = 1/3 as proposed in [JMD10] while our gradient descent

implementation uses the adaptive step-size procedure (17). Figure 6 shows the competitive-

ness of the proposed framework of factorization model W = UBV
T with the SVP algorithm.

Again, the trust-region asymptotically shows a better performance. The test example is an

incomplete rank-5 matrix of size 32000 × 32000 with OS = 8. We could not compare the

performance of the OptSpace algorithm as some MATLAB operations (in the code supplied

by the authors) have not been optimized for large-scale matrices. We have, however, observed

the good performance of the OptSpace algorithm on smaller size instances.

25

6.4 Subspace-projection factorization W = UYT and RTRMC

The choice of metric for the subspace-projection factorization shown in Table 2, i.e.,

ḡx̄(ξ̄x̄, η̄x̄) = Tr(ξ̄T
U
η̄U) + Tr((YTY)−1ξ̄T

Y
η̄Y) (23)

is motivated by the fact that the total space St(r, d1) × R
d2×r
∗ equipped with the proposed

metric is a complete Riemannian space and invariant to change of coordinates of the column

spaceY. An alternative would be to consider the standard Euclidean metric for ξ̄x̄, η̄x̄ ∈ Tx̄W ,

ḡx̄(ξ̄x̄, η̄x̄) = Tr(ξ̄T
U
η̄U) + Tr(ξ̄T

Y
η̄Y) (24)

which is also invariant by the group action O(r) (the set of r × r matrices with orthonormal

columns and rows) and thus, a valid Riemannian metric. This metric is for instance adopted in

[SE10], and recently in [AAM12] where the authors give a closed-form description of a purely

Riemannian Newton method. Although this alternative choice is appealing for its numerical

simplicity, Figure 7 clearly illustrates the benefits of optimizing with a metric that considers

the scaling invariance property. The algorithm with the Euclidean metric (24) flattens out due

to a very slow rate of convergence. Under identical initializations and choice of step-size rule,

our proposed metric (23) prevents the numerical ill-conditioning of the partial derivatives of

the cost function (Table 6) that arises in the presence of unbalanced factors U and Y, i.e.,

‖U‖F 6≈ ‖Y‖F .

20 40 60 80 100 120 140 160 180 200
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of iterations

C
os

t

Scale−invariant
Euclidean

Figure 7: The choice of an scale-invariant metric (23) for subspace-projection factorization

algorithm dramatically affects the performance of the algorithm. The algorithm with the

Euclidean metric (24) flattens out due to a very slow rate of convergence because of numerical

ill-conditioning due to the presence of unbalanced factors, ‖U‖F 6≈ ‖Y‖F . The example shown

involves completing a rank-5 completion of a 4000 × 4000 matrix with 98% (OS = 8) entries

missing but the observation is generic.

The subspace-projection factorization is also exploited in the recent papers [BA11, DKM10,

DMK10] for the low-rank matrix completion problem. In the RTRMC algorithm of [BA11] for

the low-rank matrix completion problem the authors exploit the fact that in the variable Y,

min
Y

φ̄(U,Y) is a least square problem that has a closed-form solution. They are, thus, left

with an optimization problem in the other variable U on the Grassmann manifold Gr(r, d1).

26

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

Time (in seconds)

C
os

t

UYT Gradient descent
RTRMC−1

0 10 20 30 40 50
10

−20

10
−15

10
−10

10
−5

10
0

Time (in seconds)

C
os

t

UYT Trust−region
RTRMC−2

Figure 8: 5 random instances of rank-5 completion of 32000×32000 matrix with OS = 8. The

framework proposed in this paper is competitive with RTRMC when d1 ≈ d2. For the trust-

region algorithms, during the initial few iterations RTRMC-2 shows a better performance

owing to the efficient least-square estimation of Y. Asymptotically, both the algorithms

perform similarly. For the gradient descent algorithms, however, our implementation shows

a better timing performance.

The resulting geometry of RTRMC is efficient in situations where d1 ≪ d2 where the least

square is solved efficiently in the dimension d2r and the optimization problem is on a smaller

search space of dimension d1r − r2. The advantage is reduced in square problems and the

numerical experiments in Figure 8 suggest that our generic algorithm compares favorably to

the Grassmanian algorithm in [BA11] in that case. Similar to our trust-region algorithm,

RTRMC-2 is a trust-region implementation with the parameters θ = 1 and κ = 0.1 (Section

5.2). The parameters ∆0 and ∆̄ are chosen as suggested in [BA12]. Both RTRMC and our

trust-region algorithm use the solver GenRTR [BAG07] to solve the trust-region sub-problem.

RTRMC-1 is RTRMC-2 with the Hessian replaced by identity that yields the steepest descent

algorithm. The number of iterations needed by both the algorithms are similar and hence,

not shown in Figure 8.

6.5 Quotient and embedded viewpoints

In Section 3 we have viewed the set of fixed-rank matrices as the product space of well-studied

manifolds St(r, d1) (the set of matrices of size d1×r with orthonormal columns), Rd1×r
∗ (the set

of matrices of size d1×r with full column rank) and S++(r) (the set of positive definite matrices

of size r × r) and consequently, the search space admitted a Riemannian quotient manifold

structure. A different viewpoint is that of the embedded submanifold approach. The search

space R
d1×d2
r (the set of rank-r matrices of size d1 × d2) admits a Riemannian submanifold

of the Euclidean space R
d1×d2 [Van13, Proposition 2.1]. Recent papers [Van13, SWC10]

investigate the search space in detail and develop the notions of optimizing a smooth cost

function. While conceptually the iterates move on the embedded submanifold, numerically

the implementation is done using factorization models, the full-rank factorization is used in

[SWC10] and a compact singular value decomposition is used in [Van13].

27

Embedded submanifold R
d1×d2
r

Matrix representation W = UΣVT

where U ∈ St(r, d1), Σ ∈ Diag++(r), and V ∈ St(r, d2)

Tangent space

TWR
d1×d2
r

UNVT +UpV
T +UVT

p : N ∈ R
r×r,

Up ∈ R
d1×r,UT

p U = 0,

Vp ∈ R
d2×r ,VT

p V = 0

Metric gW(Z1,Z2) Tr(ZT
1
Z2)

Projection of a matrix Z ∈

R
d1×d2 onto the tangent space

TWR
d1×d2
r

ΠW(Z) = {PUZPV +P⊥
U
ZPV +PUZP⊥

V
:

PU := UU
T and P

⊥
U

:= I −PU}

Riemannian gradient gradWf = ΠW(GradW f̄)

where GradW f̄ is the gradient of f̄ in R
d1×d2

Riemannian connection

∇ξη where

ξ, η ∈ TWR
d1×d2
r [AMS08,

Proposition 5.3.2]

ΠW(Dη̄[ξ̄])

where, Dη̄[ξ̄] is the standard Euclidean directional derivative

of η̄ in the direction ξ̄

Retraction RW(ξ) = SVD(W + ξ) where SVD involves the computation

of a thin singular value decomposition with rank 2r

Table 7: Optimization-related ingredients for using the embedded geometry of rank-r matri-

ces at W ∈ R
d1×d2
r [Van13]. The rank-r matrix W is stored in the factorized form (U,Σ,V)

resulting form a compact singular value decomposition. As a consequence, it leads to com-

putationally efficient calculations of all the above listed ingredients. The computation of the

Riemannian gradient is shown for a smooth cost function f̄ : Rd1×d2 → R and its restriction

f on the manifold R
d1×d2
r .

28

0 10 20 30 40 50 60
10

−20

10
−15

10
−10

10
−5

10
0

Time (in seconds)

C
os

t

GHT GD

UBVT GD

UYT GD
LRGeom GD

0 10 20 30 40 50
10

−20

10
−15

10
−10

10
−5

10
0

Time (in seconds)

C
os

t

GHT TR

UBVT TR

UYT TR
LRGeom RTR

Figure 9: Low-rank matrix completion of size 32000 × 32000 of rank 5 with OS = 8. Both

quotient and embedded geometries behave similarly. The behaviors of the gradient descent

(GD) algorithms of these geometries are indistinguishable. The trust-region (TR) schemes

perform similarly with LRGeom RTR showing a better performance during the initial few

iterations.

The characterization of the embedded geometry is tabulated in Table 7 using the factor-

ization model W = UΣV
T . Here Σ ∈ Diag++ is a diagonal matrix with positive entries,

U ∈ St(r, d1) and V ∈ St(r, d2). The treatment is similar for the factorization W = GH
T as

the underlying geometries are same [SWC10].

The visualization of the search space as an embedded submanifold of Rd1×d2 has some key

advantages. For example, the notions of geometric objects can be interpreted in a straight

forward way. In the matrix completion problem, this also allows us to compute the initial

step-size guess (in a search direction) by linearizing the search space [Van13]. On the other

hand, the product space representation of Section 3 of fixed-rank matrices seems naturally

related to matrix factorization and provides additional flexibility in choosing the metric. It is

only the horizontal space (Section 4.2) that couples the product spaces. From the optimization

point of view this flexibility is also of interest. For instance, it allows us to regularize the

matrix factors, say G and H, differently.

In Figure 9 we compare our algorithms with LRGeom (the algorithmic implementation

of [Van13]) on 5 random instances. The timing plots for gradient descent and trust-region

algorithms show that Riemannian quotient algorithms are competitive with LRGeom. The

parameters s0, ∆0 and ∆̄ for all the algorithms are set by performing a linearized search

as proposed in Section 6.1. The linearized step-size search for LRGeom is the one proposed

in [Van13]. LRGeom RTR (the trust-region implementation) shows a better performance

during the initial phase of the algorithm. The trust-region schemes based on the quotient

geometries seem to spend more time in transition to the region of rapid convergence. However

asymptotically, we obtain the same performance as that of LRGeom RTR. The behaviors of

all the gradient descent schemes are inseparable.

29

7 Conclusion

We have addressed the problem of rank-constrained optimization (1) and presented both

first-order and second-order schemes. The proposed framework is general and encompasses

recent advances in optimization algorithms. We have shown that classical fixed-rank matrix

factorizations have a natural interpretation of classes of equivalences in well-studied mani-

folds. As a consequence, they lead to a matrix search space that has the geometric structure

of a Riemannian submersion, with convenient matrix expressions for all the geometric objects

required for an optimization algorithm. The computational cost of involved matrix opera-

tions is always linear in the original dimensions of the matrix, which makes the proposed

computational framework amenable to large-scale applications. The product structure of the

considered total spaces provides some flexibility in choosing the proper metrics on the search

space. The relevance of this flexibility was illustrated in the context of subspace-projection

factorization W = UY
T in Section 6.4. The relevance of not fixing the matrix factorization

beyond necessity has been illustrated in the context of W = UBV
T factorization in Section

6.3 where the flexibility of B to be positive definite instead of diagonal (as is the case with sin-

gular value decomposition) results in good convergence properties. Similarly, the advantage

of balancing an update for W = GH
T factorization has been discussed in Section 6.2.

All numerical illustrations of the paper were provided on the low-rank matrix completion

problem, that permitted a comparison with many existing fixed-rank optimization algorithms.

It was shown that the proposed framework compares favorably with most state-of-the-art

algorithms while maintaining a complete generality.

The three considered geometries show a comparable numerical performance in the simple

examples considered in the paper. However, differences exist in the resulting metrics and

related invariance properties, which may lead to a geometry being preferred for a particular

problem. In the same way as different matrix factorizations exist and the preference for one

factorization is problem dependent, we view the three proposed geometries as three possible

choices which the user should exploit as a source of flexibility in the design of a particular

optimization algorithm tuned to a particular problem. They are all equivalent in terms of

numerical complexity and convergence guarantees.

Optimizing the geometry and the metric to a particular problem such as matrix completion

and to a particular dataset will be the topic of future research. Some steps in that direction

are proposed in the recent papers [NS12, MAAS12].

References

[AAM12] P.-A. Absil, L. Amodei, and G. Meyer, Two Newton methods on the manifold of

fixed-rank matrices endowed with Riemannian quotient geometries, Tech. Report

UCL-INMA-2012.05, U.C.Louvain, September 2012.

[ABEV09] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert, A new approach to collabora-

tive filtering: Operator estimation with spectral regularization, Journal of Machine

30

Learning Research 10 (2009), no. Mar, 803–826.

[AFSU07] Y. Amit, M. Fink, N. Srebro, and S. Ullman, Uncovering shared structures in mul-

ticlass classification, Proceedings of the 24th International Conference on Machine

Learning, 2007.

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix

manifolds, Princeton University Press, 2008.

[BA11] N. Boumal and P.-A. Absil, RTRMC: A Riemannian trust-region method for

low-rank matrix completion, Neural Information Processing Systems conference,

NIPS, 2011.

[BA12] , Low-rank matrix completion via trust-regions on the Grassmann mani-

fold, Tech. report, UCL-INMA-2012.07, 2012.

[BAG07] C. G. Baker, P.-A. Absil, and K. A. Gallivan, GenRTR: the Generic Riemannian

Trust-region package, 2007.

[Bha07] R. Bhatia, Positive definite matrices, Princeton University Press, Princeton, N.J.,

2007.

[BM13] N. Boumal and B. Mishra, The Manopt Toolbox, http://www.manopt.org, 2013.

[Bra06] M. Brand, Fast low-rank modifications of the thin singular value decomposition,

Linear Algebra and its Applications 415 (2006), no. 1, 20 – 30.

[BS72] R. H. Bartels and G. W. Stewart, Solution of the matrix equation ax+xb=c [f4]

(algorithm 432), Commun. ACM 15 (1972), no. 9, 820–826.

[BS09] S. Bonnabel and R. Sepulchre, Riemannian metric and geometric mean for pos-

itive semidefinite matrices of fixed rank, SIAM Journal on Matrix Analysis and

Applications 31 (2009), no. 3, 1055–1070.

[BY09] K. Bleakley and Y. Yamanishi, Supervised prediction of drug-target interactions

using bipartite local models, Bioinformatics 25 (2009), no. 18, 2397–2403.

[CCS10] J. F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for

matrix completion, SIAM Journal on Optimization 20 (2010), no. 4, 1956–1982.

[CHH07] D. Cai, X. He, and J. Han, Efficient kernel discriminant analysis via spectral

regression, ICDM, 2007.

[CR08] E. J. Candès and B. Recht, Exact matrix completion via convex optimization,

Foundations of Computational Mathematics 9 (2008), 717–772.

[DKM10] W. Dai, E. Kerman, and O. Milenkovic, A geometric approach to low-rank matrix

completion, arXiv:1006.2086v1 (2010).

http://www.manopt.org

31

[DMK10] W. Dai, O. Milenkovic, and E. Kerman, Subspace evolution and transfer (set) for

low-rank matrix completion, arXiv:1006.2195v1 (2010).

[EAS98] A. Edelman, T.A. Arias, and S.T. Smith, The geometry of algorithms with or-

thogonality constraints, SIAM Journal on Matrix Analysis and Applications 20

(1998), no. 2, 303–353.

[EMP05] T. Evgeniou, C.A. Micchelli, and M. Pontil, Learning multiple tasks with kernel

methods, Journal of Machine Learning Research 6 (2005), no. Apr, 615–637.

[Gro11] D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE

Transaction on Information Theory 57 (2011), no. 3, 1548–1566.

[GVL96] G. H. Golub and C. F. Van Loan, Matrix computations, The Johns Hopkins

University Press, 1996.

[JMD10] P. Jain, R. Meka, and I. Dhillon, Guaranteed rank minimization via singular value

projection, Advances in Neural Information Processing Systems 23 (J. Lafferty,

C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, eds.), 2010,

pp. 937–945.

[Jou09] M. Journée, Geometric algorithms for component analysis with a view to gene

expression data analysis, Ph.D. thesis, University of Liège, Liège, Belgium, 2009.

[KMO10] R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion from noisy entries,

Journal of Machine Learning Research 11 (2010), no. Jul, 2057–2078.

[KSD09] B. Kulis, M. Sustik, and I. S. Dhillon, Low-rank kernel learning with Bregman

matrix divergences, Journal of Machine Learning Research 10 (2009), 341–376.

[KSD11] B. Kulis, K. Saenko, and T. Darrell, What you saw is not what you get: Do-

main adaptation using asymmetric kernel transforms, Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[Lar98] R.M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, Technical

Report DAIMI PB-357, Department of Computer Science, Aarhus University,

1998.

[LB09] Kiryung Lee and Yoram Bresler, Admira: Atomic decomposition for minimum

rank approximation, arXiv:0905.0044v2 (2009).

[Lee03] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics,

vol. 218, Springer-Verlag, New York, 2003.

[MAAS12] B. Mishra, K. Adithya Apuroop, and R. Sepulchre, A Riemannian geometry for

low-rank matrix completion, Tech. report, arXiv:1211.1550, 2012.

32

[MBS11a] G. Meyer, S. Bonnabel, and R. Sepulchre, Linear regression under fixed-rank

constraints: a Riemannian approach, Proceedings of the 28th International Con-

ference on Machine Learning (ICML), 2011.

[MBS11b] , Regression on fixed-rank positive semidefinite matrices: a Riemannian

approach, Journal of Machine Learning Research 11 (2011), no. Feb, 593–625.

[Mey11] G. Meyer, Geometric optimization algorithms for linear regression on fixed-rank

matrices, Ph.D. thesis, University of Liège, 2011.

[MHT10] R. Mazumder, T. Hastie, and R. Tibshirani, Spectral regularization algorithms

for learning large incomplete matrices, Journal of Machine Learning Research 11

(2010), no. Aug, 2287–2322.

[MJD09] Raghu Meka, Prateek Jain, and Inderjit S Dhillon, Matrix completion from power-

law distributed samples, Advances in Neural Information Processing Systems 22

(Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, eds.),

2009, pp. 1258–1266.

[MMBS11] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre, Low-rank optimization with

trace norm penalty, Tech. report, arXiv.com, 2011.

[MMS11] B. Mishra, G. Meyer, and R. Sepulchre, Low-rank optimization for distance matrix

completion, Proceedings of the 50th IEEE Conference on Decision and Control,

Orlando (USA), 2011.

[Net06] Netflix, The Netflix prize, http://www.netflixprize.com/, 2006.

[NS12] T. T. Ngo and Y. Saad, Scaled gradients on Grassmann manifolds for matrix

completion, NIPS, 2012, pp. 1421–1429.

[NW06] J. Nocedal and S. J. Wright, Numerical optimization, second edition, Springer,

2006.

[PO99] R. Piziak and P. L. Odell, Full rank factorization of matrices, Mathematics Mag-

azine 72 (1999), no. 3, 193–201.

[RS05] J. Rennie and N. Srebro, Fast maximum margin matrix factorization for collab-

orative prediction, Proceedings of the 22nd International Conference on Machine

learning, 2005, pp. 713–719.

[SE10] L. Simonsson and L. Eldén, Grassmann algorithms for low rank approximation

of matrices with missing values, BIT Numerical Mathematics 50 (2010), no. 1,

173–191.

[SWC10] U. Shalit, D. Weinshall, and G. Chechik, Online learning in the manifold of low-

rank matrices, Advances in Neural Information Processing Systems 23 (J. Lafferty,

C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, eds.), 2010,

pp. 2128–2136.

33

[Van13] B. Vandereycken, Low-rank matrix completion by Riemannian optimization,

SIAM Journal on Optimization (2013).

[WYZ10] Z. Wen, W. Yin, and Y. Zhang, Solving a low-rank factorization model for matrix

completion by a nonlinear successive over-relaxation algorithm, Tech. report, Rice

University, 2010.

[YAG+08] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, Prediction

of drug-target interaction networks from the integration of chemical and genomic

spaces, Bioinformatics 24 (2008), no. 13, i232.

[YELM07] M. Yuan, A. Ekici, Z. Lu, and R.D.C. Monteiro, Dimension reduction and coeffi-

cient estimation in multivariate linear regression, Journal of the Royal Statistical

Society 69 (2007).

	1 Introduction
	2 Motivation and applications
	2.1 Low-rank matrix completion
	2.2 Learning on data pairs
	2.3 Multivariate linear regression

	3 Matrix factorization and quotient spaces
	3.1 Full-rank factorization (beyond Cholesky-type decomposition)
	3.2 Polar factorization (beyond SVD)
	3.3 Subspace-projection factorization (beyond QR decomposition)

	4 Fixed-rank matrix spaces as Riemannian submersions
	4.1 Quotient manifold representation
	4.2 Tangent vector representation as horizontal lifts
	4.3 Retractions from the tangent space to the manifold
	4.4 Gradient and Hessian in Riemannian submersions

	5 Two optimization algorithms
	5.1 Gradient descent algorithm
	5.2 Riemannian trust-region algorithm
	5.3 Numerical complexity

	6 Numerical comparisons
	6.1 Matrix completion as a benchmark for numerical comparisons
	6.2 Full-rank factorization W = GHT, MMMF, and LMaFit
	6.3 Polar factorization W = UBVT and SVP
	6.4 Subspace-projection factorization W = UYT and RTRMC
	6.5 Quotient and embedded viewpoints

	7 Conclusion

