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Abstract This article considers the question of how to cope with heterogeneity when
studying causal effects. The standard approach in empirical economics is still to use a
linear model and interpret the coefficients as the average returns or effects. Nowadays,
instrumental variables (IV) are quite popular to account for (unobserved) heterogeneity
when estimating these parameters. First the inadequacy of these standard methods is
illustrated. Then it is shown why varying-coefficient models have a strong natural
potential to model heterogeneity in many interesting regression problems. Moreover,
it is straight forward to develop alternative I'V specifications in the varying-coefficient
models framework. The corresponding modeling and implementation facilities that
are nowadays available in R are studied.

Keywords Varying-coefficient models - Causal inference - Econometrics -
Semiparametric modeling

1 Introduction

In economic theory, agents aim to achieve their highest level of welfare depending
on the return to their characteristics and choices. This return is heterogeneous in the
sense that it varies over agents even after having conditioned on all kind of observ-
able covariates that reflect these choices and characteristics. Heterogeneous returns
have always been an issue of modeling beyond the simple adding of additive indepen-
dent errors to the mean regression (and apart from modeling these as heteroscedastic,
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autocorrelated, spatial dependent, etc.). This is one of the reasons why the varying-
coefficient models (Hastie and Tibshirani 1993, or Fan and Zhang 1999), the mixed- or
random-effects models (see Gonzdlez Manteiga et al. 2013, for arecent review), and the
Bayesian modeling (see for example Kneib and Fahrmeir 2006) have been attracting
an increasing attention. This holds especially true for the area of non- and semipara-
metric statistics from which all these reference are taken. Like the well-known additive
nonparametric model (Hastie and Tibshirani 1990; Mammen and Nielsen 1999) they
have been proposed in order to bridge the gap between nonparametric models and the
standard (generalized) linear model. They have been designed to help the non- and
semiparametric methods to get from theory to practice. In fact, especially in empir-
ical economics, non- and semiparametric methods have so far only been used for
some prediction issues in finance. Nowadays, they are also proposed for matching
in the treatment effect literature. But even there they do rather appear in the theory
than in practice. However, there is an increasing awareness of problems that happen
to arise with the identification, estimation and interpretation of average returns or
effects. If heterogeneity in returns (to observable characteristics or choices) is present,
then OLS estimation in linear models is inconsistent, and instrumental variable (IV)
estimators lose their identification capacity; they identify only the average effects of
non-identified subpopulations (the so-called LATE =local average treatment effect),
if at all. Moreover, they need to satisfy quite unrealistic and non-testable conditions.
Consequently, impact evaluation becomes much harder—no matter whether ex-post
(i.e. inference) or ex-ante (i.e. prediction).

Micro foundations of economic theory are often concerned about mathematical
modeling of agents under strong rational choice and utility optimization. When facing
the problem of generalizing the individual results to the whole population, the existence
of a mean or representative agent behavior is used to be assumed. While already
this assumption has been a controversial issue in economic theory for half a century
(Allais 1953), the related econometric problems have usually been underestimated.
More precisely, as deviations from the mean behavior are typically endogenous, the
simple traditional inference leads to biased and inconsistent estimates. A classical and
well studied example is the resulting downward bias of the consumer price index, see
for example Diewert (1998) or Crossley and Pendakur (2010).

Let us consider the linear regression model as the benchmark in econometric mod-
eling,

Yi=XB+e i=1,...,n,

where B is supposed to be the vector of coefficients quantifying the returns (or say,
effect) to the covariates summarized in vector X;. As a consequence, &; is an error term
with mean 0, being mean-independent of X such that there is ‘a priori’ no endogeneity
problem.! Heterogeneity comes from X and the error term, and the latter must capture
all individual deviation from the mean return. Not only from a micro-econometric point
of view this is a quite restricted heterogeneity which does not match with the modern

1 A covariate X is said to be endogenous if the error terms is not mean independent of it. This typically
leads to identification problems, biased estimators and invalids causal inference. Else it is called exogenous.
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individual oriented modeling. For example, by considering the impact of the years
of schooling on wage, it seems obvious that the return to schooling varies between
individuals due their abilities. If these are not included in X, one might speak of an
omitted variable problem. But if there is an interaction with education, it is also a
modeling or functional form related problem. Consequently, a more realistic though
too general model (if applied without further modeling) is

Yi=XiT,3i—|—8,' i=1,...,n, (D

where the heterogeneity is also reflected in B;. If one is only interested in the average
return to (or effect of X), i.e. E[B;] = b, the following model is actually the one of
interest:

Yi=X'b+ei, ee=X1B—bl+e, i=1,....n (2)

This kind of heterogeneity does not invalidate the OLS estimation as long as the
deviation from the mean is exogenous, i.e. E[f; — b|X;] = 0. However, this condition
does typically not hold in economics as this would to some extent contradict the spirit
of rational behavior of individuals. When agents choose their actions, they consider the
personal abilities that impact the return of their choices. Students choose the number
of years of schooling by taking into account their personal abilities which will affect
their future wage in many ways. Therefore, the assumption of exogeneity of X; is
violated in this model in the sense that E[e; | X;] # 0 and the OLS estimation becomes
inconsistent.

A popular way to deal with endogeneity in econometrics is to use a linear IV (or,
equivalently, a two step least squares 2SLS) estimation. This means to be provided
with an additional variable W; such that Cov(W;, e;) = 0 but Cov(W;, X;) # 0
fori = 1,...,n. Then predict X with W giving )A(,-(W,-) in a first step, and use these
predictions instead of X; for calculating an OLS estimator of b in Eq. (2). In practice, to
find a set of observable variables W; that strongly impact X; but with Cov(W;, ;) =0
is extremely unlikely. Already the existence of W; that would fulfill E[e;|W;] = 0
is hard to justify unless W; was completely random (like a lottery number). It must
then still be related with X; and have no other relation to §; than that via X;. Similar
criticism applies if we interpret the heterogeneity in returns as an effect of omitted
variables. As an example take Card (1995) who assumes that the proximity to a college
has an effect on the years of schooling but no further effect on the wage. At a first
glance, it might seem to be a valid instrument. However, the proximity to school is
linked with the family’s social background which in many ways will impact wage,
also via the returns to schooling. Have in mind that most people working at the school
live close to it, and at the same time care more about the education of their children
than the average of parents would. So this is a typical example for an invalid IV.

To sum up, in presence of those ‘endogenous’ coefficients f;, the traditional
approaches of OLS and IV estimation fail in their attempt to estimate an average
effect. Indeed, it is difficult to obtain an average effect without estimating directly the
heterogeneity (nonparametrically). In a different setup, similar conclusions have been
drawn by Deaton and Muellbauer (1980) in their studies on consumer behavior and
consumer price index estimation.

@ Springer



696 S. Sperlich, R. Theler

An alternative way to deal with the dependence between §; and X; is to consider the
use of a factor that controls for (at least most of) this dependency, say a third variable
Z;. If such a Z; is available with E[S;|Z;] being the best prediction of 8; given Z;,
then B; — E[Bi|Z;] = u; with E[u;|Z;] = 0 by definition. With g(-) being this best
predictor, Eq. (2) becomes

Y; = X EBi1Z+ X ui +6i = X g(Z)) + X ui +&:, i=1,....n. (3)

The variables comprised in Z are often called effect modifiers. This provides a
natural extension of the above mentioned varying-coefficient model

Yi=X/g(Z)+&, EGIXi.Z)=0 i=1,....n. )

For Z; related to X; one hopes to control by this means for the dependency between
X; and B;. In other words, to estimate heterogeneity, the coefficient can be modeled
as a nonparametric function (i.e. an unknown but deterministic smooth function) of
an observed variable Z; up to a random deviation u; that is mean-independent from
X;. The effect modifier helps us to mitigate or solve the endogeneity that may occur
due to heterogeneous returns. Note that variable Z must not be independent from X
if it shall filter potential dependency between S; and X;. An extreme case is setting
Z = X giving basically the well-known nonparametric additive model.

Effective estimation of non- and semiparametric varying-coefficient models has
been introduced in various articles, see Hastie and Tibshirani (1993) and Fan and
Zhang (1999, 2000, 2008), including recursive estimation to improve efficiency (Cai
et al. 2000), estimation under measurement errors (Chiang et al. 2001), models with
generated regressors (Pendakur and Sperlich 2010), generalized varying-coefficient
models (Mammen and Nielsen 2003; Roca-Pardinas and Sperlich 2010) or additive
varying coefficients (Yang et al. 2006). The well-known time-varying-coefficient mod-
els for longitudinal data should be mentioned as well. For a recent review see Park et al.
(2015). The extension of (4) to (3) is just an extension of the classical nonparametric
varying-coefficient model toward a non- or semiparametric mixed effects model, see
for example Gonzdlez Manteiga et al. (2013).

In empirical economics, however, these models are hardly known. The potential
of applying this type of model has not been sufficiently emphasized. The aim of this
article is to highlight the advantage of varying-coefficient models to deal with (endoge-
nous, i.e. X L Z) heterogeneity, and to study the state-of-the-art of implementation
and calculation. On this purpose, econometric justification as well as a discussion of
computational means in the statistic software R (see R Development Core Team 2014)
will be provided.

The rest of this article is structured as following: In the next section the problems that
occur when using classical linear methods (including I'V estimators) are illustrated. In
Sect. 3 we show why and how varying-coefficient models can mitigate these problems.
Section 4 briefly describes the implementation of these methods and the available R
packages. These are then compared by simulation studies. Section 5 concludes.

@ Springer



Modeling heterogeneity: a praise for varying-coefficient... 697

2 Problems with linear OLS and IV estimation

Identifying an average effect of (or return to) a certain covariate is a multidimensional
problem. When we interpret the coefficient in a linear model, we say ¥ would increase
or decrease ‘in average’ by the value of the coefficient if one changed X by one unit.
This is often misunderstood as being the average return (to X) in general. This is
unfortunately incorrect as it refers only to the averaging-out of the individual deviations
(i.e. the error term) iff this is mean-independent from X. When the heterogeneity of
returns is stochastically related to X (causality is not required), this interpretation is
definitively wrong. Let us therefore clarify this a bit.

Intuitively, to study an overall average effect, E[S;] makes sense if we can obtain
the following equality from equation (2)

ElYi|Xi1=X]Elg], i=1,....n.

This equation is satisfied if E[e;|X;] = 0, i.e. the mean independence due to the
exogeneity assumption of X; with respect to ¢; plus E[B;|X;] = E[B;i] = b. The
latter is the mean-independence of §; from returns X;. Violation of this independence
leads to inconsistency.

Proposition 1 The OLS Estimator of the average effect E| ;] in model (2) is generally,
i.e. without further assumptions, inconsistent.

Proof Let {(Y;, X ,-)}l’f:1 be a sample of independent random variables drawn model
(2) with E[g;|X;] = 0. Then,

Bous = (EX;X[)'EXi¥; —— EIfi]+E "' [X;X] 1E[Xie;]
= E[fi1+ E'[X;XT1E [X,-X,T{ﬁl- — ElB1} + Xz-e,»]

= E7' X X[ 1ELX; X[ Bil.

From the last line we will see that B\OLS 7IZ> E[Bi]unless E[B;|X;] = E[B;], which is
not true in general. O

Under the following simulation design, we get an idea of the consequences and the
severity of this result:

Yi =064+ X8 +¢&
Xi=yZi+u
Bi ~ Beta(1.659435Z;,5)
& ~ N(O, Var(XiBi))
Z; ~1log N(0, 1)
u; ~ N, 1)
Corr(X;, Z;)
V= .
\/Var(Zi) — Corr(X;, Z)2?Var(Z;)
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Table 1 Simulated bias over the

correlation between Z and X Corr(xi, ) Intercept Slope
—0.95 0.5169 0.4061
—0.75 0.0510 0.2426
-0.5 —0.0328 0.1140
—0.25 —0.0315 0.0315
0 —0.0024 0.0017
0.25 0.0288 0.0287
0.5 0.0359 0.1117
0.75 —0.0554 0.2413
0.95 —0.5198 0.4085
Parameter expectation 0.6 0.2857

We computed the average estimated bias of the OLS estimator % Z’J": 1 EéLS -

E[B;] from m = 1000 simulation samples, each of size 100. Table 1 gives the biases
for intercept (0.6) and the average slope (0.2857). As expected, the bias increases
with the correlation between the coefficients and the regressors although there is not
necessarily a (direct) causality relation from X on 8. We see clearly that albeit a
nontrivial dependency structure between f; and X;, the ‘bias’ of an OLS estimate
compared to the average slope is quite severe.”

The result, that the OLS estimator is biased, is neither new nor surprising. The
reason why this small simulation is presented here is to get aware of the role of g, Z;
and u; when switching to model (3). This enables us to better understand source and
size of the bias, to potentially model it, and to discuss ways of circumventing it—those
that work and those that do not.

But is this simulated design of interest, does it reflect somehow any realistic situa-
tion, in particular in economics? We believe, it does. Take for example economies of
scale—like they are generally accepted for the agricultural sector. The main interest is
to estimate and understand the production function. ‘Economies of scale’ means that
the size of an entity (enterprise, farm, ...) changes the expected returns. Severance-
Lossin and Sperlich (1999) studied the additive marginal effects and elasticities of
inputs for farms in Wisconsin, USA. They applied a standard nonparametric additive
model of the form

q
log¥; = yo+ »_ vj(log Xi j) + & (%)
j=1

with all inputs X and output Y measured in US-Dollar, where all y; functions were
nonparametric, corresponding therefore to our model with setting y;(log X; ;) =
gjlogX; ;)-log X; jory;(log X; ;) = g;(X; ;) X; ;. They indeed found increasing
returns Z’J] )/]’. > 1 for middle-sized and large farms; this means, size made the y;

2 We put bias in quotation marks as the OLS estimate is actually not biased in the statistical sense, it does
simply estimate something different than the average slope. Alternatively you may say that not the estimator
is wrong but the interpretation that people often attach to it.
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functions non-linear such that X; would be endogenous in a standard log-linear model.
Size was clearly driving both (atleast partly), inputs X; and B;, and is therefore a natural
effect modifier Z.

Similarly, in order to study the efficiency of labor offices in the Czech Republic
during the transition years, Profit and Sperlich (2004) estimated a dynamic fixed effects
panel model with time fixed effects n; and individual fixed effects §;, i.e.

4

Yi, = J/O-i-z vj(log X;;—1,j)+ Z Vik(log Xi—1,j,10g X; r—1.6)+6i+n+ei s
j=1 1<j<k=<4

(6)

which is basically an extension of the additive interaction model of Sperlich et al.
(2002) for longitudinal data. Equation (6) is a standard—apart from the fact that it
is nonparametric—economic model to study job-matching with Y being log unem-
ployment to job exits, and X summarizing the lagged Y, the log number of vacancies,
the log number of inflows to unemployment, and the unemployment stock. Profit and
Sperlich (2004) tested the returns to scale of the labor offices, studied time and space
variation (i.e. the non-uniformity of Job-Matching), and afterward the sources of their
variation. They found that the variation (i.e. the non-linearity of the y; functions) was
due to borderland, and specific active labor market policies, say a vector of effect
modifiers Z. At the same time, this vector Z was clearly correlated to X with different
causality directions: e.g. being borderland had a positive impact on unemployment
stock, but unemployment stock had an impact on the active labor market policy.

For both examples one can argue that a varying-coefficient model had been a rea-
sonable alternative, allowing for the direct inclusion of Z in the model. Subsequently,
a further step would be to consider 8; — g(Z;) as an unobservable disturbance that then
may lead to a similar (though now mitigated) endogeneity problem. One could argue
that Z might be hard to find or too weak to control for the dependency between X and
the returns. As said, in econometrics a popular way to deal with all kind of endogeneity
is the IV estimation based on a set of additional variables, so-called instruments W;,
that on the one hand is supposed to be exogenous in the sense that E[e;|W;] = 0, but
on the other hand is correlated with X;. As this is quite unlikely to exist, in empirical
economics it is common to ignore the heterogeneity of 8; (i.e. to assume it to be fixed)
and ask for E[e;|W;] = 0, but

Proposition 2 For a random sample {W;}!_, of ‘instruments’ with E[e;|W;] =
0, Cov(X;i, W;) # O, the linear IV estimator of b = E[f;] in model (2) is generally
inconsistent except if E[e;|W;] = 0. Moreover, E[B; — b|W;] = 0 is not sufficient.

Proof For simplification but without loss of generality let dim (X) = dim(W). Then

Brv =W xDH'sw i = Wi xDH 'S wiXTELB] + ei)
L Bl + ETIWXTIE[WixT (B — ELBY | + 7 (WiXT 1EWie:)

= E-' W, xTEwW; X g1,
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where the last equality cannot be simplified without further assumptions like for exam-
ple i L (X;, W;) foralli =1,...,n. O

We have added the comment that E[8; — b|W;] = 0 is not sufficient because it is a
commmon mistake to believe it would be sufficient. In fact, assuming 8; L W; is not
enough because this does typically not give E[W; X lT (Bi — b)] = 0, what is needed
for the consistency. Unfortunately, having a §; that is independent of both, X; and W;,
is very unlikely and even contradicts economic theory. For this latter case Imbens and
Angrist (1994) defined the local average treatment effect (LATE). More specifically,
under a set of additional non-testable assumptions, the linear IV estimator identifies
the average return (or effect) for ‘compliers’. These form the subpopulation of indi-
viduals that increased their value of X due to an increase in W. It is indispensable
that all individuals move in the same direction (monotonicity assumption); therefore
we can not relax the term ‘increase’ to simply ‘change’. Its derivation relies on the
identification of the expected potential outcome for a given value of the instrument w
with the conditional expectation: E[X lT (w)Bi] = E[Y;|W; = w] which works if for
all compliers i one has B; L W;—being thus the crucial independence assumption
for LATE. But as the compliers form only a specific subpopulation defined by the
choice of instruments W, the LATE is not necessarily a relevant parameter. Finally
one should mention that the concept was introduced for binary X and W. Exten-
sions are tedious but straight for discrete X and W with finite support. The LATE
becomes then a weighted average of the LATEs of compliers for a stepwise increase
of W.

To sum up, an estimator based on a LATE argument would inherit the same defects
asthe classic IV estimator although it seems to allow to relax the independence assump-
tion. Its interpretation is only clear for binary X and W, but even then may refer to
an irrelevant parameter. In any case it will give only an average which in turn is little
informative if heterogeneity in returns is important. The inadequacy of the tradition
inference motivates the use of a new class of estimators. The proposal in the next
section is based on a non-parametric modeling of the coefficient by considering the
use of a set of observed variables Z;, the so-called ‘effect modifiers’.

3 The varying-coefficient model for heterogeneous effects

Let us now consider the varying-coefficient model (3). Introducing effects modifiers Z;
helps to mitigate the harmfulness of the association between 8; and X;, and therefore j;
and W;. One may even re-establish the validity of W; as an instrument ‘conditionally on
g(Z;)’. At this point, a crucial assumption is required for the present section: u; L X;
oru; L W;foralli =1,...,n. Inother words, 8; depends on X; or W; only through
Z;.

For brevity we discuss simply the two situations where (1) u; is mean-independent
from X;, and (2) when (1) fails but either 8;(z) or u; are mean-independent from
an instrument W; which further fulfills E[¢|W;] = 0 and E[X;|W;] not being con-
stant. Other cases like independence between X; and Z; are less interesting and not
considered here.
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3.1 When u is mean-independent from X

Recall that Eq. (3) was just a different way of writing ¥; = X lT Bi + ¢ splitting B; into
a part conditioned on Z; and a mean-zero remainder term u; such that

E[Y;|X:1 = X! Elg(Z)|Xi] # X E[g(Z))]

unless X; and Z; are mean-independent. In this case it is hardly possible to compute
an average effect without conditioning on Z, too. In contrast, doing so you get

ELY;1X:. Zi] = X[ g(Z0),
or simply
Y = X[ 8(Zi) + e,

with Ele;|X;i, Z;] = 0. This is the simple varying-coefficient model (4) which can be
estimated by different semiparametric methods.

It should be reminded that standard IV methods will fail here. This example illus-
trates the fact that if we want to obtain an overall parameter estimation, it is hardly
avoidable to estimate the observable dependent heterogeneity in a first step. This is
particularly true for cases where heterogeneity may be of first order. This is were
varying-coefficient models are made for. Let us give two examples from the literature.

Making the Engle curves more flexible has been a central issue when analyzing con-
sumer behavior in microeconomics. To our knowledge, in this context semiparametric
varying-coefficient models have been applied first by Pendakur and Sperlich (2010).
They studied consumer behavior, and modeled the expenditure shares by varying-
coefficients models. More specifically, Y; is now a vector of expenditure shares for M
goods,

Y; = exp.shares; = y(El-R) + F(EL-R) P, 7

where vector y(-) € IRM and matrix I'(-) € IRM*M are nonparametric functions of

the real total expenditures EZ.R of household i (which are predicted from the model.)?
P; is the vector of the log prices of the M goods faced by household i. This allows
one to e.g. check for Slutsky symmetry* or to determine the effective inflation index
for any income group.’ Asymmetry and different effective inflation indices imply that
returns to prices must be heterogeneous, and this is what the authors found.

3 The preposition real indicates that the numbers E R assigned to the different households—in this example
from all-over Canada—refer to the same purchase power.

4 Simplified, this means that if a household switches from a product to a substitute because of a special
discount, he will switch back if this discount is no longer conceded.

5 The published consumer price index refers to a representative mean basket of goods and services. This
basket clearly varies a lot over the different income groups, resulting in different effectively realized inflation
rates for each group.
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Similarly, Pendakur et al. (2010) considered the indirect utility in consumer demand
systems. They modeled the utility for household i as

T L7
Ui=E; — P y(E)— SE TR, (®)

where E; it reported total expenditure of household i, P; again the vector of log prices
of all M items, I' an unknown M x M matrix of unknown coefficients, and y again
a vector of M nonparametric functions. Roy’s identity (Roy 1947) tells us that the

vector of expenditure shares is given by g—(}], g—g, i.e. in our case

y(E)+TP

1— Py (E) ®

exp.shares; =

Equation (9) can be estimated from observed data, although not directly with standard
methods. Again, the authors found heterogeneous returns to prices in the utility (8)
of households. No direct method could have directly estimated the average returns to
prices.

3.2 Dependence between u and X but existence of an instrument W

As indicated above, we consider the situation where W; is mean-independent from
u; given Z;. For this case a LATE type parameter can be identified. This is based
on the joint conditioning of Z; and W; combined with the traditional monotonicity
assumption related to this kind of inference. On this purpose, and for the sake of
simplicity, X; is considered to be a binary random variable. Let also W; be a binary
random variable. The extension to discrete variables with finite support is straight but
rather tedious in notation and interpretation. One can then establish

Definition 1 Let {(Y;, X;, Z;)}]_, be a random sample generated by model (3), and
{Wi}!_, with E[g;|W;] = E[u;|W;] = 0 such that X; and W; are dependent binary
random variables with X;(W; = 1) — X;(W; = 0) > 0 almost sure for all i. The
conditional LATE evaluated at Z; = z is

EYi|Z; =z, W; = 1] — E[Y;1Z; = z, W; = 0]
E[XI|ZI :Z, Wi = 1] - E[X1|Zl :Z, Wi :0]

brate(z) =

This is the expected average effect of B;(z) = g(z) + u; in the population of
compliers for the given value z of the effect modifier Z;. If there are no compliers
for Z; = z,ie. E[X;|Z; = z, W; = 1] — E[X;|Z; = z, W; = 0] = 0, then the
brate(z) is not defined. We can estimate this conditional LATE now by combining
the classical Wald estimator for endogenous dummies with a nonparametric estimator
for varying-coefficient models.

Note, however, that also this LATE type estimator identifies only an average effect of
the compliers. These do not necessarily constitute a clearly identified (sub)population
or they might not be of interest. So how does this improve compared to the classic
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LATE? It does in the following two aspects. First, depending on the choice and strength
of the effect modifier Z, it is much easier to argue that W; was independent from u;
than arguing it was independent from §;. Second, if Z is a strong modifier, then we can
control and thus study for most of the heterogeneity; the different parameters identified
by the different instruments are expected to have a small variation, i.e. the choice of
instruments should mainly effect the variance but hardly the mean of the estimator.
A generalization to X;, Z;, W; being continuous is therefore appealing. This can be
done by the so-called control function approach, see Telser (1964). Newey et al. (1999)
introduced a nonparametric extension and made it popular in econometric theory.
Let us consider the following simultaneous equations system:

Yi = X7 g(Zi) + X[ ui + & (10)
Xi=hW)+v, i=1,...,n, (11)

with the same assumptions as above but now X and W being (potentially) continuous
and E[v;|W;] = 0. This is a natural extension of model (3). Note that the additivity
in Eq. (11) guarantees the monotonicity of the effect of W on X (assumed in the
binary case). Clearly, & can be nonparametrically estimated in order to predict v; by
Ui := X; — h(Z;). Then,

ELYi|X:, Zi,vil = X[ g(Zi) + X] Elwi|X;, Zi, vi).

As all dependence between X; and u; is reflected in v;, and Z; was independent from
u; by definition, we get for E[u;|X;, Z;, vi] = Elu;|vi] =: A(v;)

ELY;|X;, Zi,vil = X! g(Zi) + X] 0 (vi)
= X"g(Z) + XI'r@) + XT h(ui) — @0,

where from Sperlich (2009) we know that the last term is asymptotically negligible.
Moreover, it is known from the literature on additive varying coefficients that g; and
A; are identifiable up to additive and multiplicative constant terms.

4 Estimating varying-coefficient models in practice

We already presented above a list of references introducing different estimators for
various versions of varying-coefficient models. In this section we provide a summary
of existing implementations for varying-coefficient model estimators. Namely, we
discuss some important R packages (R Development Core Team 2014) that contain
those methods. Clearly, this review is not pretended to be complete or exhaustive. It
rather serves as an illustration that practitioners are already today provided with the
necessary tools for performing the modeling and estimation strategies discussed in the
preceding section.

Among others, Fan and Zhang (1999, 2000, 2008) proposed a smoothing method
for estimating g in a classical varying-coefficient model ¥; = XIT g(Z;) + &; with
Elei|X;, Zi] foralli = 1, ..., n. Their method was based on kernel weighted local
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polynomials. Intuitively it is quite appealing because it exhibits strong similarities with
a weighted least squares M-estimator but only at a local level. In the local linear case
one considers g(Z) ~ ag + alT(Z — z0) in a neighborhood of zg with ¢ € R4 m(X)
and o € RYM(Z)*dim(X) ‘More specifically, one tries to minimize the squared error

E[r = (XTao + XTa] (Z = 2))PIZ = 20].

Given a sample {(Y;, X;, Z;)}}_, of independent observations from the same model,
by convolution with a kernel function K} (-) provided with bandwidth 4 around a point
of interest z(, one obtains the empirical counterpart:

1 2
(@, ap) = argmin—% (¥, = (X[ a + X] b(Z; — 01} Kn(Zi = 20),
(ag,ar)

where a; can be shown to be a consistent estimator for g(zo). Differently from this
kernel smoothing approach, Hastie and Tibshirani (1993) proposed a smoothing spline
method, also based on a penalized least squares minimization. There, each coefficient
is parameterized on a cubic spline basis. Local maximum likelihood (e.g. Cai et al.
2000), other spline methods (e.g. Chiang et al. 2001), smooth backfitting (Mammen
and Nielsen 2003; Roca-Pardinas and Sperlich 2010) and Bayesian structured additive
models (Fahrmeir et al. 2004) have been introduced as well. For most of these methods
asymptotic theory has been provided. Inference is typically based on resampling meth-
ods or on rough (parametric plug-in) approximations. But even more interesting for
the empirical researcher is the question regarding implementation. Nowadays, several
R packages can be used to estimate varying-coefficient models.

Hayfield and Racine (2008) have developed the so-called (np) package (nonpara-
metric kernel smoothing methods for mixed data types). This package enables us to
implement a kernel estimation for a wide range of variable types: continuous vari-
ables, ordered or unordered factors. The function npscoef provides estimators for a
varying-coefficient model. An optimal bandwidth / can be obtained by a least-squares
cross-validation method applying the function npscoefbw. For our purpose, how-
ever, a problem of this package is that it seems hard (if not impossible) to modify the set
of effect modifiers from one varying coefficient to another, i.e. all varying coefficients
depend on the same set Z. It is also not able to estimate additive varying coefficients.
Note that the function predict only returns predictions for the expected Y. It does
not predict the estimated coefficient functions at arbitrary values of the effect modifier.
This makes a fair comparison with other packages a bit difficult.

Wood (2011, 2006, 2004, 2003, 2000) proposed a computationally fast algorithm
for estimating generalized additive models based on penalized regression splines. This
is implemented in his package mgcv. The available distribution families can be found
with the function family.mgcv. The function considered in the simulation study
below is gam.

Not exactly the same but quite related, at least in many situations, is the gamlss
package. It was developed by Rigby and Stasinopoulos (2005), and originally devoted
to the estimation of generalized additive models. The common exponential families
are replaced by a more flexible distribution family allowing for extreme kurtotic,
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skewed or over-dispersed continuous and discrete distributions. The available distrib-
ution families can be found with the function gamlss. familly. The special case
of varying-coefficient models is handled by a maximum likelihood method based on
penalized B-splines. The function studied in the following is gamlss.

In order to compare the three packages, several simulation designs are used. Due
to the variety of methods used by these packages, the designs share common features
to enable a comparison on the same basis: (a) the coefficient functions are the same
whatever the design is; (b) a uniform distribution of the effect modifiers to prevent a
bias at the tails when using a fixed bandwidth in kernel estimation, i.e. to make kernel
and spline methods comparable; (c) bounded coefficient functions with trigonometric
specification to stabilize the variance; (d) predictions of the coefficient functions at
equidistant points on the interval [—2, 2].

We simulated four different designs, see below. From each we draw 1500 indepen-
dent random samples for sample sizes n = 50, 100, 250 (i.e. 500 simulation runs for
each size) to obtain 500 replicates at fixed values of the effect modifiers Z for each
design and sample size. From them we calculated 90 % simulation intervals (i.e. cut the
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Fig. 1 Design 1, 90 % simulation intervals for sample size n = 50 for g on the left, h on the right
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Fig. 2 Design 1, 90 % simulation intervals for sample size n = 100 for g on the left, h on the right

outer 5 % from above and from below), see Figs. 1 to 12, and the average bias (ABias)
and average mean squared error (AMSE) for the varying coefficient functions. In all
figures the dotted lines in the center are the ‘true’ data generating function, the circles
are the averages of the 500 predictions, and the bands are constructed from the 5 and
95 % quantiles of the 500 simulations. Note that for notational convenience the two
nonparametric coefficient functions in Design 1-3 are denoted by g(.), /(.) instead of

g1(), &20.).

4.1 Design 1

As previously mentioned, prediction of the coefficient isn’t implemented in the np
package. Further, this package does not seem to be designed to consider different sets
of effect modifiers for each coefficient function. However, a preliminary simulation
study allows to appreciate the performance of this package in case these problems
are irrelevant for the practitioner. This is the aim of the first design where the effect
modifier is considered as being a fixed grid on the interval [—2, 2]. Else, we simulate
the model
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Fig. 3 Design 1, 90 % simulation intervals for sample size n = 250 for g on the left, h on the right

Y =g(Z) + h(Z)X +¢
g(Z) =cos(32), h(Z) =sin(2.57)

4
X =2W, —05W; +2Z, Z={-24i-li=1,....n
n

Wi ~ N(0, 1), Wo ~ N(0, 1), e ~ N(0, 1).

The results are given in Figs. 1, 2 and 3, and Table 2. The figures lead us to the
conclusion that the np and mgcv perform pretty well. The mgcv package seems to
dominate other packages in terms of ABias and AMSE when the sample size is small
(n = 50). For larger sample sizes, the np package performs much better. Indeed,
when the curvature is important (g(.)), there is a slight bias that is probably due to the
smoothing effect related to any nonparametric estimation. The np package tends to
reduce this as the sample size increases. The gamlss package estimation has clearly
a problem for Z < 0 when estimating the ‘intercept’ function g(.), and is rather
imprecise at values Z € [0, 1] when estimating /(.). We could not find out what
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Table 2 Results calculated from 500 samples drawn from Design 1

Sample size Package ABias[3()] ABias[h()] AMSE[2()] AMSE[h()]
50 mgev 0.0262 0.0035 0.0641 0.0088
np 0.0518 0.0073 0.0370 0.0179
gamlss 0.0262 0.2088 0.2348 4.0957
100 mgev 0.0364 —0.0021 0.0267 0.0032
np 0.0251 0.0003 0.0168 0.0077
gamlss 0.0364 —2.2790 0.1460 517.4362
250 mgev 0.0425 —0.0014 0.0129 0.0014
np 0.0150 0.0005 0.0073 0.0034
gamlss 0.0425 —0.6461 0.1335 1348.8040
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Fig. 4 Design 2, 90 % simulation intervals for sample size n = 50 for g on the left, h on the right

exactly is the source of the problem. This imprecision tends to even increase when the
sample size increases.

4.2 Design 2

The second design is to study the situation where the effect modifiers are simply the
regressors of the model, i.e. X = Z. Again, the functions g, / are univariate but refer
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Fig. 5 Design 2, 90 % simulation intervals for sample size n = 100 for g on the left, i on the right

to different effect modifiers. For this reason np is no longer included. Ignoring np
allows us to now consider random variables Z that are independently drawn in each
simulation study, because both, gamlss and mgcv are able to predict g, 4 on given
fixed grids, no matter where the effect modifier was originally observed. The simulated
design is

Y =6+gXDX1+h(X2)Xo+¢
2(X1) = cos(3X1), h(X2) = sin(2.5X2)
X1 ~U[-2,2], X, =0.25X1 +0.75U[-2,2], e ~ N(O, 1).

The results are plotted in Figs. 4, 5 and 6, and in Table 3. The mgcv package
manages to estimate the coefficient functions but with a bias where the curvature is
important. However, this problem decreases with the sample size;so this might simply
be a smoothing effect. This is different in the gamlss package that just fails to fit
the coefficient function. A direct analysis of ABias and AMSE tends to underestimate
these two issues because negative and positive bias compensate each other all along
the support of the coefficient functions. In any case, it is obvious that this design should
better be estimated by (generalized) additive model estimators. The implementation
of the varying-coefficient model in the gam1ss package seems to require different (or
maybe even independent) variations for the regressors X and the effect modifiers Z.

@ Springer



710 S. Sperlich, R. Theler

MGCV MGCV
< —
< —
o — o~
\g) o - E’/ o
o
o
T T T T T
-2 -1 0 1 2
X1
GAMLSS
=
< -
o — o~
—~ \ —
- © . -~
o> = o
A
o

X 1

Fig. 6 Design 2, 90 % simulation intervals for sample size n = 250 for g on the left, h on the right

Table 3 Results calculated from samples drawn from Design 2

Sample size Package ABias[g(.)] ABias[fl(.)] AMSE[g(.)] AMSE[fz(.)]

50 mgcv —0.2152 0.0259 0.2172 0.1053
gamlss —0.0004 0.0003 0.5283 2.3782

100 mgev 0.1393 0.0106 0.0932 0.0597
gamlss 0.0430 0.0012 0.5169 3.2682

250 mgev —0.0831 0.0038 0.0366 0.0233
gamlss 0.0647 —0.0043 0.8001 5.3895

We saw already in design 1 that this package has problems where the relation between
X and Z are strong.

4.3 Design 3

The design is now crossing the dependence structure, i.e. the effect modifier Z; for
the coefficient of X is correlated with X», and Z; with X. Else one can speak of a
standard bivariate nonparametric varying-coefficient model so that there should be no
particular identification problem for gamlss. The simulated design is
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Fig. 7 Design 3, 90 % simulation intervals for sample size n = 50 for g on the left, h on the right

Y =6+g(Z)X1 +h(Z2)X2+¢

¢(Z1) = cos(3Z1), h(Z,) = sin(2.5Zy)

Zy ~U[=2,2], Zy = 0.25Z; 4 0.75U[-2, 2]

X1 =025W; 4+ 0.4Wy + Zy, Xo = 2W; — 0.5W} 427,
Wi ~ N(0,1), Wy ~ N(0, 1),& ~ N(0, 1).

The numerical results are shown in Figs. 7, 8 and 9, and Table 4. Both packages,
mgcv and mgcv manage to predict the shape of the coefficient functions. One can say
that the mgcv clearly preforms better. Similar conclusion can be drawn from Table 4.
Note that the identification issue we detected in design 2 has disappeared, and the
smoothing effect mentioned in the simulations with design 1 seems to be reduced a
lot.

4.4 Design 4
This design studies the control function approach introduced in Sect. 3.2. Note that in

this design, our function /(.) is no longer a standard varying coefficient but plays the
role of the control function. The simulated design is
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Fig. 8 Design 3, 90 % simulation intervals for sample size n = 100 for g on the left, h on the right

Y=6+g(Z)X+uX+e

g(Z) =cos(32), h(v) = sin(2.5v)
Z~U[-2,2],X =025Z 4+ 0.4W, + v

Wi ~ N(0, 1), W, ~ N(, 1)

u=hw) +NQO,1),v~U[-2,2],e ~ N(O,1).

At the first step, v can be predicted by regressing X on Z and W, with any non-
parametric method. At the second step, /(.) is estimated on v jointly with g(.) on X.
For a fair comparison we do the first step for all simulations and packages applying
gam no matter whether the second step is then performed with mgcv or gamlss. So
if (only) one of the method fails, then this is due to the second step; if both methods
fail it might be due to the first and/or second step.

The results are given in Figs. 10, 11 and 12 and Table 5. We see that both packages
manage to predict g(.) with again a better fit for mgcv. Clearly, gamlss barely
fits i(.) exhibiting important errors and a very wide confidence band that makes
the estimation unreliable, whereas mgcv gives a much better fit. However, when the
sample size increases, the problems encountered by the gamlss package tend to be
mitigated.

It should be remarked that there exists also the possibility to estimate varying-
coefficient models with the BayesX R package. This is a software developed by
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Fig. 9 Design 3, 90 % simulation intervals for sample size n = 250 for g on the left, h on the right

Table 4 Results calculated from 500 samples drawn from Design 3

Sample size Package ABias[3()] ABias[h()] AMSE[2()] AMSE[h()]

50 mgev —0.0043 0.0040 0.0230 0.0193
gamlss 0.0312 —0.0720 11.2338 2.9439

100 mgev —0.0310 —0.0166 0.0190 0.0124
gamlss 0.2775 —0.0574 24.0567 0.4506

250 mgev —0.0007 —0.0022 0.0040 0.0066
gamlss 0.1755 0.2812 4.6757 5.2134

Belitz et al. (2013). It was originally designed to mainly deal with generalized
additive models, generalized mixed additive models, generalized geo-additive mixed
models, and geographically weighted regression. But since a while it includes also
special cases of varying-coefficient models. BayesX considers three inferential pro-
cedures: Full Bayesian (FB) inference based on MCMC simulation techniques (the
function is bayesregobjects), mixed model based estimation corresponding
to an Empirical Bayesian (EB) inference or a penalized likelihood (the function is
remlregobjects), and inference based on penalized least squares (the function
is bstepwiseregobjects). In brief, in the case of the FB approach, the prior
of the coefficient functions are assumed to be random with appropriate hyper-priors
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whereas in the EB approach they are assumed to be unknown parameters. Let us con-
sider these procedures in the specific case of varying-coefficient models which can
be divided in three subgroups: models with continuous variables as effect modifiers,
models with spacial coordinates, and models with unordered group indicators (say,
random slopes). For the inferences based on the FB or on the EB approach, the three
types are implemented in the same way. However, in our study we are more concerned
with continuous variables. This case can be estimated in (at least) three different ways:
first rwl or second rw2 order random walk, P-spline with first pspl inerwl or sec-
ond psplinerw2 order random walk penalty—or with a ‘seasonal prior’. For the
case of doing inference based on a penalized least squares approach, two methods are
implemented for continuous regressors: one considering P-splines with first or second
order difference penalty, and one with zero degree P-splines. For non-Bayesian sta-
tisticians and therefore for almost all empirical economists it is very hard to see how
to choose between this impressive set of options, and to set the parameters. Results
certainly also depend on the prior choice and simulation method chosen. Furthermore,
without going into the source codes, on can only obtain figures with Bayesian con-
fidence intervals but no predictions at given points, nor numerical results on these.
All this makes it a bit difficult to compare this package with the above mentioned
methods. It would be, however, interesting to study this direction deeper as some
small simulation studies (not presented here) seem to indicate a quite competitive
performance.
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Table 5 Results calculated from 500 samples drawn from Design 4

Sample size Package ABias[3()] ABias[h(.)] AMSE[2()] AMSETh()]
50 mgev 0.0262 —9.2227e—17 0.0390 0.3151
gamlss 0.0233 0.4281 2.4170 6.0226
100 mgev 0.0364 8.9392¢—17 0.0128 0.1210
gamlss —1.0389 —3.1684 105.6606 1072.2730
250 mgev 0.0425 —9.7946e—17 0.0056 0.0321
gamlss —0.0598 —0.9288 1.6459 178.4230

5 Conclusion

First the problem of endogenous coefficients is presented. For them we show the
failure of the OLS and liner IV approaches when estimating an average effect
or return. The use of varying-coefficient models is suggested because of their
potential to handle heterogeneous returns. The enable us to directly model the coef-
ficients as functions. This is partly underlined by some examples from empirical
economics. We have explicitly shown the inadequacy of traditional econometric
inference to estimate an average effect when the coefficients are endogenous. We
then propose alternative modeling approaches by using varying-coefficient mod-
els. This can be extended to IV estimation to overcome the problem of remaining
endogeneity.

Some simulation studies were performed to first show the failure of classical meth-
ods, and in Sect. 4 to compare the performance of existing varying-coefficient model
estimators. More specifically, we have presented several R packages commonly avail-
able to implement the discussed varying-coefficient models.

This article has highlighted the potentiality of varying-coefficient models to esti-
mate individual or average effects of regressors while usual econometric approaches
fail because of considering endogenous coefficients. Regarding existing estimation
methods, we have provided an overview of the literature on estimators for varying-
coefficient models and their available implementations in R. At this point, for the sake
of generality, we have proposed solutions to deal with endogenous coefficients in sev-
eral specifications. Nevertheless, we hope that our contribution will motivate further
researches on this track.
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