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Abstract Generalized estimating equations have been widely used in the analysis of
correlated count data. Solving these equations yields consistent parameter estimates
while the variance of the estimates is obtained from a sandwich estimator, thereby
ensuring that, even with misspecification of the so-called working correlation matrix,
one can draw valid inferences on the marginal mean parameters. That they allow
misspecification of the working correlation structure, though, implies a limitation
of these equations should scientific interest also be in the covariance or correlation
structure. We propose herein an extension of these estimating equations such that, by
incorporating the bivariate Poisson distribution, the variance-covariance matrix of the
response vector can be properly modelled, which would permit inference thereon. A
sandwich estimator is used for the standard errors, ensuring sound inference on the
parameters estimated. Two applications are presented.

Keywords Bivariate Poisson distribution · First four moments · Generalized linear
models · Longitudinal count data · Sandwich estimator · Time varying covariates

1 Introduction

Count data, as the name suggests, arises as a result of a counting process in a given inter-
val of time and therefore takes on non-negative integer values. Examples mayinclude:
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number of doctor visits, number of epileptic seizures, number of accidents, etc. To
draw inferences from such data, a Poisson distribution is usually assumed as the data
generating mechanism and a log-likelihood function is constructed which, when max-
imized, yields parameters of scientific interest. The standard Poisson model implies
that the mean and variance are equal McCullagh and Nelder (1989). However, in prac-
tice, this implication is usually restrictive because count data samples often have the
mean either greater than the variance (so-called underdispersion) or less than the vari-
ance (also known as overdispersion). Therefore, using the Poisson model in its basic
form would not account for this feature correctly. To account for overdispersion, the
negative-binomial (NB; Breslow 1984; Lawless 1987) model is an option. Also, count
data regularly has an incidence of zero counts greater than expected from the Pois-
son model. The zero-inflated Poisson (ZIP; Lambert 1992) or zero-inflated negative
binomial (ZINB; Ridout et al. 2001) model account for the extra zeros.

Further, count data is often collected repeatedly over time. Such studies aim at
describing, for example, the evolution of the subjects’ condition over time, given
certain characteristics of interest. This repetition in the observation of the patients or
cluster or subjects induces the aspect of correlation because responses from the same
subject will be more alike than those between different subjects. Also here, extensions
from cross-sectional or univariate data to correlated data have been proposed in the
literature and implemented in statistical software packages. Some of these include
generalized estimating equations (GEE1; Liang and Zeger 1986), the Poisson-normal
model, which belongs to the generalized linear mixedmodel family (GLMM; Breslow
and Clayton 1993; Wolfinger and O’Connell 1993) or more generally the combined
model (Molenberghs et al. 2007, 2010), the multivariate negative binomial model
(Solis-Trapala and Farewell 2005; Winkelmann 2008), etc. In this paper, we shall
generically refer to all estimating equations as GEE while GEE1 denotes the method
put forward by Liang and Zeger (1986) in which the correlation structure is calculated
using themethod ofmoments. Furthermore,GEE1.5 denotes the extension ofGEE1 by
replacing the moment-based estimation of the working correlation parameters with a
second set of estimating equations (Prentice (1988);KimandShults (2010) and,Lipsitz
et al. (1991) are someexamples). InGEE1.5, the two sets of estimating equations for the
marginalmean and correlation structure are assumedorthogonal or independent,which
simplifies the computational burden that would be encountered otherwise. Because
these methods aim at obtaining marginal mean parameters that are consistent and
asymptotically normally distributed, they permit inferences on the marginal mean
regression parameters and standard errors even when the correlation structure is not
correctly specified. As a result, and akin to GEE1, no scientific inference can be made
on the correlation structures in GEE1.5 given that these association structures are
allowed to be misspecified. On the other hand, allowing the two sets of estimating
equations to be correlated results in GEE2 (Liang et al. 1992; Zhao and Prentice
1990; Prentice and Zhao 1991). This implies that the first and second moments are
then fully modeled while making working assumptions about the third- and higher-
order moments. Research in marginal models for hierarchical or correlated count
data is certainly ongoing. Iddi and Molenberghs (2013) also contributed to this area
of correlated and overdispersed count data by proposing a marginalized model for
zero-inflated, overdispersed, and correlated count data. We refer interested readers in
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the topic of generalized estimating equations to Molenberghs and Verbeke (2005),
Hardin and Hilbe (2003), Diggle et al. (2002), Fitzmaurice et al. (2004), and Ziegler
(2011). Modeling of the covariance structure simultaneously with the mean is a field
of ongoing research and many other researchers, for example, Ye and Pan (2006),
Leng et al. (2010), Fan et al. (2007), etc., have also made contributions to the subject.

Generally, when analyzing correlated data, 3 different modeling frameworks can
be chosen from, depending on the objective of the study. In Sect. 5.3 of Molen-
berghs and Verbeke (2005), these frameworks or model families (marginal models,
conditionally specified models, and subject-specific models) are presented and char-
acterized. Note that Lee and Nelder (2004) regard the subject-specific models also as
conditional models. For completeness, we in turn briefly define these 3 families but
refer to Molenberghs and Verbeke (2005), Fahrmeir and Tutz (1994, 2001), Diggle
et al. (2002), and Lee and Nelder (2004) for detailed discussions of these families.
A marginal model is one where the marginal distribution of the response of interest
is modeled as a function of covariates. One models the expectation of the response
variable conditioning only on the covariates. An example is a comparison of males
and females in terms of the mean response or a contrast in the average number of
epileptic seizures between patients who received a treatment versus patients in a con-
trol (placebo) group. A random-effects or subject-specific model further conditions
on unobserved or latent subject-specific random effects in addition to the covariates of
interest. For a conditionally specified model, typically an auto-regressive or transition
model, the expectation of the response variable is modeled while conditioning on part
or all of the remaining set of responses for a subject as well as covariates; in a transition
model, conditioning is on past measurements.

In this paper, marginal models are of interest, especially motivated by two datasets
presented in Sect. 3 and analyzed in Sect. 4. We hence-forth limit our discussion to
the marginal-models framework for correlated count data, highlighting the (relevant)
limitations and then discuss our proposed solution. GEE1 is a common tool used when
modeling correlated count data. Since its introduction by Liang and Zeger (1986),
it has been extensively studied, implemented in statistical software packages, and
applied in research. Its strengths and limitations are very thoroughly described in
the literature. Extensions of GEE1 to allow for the simultaneous estimation of both
the marginal mean and correlation parameters assuming independence between them
have been proposed in literature and are herein referred to as GEE1.5. One strength of
GEE1 and GEE1.5 is that the parameter estimates are consistent as long as the mean
structure is correctly specified, even if the working covariance or correlation structure
is misspecified. They are also computationally easier (faster) to evaluate than their
GEE2 counterparts. A major limitation suffered by both methods is that, because
the estimating equations allow for the misspecification of the correlation/covariance
structure, GEE1 and GEE1.5 fall short if scientific interest is not only in the marginal
mean parameters but also in the association structure. Further detail about the different
GEE methods is presented in Sect. 2.2, while Sect. 2.3 presents our extension of the
estimating equations to model the covariance structure via covariates simultaneously
with the marginal mean parameters by incorporating the bivariate Poisson distribution
into the estimating equations thereby permitting inference on both the marginal mean
and covariance parameters.

123



G. Kalema et al.

2 Methodology

2.1 Notation

Henceforth, the term subject will be used to mean the independently replicated entity
withinwhich the repetition occurs; for example, patient, subject, cluster, or unit.Weuse
the random variable Yi j to denote the j-th observation of subject i , i = 1, . . . , K and
j = 1, . . . , ni . Because the responses for each subject i are repeatedly recorded, sub-
ject i has an ni ×1 vectorYi = (Yi1,Yi2, . . . ,Yini )

� ofmeasurements. Further, letXi j

denote a p×1 vector of covariates, thusXi j = (Xi j1, Xi j2, . . . , Xi jp)
�, that are to be

investigated for possible associationwith the response variable Yi j . Inmatrix notation,

Xi =

⎛
⎜⎜⎜⎜⎝

X�
i1

X�
i2
...

X�
ini

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Xi11 Xi12 . . . Xi1p
Xi21 Xi22 . . . Xi2p

...
...

. . .
...

Xini1 Xini2 . . . Xini p

⎞
⎟⎟⎟⎠ .

It is important to mention that the covariates contained in Xi may be either chang-
ing over time j in which case they would be referred to as time-varying covariates,
or otherwise time-stationary. In Sect. 2.3, we show how our proposal adapts to both
time-stationary and time-varying covariates.

2.2 Generalized estimating equations

Following from the theory of generalized linear models (GLM; Agresti 2002, Nelder
and Wedderburn 1972, McCullagh and Nelder 1989), the first two moments derived
(Molenberghs and Verbeke 2005, ch. 3) from a distribution that belongs to the expo-
nential family of distributions are the mean and variance, expressed as,

E(Yi j | Xi ) = μi j , (1a)

Var(Yi j | Xi ) = Vi j = φυ(μi j ), (1b)

respectively, where φ is a scale parameter for the variance and υ(·) is the variance
function, which describes the dependency of the variance on the mean. Mean (1a) is
related to covariates in Xi j via a known link function g(·) (for example, log link for
counts/Poisson data, logit or probit link for binary/binomial data) as g(μi j ) = X�

i jβ,
where β is a p × 1 vector of unknown regression parameters. If we let Corr(Yi j ,Yik |
Xi ) = ρi jk , then Cov(Yi | Xi ) = Vi (β, φ, α) = φCi (β)

1
2 Ri (α)Ci (β)

1
2 , where Ri

is a correlation matrix, Ci = diag(υ(μi j )) is a diagonal matrix of variances and α is
a vector of correlation parameters. Specific to count data, Yi j is assumed to follow a
Poisson distribution with meanμi j , thus Yi j ∼ Poisson(μi j ). The Poisson density can
be expressed as belonging to the exponential family by letting logμi j to be the natural
parameter, φ = 1 and υ(μi j ) = μi j . The marginal mean (1a) is then modeled in terms
of covariates as log(μi j ) = X�

i jβ, therefore referred to as a log-linear or Poisson
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regression model and Var(Yi j | Xi ) = μi j . This model, therefore, specifically implies
that the mean is equal to the variance, a phenomenon usually termed equi-dispersion.
In practice though, deviations from this are common, so that the mean is greater
than the variance (under-dispersion) or that the mean is less than the variance (over-
dispersion). While it is not this paper’s goal to fully address over(under)-dispersion,
we refer interested readers to, for example, Molenberghs et al. (2007, 2010) and
references therein for further details. Indeed, our intention is to model correlated
count data such that inference is allowed on both the marginal parameters β and the
covariance structure Cov(Yi | Xi ).

Given (φ, α), Liang and Zeger (1986) iteratively solve the generalized estimating
equation given by

K∑
i=1

Ui (β) =
K∑
i=1

∂μi

∂β

�
V−1
i (Yi − μi ) = 0 (2)

to obtain the estimates for β (β̂). The iterative algorithm is as follows:

1. Obtain the starting values of β̂ from fitting a GLM (thus assuming independence).

2. Given β̂ or β̂(l), calculate (φ̂, α̂) and therefore V̂i = φ̂C
1
2
i

(
β̂
)
Ri (̂α)C

1
2
i

(
β̂
)
using

the method of moments (see Chapter 8 of Molenberghs and Verbeke 2005).
3. Given φ̂, α̂ and V̂i , update β̂ by using modified Fisher’s scoring algorithm:

β̂(l+1) = β̂(l)−
[

K∑
i=1

(
∂μi

∂β

)�
V−1
i

(
∂μi

∂β

)]−1 [
K∑
i=1

(
∂μi

∂β

)�
V−1
i (Yi − μi )

]
.

The solution is obtained by iterating between steps 2 and 3 above until convergence
meaning that the change in the parameter estimates satisfies (e.g., is less than) a
pre-specified criterion. Assuming the marginal mean (μi ) is correctly specified, con-
sistent and asymptotically normally distributed parameter estimates β̂ with mean β

and variance-covariance matrix

Var(β̂) = I−1
0 I1 I

−1
0 , (3)

where

I0 =
K∑
i=1

(
∂μi

∂β

)�
V−1
i

(
∂μi

∂β

)
and

I1 =
K∑
i=1

(
∂μi

∂β

)�
V−1
i Var(Yi )V

−1
i

(
∂μi

∂β

)
,

are obtained. The variance estimator in (3) is commonly referred to as the sandwich
estimator and results in the so-called empirically corrected standard errors. The para-
meter estimates and standard errors are asymptotically correct whether or not the
working correlation structure is correctly specified.

123



G. Kalema et al.

Much as GEE1 has been found appealing to many data analysts and researchers,
it has quite a number of issues associated with it. It is not our intention to exhaus-
tively list them herein but refer to, for example, Lee and Nelder (2004), Lindsey and
Lambert (1998), Crowder (1995), Sun et al. (2009), Wang and Carey (2004), among
others, for further discussion of these issues. Specifically, GEE1 allowing the mis-
specification of the working correlation structure, thereby rendering it a nuisance,
implies that the response vector (Yi ) is given an arbitrary distribution and hampers
checking assumptions about the covariance structure (Lee and Nelder 2004). Speci-
fying a covariance structure based on a model straightforwardly allows for inference
on this covariance structure. Further and more importantly, although consistent para-
meter estimates and standard errors can be obtained even with a misspecification of
the working correlation assumption, careful estimation of the covariance/correlation
is needed since it may affect the iterative updating of β and α, leading to a breakdown
of the iterative procedure (Sun et al. 2009). As an alternative estimation approach to
the method of moments used by Liang and Zeger (1986) for the correlation structure,
Kim and Shults (2010) use a two-stage approach to estimate the regression parame-
ters β̂ and the correlation parameters α̂. At stage 1, they iterate between (2), with

V−1
i = C

− 1
2

i (β)R−1
i (α)C

− 1
2

i (β), and the estimating equation for α, namely:

∂

∂α

{
K∑
i=1

Z�
i (β)R−1

i Zi (β)

}
= 0, (5)

where Zi (β) = (zi1, . . . , zini )
� are the j-th Pearson residuals for subject i given by

zi j = (yi j − μ̂i j )/
√

υ(μ̂i j ) and evaluated at the current β̂, until convergence. At stage
2, they plug α̂ from stage 1 into

K∑
i=1

trace

{
∂R−1

i (δ)

∂α
Ri (α)

}∣∣∣∣∣
δ=α̂

= 0, (6)

and update α̂. The final β̂ is obtained by solving (2) at the final α̂ from (6).
Yet another alternative to the method of moments for the correlation parameters is

the proposal by Prentice (1988) in which estimating Eq. (2) are simultaneously solved
with those of pairwise correlations (α) given by;

K∑
i=1

(
∂ζi

∂α

)�
H−1
i (Wi − ζi ) = 0, (7)

whereWi = (zi1zi2, zi1zi3, . . . , zi,ni−1zi,ni , z
2
i1, z

2
i2, . . . , z

2
ini

)� contains the products
of subject i’s pairs and squares of Pearson residuals zis zit where 1 ≤ s < t ≤ ni ,
Hi = Var(Wi ) and ζi = E(Wi ). It is common for binary responses that the last ni
components of Wi , i.e., the squared residuals, are left out due to the mean-variance
relationship. Calculating Var(Wi ) = Var(zis zit ) = E({zis zit }2)−E(zis zit )2 requires

E({zis zit }2) =
[
E(Y 2

isY
2
i t ) − 2μ̂i tE(Y 2

isYit ) + μ̂2
i tE(Y 2

is) − 2μ̂isE(YisY
2
i t )

+ 4μ̂isμ̂i tE(YisYit )− 3μ̂2
isμ̂

2
i t+μ̂2

isE(Y 2
i t )

] [
υ(μ̂is)υ(μ̂i t )

]−1
. (8)
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For binary response data, for example, and unlike the counts case, (8) simplifies (as
Y 2
i j = Yi j ) such that

Var(zis zit ) = 1 + (1 − 2μ̂is)(1 − 2μ̂i t )
(
υ(μ̂is)υ(μ̂i t )

)−1/2
ψist − ψ2

ist ,

where ψist = E(zis zit ) are entries in ζi . The binary response case, thus, turns out
to be special since ζi and Hi are then fully determined by the mean and correlation
models without necessitating additional assumptions about higher-order moments.
Generally though, obtaining matrix Hi involves the third and fourth moments of Yi ,
which are usually assumed to be equal to zero. Alternatives to this assumption may
be sought depending on the type of response variable under consideration. In the
context of binary response data, for example, Diggle et al. (2002) suggest Hi =
diag

[
Var(zi1zi2), . . . ,Var(zi,ni−1, zi,ni )

]
, which only depends on α̂ and β̂ while they

propose the use of the identity matrix for count responses. By using the identity
matrix for the counts, there is a loss of efficiency in estimating α. They, however,
argue that this efficiency loss has very little impact, in practice, on the estimation of β

and yet simplifies computation by avoiding the estimation of additional higher-order
parameters. Note that while Hi is a working variance-covariance matrix (meaning
that it contains working assumptions usually being that the third- and fourth-order
correlations are equal to zero, matters not whether it is correctly specified or not, only
aides the estimation of the regression parameters β and cannot be used for formal
inferences) for Wi ; Vi in (2), on the other hand, is not a working covariance matrix
because the second moments are specified by (7).

Note that Prentice (1988) assumes independence between (2) and (7). Again, this
assumption implies a loss of efficiency but is defendable because the consistency and
asymptotic normality of the marginal mean regression parameters is not hampered by
the misspecification of the correlation structure. Also important to mention is that the
sets of parameters α and β both come with precision estimates and formal inference
can be made on these parameters as long as the equations can be believed to have been
correctly specified (Molenberghs and Verbeke 2005). It may be desirable, however,
to relax the independence assumption between (2) and (7). This may be the case if
interest lies in the efficient estimation of both β and α. One may then be interested in
minimizing the loss of efficiency accruing to the orthogonality assumption in GEE1.5.
This leads us to the so-called second-order GEE (GEE2). Zhao and Prentice (1990)
proposed an alternative to GEE1 or GEE1.5 in terms of correlations while Liang et al.
(1992) used odds ratios, with both proposals aimed at modeling mutivariate binary
responses. Prentice and Zhao (1991) extended the equations of Zhao and Prentice
(1990) to the general case of discrete or continuous response vectors. They combine
the response vector Yi and the pairwise crossproducts Wi into one outcome vector
T�
i = (Y�

i ,W�
i ) and solve the equations:

K∑
i=1

Ui (Θ) =
K∑
i=1

D�
i (Θ)�−1

i (Θ)fi (Θ)

=
(

∂μi
∂β

∂ζi
∂β

0 ∂ζi
∂α

) (
Var(Yi ) Cov(Yi ,Wi )

Cov(Wi ,Yi ) Var(Wi )

)−1 (
Yi − μi

Wi − ζi

)
= 0, (9)
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where Θ = (β�, α�)�. Since solving (9) is computationally unattractive, Prentice
and Zhao (1991) suggested specifying working variance matrices in �i such that
the third and fourth moments are expressed as functions of μi and ζi . We show in
the next section how we incorporate the bivariate Poisson distribution, rather than
the multivariate Poisson distribution, into score Eq. (2) to allow scientific inference
on the covariance as well as the mean parameters while modeling the covariance
of Yi at pair level. Use of the multivariate Poisson distribution would result in a
full likelihood approach, which would maximize efficiency. However, it is ham-
pered by the complexity of the probability function due to summations which may
increase the computational burden with increase in the number of measurements per
subject and/or sample size (Karlis 2003), the very reason estimating equations are
being sought after. By using the bivariate Poisson distribution, closed form expres-
sions for the third and fourth moments in (8) are easily obtainable and one could
go ahead with the suggestion of Prentice (1988) but for correlated count data. A
somewhat different route is taken here in that estimating equations are proposed
at the level of subject i’s pair of responses (Yis,Yit ). The use of pairs rather than
the whole vector of responses (Yi ) would lead to loss of efficiency in estimating
the parameters of interest but would simplify the computational unattractiveness of
having to obtain the third and fourth moments that is evident as long as scientific
interest lies in both the marginal mean parameters (β) and the association struc-
ture.

2.3 Extension of GEE using the bivariate Poisson distribution

To put matters into perspective, consider the following bivariate Poisson distribution
which is derived using the trivariate reduction method (Kocherlakota and Kocher-
lakota 1992, 2001) based on a convolution of independent Poisson variables. Note
that there are several derivations of the bivariate Poisson distribution in the liter-
ature. For example, Lakshminarayana et al. (1999) derive their bivariate Poisson
distribution based on a polynomial factor. Assume that Wic are independent Pois-
son random variables such that E(Wic) = ηic, c = s, t or st . The random variables
Yis = (Wis + Wist ) and Yit = (Wit + Wist ) then follow a bivariate Poisson distribu-
tion. Thus, (Yis,Yit ) ∼ BP(ηis, ηi t , ηist ) characterized by

f (yis, yit ) = e−(ηis+ηi t+ηist )
η
yis
is

yis !
η
yit
i t

yi t !
min(yis ,yit )∑

l=0

(
yis
l

)(
yit
l

)
l!

(
ηist

ηisηi t

)l

. (10)

Marginally, E(Yis) = ηis + ηist , E(Yit ) = ηi t + ηist and Cov(Yis,Yit ) = ηist . We
propose the score equation (Ui,st ) to be computed at each pair {s, t} of responses
from subject i such that the estimates for the β regression parameters are obtained by
solving

K∑
i

Ui =
K∑
i

∑
1≤s<t≤ni

Ui,st (β) =
K∑
i

∑
s<t

∂μi,st

∂β� V−1
i,st

(
Yi,st − μi,st

) = 0, (11)
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where

Yi,st =
⎛
⎝

Yis
Yit

YisYit

⎞
⎠, μi,st =

⎛
⎝

E(Yis)
E(Yit )

E(YisYit )

⎞
⎠ and

Vi,st =
⎛
⎝

Var(Yis) Cov(Yis,Yit ) Cov(Yis,YisYit )
Cov(Yit ,Yis) Var(Yit ) Cov(Yit ,YisYit )

Cov(YisYit ,Yis) Cov(YisYit ,Yit ) Var(YisYit )

⎞
⎠,

with E(YisYit ) = E(Yis)E(Yit ) + Cov(Yis,Yit ), Var(Yis) = E(Yis) and Var(Yit ) =
E(Yit ).

To derive the covariance terms Cov(Yis,YisYit ), Cov(Yit ,YisYit ) and Var(YisYit )
in Vist in (11), we need to calculate the following four moments of the Poisson distri-
bution that turn out to be essential. If X̃ ∼ Poisson(λ) with probability mass function

f (X̃; λ) = λx̃ e−λ

x̃ ! where λ > 0 and x̃ = 0, 1, 2, . . ., then the nth moment E(X̃n),

n = 1, 2, 3, 4 is as follows;

E(X̃) = e−λ
∞∑
x̃=0

x̃
λx̃

x ! = λe−λ
∞∑
x̃=1

λx̃−1

(x̃ − 1)! = λe−λeλ = λ, (12a)

E(X̃2) = e−λ
∞∑
x̃=0

x̃2
λx̃

x̃ ! = λe−λ
∞∑
x̃=1

x̃
λx̃−1

(x̃ − 1)! = λe−λ ∂

∂λ

[
λ

∞∑
x̃=1

λx̃−1

(x̃ − 1)!

]

= λe−λ ∂

∂λ

(
λeλ

) = λe−λ(1 + λ)eλ = λ(1 + λ), (12b)

E(X̃3) = e−λ
∞∑
x̃=0

x̃3
λx̃

x̃ ! = λe−λ
∞∑
x̃=1

x̃2
λx̃−1

(x̃ − 1)! = λe−λ ∂

∂λ

[
λ

∞∑
x̃=1

x̃λx̃−1

(x̃ − 1)!

]

= λe−λ ∂

∂λ

[
λ

∂

∂λ

(
λ

∞∑
x̃=1

λx̃−1

(x̃ − 1)!

)]
= λe−λ ∂

∂λ

[
λ

∂

∂λ

(
λeλ

)]

= λe−λ ∂

∂λ

(
λ(1 + λ)eλ

) = λe−λ(λ(1 + λ) + 1 + 2λ)eλ)

= λ(1 + 3λ + λ2), and (12c)

E(X̃4) = λe−λ ∂

∂λ

[
λ(1 + 3λ + λ2)eλ

]

= λ
[
λ(1 + 3λ + λ2) + 1 + 6λ + 3λ2

]
= λ(λ3 + 6λ2 + 7λ + 1). (12d)

Generally, if E(X̃n) = fn(λ), then

fn+1(λ) = λe−λ ∂

∂λ

[
fn(λ)eλ

]

= λe−λ
[
f

′
n(λ) + fn(λ)

]
eλ = λ

[
f

′
n(λ) + fn(λ)

]
, (13)
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where f
′
n(·) is the first derivative of fn(·). Now, fromVar

(
X̃

)
= E

(
X̃2

)
−

[
E

(
X̃

)]2
,

it follows that Var (YisYit ) = E
[
(YisYit )2

] − [E(YisYit )]2 such that E
[
(YisYit )2

]
or

E(Y 2
isY

2
i t ) is to be replaced with

E(Y 2
isY

2
i t ) = E

[
(Wis + Wist )

2 (Wit + Wist )
2
]

= E
[(

W 2
is + 2WisWist + W 2

ist

) (
W 2

i t + 2WitWist + W 2
ist

)]

= E

[
W 2

isW
2
i t + 2W 2

isWitWist + W 2
isW

2
ist + 2WisW 2

i tWist

+ 4WisWitW 2
ist + 2WisW 3

ist + W 2
i tW

2
ist + 2WitW 3

ist + W 4
ist

]
,

(14)

where further simplification is possible by applying the expectation to the independent
Poisson variablesWs ,Wt ,Wst and using themoments in (12). This leads to the solution

E(Y 2
isY

2
i t ) = E(Yis)

2E(Yit )
2 + E(Yit )E(Yis)

2) + E(Yis)E(Yit )
2 + 2η2ist

+E(Yis)E(Yit )(1 + 4ηist ) + 2ηist (E(Yis) + E(Yit )) + ηist . (15)

The covariances Cov(Yis,YisYit ) and Cov(Yis,YisYit ) are calculated as

Cov(Yis,YisYit ) = E(YisYisYit ) − E(Yis)E(YisYit ) = E(Y 2
isYit ) − E(Yis)E(YisYit )

and

Cov(Yit ,YisYit ) = E(YitYisYit ) − E(Yit )E(YisYit ) = E(YisY
2
i t ) − E(Yit )E(YisYit ),

respectively, where similar algebra as in (14) leads to the following quantities:

E(Y 2
is) = E(Yis) + E(Yis)

2,

E(Y 2
i t ) = E(Yit ) + E(Yit )

2,

E(Y 2
isYit ) = E(Y 2

is)E(Yit ) + 2ηistE(Yis) + ηist ,

E(YisY
2
i t ) = E(Yis)E(Y 2

i t ) + 2ηistE(Yit ) + ηist .

The means E(Wic), are related to covariates as log [E(Wic)] = X�
icβ, where

⎛
⎝
X�
is

X�
i t

X�
ist

⎞
⎠ =

⎛
⎝
1 0 0 Xis1 Xis2 . . . Xisp

0 1 0 Xit1 Xit2 . . . Xitp

0 0 1 Xist1 Xist2 . . . Xistp

⎞
⎠ . (16)

The vector of unknown regression parameters β = (β0s, β0t , β0st , β1, β2, . . . , βp)
�,

allowing for an intercept β0 specific to time point s, t and their product st in addition
to the regression parameters (β1, . . . , βp) shared for the rest of the variables. Further-
more, the model-based standard errors are obtained as the square root of the diagonal
entries of
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U∗ =
(

K∑
i

∑
s<t

∂μi,st

∂β� V−1
i,st

∂μi,st

∂β

)−1

,

while the sandwich standard errors are calculated as the square root of the diagonal of

U∗∗ = U∗ · I ∗ ·U∗ = U∗ ·
K∑
i

∑
s<t

Ui,stU
�
i,st ·U∗.

As mentioned in Sect. 2.1, covariates under consideration in (16) may be either time-
stationary or time-varying. When time-stationary, each of the columns 1, 2, . . . , p
would contain the same values. On the other hand, when time-varying, Xist can be
derived as a function of Xis and Xit , for example, a difference, lag, sum, product,
ratio, etc. The correlation between two measurements Yis and Yit is then calculated as
ρi,st = Cov(Yis,Yit )/

√
Var(Yis)Var(Yit ).

3 Datasets

Two real-life longitudinal datasets are analyzed herein, namely, the Epilepsy data and
the Jimma Infant Growth (or Survival) Study. We describe these two datasets in turn.

3.1 Epilepsy data

This dataset is presented and analyzed by Leppik et al. (1985), and Thall and Vail
(1990), among others. The data were obtained from a placebo-controlled clinical
trial of 59 patients with epilepsy. These patients, suffering from simple or complex
partial seizures, were enrolled in a randomized clinical trial that aimed at studying
the effect of the anti-epileptic drug known as progabide on the number of epilep-
tic seizures over time. In the study, 31 epileptic patients were randomized to the
group that received progabide while 28 patients received a placebo, as an adjuvant to
the standard anti-epileptic chemotherapy. Progabide is an anti-epileptic drug whose
primary mechanism of action is to enhance gamma-aminobutyric acid (GABA) con-
tent. GABA is the primary inhibitory neurotransmitter in the brain. Prior to receiving
treatment, baseline data on the number of epileptic seizures during the preceding 8-
week interval were recorded. Counts of epileptic seizures during 2-week intervals
before each of four successive post-randomization clinic visits were recorded. The
dataset also contains information on the patient identification, treatment (0 = Placebo,
1 = Progabide), age, baseline 8week seizure count, and the seizure count during the
first, second, third, and fourth 2-week time interval. Figure 1 shows the evolution of
the number of seizures for each epileptic patient over the study period, while Fig. 2
shows the distribution of the seizure counts over all week intervals and both treat-
ment groups. The evolution of the average and median number of epileptic seizures
between the consecutive 2-weeks period by treatment are shown in Figs. 3 and 4,
respectively.
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Fig. 1 Epilepsy data: subject-specific profiles of the number of epileptic seizures over study weeks

Fig. 2 Epilepsy data: distribution of the number of epileptic seizures

There are differences in the seizure counts within patients but also between patients
over time. Specifically, one patient seems to have an extreme number of seizure counts
at all time points relative to the other profiles while another patient registered a rather
distant number (76) of seizures at the third visit. We also observe from Fig. 2 that the
distribution of the seizure counts is quite skewed and that the majority of the counts
were between 0 and about 20, although there was a count of up to 102 seizures in
the first two-week interval (see Fig. 1). From Fig. 3 and 4, it can be seen that the
progabide group has lower (mean or median) seizure counts except at the second two-
weeks interval. The seizure counts seem to reduce, on average, over the study period
for both treatment arms. It is common for longitudinal studies to have cases that at
some point in the study drop out or miss some of the visits. For this dataset, however,
all patients were observed at all the visits.
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Fig. 3 Epilepsy data: average evolution of the number of epileptic seizures over study weeks by treatment

Fig. 4 Epilepsy data: median evolution of the number of epileptic seizures over study weeks by treatment

3.2 Jimma infant growth study

This dataset, also referred to as the Jimma Infant Survival Differential Longitudinal
Growth Study, has been analyzed by Lesaffre et al. (1999) in the linear mixed models
context, while Kassahun et al. (2012) have used it in the binary data framework in
which they sought to identify risk factors for children being overweight, based on
a dichotomization of the Body Mass Index (BMI). It is an Ethiopian study, set up
to establish risk factors affecting infant survival and to investigate socio-economic,
maternal, and infant-rearing factors that contribute most to children’s early survival.
Children born in Jimma, Keffa and Illubabor, located in Southwestern Ethiopia were
examined for their first year growth characteristics. At baseline (birth), there were
a total of 7969 infants enrolled in the study, both singleton and twin live births
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Fig. 5 Jimma data: infant-specific profiles of the number of days of diarrheal illness over age

inclusive. However, only singleton live births (7872 infants) at baseline are consid-
ered. The children were followed-up every 2 months, until the age of 1year, thus
age = 0, 2, 4, 6, 8, 10 and 12 months. Herein, we are interested in modeling the total
number of days of diarrheal illness as a function of gender (1 = Male, 0 = Female),
whether mother continued breastfeeding (1 = Yes, 0 = No) for the 12months,
whether mother sought medical help (1 = Yes, 0 = No), and place of residence
(1 = rural, 2 = urban, 3 = semi-urban). Figure 5 shows the evolution of the number
of days of illness over the 12-month period for 399 (5%) randomly sampled infants
while Fig. 6 depicts the average number of days of illness over the 12months by gen-
der. From Fig. 5, we observe a tendency of the number of days of diarrheal illness
to increase as the infant grows older. There are also a lot of variability observable
within an infant, and likewise between infants as they evolve. Figure 6 further shows
an increasing trend in the average number of days of diarrheal illness as the infants get
older, with the females always having lower average counts than the males. Table 1
shows the number of infants whose responseswere recorded over the 12-month period,
by gender. As is typical of longitudinal studies, there is a reduction over time in the
number of infants.Asmentioned in Sect. 3.1, longitudinal studies very often havemiss-
ing data. The Jimma study is no exception. Figure 7 shows some (20 out of 59) of the
missingness patterns present in the dataset. In general, both intermittent missingness
and dropout as well as the first infant visit not having been at age = 0, 2, 4 or 6months
are present. Because it is not our intention to deal with missing data in this paper, we
have assumed that the missingness mechanism is not related to the number of days of
diarrheal illness observed and have excluded 525 infantswith intermittentmissingness.

4 Data analysis

To analyze the epilepsy dataset presented in Sect. 3.1, the following covariates are con-
sidered: baseline (the 8-week pre-randomization seizure count), age (years), treatment
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Fig. 6 Jimma data: average number of days of diarrheal illness by gender over age

Table 1 Jimma data: number of
infants with observations by
gender and age

Gender Age (months)

0 2 4 6 8 10 12

Female 3865 3706 3570 3488 3401 3351 2920

Male 4007 3798 3656 3536 3455 3388 2972

Total 7872 7504 7226 7024 6856 6739 5892

and time (visit), denoted as B� A�, T � t�, respectively. As mentioned in Sect. 3.1, one
patient is observed in Fig. 1 to have a seemingly outlying profile. However, Thall and
Vail (1990) find no clinical basis to tag the patient as an extreme case. The following
analyses of the Epilepsy data therefore use data for all the 59 patients in the study.

Considering no time-varying covariates for the covariance E(Wist ) = ηist , we fitted
the model

log(ηis) = β0s + β1t
�
is + β2T

�
i + β3

(
t�is × T �

i

) + β4B
�
i + β5A

�
i ,

log(ηi t ) = β0t + β1t
�
i t + β2T

�
i + β3

(
t�is × T �

i

) + β4B
�
i + β5A

�
i ,

log(ηist ) = β0st + β2T
�
i + β5A

�
i . (17)

In general, the covariates used for modeling log(ηist ) may be the same or different
from those used for ηis and ηi t . Table 2 shows the parameter estimates and standard
errors corresponding to Model 17. The model with time-varying covariate visi t is

log(ηis) = β0s + β1t
�
is + β2T

�
i + β3

(
t�is × T �

i

) + β4B
�
i + β5A

�
i ,

log(ηi t ) = β0t + β1t
�
i t + β2T

�
i + β3

(
t�is × T �

i

) + β4B
�
i + β5A

�
i ,

log(ηist ) = β0st + β1�(t�is, t
�
i t ) + β2T

�
i + β5A

�
i , (18)

where ϕ(t�is, t
�
i t ) denotes a function applied to the time-varying covariate t ime, in this

case, a difference between time at point s and t (t�is − t�i t ). Other possibilities for
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Fig. 7 20 of the 59 missing patterns in the Jimma dataset (N is the number of infants with the pattern under
consideration)

ϕ(·) may include, for example, the lag, ratio, sum, product, etc. From Table 2, the
interaction between the visits and treatments is not significant (p = 0.7977) despite
the fact that the mean profiles in Fig. 3 suggest otherwise. The discrepancy between
the observation in Sect. 3.1 and this finding is related to that one patient whose profile
seems more extreme relative to the others. Mean profiles based on data without this
potentially outlying patient (not shown) also suggested no interaction between the
treatments and visits. Considering age as a time-varying covariate when modeling
the covariance (Model 18) changed the results slightly but the conclusions remained
similar to when only time stationary covariates are used to model the covariance.
Table 5 shows the intervals of theminimumandmaximumcorrelations, for the placebo
and progabide groups, obtained from fitting (17) and (18). The correlations range over
a wide interval with the progabide group having even wider ranges. By modeling the
covariance between two measurements using visit as a time-varying covariate and a
difference as the time-varying function seems to have a minor impact on the parameter
estimates but also on correlations (Table 3).

To analyze the Jimma study, denote the covariates age, sex, breastfeeding, help and
place as a�, s�, b�, h� and p�, respectively. The model fitted considering age as the
time-varying covariate is

log [E(Wis)] = β0s+β1a
�
is+β2s

�
i +β3b

�
i +β4h

�
i +β5 p

�
i,rural + β6 p

�
i,semi-urban,
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Table 2 Epilepsy data: parameter estimates and standard errors when a time stationary covariate is con-
sidered (Model 17)

Effect Est. Model-based Sandwich or empirical

SE χ2 p SE χ2 p

Intercept (β0s ) −1.1904 0.2157 30.45 <.0001 1.2655 0.88 0.3468

Intercept (β0t ) −1.2119 0.2474 24.00 <.0001 1.2563 0.93 0.3347

Intercept (β0st ) 1.3148 0.0929 200.17 <.0001 0.4836 7.39 0.0066

visit (β1) −0.1724 0.0396 18.95 <.0001 0.0500 11.87 0.0006

trt(Placebo) (β2) 0.2782 0.0452 37.89 <.0001 0.2490 1.25 0.2638

trt*visit (β3) 0.0404 0.0390 1.07 0.3004 0.1576 0.07 0.7977

Baseline (β4) 0.0379 0.0015 629.29 <.0001 0.0088 18.46 <.0001

Age (β5) 0.0082 0.0027 8.93 0.0028 0.0129 0.40 0.5257

Table 3 Epilepsy data: Parameter estimates and standard errorswhen a time-varying covariate is considered
(Model 18)

Effect Est. Model-based Sandwich or empirical

SE χ2 p SE χ2 p

Intercept (β0s ) −1.3907 0.2221 39.20 <.0001 1.3798 1.02 0.3135

Intercept (β0t ) −1.6024 0.2518 40.50 <.0001 1.4621 1.20 0.2731

Intercept (β0st ) 1.2180 0.0992 150.64 <.0001 0.5099 5.71 0.0169

visit (β1) −0.0457 0.0246 3.45 0.0633 0.0468 0.95 0.3289

trt(Placebo) (β2) 0.3037 0.0448 46.04 <.0001 0.2456 1.53 0.2163

trt*visit (β3) 0.0066 0.0375 0.03 0.8603 0.1550 0.00 0.9660

Baseline (β4) 0.0378 0.0015 619.46 <.0001 0.0091 17.27 <.0001

Age (β5) 0.0085 0.0027 9.72 0.0018 0.0129 0.44 0.5094

log [E(Wit )] = β0t+β1a
�
i t+β2s

�
i +β3b

�
i +β4h

�
i + β5 p

�
i,rural + β6 p

�
i,semi-urban,

log [E(Wist )] = β0st + β1ϕ(a�
is, a

�
i t ) + β2s

�
i + β3b

�
i + β4h

�
i , (19)

where ϕ(a�
is, a

�
i t ) = a�

is − a�
i t . Table 4 confirms the observations made in Sect. 3.2,

namely, that that the average number of days of diarrheal illness increases as the
infants grow older with the female infants having lower counts of days compared
to the males. We also find that not breastfeeding is positively related to the number
of days of diarrheal illness (p = 0.0150) while not seeking medical help is also
highly statistically signicant in increasing the number of days of having diarrhea in
the infants. Table 6 shows the minimum and maximum estimates of the correlation by
gender obtained from fitting (19). The ranges of the correlation are a bit narrower than
those from the epilepsy but there are minor differences in the correlation estimates
between males and females. Unlike the Epilepsy data case where the minimum and
maximum estimates of the correlation seem not to change much over time, the Jimma
dataset reflects a decreasing trend in the correlations as the infants get older, in the
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Table 4 Jimma data: Parameter estimates and standard errors when a time-varying covariate is considered
(Model 19)

Effect Est. Model-based Sandwich or empirical

SE χ2 p SE χ2 p

Intercept (β0s ) −1.3373 0.0090 21968.71 <.0001 0.2232 35.89 <.0001

Intercept (β0t ) −0.9529 0.0098 10068.03 <.0001 0.1791 28.31 <.0001

Intercept (β0st ) −0.3984 0.0091 3006.32 <.0001 0.1775 5.04 0.0248

age (β1) 0.1260 0.0007 28725.74 <.0001 0.0083 228.11 <.0001

sex(Female) (β2) −0.1732 0.0034 2556.79 <.0001 0.0307 31.93 <.0001

bf(No) (β3) 0.2379 0.0099 575.10 <.0001 0.0978 5.92 0.0150

help(No) (β4) 2.0924 0.0038 308352.00 <.0001 0.0380 3034.68 <.0001

place(Rural) (β5) −0.0448 0.0064 48.82 <.0001 0.1060 0.18 0.6729

place(Semi-urban)(β6) −0.2088 0.0077 744.55 <.0001 0.1095 3.63 0.0566

Table 5 Epilepsy data: Minimum and maximum correlations from fitting Model 17 (top panel) and
Model 18 (bottom panel) for the two treatments

Visit Placebo Progabide

1 2 3 4 1 2 3 4

1 [1.00,1.00] [1.00,1.00]

2 [0.18,0.92] [1.00,1.00] [0.05,0.92] [1.00,1.00]

3 [0.19,0.93] [0.20,0.93] [1.00,1.00] [0.05,0.93] [0.06,0.94] [1.00,1.00]

4 [0.20,0.93] [0.22,0.94] [0.23,0.94] [1.00,1.00] [0.06,0.93] [0.06,0.94] [0.07,0.95] [1.00,1.00]

1 [1.00,1.00] [1.00,1.00]

2 [0.20,0.93] [1.00,1.00] [0.05,0.93] [1.00,1.00]

3 [0.21,0.93] [0.21,0.93] [1.00,1.00] [0.06,0.93] [0.06,0.93] [1.00,1.00]

4 [0.22,0.94] [0.22,0.94] [0.21,0.93] [1.00,1.00] [0.06,0.94] [0.06,0.94] [0.06,0.93] [1.00,1.00]

sense that measurements close together are more correlated than those further apart
(Table 5).

5 Concluding remarks

In this paper, we have worked on estimating equations that can be used for model-
ing longitudinal data with the goal of making inference on (sub)populations. These
estimating equations model the dependence of the mean response on covariates of
interest, without specifying the joint distribution of the vector of responses from a
subject. Should scientific interest lie only in the estimation of the so-called population
averaged parameters, the approach of Liang and Zeger (1986) is quite sufficient and
one need not worry about more involved methods. Because in practice, the method of
Liang and Zeger (1986) is limited should interest lie also in the association structure,
alternatives have been proposed. For example, Prentice (1988) proposed simultaneous
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estimation of the marginal mean and association structure permitting inference also
on the parameters characterizing the association, in the context of binary data. As has
been shown in this paper, the binary case is special as the model for the association
is fully determined by the mean and covariance. For count data, however, this issue
is a bit more involved and proposed solutions such as in Prentice and Zhao (1991)
come to the rescue. They estimate the parameters of the marginal mean and associa-
tion simultaneously without making the orthogonality assumption made by Zhao and
Prentice (1990). This, however, is computationally unbecoming since it involves third-
and higher-order moments.

We have presented estimating equations at pair level of the vector of responses for
each subject in the context of correlated count data. The proposal incorporates the
bivariate Poisson distribution which allows the modeling of the covariance between
two measurements. It is formulated such that the variance-covariance matrix of the
outcome variable is not a nuisance but one on which inference can be made while
the standard errors are estimated using a sandwich estimator. The method allows for
time-stationary as well as time-varying covariates and gives the user the flexibility to
determine which function to use for the time-varying covariates. Possibilities may be
a lag, ratio, difference, sum, product, etc. A SAS macro has been written to imple-
ment this method and is available at http://ibiostat.be/software/longitudinal or http://
ibiostat.be/software/count. Using a 64-bit Windows 8.1 operating system computer
with 8GB RAM and 2.80GHz processor, Model 17 converged, based on a dataset of
236 observations, after 14 iterations with a real time of 0.45 s. Similarly, (18) took
0.38 s (real time) and converged after 14 iterations. Finally, Model 19 was fitted on a
dataset of about 46,000 observations and converged after 13 iterations and 59.39 s.

Note that while the standard errors are estimated using the sandwich estimator,
the SAS macro reports both the model-based and sandwich (also sometimes known
as robust or empirical) standard errors. In the results shown, there is a considerable
discrepancy between these two types of standard errors for some parameters. This
routinely implies that there are discrepancies between the true and assumed higher-
order moments. Fortunately, in such cases, the sandwich estimator provides valid
inferences nevertheless.
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