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Abstract Spline curves, originally developed by numerical analysts for interpola-
tion, are widely used in statistical work, mainly as regression splines and smoothing
splines. Barycentric rational interpolants have recently been developed by numerical
analysts, but have yet seen very few statistical applications. We give the necesssary
information to enable the reader to use barycentric rational interpolants, including a
suggestion for a Bayesian prior distribution, and explore the possible statistical use
of barycentric interpolants as an alternative to splines. We give the all the necessary
formulae, compare the numerical accuracy to splines for some Monte-Carlo datasets,
and apply both regression splines and barycentric interpolants to two real datasets. We
also discuss the application of these interpolants to data smoothing, where smooth-
ing splines would normally be used, and exemplify the use of smoothing interpolants
with another real dataset. Our conclusion is that barycentric interpolants are as accu-
rate as splines, and no more difficult to understand and program. They offer a viable
alternative methodology.

Keywords Spline · Smoothing · Barycentric rational interpolation · Meta-analysis

1 Introduction

Regression splines are widely used in statistical analysis for curve-fitting, and have the
advantage over nonparametric methods that likelihood functions can be written down,
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parameters estimated and inference done for a variety of models, such as multiple
linear regression, survival modelling, and logistic modelling (e.g. Harrell 2001). We
are interested in evaluating a newly-developed alternative to spline modelling, the
use of barycentric rational interpolants (BRIs). Hence we do not discuss further other
techniques of nonparametric regression that aim to smooth curves, such as the loess
method. Use of fractional polynomials (Royston and Altman 1994) is the only other
technique that can be used for parametric inference about nonlinear relationships, but
this although often useful does not have the flexibility of a spline curve. Hence we
shall be presenting BRIs as an alternative to regression and smoothing splines.

It may seem odd that a method developed by numerical analysts for interpolating
functions should be recommended for statistical use. The point is of course that one
takes function values μk defined at regularly-spaced points xk as unknown parameters
to be estimated, so any methodology that can interpolate a function can also be used
to fit a flexible functional form to statistical data.

Spline curves, originally developed by numerical analysts for function interpolation,
have been used in statistics for many years and need little introduction. Wegman
and Wright (1983) review the then state of the art, and useful books are de Boor
(2001) and Wahba (1990). The use of splines is typically in parameterising dependence
on a covariate, e.g. patient age in a medical study of the effect of some treatment
intervention.

One needs a flexible curve that can represent an unknown functional form, where
the function will often be ‘smooth’. A cubic spline represents the curve by a piecewise
(continuous) cubic curve, with continuous first and second derivatives at the ‘knots’
where the value of the function is specified. Natural cubic splines impose the constraint
that the second derivative is zero at the end knots.

One could say that splines although very useful have the drawback of computational
complexity. There are several methods of fitting them. To fit a spline curve by least
squares, one can introduce a new covariate for each knot, such that a conventional
least-squares fit can be done using a statistics package. Computing these covariate
values is feasible but requires the inversion of a tridiagonal matrix. A solution is the
use of B (for basis) splines (de Boor 2001). The computations here are simpler, but
now the regression coefficients are no longer the function values at the knots, but
are ‘control points’. A third approach, use of the truncated power basis, is simple to
program but is numerically unstable when there are many knots, and still does not
directly yield estimates of the covariate value at the knots.

There is now a newer method of function interpolation, barycentric rational inter-
polation. Its performance for function interpolation compares favourably with splines
(Floater and Hormann 2007). Although over the last few years the properties of BRIs as
interpolants of smooth functions have been studied extensively by numerical analysts,
barycentric interpolation has been hardly at all used in statistical work. This paper
seeks to introduce BRIs to the statistical community, and to explore whether a BRI fit
can be a competitor to a spline fit, and how it might be used. Our main methodology
is least-squares fitting to Monte-Carlo data, and we also fit two real datasets. This
compares BRIs with regression splines; subsequently, with the aid of a third example
we also explore the use of smoothing and penalized BRIs, where there are many fitted
parameters plus a roughness penalty.
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2 Barycentric interpolation

The barycentric form for an interpolant f (x) between coordinates (xk, μk) where
x1 < x2 · · · < xm has been known at least since Taylor (1945), who showed that
a polynomial interpolant could be written in barycentric form. The formula with m
nodes is

f (x) =
∑m

k=1 wkμk/(x − xk)
∑m

k=1 wk/(x − xk)
, (1)

where we differ from some texts in summing from unity rather than from zero. The
weights wk are arbitrary and the curve will pass through the points (xk, μk) for any
vector of weights w. The origin of the odd name ‘barycentric’ (centre of mass) now
becomes clearer: the points μk are weighted, as in the formula for the centre of mass
or for a sample mean; barycentric coordinates were introduced by Möbius in 1827.
Evaluation of f (x) is easy, and it is only necessary to check whether |x − xi | < ε

for any i , with (typically) ε = 10−8. If so, f (x) � μi , and otherwise one can safely
compute from (1).

BRIs have so far scarcely been used in statistics. Baker and McHale (2012) used
BRIs to study the long-term performance of golfers, and Jackson et al. (2013) used
BRIs in meta-analysis.

2.1 Another method of computation

We introduce another method of computation of f (x), that is also useful for computing
derivatives. With xi the closest node to x , i.e. |x − xi | < |x − xk | ∀k �=i multiply
numerator and denominator of (1) by x − xi and write x − xi = x − xk + (xk − xi )

to obtain

f (x) =
∑m

k=1 wkμk + ∑
k �=i (xk − xi )wkμk/(x − xk)

∑m
k=1 wk + ∑

k �=i (xk − xi )wk/(x − xk)
, (2)

which now poses no computational problem when x � xi .
Derivatives can be computed, and differentiating (2) and setting x = xi yields the

formula for the first derivative

d f/ dx |x=xi = −(1/wi )
∑

j �=i

w j (μi − μ j )

xi − x j
, (3)

which we shall use later in a statistical test. Klein and Berrut (2012) give a recursive
formula for calculating higher derivatives.

2.2 Computing the weights

Polynomial interpolants such as the Lagrangian interpolant can be put into barycentric
form (e.g. Berrut 1988). However, the fact that any set of weights w will give an
interpolated curve that passes through the specified points opens the way for other
interpolants besides polynomials. Berrut (1988) gave weights for a barycentric rational
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interpolant, where a ratio of polynomials is used to interpolate. Berrut’s interpolant
was free of poles, a potential problem with ratios of polynomials. This approach was
developed further by Floater and Hormann (2007) who derived sets of weights giving
accuracies of O(hd+1) where d is the order of the interpolant and h the largest step
size (largest gap between consecutive values of x).

The formula for constructing weights is

wk = (−1)k
k∑

i=k−d

i+d∏

j=i, j �=k

1

|xk − x j | , (4)

where an empty product is taken as unity, and Press et al. (2007) give C++ code. Using
this formula, the weights of order zero are wk = (−1)k , and weights of order one are

wk = (−1)k
{

1

xk − xk−1
+ 1

xk+1 − xk

}

,

with terms with out-of-range values x0 or xn+1 being omitted. For equally-spaced
values of μk these weights with d = 1 reduce to wk = (−1)k , where now the
end nodes have weight halved. This recalls the halving of end-point weights in the
trapezoidal rule for integration formula. We normally use equally-spaced nodes in this
paper, but keep the general form in all formulae.

2.3 Interpreting BRIs

The dth order interpolant can reproduce polynomials of degree at least d. It turns out
that the d = m − 2 interpolant is a polynomial of degree m − 1, so there is no point
taking d > m − 2.

It is helpful in understanding these interpolants to examine the first few. With m = 1,
(1) reduces to f = μ1, a constant, and for m = 2 to a straight line. The d = 0 and
d = 1 models are the same, with weights 1,−1. For m = 3 there are two models. The
d = 1 model is a quadratic, with weights 1/2,−1, 1/2 for equally-spaced values of x ,
and the d = 0 model is the first interpolant that is a ratio of polynomials, being a ratio
of quadratics. The value of f tends to a constant at large |x |, in fact to μ1 − μ2 + μ3.
It can be verified from (3) that the slopes are equal and opposite at x1 and x3 under
equal-spacing. The m = 4 interpolant with d = 0 is linear in the tails, with the same
slope in both tails. The d = 1 interpolant with weights (1/2,−1, 1,−1/2) is also
linear in the tails, and the d = 2 interpolant with weights (1/3,−1, 1,−1/3) is a
(cubic) polynomial.

2.4 Periodic or circular data

There is also a barycentric interpolant for periodic or circular data, such as wind-speed
(e.g. Berrut and Trefethen 2004; Berrut and Welscher 2007). It is
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f (φ) =
∑m

k=1(−1)kcstφ−φk
2 μk

∑m
k=1(−1)kcstφ−φk

2

,

where

cst(φ) =
{

cot φ if m even
cosec φ if m odd.

2.5 Extension to multiple covariates

When there are several covariates, the BRIs generalise in the same way as do splines,
i.e. for the bivariate case, writing weights for x as wk and for z as vl ,

f (x, z) =
∑mx

k=1

∑mz
l=1 wkvlμkl/(x − xk)(z − zl)

∑mx
k=1 wk/(x − xk)

∑mz
l=1 vl/(z − zl)

.

This introduction has given the essentials needed for use of barycentric interpola-
tion. Before fitting data, we try to gain some insights into the nature of barycentric
interpolants that bear on their statistical use.

3 A comparison of BRIs with splines

Unlike spline curves, barycentric curves are infinitely differentiable, which is a nice
property. This observation suggests that BRIs might be slightly better than splines for
fitting smooth functions, but the functions encountered in statistical work may not be
smooth, and may have a step or ramp. For example, incidence of deaths among young
people from motor accidents might be expected to increase sharply above the legal
age for driving. One would model such obvious discontinuities explicitly, but others
might go unremarked. We shall see how well BRIs cope with discontinuities later. It
is of course not hard to model a step or a ramp using BRIs if wished. For a step, one
uses two interpolants (1), one either side of a common node, and for a ramp one makes
the values of μ at the common node equal.

Floater and Hormann (2007) used the construction of blended polynomials of order
d to derive optimal weights and to show the absence of poles. They took polynomials
pi (x) of degree ≤ d that interpolate f at the d + 1 points xi+1 · · · xi+d+1. Then they
let

f (x) =
∑m−d+1

i=0 λi (x)pi (x)
∑m−d+1

i=0 λi (x)

where

λi (x) = (−1)i

(x − xi+1) · · · (x − xi+d+1)
,

and they showed that this expression can be rewritten in barycentric form. Now each
polynomial pi (x) interpolates only d + 1 adjacent values of f .
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Their derivation shows that barycentric interpolation has a kinship with spline
interpolation; local polynomials are used in both methods, albeit differently. In spline
fitting, the local polynomial alone determines f (x) within a range (xi , xi+1), and it
must be made to join as seamlessly as possible to the next segment at the end of its
range. In barycentric interpolation, the local polynomial contributes to μ at only d +1
adjacent values of x . The polynomial’s influence on f (x) continues however outside
that range, because λi does not have local support, giving infinite differentiability. For
full details, see Floater and Hormann (2007).

Since their introduction, the properties of the interpolants have been studied in
detail. It has been rigorously shown as one might anticipate that the kth derivative has
error O(hd+1−k) for stepsize h, order of interpolation d (Klein and Berrut 2012), and
that the integral has error O(hd+2) (Klein and Berrut 2010), Bos et al. (2012). Note
that the natural cubic spline has error O(h2).

Conceptually, BRIs seem mysterious in a way that splines are not; cubic spline
curves can be imagined as a (simplified) mathematical model of the wooden splines
formerly used by draftsmen, the cubic polynomial used between knots minimis-
ing an approximation to the energy of curvature of a wooden spline. In fact, the
cubic minimises

∫
y′′(x)2 dx on applying the Euler-Lagrange equation, whereas

the energy of curvature is a more complex function. Currently there is no corre-
sponding variational derivation of BRIs, and such a physical interpretation would be
helpful.

4 Choosing an appropriate value of d

We might naively think that the order d should be chosen as large as possible, if
increasing d increases interpolation accuracy. This cannot be correct, because when
d = m − 2, we regain the polynomial interpolant, and polynomials are known to
perform badly for equally-spaced points, because of the Runge phenomenon. With
large d, the interpolant is a blending of high-order polynomials, and so can oscillate
unduly between nodes, especially near the ends of the range.

Figure 1 shows barycentric interpolant fits with d from 0 to 3, and a spline fit to the
points (0,1), (0.25,5), (0.5,0), (0.75,2) and (1,4).

It can be seen how the d = 0 fit is essentially linear between the nodes, although
smooth, and how increasing d increases the size of the oscillations between nodes.
The d = 3 line is the quartic polynomial interpolant. The spline fit is usually close
to the d = 1 curve, although at the right hand side, it increases linearly, whereas all
the barycentric interpolant curves decrease. This is because the discontinuous third
derivative of the spline curve allows it to ‘take a short-cut’ in a way that the infinitely
differentiable BRI curves do not.

Güttel and Klein (2012) show how rounding error and random error lower the
optimal value of d for large m, using the concept of the Lebesgue constant. The
optimal choice of d in statistical work clearly depends on the nature of the function
being fitted; if for example it is a polynomial, we need d = m − 2.

The obvious frequentist way to choose d is to find the value of d that maximises the
log-likelihood of the fit, and to condition the inference on that value of d. Increasing
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Fig. 1 Rational barycentric interpolant and natural spline curves with 5 nodes/knots (vertical lines)

the value of d does not of course introduce any fresh parameters. For a related problem
and solution with splines, see Kauermann and Opsomer (2011).

A Bayesian approach would be to put a prior distribution on d. This makes sense,
because to choose a value of d is to make a (subtle) statement about the functional form
of the dependence of the predictand on the covariate. The curves are always smooth,
but as d increases, what computer-aided designers call the ‘fairness’ of the curve
decreases, and its length increases, i.e. the curve becomes more wriggly. This is what
statisticians working in curve-fitting call ‘roughness’, so the curve becomes ‘rougher’.
This is a different concept from mathematical roughness. Barycentric interpolation
always produces curves that are not ‘rough’ in the mathematical sense, being infinitely
differentiable; see e.g. Sapidis and Farin 1990.

The minimum value of d is 0, and the maximum is m − 2, which already gives a
polynomial interpolation, because choosing m−1 gives the same weights. This follows
from theorem 2 of Floater and Hormann (2007) as pointed out by Klein (2011).

We suggest a suitable prior would be to take d as following a binomial distribution
with probability p = 0.2, sample size m − 2, so

Pr(d) =
(

m − 2

d

)

pd(1 − p)m−2−d .

This is based both on the function interpolations of Güttel and Klein (2012) and
on our own explorations. The optimal value of d is roughly proportional to m, with
m −2 as the maximum, and the nearest integer to 0.2(m −2) was always a reasonable
choice of d for the datasets we examined. Doubtless this prior could be improved for
specific areas as further experience is gained.

It should be noted that, as can be seen from Fig. 2, like spline fits, (1) is poor for
extrapolating beyond the fitted range.
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Fig. 2 The function {1 + 20(x − 0.55)2)}−1 with spline fit from sample size 1,000 and the corresponding
BRI fit (5 knots/nodes)

At large |x | (1) reduces to a polynomial of order d (or d + 1 if m − d is even). One
would expect fits with higher d to extrapolate worse, and the relatively low weights
given to the end points do not augur well for forecasting, where one wishes to discount
earlier rather than later observations. A simple short-term forecast could be obtained
by extrapolating linear trend using (3). The only advantage over a spline fit as usually
carried out is that the values μi are immediately available from the least-squares fit,
complete with a covariance matrix, so that forecasts can readily be made using for
example Holt’s method.

5 Comparison of BRIs and splines using Monte-Carlo datasets

We compare natural spline fits, which have error O(h2) for step-length h with BRI
fits taking d = 1, which also have error O(h2), where h is stepsize. Table 1 shows
mean absolute error (MAE) and root mean squared error (RMSE) for spline and BRI
least-squares fits to ten functions f (x), with data generated using the regression model
yi = f (xi ) + εi , εi ∼ N [0, σ 2].

We chose σ = 0.1. The 1,000 simulated x values were generated randomly in (0, 1).
The spline fits in Table 1 had m = 5 knots and the BRI fits 5 nodes, the knot/node
points being equally spaced between 0 and 1. The rationale here is to mimic use of
‘default’ fitting options; 5 knots will be enough for most applications, and the setting
d = 1 was used for the barycentric interpolants, as we have found this to be a good
‘default’ setting, and also because natural cubic splines and d = 1 BRI fits have the
same order of error.

The procedure followed for both splines and BRIs was to generate variables
xi1 · · · xim such that the regression model is approximated as yi = ∑m

j=1 xi jμ j + εi .
For BRIs, with f (xi ) substituted in from equation (1) we have
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Table 1 Mean average errors (MAE), root mean square errors (RMSE) and Akaike information criterion
(AIC) for spline and BRI fits with d = 1 to ten functions where 0 ≤ x ≤ 1. using 5 knots/nodes. The
function H(x) denotes the Heaviside step function (zero if x < 0, else unity), and (x − 1/2)+ is a ramp,
i.e. x − 1/2 for x > 1/2, else zero. Sample size is 1,000

Function MAE (sp) MAE (BRIs) RMSE (sp) RMSE (BRIs) AIC (sp) AIC (BRIs)

1
1+20(x−0.55)2)

.03000 .02477 .03614 .02997 −1602.67 −1637.37

sin(πx/2) .00988 .00985 .01130 .01124 −1722.70 −1723.03

exp(−x) .00961 .00939 .01120 .01104 −1723.00 −1722.77

exp(−2x2) .00959 .00964 .01157 .01255 −1721.65 −1716.54

ln(1 + 2x) .00950 .00902 .01136 .01127 −1722.16 −1721.10

exp(−2(x − 1/2)2) .00954 .00927 .01119 .01116 −1722.83 −1722.35

x exp(−x) .00940 .00900 .01124 .01110 −1722.59 −1721.85

x + x2 + x3 .00945 .00919 .01526 .01222 −1720.72 −1718.02

H(x − 1/2) .12904 .11127 .18062 .16425 −278.12 −414.72

(x − 1/2)+ .01031 .01006 .01238 .01242 −1715.15 −1714.17

y(xi ) =
∑m

j=1 w jμ j/(xi − x j )
∑m

k=1 wk/(xi − xk)
+ εi =

m∑

j=1

xi jμ j + εi ,

where now xi is the i th sample value of x , and where

xi j = w j/(xi − x j )
∑m

k=1 wk/(xi − xk)
. (5)

The weights w j were found using the formula of Floater and Hormann (2007), our
Eq. 4.

Use of this procedure means that after creating these variables, a conventional linear
regression can be performed, and this is more computationally efficient than evaluating
ŷi using (1) each time it is needed.

For the spline model, natural cubic splines were generated for each xi following the
procedure described in Press et al. (2007), p 120–122. They describe the solution of a
system of m − 2 linear equations, where the matrix is tridiagonal. As we are solving
for the xi j and the μ j are unknown, it was necessary to invert the matrix. This was
done in time O(m2) using the formula for the inverse of a tridiagonal matrix given by
Usmani (1994).

The ten functions were simply what came to mind, adjusted to show a large vari-
ation in the range (0, 1). The first function, essentially the Cauchy pdf, is also the
function famously used by Runge to show the oscillation of polynomial interpolants
with increasing m. It can be seen that for nine of the ten functions, the MAE was
slightly smaller using BRIs than using splines, and the RMSE was slightly smaller
for two functions. The difference is small, and we conclude that BRIs perform at least
as well as splines or slightly better in most cases; one could use either technique.
This is consistent with Floater and Hormann (2007), who found similar results when
interpolating in tables.
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Table 2 Mean average errors
(MAE) and root mean square
errors (RMSE) for spline and
BRI fits with d = 1 to the
function exp(−1.5x) cos(15x)

using 10 knots/nodes. Optimal
results are starred. Sample size
is 1,000

Method MAE RMSE AIC

Spline .02039 .02686 −1651.49

BRI, d = 0 .02215 .02903 −1640.51

BRI, d = 1 .01774 .02228 −1678.12

BRI, d = 2 .01924 .02360 −1683.31

BRI, d = 3 .01314 .01598 −1711.22∗
BRI, d = 4 .01169* .01467 −1710.33

BRI, d = 5 .01218 .01480 −1706.38

BRI, d = 6 .01212 .01371* −1708.26

BRI, d = 7 .01248 .01535 −1704.68

BRI, d = 8 .01449 .01815 −1697.41

Interestingly, although both splines and BRIs perform poorly with the two non-
smooth functions, the step function and the ramp, again the BRIs perform slightly
better. The greater smoothness of the BRI (infinitely differentiable) does not count
against it.

Figure 2 shows a plot of the first function in Table 1, y = {1+20(x−0.55)2)}−1+ε,
together with curves computed from the spline fit and from the BRI fit. It can be seen
that both fits look equally good (or bad).

We also studied the effect of knot/node placement, by choosing the 3 central nodes
randomly in (0, 1). The error of both methods in general increased, but they performed
similarly.

To explore the choice of optimum values of d for the BRIs, we fitted y =
exp(−1.5x) cos(15x) + ε using m = 10 equally-spaced knots/nodes. To be fair to
the spline method, it is of course possible to choose higher and higher order splines
in the same way to obtain greater accuracy. However, this is not normally done, so we
simply compare the BRI results with cubic spline fits. Table 2 shows the results.

The AIC is a widely-used measure of model adequacy that penalizes models with
many parameters (Akaike 1974); lower AIC denotes a better fit.

The minimum-Akaike information criterion (MAICE) fit shows optimum d = 3.
In terms of error, this is in reality dominated by fits with d from 4 to 7, but the
improvement in error is small on moving to these higher values of d. The d = 0 fit
is slightly worse than the spline fit, and for d ≥ 1 the BRI performs better. The data
presented are typical of the more extensive range of studies we carried out.

5.1 The ‘extended Floater–Hormann’ family of interpolants

Klein (2011) has produced the ‘extended Floater–Hormann’ family of interpolants.
Briefly, using equally-spaced steps, one extrapolates the curve d steps beyond each
end, using a Taylor series expansion, with derivatives computed from the BRI curve,
e.g. as in (3). One then interpolates in the extended set of m +2d nodes using the (new)
weights appropriate to an interpolation with m + 2d nodes. This procedure reduces
the Lebesgue error. A study of this was made using the ten datasets in Table 1 and
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also with d = 1. The MAE and RMSE sometimes increased slightly and sometimes
decreased slightly, with the spline fit now slightly better for the MAE of one function,
and for the RMSE of another. The fits to the Heaviside (step) function and to the
ramp deteriorated. This topic would bear further research, but it seems that the extra
complexity of this method, and its poorer performance on discontinuous functions (for
which it was not designed) indicate that it should not yet be used in statistical work.

6 Analysis of two real datasets

The aim here is to illustrate the use of the interpolants, and to show that the fit to data
is as good as a spline fit would be. For both datasets the covariate is time in years, but
the outcome variable differs.

6.1 Grand Slam tennis

The first example was drawn from the Grand Slam Tennis Archive, http://www.tennis.
ukf.net/. Jimmy Connors played 276 grand-slam tennis matches over his professional
career (1970–1992), and the probability of his winning a game can be estimated from
the scores in each match. BRIs can be used to see how this probability changed over
time.

The logit y = ln p̂/(1 − p̂) was found for each match and the estimated standard
error σ of the logit, where σ 2 = 1

n p̂(1− p̂)
, n being the number of games played. These

data were fitted to a BRI model, where both the number of nodes m and the parameter
d were chosen to minimise the AIC. The log-likelihood function was

�(µ) = −(1/2)

N∑

i=1

(y(ti ) − ŷ(ti ))
2/σ 2

i

to a constant, where N is the number of matches, ŷ(ti ) the BRI prediction at time ti ,
and σi the (known) corresponding value of σ . Nodes were spaced equally over the
interval from first to last matches. The MAICE model was m = 8, d = 3, although
the d = 2 model had an almost identical AIC. Figure 3 shows the result, where the
logits and the fit have been back-transformed to probabilities of winning a game so as
to be more easily interpretable. The 95 % CI is also shown.

The covariance matrix on the fitted model parameters is as usual the inverse of the
Hessian matrix, (V−1)i j = −∂2�/∂μi∂μ j . As this is a linear regression, the standard
error σ(t) of y(t) can be found from the covariance matrix V on the fitted parameters,
and the interval taken as ŷ(t) ± 1.96σ(t), and also back-transformed.

It can be seen that there are peaks around 1975 and 1983, and a smaller peak at
1990, which correspond to the high points of Connors’ career as seen for example from
the Wikipedia entry. The spline fit (not shown) with the same knot positions had an
AIC smaller by 0.13, so both fits are equally good. The fit to the model is not however
too good, with χ2[268] = 467.29, where the goodness of fit chi-squared is computed
from the predicted and expected probabilities of winning a game for each match. The
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Fig. 3 Estimated game win probabilities for Jimmy Connors from 1970 to 1992, with the MAICE BRI fit
and 95 % CI. Standard errors not shown for clarity

poor fit may be because the calibre of opponent was changing from game to game.
Baker and McHale (2012) fitted BRI models to data on golf tournaments where the
strength of each golfer was modelled using BRIs to avoid this problem. In the next
section, we carry out a meta-analysis, where we will use a random effects model to
address this problem.

6.2 Narcissism in college students

Twenge et al. (2008) carried out a meta-analysis of 85 samples of American college
students who completed the Narcissistic Personality Inventory between 1979 and 2006.
They found that narcissism levels were increasing in recent years. Their paper gives the
mean scores, standard deviations and sample sizes, from which on removing studies
with no quoted standard deviations, n = 76 studies remained. We carried out a random
effects meta-analysis, using BRIs and choosing the number of equally-spaced nodes
and the value of d to minimise the AIC. The log-likelihood was

�(µ, τ ) = (−1/2)

n∑

i=1

{(y(ti ) − ŷ(ti ))
2/(σ 2

i + τ 2) − (1/2) ln 2π(σ 2
i + τ 2)},

where τ 2 is the between-study or heterogeneity variance as used in random-effects
meta-analysis.

The chosen model had 5 nodes and d = 1, and the AIC was 0.05 higher than for
the best spline fit. The random effect error size was τ = 0.455 ± 0.133, giving an
I 2 = 81 % (Higgins and Thompson 2002). Figure 4 shows the data with error bars
staggered within their year for clarity, the fitted line and the 95 % CI. The BRI analysis
reveals the highly nonlinear temporal variation of the narcissism score, which initially
dips slightly before rising steadily, and more recently rising at a faster rate. The initial
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Fig. 4 Narcissism scores with standard errors from 1980 to 2005, with the MAICE BRI fit and 95 % CI.
Errorbars staggered for clarity

dip arises solely because of one early influential observation and may be spurious, but
the essential point is that BRIs can reproduce the varying slopes of the data adequately.

One can test whether the exit slope is zero by a Wald test for the slope (3) at the latest
node, i.e. the date of the most recent study, using its computed standard error. Rewriting
(3) as d f/ dx |x=xi = ∑m

k=1 ckμk , the standard error σ is {∑m
i=1

∑m
j=1 Vi j ci c j }1/2.

For an ordinary least squares regression, the standardised slope would follow a t-
distribution with n − m degrees of freedom, but as τ was also fitted, we take the
standardised slope as asymptotically normal, as in conventional meta-analysis. The
matrix V is computed from the Hessian for all model parameters, i.e. µ and τ .

The slope test is here hardly necessary, but the slope was 0.4318, standard error
0.1042, giving Z = 4.14, showing a significantly positive slope. Narcissism was
increasing in 2006 at the rate of over 0.4 points per year. The corresponding initial
slope was −0.235 ± 0.159, giving Z = −1.48; narcissism is initially decreasing, but
this is not statistically significant. Note that a fit with d ≥ 1 should preferably be used,
because the d = 0 interpolants can not reproduce a straight line.

This simple test could be useful in testing whether results from a meta-analysis are
stable, an issue that has attracted some interest (e.g. Mullerleile and Mullen 2006).
This type of analysis removes an objection to the analysis of Baker and Jackson (2010)
which forced temporal trends to be essentially linear.

From these examples, we conclude that BRIs fit data as well as regression splines
do, and give very similar results. We now turn to smoothing BRIs.

7 Smoothing BRIs

With a smoothing or penalised spline fit, ‘too many’ knots μi are used, and the function
S minimised, where
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S =
n∑

i=1

(yi − ŷ(xi ))
2 + λ

xn∫

x1

ŷ′′(x)2 dx, (6)

λ is a constant controlling the size of the ‘roughness’ penalty, and the range of data is
(x1, xn). With a knot at every data point, we have a smoothing spline, and with fewer
knots, a penalized spline regression.

When λ = 0 we regain an ordinary least squares spline fit for the μ̂i . The integral
is larger for ‘rough’ or wriggly fits, and the value of λ is chosen either manually, or
if automatically either by using cross-validation to minimise the prediction error, or
by choosing a minimum modified AIC solution (Harrell 2001). There are variants of
this scheme; Eilers and Marx (1996) use a B-spline basis, equally-spaced knots and a
difference rather than an integral roughness penalty, while Ruppert et al. (2003) use
truncated power functions, knots based on quantiles, and an integral penalty as above.

If using an integral penalty as in (6), y(x) and y′′(x) are linear in the μi , the
integrand y′′(x)2 is a quadratic form in µ and so the integral can also be written in the
quadratic form µT Mµ, where the roughness penalty matrix M must be determined
numerically. Then writing ŷ(xi ) = ∑m

j=1 xi jμ j we have that

µ̂ = (XT X + λM)−1XT y, (7)

where (X)i j = xi j , showing the shrinkage of the estimators µ̂ resulting from the
roughness penalty.

There is a great deal written about smoothing and penalized splines, but we merely
wish to point out that a BRI, like a spline, is linear in the unknown μi , so the whole
derivation of (7) goes through in an analogous way, with spline knots replaced by BRI
nodes, and with xi j as defined in (5).

To make the methodology work, it is necessary to describe the computation of the
matrix M for BRI fits in some detail. The matrix can be computed as follows: to
avoid numerical problems, use the form (2) for the interpolant ŷ(x), which is now (1)
multiplied through top and bottom by (x − xs), where xs is the nearest node to x . Then
writing N (x) for the numerator of (2) and D(x) for its denominator, on differentiating
ŷ(x) = N (x)/D(x) we have ŷ′′ = N ′′/D − 2N ′ D′/D2 − N D′′/D2 + 2N D′2/D3.
Writing M as the outer product

Mi j =
xn∫

x1

wiw j bi (x)b j (x) dx, (8)

where wi bi (x) is the coefficient of μi in ŷ′′(x), we have that

bi (x) = (xi − xs)[2D(x)−1(x − xi )
−3 + 2D(x)′ D(x)−2(x − xi )

−2

+ {2(D(x)′)2 D(x)−3 − D(x)′′ D(x)−2}(x − xi )
−1]

+ {2(D(x)′)2 D(x)−3 − D(x)′′ D(x)−2}, (9)
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Fig. 5 Smoothing BRI fit to the C12 α-emission data at 21.6 MeV of DeAngelis et al. (1995). The data and
fitted curves for the values of λ shown in the key are displayed

where the term in square brackets is not computed if i = s. Given these bi (x) the
matrix M is found from (8) by numerical integration. It is most efficient to nest the
integration loop inside the loops that run over the suffices i, j . The integrand is smooth,
so a simple method such as the trapezoidal rule or Simpson’s rule with say 1,000
nodes can be used. Otherwise there are more efficient specialised integration routines
for integrating a vector of similar functions, e.g. the Numerical Algorithms Group
(NAG) routine D01EAF. The bi (x) all oscillate differently with x , so if using adaptive
integration, each element of M would require different treatment, and it seems best
to keep to a simple integrator with regularly-spaced nodes. The numerical values of
the matrix M is a function only of the number of nodes and their placement. With
this formulation of the smoothing problem, the integrations need be done only once,
before solving for the μ̂i , which may be an iterative procedure if (6) is varied from
being an ordinary least squares fit.

The matrix M is symmetric, so only m(m − 1)/2 elements need be computed.
Row and column sums are always zero, as are the linearly weighted sums si =∑m

j=1 Mi j x j , because curvature y′′(x) is zero for constant or linear µ values, and
hence

∑m
i=1 wi bi (x) = 0 etc., which confers this property on the matrix M. Because

of these two constraints, the matrix is zero for m < 3. The matrix is also positive
semidefinite since ŷ′′(x)2 > 0 and so the quadratic form can never be negative.

The BRI fit computations are then

• Compute the matrix M as described above;
• Choose a value of λ and find the values µ̂ that solve the linear Eq. (7);
• Use (1) to plot the predictand;
• if desired, choose the ‘best’ value of λ.

Figure 5 shows the result of applying the smoothing BRI to the carbon-12 α-
emission data of DeAngelis et al. (1995). This dataset has been extensively used to
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display the smoothing capabilities of MATLAB, and is available from the MATLAB
file carbon12alpha.mat. It can be seen that as the value of λ decreases, the fit tends to
an interpolation of the points, as one would expect.

This example shows that there is no essential problem in using BRIs in place of
smoothing or penalized regression splines.

8 Conclusions

Splines and BRIs have similar errors in curve fitting, BRIs seeming from Monte
Carlo results to have a slight edge. In fitting real datasets, both methodologies gave
very similar fits and parameter estimates. The barycentric interpolant, unlike a spline
curve, is infinitely differentiable. It is not a priori clear whether this is a pro or a con
of BRI fits, given that statistical data may sometimes be best represented by a step or
a ramp. Our Monte-Carlo fits showed that BRIs worked as well as splines for these
cases, but time will show whether infinite differentiability is overall a blessing or a
curse.

Practitioners doing spline fitting and fitting BRIs face similar issues, for example
the optimal placement of knots or nodes respectively. Computationally, we found BRIs
easier to work with than splines, but experienced users of splines may well not agree.
We recommend BRIs as an equally good alternative to splines for statistical work, both
as an alternative to regression splines and to smoothing splines or penalized regression
splines.

Statisticians should be aware that there is an alternative methodology to splines;
however, ‘the devil is in the details’, and only time and a lot of experience will reveal
whether BRIs or splines are ultimately preferable.

Future work must include the provision of an R package to parallel the R spline
package, and this is in progress; the computations in this paper were ‘prototyped’ in
fortran2003 using the NAG library of numerical routines.
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