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Abstract A new and very fast method of bootstrap for sampling without replacement
from a finite population is proposed. This method can be used to estimate the variance
in sampling with unequal inclusion probabilities and does not require artificial popu-
lations or utilization of bootstrap weights. The bootstrap samples are directly selected
from the original sample. The bootstrap procedure contains two steps: in the first step,
units are selected once with Poisson sampling using the same inclusion probabilities
as the original design. In the second step, amongst the non-selected units, half of the
units are randomly selected twice. This procedure enables us to efficiently estimate the
variance. A set of simulations show the advantages of this new resampling method.

Keywords Poisson sampling · Simple random sampling · Unequal probability
sampling · Variance estimation

1 Introduction

Resampling methods are frequently used to draw inference in survey statistics. The
main difficulty, however, is that the variance of an estimator depends on the sampling
design. Bootstrap methods must thus be adapted for each sampling design. Moreover,
the variance of the Horvitz–Thompson estimator can have a very different form from
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1346 E. Antal, Y. Tillé

the variance estimator. The original bootstrap method, developed by Efron (1979) is
not directly applicable in sampling from a finite population because the units of the
sample are not independent and identically distributed when the sample is selected
without replacement. Gross (1980), Booth et al. (1994) and Chao and Lo (1985)
proposed a method based on the construction of pseudo-populations from the sample
(see also the generalizations of Chauvet 2007). Another important family of methods
is the rescaled bootstrap (Rao and Wu 1988) which consists of modifying the values
of the interest variable to reconstruct an unbiased variance estimator for statistics that
are linear functions of the observations. The Rao and Wu method can however be
also presented as a weighting system (Rao et al. 1992) that is applied on the vector
of the variable of interest. Other methods were also proposed by Mac Carthy and
Snowden (1985), Kuk (1989), Rao et al. (1992), Shao and Tu (1995), Sitter (1992a),
Sitter (1992b), Holmberg (1998).

The main idea of this paper is similar to the general weighted bootstrap (Mason and
Newton 1992; Bertail and Combris 1997), which has also been used in the paper of
Lahiri (2003). Beaumont and Patak (2012) propose a bootstrap method that directly
reconstructs the variance for linear cases. Antal and Tillé (2011a) propose another
method that uses non-integer weights and that is based on mixture of discrete multi-
variate distributions. In this paper, we propose a new methodology to select a bootstrap
sample for sampling without replacement from a finite population. This method is an
extension of the half-sample bootstrap proposed by Saigo et al. (2001) to which we add
a correction for finite population in order to correctly estimate the variance in unequal
probability sampling. This method enables one to quickly implement and directly
reconstruct the appropriate variance without need of reweighting the statistical units.
Indeed, each unit is duplicated an integer number of times.

The paper is organized as follows: in Sect. 2, the notation for a sampling design, the
estimator of the total and its variance estimator are defined. Section 3 is devoted to the
conditions needed to obtain unbiased bootstrap estimates of the variances. In Sect. 4,
a new method is proposed for Poisson sampling. Next, the doubled half sampling is
defined in Sect. 5. This tool is used to define a new bootstrap method for simple random
sampling in Sect. 6 and for unequal probability sampling in Sect. 7. Simulations are
presented in Sect. 8 and the interest of this new method is discussed in Sect. 9.

2 Sampling design, total and variance

Let p(.) be a sampling design on a population U = {1, . . . , N } of size N such that

p(s) ≥ 0, for all s ⊂ U, and
∑

s⊂U

p(s) = 1.

Let S be the random sample such that Pr(S = s) = p(s). The sample size n of S can
be random or not. Define also the inclusion probabilities πk = Pr(k ∈ S) for k ∈ U,
and the joint inclusion probabilities πk� = Pr(k and � ∈ S) for k, � ∈ U. Moreover,
define �k� = πk� − πkπ� for k, � ∈ U, and �̌k� = �k�/πk�. When k = �, we obtain
�kk = πk(1 − πk), k ∈ U and �̌kk = 1 − πk .
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The doubled half bootstrap 1347

If all the inclusion probabilities are positive, then the total Y = ∑
k∈U yk of the

values y1, . . . , yk, . . . , yN taken by the interest variable y can be unbiasedly estimated
by the Horvitz–Thompson estimator (HT) (Horvitz and Thompson 1952)

Ŷπ =
∑

k∈S

yk

πk
, (1)

whose variance is given by

var(Ŷπ ) =
∑

k∈U

∑

�∈U

yk y�
πkπ�

�k�

and can be unbiasedly estimated by the Horvitz–Thompson (HT) variance estimator

v̂arH T (Ŷπ ) =
∑

k∈S

∑

�∈S

yk y�
πkπ�

�̌k�.

This variance estimator is however very unstable because

∑

k∈S

�̌k� (2)

is generally different from zero even when
∑

k∈U �k� = 0. In the particular case
where the sample size is fixed and yk = πk, k ∈ U, the HT-estimator of the total
is equal to the sample size and is thus not random. If (2) is different from zero, the
HT-variance estimator is generally not zero. Indeed when yk = πk,

v̂arH T (Ŷπ ) =
∑

k∈S

∑

�∈S

�̌k�.

Thus when (2) is different from zero v̂arH T (Ŷπ ) can be random even when var(Ŷπ )
is null.

When the sample size is fixed, the Sen–Yates–Grundy (SYG) estimator is also
unbiased (Sen 1953; Yates and Grundy 1953):

v̂arSY G(Ŷπ ) =
∑

k∈S

∑

�∈S

yk y�
πkπ�

Dk�,

where

Dk� =

⎧
⎪⎪⎨

⎪⎪⎩

− ∑
j∈S
j �=k

�k j
πk j

if k = �

�k�

πk�
if k �= �.

(3)
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1348 E. Antal, Y. Tillé

Several other variance estimators exist. They all have the same form as the SYG-
estimator with different values for Dk�. Matei and Tillé (2005) discussed the merits
of a family of estimators based on another value of Dk� given by:

D̃k� =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ck − c2
k∑

j∈S c j
if k = �

− ckc�∑
j∈S c j

if k �= �.

Diverse values have been proposed for the ck . Matei and Tillé (2005) ran a set of
simulations that shows that the choice proposed by Hájek (1981):

ck = n

n − 1
(1 − πk). (4)

produces a very efficient and slightly biased estimator. We refer to this estimator as
the H-estimator of the variance.

3 Bootstrap

A bootstrap sample is a sample with replacement that is not necessarily a simple
random sample and that is selected from S. Let S∗

k be the number of times unit k is
repeated in the bootstrap sample. The HT estimator of the total for a single bootstrap
sample is given by

Ŷ ∗ =
∑

k∈S

yk

πk
S∗

k .

Let Pr∗(.) = Pr(.|S), E∗(.) = E(.|S), var∗(.) = var(.|S) and cov∗(., .) = cov(., .|S)
respectively denote the probability, the expectation, the variance and the covariance
operators in the bootstrap sample conditional on the original sample. This gives us

E∗(Ŷ ∗) =
∑

k∈S

yk

πk
E(S∗

k ),

and

var∗(Ŷ ∗) =
∑

k∈S

∑

�∈S

yk y�
πkπ�

cov∗(S∗
k , S∗

� ).

A necessary and sufficient condition for the expected value E∗(Ŷ ∗) to equal the HT
estimator of the total is

E∗(S∗
k ) = 1, k ∈ S. (5)

Moreover, in order to have an unbiased bootstrap estimate of the variance of the
HT total estimator, we can define a bootstrap method such that the variance of the
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The doubled half bootstrap 1349

bootstrap estimators of the total is equal to the HT variance estimator given in (1). In
order to satisfy this equality, the necessary and sufficient condition is composed of
two parts. The first condition is that

var∗(S∗
k ) = �̌kk = 1 − πk, k ∈ S. (6)

The second condition is that

cov∗(S∗
k , S∗

� ) = �̌k�, k �= � ∈ S. (7)

The condition on the covariances is however difficult to meet when the sample is
selected with fixed sample size and unequal inclusion probabilities. In this particular
case, it is difficult to exactly satisfy more than conditions (5) and (6). Condition (7)
can however be approximately satisfied.

When the sample size is fixed, another way of constructing an unbiased estimator
of the variance is to equalize the variance of the bootstrap estimator of the total with
the SYG-estimators of the variance. The conditions become

E∗(S∗
k ) = 1, k ∈ S, (8)

var∗(S∗
k ) = Dkk, k ∈ S, (9)

and
cov∗(S∗

k , S∗
� ) = Dk�, k �= � ∈ S. (10)

But again, conditions (10) on the covariances are difficult to meet when the sample is
selected with unequal inclusion probabilities, but it could be approximately satisfied.
For unequal probability sampling with fixed sample size, there exist two bootstrap
strategies that may be used to approximate either the HT or the SYG-estimator.

The bootstrap estimator of the variance vboot (Ŷ ∗) is computed by generating a set
of bootstrap samples and by computing the variance of the outcomes of Ŷ ∗.Moreover,
if a bootstrap method provides an approximately unbiased estimator for the variance
of totals, it will also provide approximately unbiased variance estimators for smooth
functions of totals.

There exists a lot of distributions that satisfy conditions (5) and (6) or (8) and (9).
However, if the original sample is selected with unequal inclusion probabilities and
if we impose that S∗

k is integer and that the sum of the S∗
k is not random, the problem

is really complex. This is a problem of sampling with replacement and with unequal
probabilities where the expectation and the variance are fixed. For this reason let us
begin with a simple case: Poisson sampling design.

4 Bootstrap for Poisson design

Suppose the original sample is obtained by a so-called Poisson design, where the obser-
vation k is included with probability πk and the decision is made for each observation
independently. The name reflects the fact that if all πk are small, then the sample size
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n has approximately a Poisson distribution with mean
∑N

k=1 πk . In a Poisson design
with inclusion probabilities πk ,

p(s) =
N∏

k=1

[
π
1(k∈s)
k (1 − πk)

1(k /∈s)
]
, for all s ⊂ U,

where 1(A) is equal to 1 if A is true and 0 otherwise. The inclusion probability is
Pr(k ∈ S) = πk . Moreover, πk� = πkπ� when k �= � ∈ U and πkk = πk . Thus
�k� = 0, when k �= � ∈ U and �kk = πk(1 − πk). We thus have, �̌k� = 0, when
k �= � ∈ U and �̌kk = 1 − πk . With Poisson sampling design the sample size n is
random thus the estimator of variance is calculated by v̂arH T (Ŷπ ).

Patak and Beaumont (2009) propose a bootstrap method for Poisson design that use
several different distribution as normal or lognormal random variables with expectation
equal to 1 and variances equal to 1 − πk . Unfortunately, this method requires the use
of non-integer weights. Instead we recommend the use of a discrete random variable
for S∗

k .

Antal and Tillé (2011a) propose a simple bootstrap method that uses n independent
Bernoulli random variables Xk with parameter πk and n independent Poisson random
variables Zk with parameter λ = 1. For this method, the bootstrap sample is given by

S∗
k = Xk + (1 − Xk)Zk, k ∈ S.

Thus, the probability mass function of S∗
k is given by:

Pr∗(S∗
k = r) = πk1[r = 1] + (1 − πk)

e · r ! , r = 0, 1, 2, . . .

where e ≈ 2.71 is the Euler constant. The bootstrap variable S∗
k satisfies conditions (5),

(6), and (7).
We propose another method based on n independent Bernoulli random variables

Xk, k ∈ S with parameter πk and n independent Bernoulli random variables Yk with
parameter 1/2. Define the bootstrap sample by

S∗
k = Xk + 2(1 − Xk)Yk, k ∈ S.

The probability distribution of S∗
k is thus

S∗
k =

⎧
⎨

⎩

0 with a probability (1 − πk)/2
1 with a probability πk

2 with a probability (1 − πk)/2.

Again, the bootstrap variable S∗
k meets conditions (5), (6), and (7). Here, the bootstrap

sample does not contain the same unit more than twice.
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The doubled half bootstrap 1351

5 One-one design and doubled half sampling

When the original sample has a fixed sample size, Antal and Tillé (2011a) propose
one-one designs, a tool in order to estimate the variance of an estimator via bootstrap
method. Members of this family are discrete probability distributions with

E∗(S∗
k ) = 1,

var∗(S∗
k ) = 1.

The name comes from these conditions on their expectation and variance. Each boot-
strap sample has the same fixed sample size

∑

k∈S

S∗
k = n.

The covariance between S∗
k and S∗

� is given by

cov∗(S∗
k , S∗

� ) = − 1

n − 1
, k �= � ∈ S.

Antal and Tillé (2011a) showed that such a sampling design can be obtained by using
a mixture between two samples selected by simple random sampling with replacement
and by simple random sampling with over-replacement (Antal and Tillé 2011b). One-
one designs can next be mixed with other sampling designs in order to reproduce an
unbiased estimator of variance for most of the sampling methods with fixed sample
size.

We propose another method for selecting a one-one design that we call “doubled
half sampling”. In the next section we use this in a new bootstrap procedure. If the
size n of the initial sample is even, then a sample from S of size n/2 is selected with
simple random sampling without replacement. Next, each selected unit is taken twice.
In this case, we obtain

E∗(S∗
k ) = 2 × 1

2
= 1,

var∗(S∗
k ) = 4 × 1

2

(
1 − 1

2

)
= 1,

and

cov∗(S∗
k , S∗

� ) = 4 × 1

2

(
1 − 1

2

) −1

n − 1
= −1

n − 1
.

If n is odd, then we can have the same property by means of the following slightly
modified procedure:

• Select (n − 1)/2 units from S and take them twice in the bootstrap sample.
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1352 E. Antal, Y. Tillé

• With a probability 1/4, select a unit with equal probabilities from the set of units
selected twice. This unit is selected three times.

• Otherwise, with a probability 3/4, select a unit with equal probabilities among the
units that are not selected twice. This unit is selected only once.

This procedure gives the following distribution for S∗
k :

Pr∗(S∗
k = j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n+1
2n ×

(
1 − 3

4 × 2
n+1

)
= 2n−1

4n if j = 0

n+1
2n × 3

4 × 2
n+1 = 3

4n if j = 1

n−1
2n ×

(
1 − 1

4 × 2
n−1

)
= 2n−3

4n if j = 2

n−1
2n × 1

4 × 2
n−1 = 1

4n if j = 3.

After some algebra, it can be shown that this design is one-one. A one-one design can
thus be selected for any sample size except when n = 1.

6 Bootstrap for simple random sampling without replacement

In this section we propose a bootstrap method for use when original samples are
selected by simple random sampling without replacement, where

p(s) =
{

n!(N−n)!
N ! for all the samples s of size n

0 otherwise.

The inclusion probability is πk = n/N . Moreover,

πk� = n(n − 1)

N (N − 1)

when k �= � ∈ U and πkk = n/N . Thus,

�k� = − n(N − n)

N 2(N − 1)
,

when k �= � ∈ U and

�kk = n(N − n)

N 2 .

We thus have,

�̌k� = − N − n

N (n − 1)
,
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The doubled half bootstrap 1353

when k �= � ∈ U and �̌kk = 1 − n/N . Note also that in this case, the HT-estimator
and the SYG-estimator of the variance are equal, i.e. �̌kk = Dkk = 1 − n/N for all
k ∈ U.

We propose using bootstrap samples using the following two-stage procedure. Let
S∗

k denotes the number of times unit k is selected in the bootstrap sample.

• Select units from S by using independent Bernoulli random variables Xk, k ∈ S,
with probabilities πk = n/N . Let m = ∑

k∈S Xk . Thus E(m) = n2/N . For now
we set S∗

k = Xk , including each selected unit in the bootstrap sample once, though
this may be adjusted later.

• – If the number of non-selected units is greater than or equal to 2 (n − m ≥ 2),
then select a doubled half sampling design amongst the units k ∈ S such that
Xk = 0.

– If there is exactly one (say unit �) non-selected unit (n − m = 1), select that
unit with distribution

S∗
� =

⎧
⎨

⎩

0 with probability 1/4
1 with probability 1/2
2 with probability 1/4.

Next, randomly select one of the units such that Xk = 1 (say z) with equal
probability and select it S∗

z = 2 − S∗
� times.

– If the number of units such that Xk = 0 is null (n −m = 0), then the bootstrap
sample S∗

k is the same as the original sample.

Note that

Pr∗(S∗
k = j |m = r and n − r is even) =

⎧
⎨

⎩

(1 − r/n)/2 if j = 0
r/n if j = 1
(1 − r/n)/2 if j = 2,

Pr∗(S∗
k = j |m = r, n − r is odd, and r < n − 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 − r

n

) 2n−1
4n if j = 0

r
n + (

1 − r
n

) 3
4n if j = 1

(
1 − r

n

) 2n−3
4n if j = 2

(
1 − r

n

) 1
4n if j = 3,

and

Pr∗(S∗
k = j |m = n − 1) =

⎧
⎨

⎩

1/(2n) if j = 0
1 − 1/n if j = 1
1/(2n) if j = 2.

It can be checked that E(S∗
k |m) = 1 and var(S∗

k |m) = 1 − m/n, for all three cases.
We obtain E(S∗

k ) = E[E(S∗
k |m)] = 1 and

var(S∗
k ) = E var(S∗

k |m)
+ var E(S∗

k |m) = 1 − E(m)/n = 1 − E(m)/n = 1 − (n2/N )n = 1 − n/N .
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1354 E. Antal, Y. Tillé

We thus have E∗(S∗
k ) = 1, var∗(S∗

k ) = �̌kk, k ∈ S. The values cov∗(S∗
k , S∗

� ) = �̌k�

do not depend on k and � because units have all been treated symmetrically in the
sense that there is no particular treatment for a particular unit, which implies that all
the covariances cov∗(S∗

k , S∗
� ) are equal for all the couples k, � such that k �= �.

This procedure differs from the method proposed in Antal and Tillé (2011a). Indeed,
in the first stage a Bernoulli design is used whereas in Antal and Tillé (2011a) almost
fixed sample size is used. In the second stage, a doubled half sampling whereas in
Antal and Tillé (2011a) a complex mixture of distribution is applied. The new method
is thus less complex.

7 Bootstrap for unequal probability sampling without replacement

In this section we propose a bootstrap strategy for estimating the variance of an estima-
tor when the original sample is selected by means of an unequal probability sampling
design. There is a large set of methods of sampling with unequal inclusion probabil-
ities and fixed sample size (see among others Brewer and Hanif 1983; Tillé 2006).
Each method has a particular matrix of �̌k� but the diagonal of this matrix is always
�̌kk = 1 − πk, k ∈ U. However the sampling designs with large entropy have very
similar joint inclusion probabilities (see Brewer and Donadio 2003; Matei and Tillé
2005; Henderson 2006; Preston and Henderson 2007).

Consider the procedure used to compute the inclusion probabilities from a vector
of positive values xk . First, compute the quantities

nxk∑
�∈U x�

, (11)

k = 1, . . . , N . For units where the quantities are larger than 1, set πk = 1. Next, the
quantities are recalculated using (11) restricted to the remaining units. This procedure
is repeated until each πk is in (0, 1]. Some πk are 1 and others are proportional to
xk . Let πk = Hk(x1, . . . , xN ; n) denote the function that allows us to construct these
inclusion probabilities from a vector of positive values (x1, . . . , xN ). Function H(.; .)
will be used in the new bootstrap we propose for unequal probability sampling without
replacement.

A bootstrap method for unequal probability sampling without replacement should
satisfy

E∗(S∗
k ) = 1,

and must have a fixed sample size i.e.

∑

k∈S

S∗
k = n.

Moreover var∗(S∗
k ) should be equal either to the diagonal of matrix (�̌k�) used for the

HT-estimator or to the diagonal of matrix (Dk�) used for the SYG-estimator, i.e.
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The doubled half bootstrap 1355

var∗(S∗
k ) = �̌k� = 1 − πk, k ∈ S,

or, by posing φk = 1 − Dkk,

var∗(S∗
k ) = Dkk = 1 − φk, k ∈ S.

With unequal inclusion probabilities, it is difficult to construct a bootstrap method that
meets the properties of the covariances given by

cov∗(S∗
k , S∗

� ) = �̌k�, or cov∗(S∗
k , S∗

� ) = Dk�, k �= � ∈ S. (12)

Nevertheless, since the bootstrap sample has a fixed sample size, the relation

∑

k∈S

cov∗(S∗
k , S∗

� ) = 0 (13)

is the same as for Dk�. Indeed,

∑

k∈S

Dk� = 0, (14)

which ensures that (12) will be approximately satisfied when the sampling design has
large entropy. Let S∗

k denotes the number of times unit k is selected in the bootstrap
sample.

• Select units from S by using a Poisson random variable Xk, k ∈ S, with the same
inclusion probabilities as the original design πk . The selected units are taken once
in the bootstrap sample S∗

k . For now we set S∗
k = Xk , including each selected unit

in the bootstrap sample once, though this may be adjusted later. Let m = ∑
k∈S Xk .

Thus E(m) = ∑
k∈S πk .

• – If the number of non-selected units is greater than or equal to 2 (n − m ≥ 2),
then select a doubled half sampling design amongst the units such that Xk = 0.

– If there is exactly one (say unit �) non-selected unit (n − m = 1), the S∗
k are

completely redefined.
• With a probability 1/2, select the same bootstrap sample as the original

sample (S∗
k = 1, k ∈ S).

• Otherwise, with a probability 1/2, compute

πk|n−1 = E(Xk |m = n − 1) = 1 −
1−πk
πk∑

�∈S
1−π�
π�

(see the Appendix for the proof). With a sampling method with unequal
inclusion probabilities with fixed sample size, select n − 2 units from S
with probability

ψk = 1 − Hk(1 − πk|n−1, k ∈ S; 2)
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1356 E. Antal, Y. Tillé

and take them once in the bootstrap sample. Select a sample with a doubled
half sampling from the two units that are not selected. Note that ψk =
2πk|n−1 − 1 except when one of the πk|n−1 is less than 1/2.

Note that the procedure proposed in Sect. 6 for simple random sampling is a particular
case of the procedure for unequal probability sampling when πk = n/N .

Result 1 With this procedure E(S∗
k |m) = 1,

var(S∗
k |m = r) = 1 − πk|r , r = 0, 2, 3, . . . , n,

var(S∗
k |m = 1) = 1 − ψk

2
= 1 − πk|n−1 + πk|n−1 − 1 + ψk

2
,

where πk|r = E(Xk |m = r).

The proof is given in the Appendix.
We thus have E(S∗

k ) = E[E(S∗
k |m)] = 1 and

var(S∗
k ) = Evar(S∗

k |m)+ varE(S∗
k |m)

= E(1 − πk|r )+
(
πk|n−1 − 1 + ψk

2

)
Pr∗(m = n − 1)

= 1 − πk +
(
πk|n−1 − 1 + ψk

2

)
Pr∗(m = n − 1).

The variance of the diagonal is very slightly biased. Indeed

var∗(S∗
k ) = �̌kk +

(
πk|n−1 − 1 + ψk

2

)
Pr∗(m = n − 1), k ∈ S.

The bias is small and often nonexistent. Indeed, (m = n −1) is a rare event. Moreover,
πk|n−1 − (1 + ψk)/2 is null except if one of the πk|n−1 is smaller than 1/2, which is
also rare except in case where the sample size is very small. Moreover, we always have

∑

k∈S

(
πk|n−1 − 1 + ψk

2

)
= 0.

Below, the simulations will show that even for very small sample sizes, the bias is
negligible.

The same results can be derived by taking φk in place ofπk . The Dkk can sometimes
be larger than 1. In this case, we advocate to take φk = 0. We can thus define two
bootstrap methods depending on whether the inclusion probabilities are πk or φk .

The first case will be referred to as π -bootstrap and the second as φ-bootstrap. The
bootstrap sample size always remains fixed, i.e.

∑

k∈S

S∗
k = n,

which implies that
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The doubled half bootstrap 1357

∑

k∈S

E∗(S∗
k ) = n and

∑

k∈S

cov∗(S∗
k , S∗

� ) = 0.

Unfortunately, we cannot show theoretically that (7) or (10) are satisfied, which
are conditions for the validity of bootstrap variance estimation. However, the effect
of ignoring (7) or (10) is not important in our empirical study. This is certainly due to
the fact that the marginal constraints given in (13) and (14) are satisfied.

8 Simulation studies

8.1 Comparison with existing variance estimators for the total

In the first part of the simulation study, we examined the performance of the estimator
using the proposed method and then compared this estimator with other variance esti-
mators. We ran simulations on the MU284 population from Särndal et al. (1992) from
where we selected samples of size n = 2, n = 10 and n = 40 with inclusion probabil-
ities proportional to variable P75 (population in 1975). We used a maximum entropy
design (also called conditional Poisson sampling) because this method maximizes
the entropy of the sampling design subject to given inclusion probabilities and fixed
sample size and can be implemented very quickly (see Tillé 2006). The variable of
interest was RMT85 (revenues from 1985 municipal taxation). We compared the HT-
estimator, the SYG-estimator, the H-estimator, the π -bootstrap and the φ-bootstrap
of the variance for the total of RMT85. We ran 10,000 simulations and, in each of
them, we used 10,000 bootstrap replications. Due to the simplicity of the method, the
simulations were achieved in a few hours. Table 1 shows the relative bias given by

RB = Esim[vboot (Ŷ ∗)] − var(Ŷ )

var(Ŷ )

and the coefficients of variation given by

CV =
√

varsim[vboot (Ŷ ∗)]
var(Ŷ )

of the HT-estimator, SYG-estimator and the Bootstrap estimator, where Esim(.) and
varsim(.) respectively denote the expectation and the variance under the sample selec-
tion mechanism estimated by the simulations. Although only the HT-estimator and the
SYG-estimator are strictly unbiased, the relative bias of the π -bootstrap method given
by the simulations is still smaller. All the bias computed by simulation are nevertheless
very small and are not significantly different from zero. The simulations also show
that the HT-estimator is very unstable and that the bootstrap method performs as well
as the SYG-estimator and the H-estimator. These simulations show that the bootstrap
leads to an estimator of the variance that is at least as efficient as the SYG-estimator
even for a very small sample size (n = 2).
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Table 1 Relative bias and
coefficients of variation of the
HT-estimator, the
SYG-estimator, H-estimator, the
π -bootstrap and the φ-bootstrap

Estimator Relative bias (%) Coefficients
of variation

n = 2

HT-estimator 1.78511 1.98240

SYG-estimator 1.40424 1.80025

H-estimator 3.56754 1.84788

π -Bootstrap 3.77461 1.85225

φ-Bootstrap 1.14898 1.80014

n = 10

HT-estimator 2.62246 1.31354

SYG-estimator 0.69995 0.50915

H-estimator 2.74196 0.53513

π -Bootstrap 0.76149 0.52311

φ-Bootstrap 0.30085 0.50914

n = 40

HT-estimator −1.53914 1.38550

SYG-estimator −0.11598 0.26809

H-estimator −0.35775 0.26119

π -Bootstrap −0.19534 0.26211

φ-Bootstrap −0.15363 0.26830

8.2 Performance in the case of variance estimation of other functions of interest

In the second part of the simulation study, we ran simulations in order to examine
performance in relation to the variance of nonlinear functions of interest. Besides the
total, the ratio of two totals, the median and the Gini index were also used as a function
of interest. In the case of nonlinear statistics, the variances under the simulations, say
the Monte Carlo variances were considered as the true variances of the estimators. A
population of 150 units was generated from the model yk = (β0 +β1x1.2

k +σεk)
2 +c,

with xk = |ik | and ik ∼ N (0, 7), εk ∼ N (0, 1) andσ = 15. The regression parameters
were β0 = 12.5, β1 = 3 and c = 4000. The model and its parameters were chosen
intentionally to have a distribution for y similar to a lognormal, as it is often used
for income distributions, with a correlated and positive explanatory variable x in
the regression model. From this population, 1000 samples were drawn using, as in
the previous section, a maximum entropy sampling design with unequal inclusion
probabilities. Concerning the inclusion probabilities, they were calculated proportional
to the values of a variable z, which was generated from equation z = y0.2 p where
p ∼ ln N (0, 0.25). In this manner, the correlation between y and z is about 0.5. We
knowingly used a large sample rate n/N = 1/3 and a skewed population in order to
better illustrate the performance of the tested bootstrap methods. From each of these
samples, we calculated four statistics: the total, the median, the Gini index of variable
y and the ratio of total of variable y on the total of variable x .
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From each of the 1,000 initial samples, 1,000 bootstrap samples were selected
using three different bootstrap methods. Besides the new bootstrap method, two other
resampling methods were tested. The first one is the generalization of the bootstrap
method without replacement proposed by Booth et al. (1994) for unequal inclusion
probabilities (Chauvet 2007). This bootstrap method of Booth et al. (1994) is itself a
variant of the initial bootstrap with replacement method that consists of creating an
artificial population from the initial sample and then drawing bootstrap samples from it
with the same design as the initial one (Gross 1980; Chao and Lo 1985). After drawing
the bootstrap samples, the estimators and their variances were computed for each of
the initial samples and then the means of these variances were then compared with the
approximations of the true variances. Note that the median is not a smooth function
of the total. Estimating its variance can therefore be difficult, but the simulations
show that in this case bootstrap methods perform well. The second one is the method
proposed in Antal and Tillé (2011a).

In order to measure the performance of the new method and compare it with the
other ones, the following five indicators were used:

• Lower error rate (L) in %

L = 100

sim

sim∑

i=1

I

[
θ̂ − 1.96 ×

√
var(θ̂∗) > θ

]
,

where I [a] = 1 if a is true and I [a] = 0 elsewhere,
• Upper error rate (U) in %

U = 100

sim

sim∑

i=1

I

[
θ̂ + 1.96 ×

√
var(θ̂∗) < θ

]
.

• Total error rate (ER) in %

E R = 100 − 100

sim

sim∑

i=1

I

[
θ̂ − 1.96 ×

√
var(θ̂∗) ≤ θ ≤ θ̂ + 1.96 ×

√
var(θ̂∗)

]
.

• Relative Bias

RB = 100 × var(θ̂∗)− varsim(θ̂)

varsim(θ̂)
= 100 × B

varsim(θ̂)
,

where B is the Bias of the var(θ̂∗).
• Relative Root Mean Squared Error

R RM SE = 100 ×
√

B2 + var[var(θ̂∗) ]
varsim(θ̂)

.
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Table 2 Performance of the resampling methods in maximum entropy sampling design

UPWOR L U ER Relative bias RRMSE

Total

New method 1.1 6.4 7.5 0.1121 35.4938

Antal and Tillé method (2011a,b) 0.6 6.2 6.8 −1.3094 33.9250

Bootstrap WOR 1.1 6.9 8.0 −1.6084 34.7805

Median

New method 4.1 6.9 11.0 −1.0564 58.8889

Antal and Tillé method (2011a,b) 4.1 7.3 11.4 −6.5615 50.6651

Bootstrap WOR 3.4 7.5 10.9 2.8753 61.9642

Gini

New method 1.5 5.1 6.6 3.5753 39.4669

Antal and Tillé method (2011a,b) 2.8 6.2 9.0 −1.0795 35.4389

Bootstrap WOR 1.6 5.1 6.7 −1.0276 30.9325

Ratio

New method 2.0 3.7 5.7 2.0403 41.1975

Antal and Tillé method (2011a,b) 2.0 3.6 5.6 −3.1038 40.1890

Bootstrap WOR 2.1 4.7 6.8 −2.8664 38.2802

The RB gives a measure of the bias of the estimator of variance. The RRMSE measures
its accuracy and in the case of unbiasedness of the variance estimator it is equal to
the variation coefficients. The Error Rates allow us to evaluate the capacity of the
methods to provide a valid inference. The lower and the upper error rates give us an
idea of how skewed the distribution of the estimator θ̂ is.

Table 2 presents the results of the application of the resampling methods for a
maximum entropy design with inclusion probabilities proportional to variable z. In
the proposed bootstrap method, the Hájek approximation given in (4) is used, which
gives us φk = πk . Each method provide confidence intervals around 93–94 % for the
total, the ratio and the Gini index, and 89–90 % for the median. The column of the
relative biases directly shows that, in each case of the four functions of interest, the
methods perform well and give relative biases of 1–3 %.

Note that a high underestimation of the variance of a function of interest could
result in a low coverage rate, and therefore high error rates for the function of interest,
which is probably the case here. Regarding the relative root mean square errors, the
same trend can be observed. The three treated method perform identically, giving a
value of RRMSE around 30–40 % for the total, the Gini index and the ratio and 60 %
for the median. In general, there is no major difference in performance between the
proposed methods, the estimators are unbiased, or have a slight bias for each function.
The RRMSE have the same order and the error rates show a slightly positively skewed
distribution, with coverage rates between 90 and 95 %.

The new method thus provides essentially the same results as the other mentioned
methods, but its application is simpler: it does not require a correction factor or artificial
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population. Besides having at least the same performance as the method of artificial
populations, its main advantage is that it is easy to implement and fast. Thus, the
samples can be directly used to compute the variance of the functions of interest.

9 Discussion and interest of the method

The new method provides similar results as the Antal and Tillé (2011a) methods by
using a mixture of several sampling designs. They both satisfy conditions (5) and (6) or
(8) and (9). The proposed method is simpler because it is easier to implement. Mainly
the doubled half bootstrap consists of selecting twice half the sample, which is partic-
ularly simple. Moreover the double half bootstrap limits the number of replication of
the units in the bootstrap sample (maximun 3 and mainly 2).

If the S∗
k are not integer, they define a bootstrap weighting system. The interest of

a bootstrap method that uses a discrete random variable S∗
k is that a bootstrap sample

can be defined. Each unit is simply replicated S∗
k times. The units of the bootstrap

samples have the same Horvitz–Thompson weights as in the original sample.
These bootstrap methods compare favorably with the best of the classical variance

estimates for linear statistics, and also apply to nonlinear statistics. Its simplicity, its
speed and its efficiency speak in its favour. The bootstrap sample does not need to be
reweighted. There is no need for artificial populations and extreme samples are also
avoided because the units can be repeated twice or rarely three times. The bootstrap
samples can directly be used to provide estimates.
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Appendix

Lemma 1 If a sample S is selected by a Poisson sampling design with inclusion
probabilities πk in a population U of size N, if ns denotes the random sample site,
then

πk|N−1 = Pr(k ∈ S|nS = N − 1) = 1 −
1−πk
πk∑

�∈U
1−π�
π�

.

Proof We have

Pr(k /∈ S and nS = N − 1) = (1 − πk)
∏

� �=k

π� = 1 − πk

πk

∏

�∈U

π�.

Thus

Pr(nS = N − 1) =
∑

k∈U

Pr(k /∈ and nS = N − 1) =
∑

k∈U

1 − πk

πk

∏

�∈U

π�,
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which gives the complementary of the conditional probability of Lemma 1.

Pr(k /∈ S|nS = N − 1) = Pr(k /∈ S and nS = N − 1)

Pr(nS = N − 1)
=

1−πk
πk∑

�∈U
1−π�
π�

.

Lemma 1. can also be derived from Expression (5.12) of Result 22 in Tillé (2006).

Proof of Result 1

Proof Let πk|r = E(Xk |m = r). These conditional probabilities are not easy to com-
pute. A recursive relation for computation is given for instance in Tillé (2006, p. 81).
Fortunately, we do not have to compute this conditional expectation in order to proof
the result except for case r = n−1. However we will use it in the following reasoning.
We have

Pr∗(S∗
k = j |m = r and n − r is even)=

⎧
⎨

⎩

(1 − πk|r )/2 if j =0
πk|r if j =1
(1 − πk|r )/2 if j =2,

Pr∗(S∗
k = j |m = r, n − r is odd, and r < n − 1)=

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − πk|r

) 2n−1
4n if j =0

πk|r +(
1 − πk|r

) 3
4n if j = 1(

1 − πk|r
) 2n−3

4n if j = 2(
1 − πk|r

) 1
4n if j =3,

and

Pr∗(S∗
k = j |m = n − 1) =

⎧
⎨

⎩

(1 − ψk)/4 if j = 0
(1 + ψk)/2 if j = 1
(1 − ψk)/4 if j = 2.
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