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Abstract

Quantile regression is studied in combination with a penalty which promotes structured
(or group) sparsity. A mixed ℓ1,∞-norm on the parameter vector is used to impose structured
sparsity on the traditional quantile regression problem. An algorithm is derived to calculate
the piece-wise linear solution path of the corresponding minimization problem. A Matlab
implementation of the proposed algorithm is provided and some applications of the methods
are also studied.

Keywords: quantile regression; structured sparsity; variable selection; convex optimiza-
tion

1 Introduction

As [1] have remarked, a good statistical model has seven key properties: 1. Parsimony, 2.
Tractability, 3. Conceptual insightfulness, 4. Generalizability, 5. Falsifiability, 6. Empirical
consistency, and 7. Predictive precision. In this paper a structured sparse quantile regression
model is studied and an efficient algorithm is proposed to solve the corresponding minimization
problem. As an illustration, two applications are discussed where such a model is preferable
(in the sense of several of the above properties) to others, and where the proposed algorithm is
more useful than others.

The quantile regression model of [2] allows for studying the effect of explanatory variables
on the entire conditional distribution of the response variable, and not only on its center. In this
sense quantile regression provides a deeper conceptual insightfulness into data than least squares
models. Since parsimony is a key property of a good model, variable selection techniques have
attracted a lot of attention in recent statistical literature, [3]. One reason that sparse models have
become popular is the availability of very large data sets; see e.g. [4]. A promising approach
to achieve a sparse model is to penalize models with a sparsity promoting penalty. Among
different penalties, the ℓ1-norm is the most popular one. It has e.g. been used in combination
with least squares in Lasso regression of [5], and an effective algorithm was proposed by [6]
and [7]. Authors such as [8] and [9] have proposed similar algorithms for the ℓ1-norm penalized
quantile regression problem.

Although the ℓ1-norm penalty does a good job in selecting individual variables, there is
no control on the groups of variables it selects. There are cases where one is interested in
selecting a group of variables instead of individual variables. In some cases it is inevitable,
see [10]. Consider e.g. race as a predictor with three levels: black, white, and other. The
standard approach is making two dummy variables (X1,X2) out of it: (0, 0) for other, (1, 0) for
black, and (0, 1) for white. Obviously in such a case one factor is represented by two variables.

1

http://arxiv.org/abs/1302.6088v1


Therefore, one may select the pair (X1,X2) together, or select none of them. The usual ℓ1-norm
penalty cannot guarantee such behavior. Finding an alternative to the ℓ1-norm seems therefore
to be necessary in the cases where groups of variables should be selected instead of individual
variables. As an individual can be considered as a singleton group, the grouping approach should
be a generalization of the usual ℓ1-norm penalty.

An appropriate penalty for the grouping case would be a mixed norm which applies ℓ1-norm
penalty to groups, in order to promote sparsity of groups of variables. Within each group the
ℓ∞-norm (also known as the max-norm) can be used to ensure that, once a single member of
a group is chosen (is nonzero), all other members of the same group can grow to the same size
without penalty. Other choices are possible too, but we restrict ourselves to this mixed ℓ1− ℓ∞-
norm (or ℓ1,∞-norm for short) choice. [11] have introduced such a group sparsity penalty, and
have solved the problem for the least squares model and have applied it to a low birth weight
data set.

In this paper we formulate an algorithm for ℓ1,∞-norm penalized quantile regression instead
of least squares regression. As tractability is a key property of a good model, we choose the
mixed norm penalty function because the corresponding models have a simple dependence on
the penalty parameter. Choosing the ℓ∞-norm within groups guarantees that the model is a
piece-wise linear function both of the penalty parameter and of the ℓ1,∞-norm of the model.
Other choices (such as e.g. ℓ1,2) would lead to less tractable optimization problems. The main
contribution of the present paper is the description of an efficient computational algorithm for
solving this optimization problem. This algorithm applies only to the case of non-overlapping
groups. A Matlab implementation of the algorithm is provided on the authors’ webpage [12].

In order to illustrate the performance of the proposed penalized model and the corresponding
optimization algorithm, we study two main applications: Firstly the use of qualitative explana-
tory variables with more than two levels, and secondly, simultaneous variable selection for a
vector of response variables.

For the first application, we analyze a data set pertaining to ‘low birth weight’ (LBW).
Low birth weight is a common subject in quantile regression literature (see e.g. [13]). If one is
interested in the effect of different variables on the lower tail of the conditional distribution of the
infant’s weight, least squares models are not appropriate, because they analyze the effect of the
explanatory variables on the conditional mean of the response variable. On the other hand, using
quantile regression, one can study lower conditional quantiles of the response. Due to presence
of a qualitative variable with more than two levels in the model, the sparsity promoting ℓ1-norm
penalty is not appropriate either. Therefore, a penalized model with a mixed norm penalty
seems to be more appropriate for selecting effective variables and estimating their effect.

For the second application, the ‘93CARS’ data set of [14] is studied. It consists of 14
explanatory variables and 5 response variables which are highly correlated. [15] have suggested
that a simultaneous variable selection approach is more interesting for modeling a vector of
correlated response variables with a common set of explanatory variables. Using the proposed
mixed norm as penalty one can put the coefficients of each explanatory variable for all the
response variables in a group and perform a simultaneous variable selection. While [15] worked
it out in the least-squares framework, we use quantile regression which is more robust and makes
it possible to study the whole conditional distribution and not just its center. [16] have studied
the latter problem too, using a standard linear programme solver. In contrast, our proposed
algorithm produces the whole piece-wise linear solution path (for different values of the penalty
parameter) which makes the variable selection computationally more efficient.

Section 2 states the structured sparse quantile regression problem and introduces notation.
The main tools for describing the corresponding minimization problem are discussed in Sec-
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tion 3. The algorithm to solve ℓ1,∞-norm penalized quantile regression problem is introduced
and discussed in Section 4. Section 5 illustrates the use of structured quantile regression for the
analysis of a low birth weight data set. A simultaneous variable selection problem for a vector
of response variables data set is also examined. The paper is concluded in Section 6.

2 Problem statement

In this paper, Xn×m = (X1, . . . ,Xm) is the design matrix containing the explanatory variables.
The linear model which we study is:

y = Xβ + ǫ (1)

The loss function which quantile regression (see [2]) tries to minimize is given by:

n
∑

i=1

̺τ ((y −Xβ)i) (2)

where the function ̺τ is defined as:

̺τ (t) =

{

2τ t if t ≥ 0
−2(1− τ) t if t ≤ 0,

(3)

for t ∈ R and 0 < τ < 1. For τ = 1/2, one recovers ̺τ (t) = |t|. This loss function is more robust
to outliers than the usual quadratic one: the minimizer of the least squares loss is the mean,
while the minimizer of the least absolute deviations loss (expression (2) with τ = 1/2) is the
median. The optimization problem encountered in quantile regression thus is:

β̂QR = argmin
β

n
∑

i=1

̺τ ((y −Xβ)i) . (4)

The so-called ℓ1-norm ‖β‖1 =
∑m

j=1 |βj | is well known to promote sparsity [5] when used
as a penalty (added to a loss function) or as a constraint (imposed on the minimizer of a loss
function). Two major examples are the Lasso of [5] (which combines a quadratic loss with an
ℓ1-norm penalty or constraint) and sparse quantile regression of e.g. [8] (which combines the
loss (2) with an ℓ1-norm penalty. See also [9]). The advantage of using the ℓ1-norm instead of
the number of nonzero βj is computational: the former leads to a convex minimization problem
while the latter gives rise to a combinatorial minimization problem.

In this paper our goal is to impose structure between the m explanatory variables β1, . . . βm
by dividing them into g non-overlapping groups (g ≤ m). G1, . . . , Gg represent the indices
in each group. At the same time, we desire to select a small number of active groups. We
are therefore interested in imposing a penalty or constraint of ℓ1-norm type on the different
groups. Within a given group, when a single member is active (nonzero), we allow the other
members of that group to reach the same magnitude without penalty. In order to impose such a
behavior within groups, the max-norm is appropriate. Indeed, the value of maxj∈Gk

{|βj |}does
not increase as long as the largest of the |βj | (with j ∈ Gk) does not increase, regardless of the
actual size of the smaller ones.

The mixed norm ‖β‖1,∞ is defined as

‖β‖1,∞ =

g
∑

k=1

‖βGk
‖∞, (5)
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where βGk
are the components of β in group k, and ‖βGk

‖∞ = maxj∈Gk
|βj |. This mixed norm

behaves as described above: Within a group, it behaves as a max-norm and between groups it
imposes an ℓ1-norm (sum of max-norms). The structured sparse β̂ for the quantile regression
loss function in (3) is now defined as the minimizer:

β̂ = argmin
β

n
∑

i=1

̺τ ((y −Xβ)i) + λ‖β‖1,∞ (6)

where λ ≥ 0 is the penalization parameter or as the minimizer:

β̂ = arg min
‖β‖1,∞≤R

n
∑

i=1

̺τ ((y −Xβ)i) , (7)

where R is a nonnegative parameter. By suitably choosing the parameters λ and R, the min-
imizers of these problems are identical. We therefore use the same symbol β̂, both for the
minimizer of the penalized problem (6) and for the minimizer of constrained problem (7). We
do not indicate explicitly their dependence on λ or R.

The mixed norm penalty ‖β‖1,∞ has been studied before in the framework of least squares
loss functions by [11]. A special case of that least squares problem was already introduced by [15].
Here, as in [16], we combine its structure-imposing properties with the robustness properties of
quantile regression. The aim of this paper is to present an efficient algorithm for the solution of
the minimization problems (6) and (7), for various values of λ and R, and to illustrate its use
with some applications.

3 Solution of the minimization problem

Due to the presence of the non-smooth functions ̺τ and ‖β‖1,∞, the optimization problems (6)
and (7) are not differentiable. They are however convex minimization problems for which a
general theory exists. We refer to e.g. [17] for an introduction to convex analysis. In particular,
for any convex function f , the symbol ∂f denotes the subdifferential of f .

We express the condition for minimizing the cost function of expression (6) using subdif-
ferentials instead of usual derivatives. Necessary and sufficient conditions for optimality of the
optimization problem (6) are found by expressing that 0 belongs to the subdifferential of the
functional (6). Therefore, we will have that β is the minimizer of (6) if and only if there exists
a vector w ∈ ∂

∑n
i=1 ̺τ ((y −Xβ)i) and a vector u ∈ ∂‖β‖1,∞ such that:

−XTw + λu = 0. (8)

Setting r = y −Xβ, the equations that we need to solve are:































−XTw + λu = 0

wi ∈ ∂̺τ (ri)

u ∈ ∂‖β‖1,∞

r = y −Xβ.

(9)

Solving the minimization problems (6) and (7) therefore requires detailed knowledge of the
subdifferentials of ̺τ and of ‖β‖1,∞.
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In case of the function ̺τ the subdifferential is equal to:

∂̺τ (ri) =







2τ if ri > 0,
[−2(1 − τ), 2τ ] if ri = 0,

−2(1− τ) if ri < 0.
(10)

It is important to remark that, conversely, the knowledge of the value of the subgradient wi ∈
∂̺τ (ri) also gives a certain knowledge on ri. In particular, if wi = 2τ , then ri must be non-
negative, if wi = −2(1 − τ), then ri must be non-positive and if wi belongs to the interval
] − 2(1 − τ), 2τ [, then ri must be zero. This will be important when describing the algorithm
that solves the equations (9).

The subdifferential ∂‖β‖1,∞ for the penalty part ‖β‖1,∞ is more difficult. As the groups are
disjoint, each term in the sum (5) can be handled separately. Consider group k with ‖βGk

‖∞ =
maxj∈Gk

|βj |, and Gk = {j1, j2, . . . , jlk}. The subdifferential of the max function is the convex
hull of the union of the subdifferentials of the ‘maximal’ arguments (see e.g. [18]). In our case,
each argument of the max-function is a function of just a single variable βj . The subdifferential
(w.r.t. the single variable βj) of the absolute value |βj | is:

∂|βj | =







1 if βj > 0,
[−1, 1] if βj = 0,

−1 if βj < 0,
(11)

and the subdifferential of |β̃| w.r.t. βj is zero (j 6= ̃).
In this way, when all components of β in group k are zero, we find that ∂‖βGk

‖∞ consists
of an ℓ1-ball of radius 1. On the other hand, when all lk coefficients in group Gk have the
same (nonzero) absolute size, ∂‖βGk

‖∞ consists of a single face of an ℓ1-ball with radius 1 (the
signs of the βj determine which face). If the maximum is reached in 1, 2, . . . lk − 1 nonzero βj
then the set ∂‖βGk

‖∞ (with elements u) consists of that part of the same face with uj = 0
for non-maximal components βj (i.e. components that are smaller than the maximum of that
group: |βj | < ‖βGk

‖∞).
Here too, knowledge of uGk

∈ ∂‖βGk
‖∞ yields partial information on βGk

. E.g. if ‖uGk
‖1 < 1

then all |βj | in this group are zero; if ‖uGk
‖ = 1 and all uj 6= 0 then all βj in that group have

the same absolute value. If uj = 0 then βj may not be maximal in its group.
This type of interplay between β, u, w and r will be used frequently in the algorithm which

we describe in Section 4. The optimality conditions (9) are not analytically solvable for β.
However, the problems (6) and (7) fall into the class of problems described by [19] which allow
for a piece-wise linear solution path. This means that the minimizers of (6) and (7) are piecewise
linear functions in terms of λ or R. Moreover the nodes that determine these piecewise linear
functions can be calculated analytically (i.e. using linear algebra), provided one starts the
calculation from R = 0 (which corresponds to β = 0 and λ large) and proceeds carefully for
increasing values of R (decreasing values of λ). As explained in the next section, a new node of
the minimizer β̂ (as a function of R) appears e.g. when a new group becomes active (becomes
nonzero) or when an equation among the (y − Xβ)i = 0 is satisfied. There are several more
events like this possible and they are explained in more detail in the next section.

4 Algorithm

The non-iterative algorithm we propose for finding the minimizers of (6) and (7) is described in
this section. It is similar to the LARS algorithm of [7] for the Lasso and the algorithm of [8] and
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[9] for sparse quantile regression (where the number of groups equals the number of explanatory
variables). In our case, we are not restricted to singleton groups; however, similar to [11], only
non-overlapping groups are allowed.

Following [9], we set u = u(0) + u(1)/λ and w = w(0) + λw(1), where u(0), u(1), w(0) and w(1)

do not depend on λ. In this way equation (8) is equivalent to:

−XTw(0) + u(1) = 0 and −XTw(1) + u(0) = 0. (12)

As the minimizer β̂ of the problem (7) is a piecewise linear function of R = ‖β̂‖1,∞, it is

characterized by a set of (interpolation) nodes. If the value of β̂ is known in these nodes, then
β̂ can also be found for other values of R by linear interpolation.

The proposed algorithm starts from β̂ = 0 for λ sufficiently large (λ ≥ λmax). As β̂ = 0, one

finds the value of r = y − Xβ̂ = y and of w: w
(0)
i = 2τ if ri > 0, w

(0)
i = −2(1 − τ) if ri < 0

(assuming that all coefficients of r at this stage are nonzero) and w(1) = 0. Using equations (12),
one then calculates u = u(0) + u(1)/λ. The value of λmax is now found by solving the equations
‖uGk

‖1 = 1 (for all groups k : 1 . . . g). This can be done on a computer as ‖u(0)+u(1)/λ‖1,∞ is a
piecewise linear function of λ−1. The largest positive value among those numbers is the desired
value of λmax. The group k for which ‖uGk

‖ = 1 will be the first group to enter the set of active
groups (in the next step) and become non-zero. Once this break point value of λ is known, it
can be used to update u and w.

The algorithm then continues a loop with consists of several parts:

1. Express β̂ as a linear function of R: β̂ = β̂(0) + Rβ̂(1), where R = ‖β̂‖1,∞. This uses the
knowledge of the active groups, of the maximal set within each group (from the knowl-
edge of the subgradient u), of the relative signs of these components of β (also from the
knowledge of u), and of the components of y −Xβ̂ that are zero (from the knowledge of
the subgradient w).

2. Determine the largest value of R for which the expression β̂ = β̂(0) + Rβ̂(1) is valid. The
expression may cease to be valid when:

(a) an additional component of r = y −Xβ̂ becomes zero,

(b) an active group becomes non-active (all members are zero),

(c) a non-maximal component of β̂ (in some group) becomes equal in absolute value to
the maximal value in that group.

3. Once the value of R is calculated, update the variables u and w (as a function of λ).
Here equations (12) are used together with the knowledge of wi for the nonzero ri. The
knowledge of the non-maximal βj (in each group) is also used to set some uj ’s to zero.

4. Calculate the smallest value of λ for which these expressions for u and w are valid. The
expressions for u and w cease to be valid when:

(a) One of the ‖uGk
‖1 will reach 1 (a new active group will be added to the active set in

the next step),

(b) A coefficient of w equals 2τ or −2(1 − τ) (in this case, an equation rj = 0 that is
satisfied in the current step, will no longer be satisfied in the next step),

(c) in an active group k, one of the coefficients of uGk
becomes equal to 0. In this case,

the corresponding component of β̂ will be of smaller absolute value than the maximal
value in that group in the next step.
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5. Continue with step 1 or stop.

The algorithm may be stopped when the desired maximum number of active groups is reached,
when λ = 0, or when some other suitable stopping criteria is satisfied.

In this algorithm, steps 1 and 3 require the solution of a linear system of equations. Steps
2 and 4 require the solution of simple linear equations to determine R or λ at break points.
Here numerical round-off error may affect the accuracy of these calculations. Unfortunately,
the decisions (groups entering or leaving the active set, coefficients becoming submaximal in a
group, . . . ) depend on these numerical results. Round-off errors may therefore lead to the wrong
decisions being taken by the algorithm. In that case the algorithm fails. This shortcoming is
common to all the algorithms of this type [7, 8, 9].

When dealing with data X and y containing small integers, or when rows or columns of
y and X repeat, it is possible that different events (2a–c or 4a–c) occur simultaneously. One
could e.g. have two groups enter the active set at the same step. Another possibility is that
a new group becomes active at the same step when a component of an active group becoming
sub-maximal. Such possibilities are not accounted for in the current implementation of the
algorithm. This “one-at-a-time condition” [7, p417] is also common to algorithms of this type
(the work of [7, 8, 9] also does not handle such cases). [7, p438] have proposed to add a small
amount of jitter to the variables to overcome the problem.

The most effective way of understanding the proposed algorithm is by going through a
worked-out example step-by-step. Table 1 lists the complete solution path of a simple example
with:

X =





−4 3 5
−4 5 1
4 −3 0



 , y =





8
7

−11



 , (13)

groups G1 = {1} and G2 = {2, 3} and τ = 1/2. The solution path is given as a function of R
and λ, and the intermediate values of the subgradients u and w are also given. This example
was chosen in such a way that every possibility in steps 2 and 4 of the algorithm occurs at least
once.

As one can see in the example, there are certain values of λ (i.e. λ = 17, 37/5, 20/3, . . .) for
which the minimizer of the penalized problem (6) is not unique. One also sees that between
these special values of λ the minimizer β̂ of (6) is constant as a function of λ (the subgradients
u and w do change). This behavior is easy to interpret by plotting the loss

∑n
i=1 ̺τ ((y −Xβ̂)i)

as a function of R = ‖β̂‖1,∞, as was done for example (13) in Figure 1. We see that the graph
is piecewise linear and that λ is locally equal to the slope of this trade-off curve. Therefore,
between break points, λ is constant (several β̂ correspond to the same value of λ) and at break
points, λ takes on several values (in other words, for several values of λ, the solution β̂ of (6) is
constant).

A set of Matlab functions that implement the above algorithm was written by the authors,
and is available on their web page [12].

5 Applications

The algorithm presented in Section 4 gives the entire solution path for different values of R =
‖β̂‖1,∞ in some interval [0, Rmax]. Selecting the appropriate value of R (and the corresponding

coefficients β̂) is an important issue for practical purposes. As [20] have proposed, the Bayesian
information criterion (BIC) of [21] is a promising information criterion for model selection in
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# β̂ r R λ u w Step

0 (0, 0, 0) (8, 7,−11) 0 [17,+∞[ λ−1(−12, 11, 6) (1, 1,−1)

(0, R,R)
... [0, 1] 17 (−12

17 , 1117 ,
6
17) (1, 1,−1) 1

↓2a
1 (0, 1, 1) (0, 1,−8) 1 [375 , 17]

...
... 3

↓4c...
... [1, 2722 ]

37
5 (−36

37 , 1, 0) (−1
5 , 1,−1) 1

↓2a
2 (0, 2722 ,

19
22 ) (0, 0, −161

22 ) 27
22 [203 ,

37
5 ]

...
... 3

↓4a...
... [2722 ,

3
2 ]

20
3 (−1, 1, 0) (−1

6 , 56 ,−1) 1
↓2c

3 (−1, 12 ,
1
2 ) (0, 0, −11

2 ) 3
2 [3, 203 ]

...
... 3

↓4b...
... [32 , 2] 3 (−1, 1

12 ,
11
12 ) (34 ,−1,−1) 1

↓2b
4 (−2, 0, 0) (0,−1,−3) 2 [2, 3]

...
... 3

↓4a...
... [2, 2512 ] 2 (−1, −1

4 , 34) (12 ,−1,−1) 1
↓2a

5 (−23
12 , −1

6 , 16) (0, 0, −23
6 ) 25

12 [2019 , 2]
...

... 3
↓4c...

... [2512 ,
229
40 ]

20
19 (−1,−1, 0) ( 7

38 ,
−35
38 ,−1) 1

↓2a
6 (−161

40 , −17
10 , −3

5 ) (0, 0, 0) 229
40 [0, 2019 ] (−1,−1, 0) λ( 7

40 ,
−7
8 , −19

20 ) 3

Table 1: The various values of β̂, r, R, λ, u,w etc. that describe the minimizers (6) and (7) for
the simple example (13). The last column indicates the step that is taken in the algorithm of
Section 4. Values of β̂, r, u or w that can be found through interpolation (w.r.t R for β and r,
w.r.t λ for w and w.r.t. λ−1 for u) have been replaced by vertical dots for lack of space.

0 1
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22

3

2
2
25

12
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β̂1

β̂2

β̂3

0 127

22

3

2
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12

229

40

0

23

6
4

11

2

161

22

9

26

−λ = −17

−λ = −37

5

−λ = −20

3

−λ = −3
−λ = −2

−λ = −20

19

R

L
o
s
s

Figure 1: Minimizers corresponding to the example X and y of equation (13). Left: parameters
β̂ as a function of R = ‖β̂‖1,∞. Right: the corresponding trade-off curve plotting the loss
∑n

i=1 ̺τ ((y −Xβ̂)i) as a function of the penalty R = ‖β̂‖1,∞. The slope of this curve is equal
to −λ.
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quantile regression. In view of Theorem 2 of [8], and the loss function in (2), the adapted BIC
for quantile regression is as follows:

BIC(R) = log

(

1

n

n
∑

i=1

̺τ

(

(y −Xβ̂)i

)

)

−
log(n)

2n
nR, (14)

where β̂ is a function of R and nR is defined as the number of zeros in the residual vector
r = y −Xβ̂. The model with smaller BIC is more desirable (see e.g. [3]).

In this section two main applications of structured sparse quantile regression are studied
using real data sets as illustrations.

5.1 Low birth weight data set

According to [22], low birth weight (LBW) is defined as a birth weight of a liveborn infant of
less than 2500g regardless of gestational age. LBW has negative effect both on the infants and
the parents, e.g mothers of LBW babies have a greater chance of having postpartum depression
and they need more time before returning to work, infants who are born with LBW are at
greater risk of having learning or vision difficulties. Also, LBW infants would impose large
costs on society. The risks of LBW are discussed by many authors such as, [23], [24] and [25].
Therefore, determining the effective factors in LBW infants is very important. If one is interested
in studying the effects of different factors on the lower tail of the conditional distribution of
infants’ weight, [13] have remarked that using the least squares regression methods (e.g. [11]) is
not reasonable. Using quantile regression with τ -th quantile (τ ≤ 0.5) would give the possibility
to study lower tail of the infants weight given the explanatory variables.

As in [11], the data are taken from [26]. The data set contains the birth weight (expressed
in grams) of 189 infants as the response variable and 8 explanatory variables: mother’s age (in
years), mother’s weight (in pounds), mother’s race ((1, 0) = black, (0, 1) = white or (0, 0) =
other), smoking status during pregnancy (1 =yes or 0 =no), number of previous premature
labours (0, 1, 2, . . .), history of hypertension (1 = yes or 0 = no), presence of uterine irritability
(1 = yes or 0 = no), number of physician visits during the first trimester (0, 1, 2, . . .). The data
were collected at Baystate Medical Center, Springfield, Massachusetts, in the year 1986.

As [13] and [11] have suggested, some non-linear effects of two of the quantitative predictors
(mother’s weight and age) may exist. Therefore, in accordance with [13] we consider a second-
order polynomial for both of them. We put each corresponding pair of variables in one group.
A variable which needs a non-singleton group is race (it is a nominal variable with more than
two levels). Thus in order to study its effect one may create two dummy variables out of it (see
also Section 1). As was already mentioned in the introduction, both or none of them should be
included in the model. So we may put them both in one group. All other groups are singletons.

As it is mentioned in [13], and considering Tukey’s dictum: Never estimate intercepts, al-

ways estimate centercepts, the quantitative variables in the model are centered and re-scaled by
dividing by their standard deviations. Therefore, the estimated intercept may be interpreted as
the weight of an infant born to a 23 year old mother, whose weight was 130 pounds, her race was
other (neither black nor white), she was a non-smoker during her pregnancy, with on average
0.16 previous premature labours, no history of hypertension, no presence of irritability, and an
average of 0.47 physician visits during the first trimester.

A small amount of jitter is added to the variables y and X, to guarantee that the one-at-a-
time condition mentioned at the end of Section 4 is satisfied (see e.g. also [7, p438]). We have
verified that this does not change the outcome of the numerical experiments.
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Figure 2: Analysis of the LBW data set. The first row shows (part of) the solution path given
by the algorithm in Section 4 for τ = 0.1, 0.5, 0.9. The vertical dashed line indicates the model
chosen by the BIC (for R = RBIC). The second row shows the corresponding coefficients β̂ for
the BIC model.

Figure 2 (top) presents (part of) the solution path of the model coefficients β̂ for for τ = 0.1,
τ = 0.5, and τ = 0.9. A vertical dashed line is drawn at R = RBIC to indicate the coefficients
chosen by the BIC (14). The bottom row of this figure contains the three corresponding model
coefficients (chosen by BIC). As one may see, the models chosen for various values of τ are
different, i.e. the effective variables for the lower tail of the conditional distribution are different
from the ones for the median and for the upper tail. Since we are interested in studying the
effective variables on the LBW, using loss functions such as least-squares (with minimizer equal
to the conditional mean) would only give partial information. This result is in accordance with
[27] who remarked that the effects of the explanatory variables in LBW data set are not constant
across the conditional distribution of the infant’s weight. In other words, for different quantiles
one may have different models.

5.2 Simultaneous variable selection for a vector of response variables

Consider Y = (y1, y2, . . . , yp) a vector of possibly correlated response variables. One is interested
in modelling these variables using a common set of explanatory variables X = (x1, x2, . . . , xm).
For variable selection purposes, one may consider p linear models yj = Xβ + ǫ, (j = 1, . . . , p)
separately and find e.g. the penalized model solution for β for each model. But as [15] have
suggested, it is sometimes interesting to select variables by considering all p response variables
simultaneously, specially when these p variables are correlated.

Suppose we have n observations yij (with i = 1, . . . , n and j = 1, . . . , p) for Y = (y1, y2, . . . , yp)
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as response variables and X = (x1, x2, . . . , xm) as explanatory variables. Let βkj, (k = 1, . . . ,m
and j = 1, . . . , p) be the regression coefficient of xk regressed on yj . As [15] have observed,
‖(βk1, βk2, . . . , βkp)‖∞ = max{|βk1|, |βk2|, . . . , |βkp|} is a reasonable measure of the explanatory
power of the regressor xk on all p response variables yj simultaneously. If the least-squares loss
of [15] is replaced by the more robust loss function (3), the following optimization problem:

β̂ = argmin
β

n
∑

i=1

p
∑

j=1

̺τ

(

yij −
m
∑

k=1

xikβkj

)

+ λ
m
∑

k=1

max{|βk1|, |βk2|, . . . , |βkp|}. (15)

should be solved to select the variables. Equivalently, one could also use the constrained formu-
lation taking the form:

β̂ = arg min∑m
k=1

max{|βk1|,|βk1|,...,|βkp|}≤R

n
∑

i=1

p
∑

j=1

̺τ

(

yij −
m
∑

k=1

xikβkj

)

. (16)

As the argument of ̺τ in these last two expressions is a linear function of the βkj , problems (15)
and (16) are special cases of problems (6) and (7), and can therefore be solved by the algorithm
of Section 4. As [15] pointed out, this is an exploratory tool for identifying a suitable subset
of regressor variables, not for actual parameter estimation. The problem (15) has already been
proposed by [16] who solved it for a fixed value of R using a generic linear programming code.
The algorithm of Section 4 finds the minimizer for a whole range of values of R. The latter
algorithm is therefore more useful as the BIC criterion (14) (also used by [16]) requires a further
minimization over many values of the parameter R.

As an example, we consider the ‘93CARS’ data set which contains information on 93 new
cars for the 1993 model year which is obtained from [14]. Table 2 presents the variables we have
considered. Some of the observations have been omitted due to missing values, so in total 82
observations are used.

Figure 3 shows the pairwise scatter plots of the 5 response variables. The two main points
which follow from this figure are: 1. the variables are correlated, and 2. there are some outliers
in the data. Therefore, a simultaneous variables selection using least absolute deviation (QR
with τ = 0.5) seems reasonable here. Both response variables y and regression variables X are
standardized, so one would be able to compare variables in different measures.

The algorithm of Section 4 is used with τ = 0.5. In this application too, a small amount of
jitter is added to the variables y, so as to guarantee that the one-at-a-time condition mentioned
at the end of section 4 is satisfied (see e.g. also [7, p438]). We have again verified that this
does not change the outcome of the numerical experiments. Figure 4 (left) shows the presence
or absence of each group (as a functions of R = ‖β‖1,∞).

The BIC (14) is used to select a model among all possible models calculated along the
solution path. The corresponding value of ‖β̂‖1,∞ is called RBIC, and is indicated on the first
panel with a dotted line. The final model is given in Figure 4, (right). As one may see, the
variables x2, x8, x11 and x12 were not selected.

6 Conclusions

A structured sparse solution (or group sparse solution) of a quantile regression model, based
on penalizing or constraining the quantile regression loss function by a mixed ℓ1,∞-norm of
regression coefficients, was discussed.
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Table 2: Variables in 93CARS data set.
Variable Description

y1: Minimum price (in $1,000) Price for basic version of this model
y2: Midrange price (in $1,000) Average of Min and Max prices
y3: Maximum price (in $1,000) Price for a premium version
y4: City MPG miles per gallon by EPA rating
y5: Highway MPG -
x1: Number of cylinders -
x2: Engine size in liters
x3: Horsepower maximum
x4: RPM revs per minute at maximum horsepower
x5: Engine revolutions per mile (in highest gear)
x6: Fuel tank capacity in gallons
x7: Passenger capacity in persons
x8: Length in inches
x9: Wheelbase in inches
x10: Width in inches
x11: U-turn space in feet
x12: Rear seat room in inches
x13: Luggage capacity in cubic feet
x14: Weight in pounds

An algorithm to compute the solution of the corresponding minimization problem was pre-
sented. This algorithm computes the minimizer of the penalized or constrained loss function for
all values of R = ‖β̂‖1,∞ within a range [0, Rmax] instead of just for a single value of R. This
is a strong point when using the BIC criterion (which needs a further minimization over R) for
model selection.

In a first application, the effective variables for the lower and upper quantiles of the condi-
tional distribution of the birth weight of infants in the LBW data set were identified, subject
to a group sparsity constraint. As a second application we studied the problem of simultane-
ous variable selection in a quantile regression model for robustly modeling a vector of possibly
correlated response variables using a common set of explanatory variables.

The implementation of the algorithm presented in Section 4 is not straightforward. There-
fore, such an implementation in Matlab is provided on the authors’ webpage [12], together with
the scripts for processing the LBW data set and the 93CARS data set. The necessary func-
tions for interpolating the solution β̂ between the nodes and choosing the best model using the
proposed BIC (14) are also provided.

The current short article dealt with the non-overlapping group case. An potential extension
of the algorithm would consist of including the overlapping group case as well.
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