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A comparison of variational approximations for fast

inference in mixed logit models

Abstract

Variational Bayesian methods aim to address some of the weaknesses (compu-

tation time, storage costs and convergence monitoring) of mainstream MCMC-

based inference at the cost of a biased approximation to the posterior distribution.

We investigate the performance of variational approximations in the context of

the mixed logit model, which is arguably one of the most used models for discrete

choice data. A typical treatment using the variational Bayesian methodology is

hindered by the fact that the expectation of the so called log-sum-exponential func-

tion has no closed form expression. Therefore, one has to resort to approximating

or bounding this term. In this paper we compare seven different possible bounds

or approximations. We found that quadratic bounds do not perform particularly

well. A recently proposed non-quadratic bound, on the other hand, did perform

quite well. We also found that the approximation used in a previous study only

performed well for specific settings. Our proposed approximation based on quasi

Monte Carlo sampling on the other hand performed consistently well across all

simulation settings while remaining computationally tractable.
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Introduction

Choice data are often encountered in marketing research. Such data arise when observed

subjects (also called persons, households, companies, ...) make choices out of finite sets

of mutually exclusive alternatives (revealed preferences) or are asked to make hypothet-

ical choices in hypothetical situations designed by the researcher (stated preferences).

Each alternative is characterized by a set of attributes which determine their utility to

the subjects. It is generally assumed that subjects will select the alternative with the

highest utility as their preferred choice. An example would be the purchase of a car. Im-

portant attributes here could be the price, the brand, mileage, size, aesthetic attributes,

... Then, depending on the relative importance of these attributes and the particular

values of these attributes, the decision maker chooses the car he prefers. An overview

of the rich discrete choice literature can be found in Train (2009). Usually the goal of

the researcher is to gage the relative importance of the attributes to the decision mak-

ers, based on the observed or stated choices. This is usually done by estimating discrete

choice models using logit or probit link functions between a linear function of the at-

tributes and the observed, categorical outcomes. Estimation of non-trivial discrete choice

models rapidly becomes difficult and many of such models, like the mixed logit model,

are therefore estimated with a hierarchical Bayesian procedure (see for instance, Rossi

et al. (2005) and Train (2009)). A Bayesian analysis of discrete choice models, how-

ever, is hindered by the fact that there is no naturally intuitive conjugate prior which

would allow analytical expressions for the posterior distributions of the model parame-

ters. Hence, a Bayesian analysis will have to take recourse to numerical methods. For

relatively low dimensional problems the necessary integrals could be computed using

Gaussian quadrature. This, however, becomes quickly infeasible when the dimensional-

ity of the unknown parameter vector increases. Therefore, most researchers have turned

to stochastic approximations (this also holds for maximum likelihood where many mod-

els are estimated with maximum simulated likelihood (Train 2009)). Typically this is

done with a Markov chain Monte Carlo (MCMC) simulation where one draws depen-

dent samples from the posterior distribution of the unknown model parameters and la-

tent variables. Although this approach works well in theory there are some caveats in

practice. A properly specified Markov chain is guaranteed to converge to its equilibrium

distribution but this may take a long time, especially in large complicated models. Fur-

thermore, the assessment of convergence is non-trivial. Another practical difficulty can

be the storage cost. Large models with subject specific parameters require ever more
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storage as the number of draws from the posterior increases and the number of subjects

increases (Braun and McAuliffe 2010). Nowadays, it is not unheard of to use subsets

of the available data for inference in large discrete choice models which can lead to bi-

ased estimation (Zanutto and Bradlow 2006). To overcome these practical problems, i.e.

computation time, convergence assessment and storage, one can turn to variational ap-

proximation methods. Applied in a Bayesian context, variational Bayes (VB) optimizes a

well defined functional in order to approximate the posterior distribution. The aim is to

find a tractable distribution of the model parameters and latent variables that minimizes

some measure of distance between the true posterior distribution (as is sampled from

in a properly specified MCMC chain) and the approximate posterior distribution. The

distance measure is usually taken to be the Kullback-Leibler divergence. As the infer-

ence problem is now transformed into an optimization problem, convergence is generally

faster and much easier to assess. Furthermore, the storage requirements are much more

modest than for MCMC. For instance, if the posterior of a particular K-dimensional pa-

rameter vector is approximated by a multivariate normal distribution one would require

the storage of K numbers for the posterior mean and K(K+1)
2

numbers for the unique el-

ements of the posterior covariance matrix. In an MCMC scheme however, one requires

the storage of R×
(
K + K(K+1)

2

)
numbers where R represents the number of draws from

the posterior. As R is typically in the order of thousands (or more), one can readily see

that the difference in storage capacity can be quite large. The downside of the varia-

tional approach is that it is necessarily biased as the true posterior is approximated by

a (much) simpler, more tractable distribution. The amount of bias can be reduced by

allowing more complicated approximate posterior distributions but this more or less de-

feats the purpose. The most common approach to variational Bayesian approximations

is to factorize the posterior distribution in a product of more tractable distributions.

This approach is also employed in this paper. As variational approximations are rela-

tively new to the statistical literature, there are not many results yet on their statisti-

cal properties. Wang and Titterington (2006) investigated the convergence of factorized,

or so called mean-field, variational Bayesian approximations in Gaussian finite mixture

models. They showed that asymptotically, as the sample size grows, their estimators

converge locally to the maximum likelihood estimator. Wang and Titterington (2005),

however, showed that the resulting variance estimates are too narrow compared to max-

imum likelihood which leads to over-optimistic inference. This phenomenon has been

observed by many researchers working with factorized approximations, see for instance

Bishop (2006), Consonni and Marin (2007) and Rue et al. (2009). More recently Hall

et al. (2011) and Ormerod and Wand (2012) investigated the properties of Gaussian vari-



4

ational approximations (approximating the distribution of random effects by normal dis-

tributions) of maximum likelihood estimation in Poisson mixed models and generalized

linear mixed models respectively and proved some consistency results for simple models.

In the context of mixed discrete choice models Braun and McAuliffe (2010) used a simi-

lar approach in a Bayesian framework. They empirically investigated the performance of

these approximations and showed that their approach performed similar to MCMC but

their methods were significantly faster and required far less memory.

The goal of this paper is to assess the accuracy of several variational approximations in

the context of the very popular mixed logit model. We use several bounds which have

never been used for these types of models. Furthermore, we propose a particular approx-

imation based on quasi Monte Carlo sampling which will be shown to work very well. In

the following section we will briefly introduce the conditional and the mixed logit model.

After that, in the subsequent section we will introduce variational Bayesian approxima-

tions for these models. Then, we will present the results of several simulation studies on

synthetic data which will be followed by a conclusion.

Logit Models for Discrete Choice

In this section we will briefly introduce the conditional and mixed logit model. In this

paper the subjects, also called agents or decision makers, will be denoted by index h go-

ing from 1 to H. Each of these subjects is faced with Th choice sets. This could, for in-

stance, be multiple purchases by the same agent at different time points. Or, in case of

stated preferences, this represents the number of hypothetical situations in which the

subject is asked to make a choice. Furthermore, we will assume that each choice set is

defined by a finite number of J alternatives, indexed by j = 1, . . . , J . Each of these al-

ternatives is characterized by K attributes. The values of these attributes are stored in

K-dimensional vectors xhtj = (xhtj1, . . . , xhtjK)T which contain the K attribute values

of alternative j, encountered by subject h at choice situation t. We can collect all J at-

tribute vectors in a J by K-dimensional matrix, denoted by Xht which is called the de-

sign matrix of choice set t for subject h. The result of the subjects’ decisions is stored in

J-dimensional binary vectors yht = (yht1, . . . , yhtJ)T . In these binary vectors a 1 indi-

cates the chosen alternative and the non-chosen alternatives are indicated by 0s. Hence,

each of these vectors contains exactly one 1. As the dependent variable is a binary vec-

tor we can adequately model it with a multinomial distribution. Furthermore, we will

assume that the choice probabilities are functions of a linear combination of the alter-
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natives attributes and the tastes of the subject. A subjects taste is represented by a K-

dimensional vector βh which contains the relative importances of each attribute for sub-

ject h. All that is required now is a link function to link the probabilities (which must be

non-negative and sum to 1) and the linear predictor xThtjβ. For logit models this is the

logit link and this leads to the following expression for the probability that subject h, at

choice point t, selects the jth alternative

P (yhtj = 1|xhtj,β) = phtj =
ex

T
hyjβ∑J

j′=1 e
xT

htj
′β
. (1)

This is the conditional logit model introduced by McFadden (1974). In a full Bayesian

analysis we require a prior distribution on the unknown parameter vector β which is

generally taken to be multivariate normal with mean vector ζ and covariance matrix Ω.

The full specification of a Bayesian conditional logit model is then:

yht|Xht,β ∼ Multinomial (pht1, . . . , phtJ) , h = 1, . . . , H

β|ζ,Ω ∼ NK (ζ,Ω) .

Note that in this specification all subjects have the same taste vector. The assumption

that the tastes are homogeneous in the population is a fairly restrictive assumption which

is usually far from true. Furthermore, when subjects make multiple choices it seems hard

to argue that these observations are independent. A popular approach to overcome these

shortcomings of the conditional logit model is to allow taste heterogeneity among the

subjects, i.e. each subject h has his own personal taste vector βh. One could estimate

these personal taste vectors by estimating H conditional logit models, one for each sub-

ject. This would be a good approach if each subject makes a large number of choices.

However, one usually only observes a limited number of choices per subject which would

make the resulting inferences very noisy. A way to overcome this is by specifying a dis-

tribution of these tastes, usually a multivariate normal distribution. In this scenario,

each subject’s specific taste parameters are estimated by taking the other tastes into ac-

count which is a way of borrowing strength from the other observations. Furthermore,

the parameters of the mixing distribution need to be estimated and are usually of prime

interest to the researcher. Observations made by the same subjects are now no longer

independent which adds to the plausibility of the model. In this paper we will assume a

multivariate normal distribution as the mixing distribution of the tastes in the popula-

tion. As before, in a fully Bayesian analysis we require prior distributions on the mean
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vector and the covariance matrix of the mixing distribution. We will assume the typical

conjugate priors, i.e. a normal prior for the mean and an inverse-Wishart distribution for

the covariance matrix. The full mixed logit model is then 1:

yht|Xht,βh ∼ Multinomial (pht1, . . . , phtJ) , h = 1, . . . , H, t = 1, . . . , Th

βh|ζ,Ω ∼ NK (ζ,Ω) , h = 1, . . . , H

ζ|β0,Ω0 ∼ NK (β0,Ω0)

Ω|S−1, ν ∼ W−1
(
S−1, ν

)
.

Now that the model is fully specified, a Bayesian analysis proceeds by obtaining the pos-

terior distribution of the unknown parameters θ = (ζ,Ω,β1:H) which is given by

p (ζ,Ω,β1:H |D) =
p (ζ) p (Ω)

∏H
h=1 p (βh|ζ,Ω)

∏Th
t=1 p (yht|Xhtβh)∫

p (ζ) p (Ω)
∏H

h=1 p (βh|ζ,Ω)
∏Th

t=1 p (yht|Xhtβh)dζdΩdβ1:H

where D represents the observed data. Even though we use (conditionally) conjugate

priors, the denominator is not analytically integrable and we will have to resort to nu-

merical approximations. Furthermore, to obtain marginal posterior distributions of the

parameters of the mixing distribution one also requires numerical approximations to in-

tegrate the βh’s from the numerator.

Variational Bayesian Approximation

Variational Bayes

Variational Bayesian approximations cover a wide set of methods to approximate the

posterior distribution. Recent tutorials and literature overviews can be found in Bishop

(2006), Ormerod and Wand (2010) and Titterington (2011). The main idea is that one

tries to approximate the posterior distribution with a simpler distribution. So, how does

one select such a simpler distribution and how does one evaluate how well it approxi-

mates the posterior? There are of course several possibilities but most often one tries to

minimize the Kullback-Leibler divergence between the approximating distribution q (θ),

where θ contains all the unknowns in the model, and the posterior distribution p (θ|D)

where D refers to the observed data. To start we rewrite the Kullback-Leibler divergence
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of p (θ|D) from q (θ) as

KL (q (θ) ||p (θ|D)) =

∫
q (θ) log

q (θ)

p (θ|D)
dθ

=

∫
q (θ) log

q (θ) p (D)

p (θ,D)
dθ

=

∫
q (θ) log

q (θ)

p (θ,D)
dθ + log p (D) .

The right term on the last line is the natural logarithm of the marginal likelihood of the

data under the model, sometimes called the evidence, and it is independent of the model

parameters. The left term of the last line is the Kullback-Leibler divergence of the joint

distribution of the data and the unknowns from the approximating distribution. We can

rewrite this equation and obtain the following decomposition

log p (D) =

∫
q (θ) log

p (θ,D)

q (θ)
dθ +KL (q (θ) ||p (θ|D))

≥
∫
q (θ) log

p (θ,D)

q (θ)
dθ = L (q (θ))

since KL (.||.) is non-negative. We have now obtained a lower bound L (q (θ)) on the

logarithm of the marginal data likelihood. Making q (θ) as equal (in the Kullback-Leibler

divergence sense) to the posterior as possible can now be seen to be equivalent with

maximizing this bound with respect to q (θ). Using classical calculus of variations one

can show that this optimization results into an optimal q (θ) = p (θ|D). So we have not

made much headway yet as we start out from an intractable posterior p (θ|D). We can,

however, put restrictions on q (θ). The most common type of restriction is to factorize

the approximating distribution which is known as mean-field theory in physics (Parisi

1988). For the mixed logit model, for instance, we could restrict our approximation, with

θ = (ζ,Ω,β1:H), as q (ζ,Ω,β1:H) = q (ζ) × q (Ω) ×
∏H

h=1 q (βh). It can be shown that

in fully conjugate exponential family models, the optimal approximate q (.) densities are

in the same family as their priors (Winn and Bishop 2005; Ormerod and Wand 2010).

From this we can already deduce that q (ζ) ∼ NK
(
µζ ,Σζ

)
and q (Ω) ∼ W−1

(
Υ−1, ω

)
.

The posterior approximate densities q (βh) , h = 1, . . . , H, however, are not conjugate due

to the logit link. A natural way to parameterize them is to assume they are independent

multivariate normal densities, i.e. q (βh) ∼ NK (µh,Σh) , h = 1, . . . , H, which would

be conjugate if one approximates the logistic terms by quadratic functions of βh as their

prior is a normal distribution, NK (ζ,Ω). This factorization was also employed in Braun
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and McAuliffe (2010). In the terminology of Ormerod and Wand (2010), this is a mix of

a product density transform or a mean-field approximation (factorized approximate pos-

terior) and a parametric density transform (assuming a specific parametric posterior).

As mentioned before, the drawback of this assumed factorization is that posterior de-

pendencies are lost between the different sets of parameters. This results in posterior

second moments being too small and hence posterior credible intervals can be (much)

too narrow showing inflated confidence. Further on, this approach will be mixed with yet

another approach, the tangent transform, where a tangent lower bound is placed on the

variational lower bound.

With factorized approximate posterior distributions one generally maximizes the lower

bound by a coordinate ascent algorithm. As will be shown in the next section, each pa-

rameter vector depends on (subsets) of the other parameter vectors. Typically, one ini-

tializes several sets of parameters and then cycles through the update equations until

some measure of convergence is satisfied. Hence, at each step, all other parameter vec-

tors are held constant while one particular parameter vector is found to maximize the re-

sulting lower bound. When there is conjugacy, these updates are usually closed form and

can be performed efficiently. When there is no conjugacy on the other hand, it might be

necessary to use numerical optimization.

Variational Bayes for the Mixed Logit Model

We have seen before that to obtain a variational approximation one can maximize

L (q (θ)) =

∫
q (ζ) q (Ω)

H∏
h=1

q (βh) log
p (ζ,Ω,β1:H ,D)

q (ζ) q (Ω)
∏H

h=1 q (βh)
dζdΩ

H∏
h=1

dβh

= Eq(θ) [log p (ζ,Ω,β1:H ,D)] +
H∑
h=1

H [q (βh)] +H [q (ζ)] +H [q (Ω)] (2)

with respect to the parameters of the variational posterior distribution. The first part

of the right hand side is the expectation of the log joint probability of the data and the

parameters (log likelihood plus log prior) with respect to the variational posterior distri-

bution and the H [q (.)] terms are the differential entropies of the variational posterior2.

Plugging the known density families into (2) we obtain the following expression which
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needs to be maximized with respect to the variational parameters

L (q (θ)) =
H∑
h=1

Th∑
t=1

{
yThtXhtENK(βh;ζ,Ω) [βh]− ENK(βh;ζ,Ω)

[
log

(
J∑
j=1

ex
T
htjβh

)]}

+
H∑
h=1

ENK(ζ;µζ ,Ωζ)W−1(Ω;Υ−1,ω)NK(βh;µh,Σh) [logNK (βh; ζ,Ω)]

+ EW−1(Ω;Υ−1,ω)
[
logW−1

(
Ω; Υ−1, ω

)]
+ ENK(ζ;µζ ,Σζ)

[
logNK

(
ζ;µζ,Σζ

)]
+

H∑
h=1

H [q (βh)] +H [q (ζ)] +H [q (Ω)] . (3)

Because the variational posterior distribution is factorized all but one of the expectations

in this expression are fairly simple to evaluate. Plugging these expectations into (3) one

can calculate derivatives of the lower bound with respect to µζ, Σζ, ω and Υ and equate

them to 0. This yields closed form update equations for these sets of parameters. More

details on this can be found in appendix A. The only parts of (3) which are troublesome

are the updates with respect to µh and Σh for all h = 1, . . . , H. The expected value

of the log-sum of exponentials in equation (3) has no analytically closed form. Hence,

we have no analytical form in function of the variational parameters over which we can

maximize. In the following subsections we will list a number of possible avenues to deal

with this problem. Some of these solutions try to approximate the problematic expec-

tation in terms of parameters of the variational posterior. Other solutions bound this

expectation in various ways which results into a lower bound on the lower bound. Some

of these avenues lead to closed form update equations while others require numeric opti-

mization.

Approximating or Bounding the Log-Sum-Exponential Function

There are H × Th terms in equation (3) which have no analytical expectations with re-

spect to a normal distribution:

LSE (Xhtβh) = log

(
J∑
j=1

ex
T
htjβh

)
, ∀h = 1, . . . , H, t = 1, . . . , Th. (4)

Therefore, these terms do not allow analytic expressions in terms of the means, µh, and

covariance matrices, Σh, of the approximate posterior distribution. In order to optimize

the lower bound with respect to these parameters one has to replace equation (4) with
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an approximation or a bound which can be expressed in terms of the individual agents’

parameters. Here we will describe several approaches to do this. Details beyond this ex-

position can be found in appendix B.

Taylor series. An approach which was proposed by Braun and McAuliffe (2010) is to

replace (4) by a second order Taylor series expansion around the current mean µh and

taking the expectation which yields

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≈ log

(
J∑
j=1

ex
T
htjµh

)
+

1

2
tr
[
ΣhX

T
htdiag (pht)Xht

]
−1

2
tr
[
ΣhX

T
htphtp

T
htXht

]

where pht is a J-dimensional vector with entries e
xThtjµh∑J

j
′
=1

e
xT

htj
′µh

,∀j = 1, . . . , J and diag (x)

is an operator that constructs a diagonal matrix out of the elements in x. The resulting

expression, plugged into equation (3), can now be optimized with respect to (µ1:H ,Σ1:H)

but does not allow a closed form update equation. Hence, the coordinate ascent algo-

rithm will require a numeric maximization step using any efficient optimization algo-

rithm. Note that using this approach there is no longer a guarantee that the function

which is maximized remains a lower bound and the resulting approximate posterior is

therefore no longer guaranteed to be the closest approximate posterior (with the cho-

sen factorization and parameterization) to the real posterior distribution with respect to

the Kullback-Leibler divergence. Nevertheless, Braun and McAuliffe (2010) empirically

showed that the resulting inference is very close to MCMC and is therefore useful. Note

also that Braun and McAuliffe (2010) used another simplification in that they restricted

the subjects posterior covariances, Σh,∀h = 1, . . . , H, to diagonal matrices. In this pa-

per we use both the unrestricted and the restricted approach. The unrestricted approach

treats the covariance matrices as dense matrices and is denoted by BM . The restricted

approach restricts the subjects covariance matrices to diagonal matrices and is denoted

by BMD.

Quasi Monte Carlo. A different, viable approach would be to approximate the expec-

tation by a Monte Carlo method. Lawrence et al. (2004) used importance sampling to

obtain approximations to an intractable expectation within their variational algorithm to

improve grid placement for the analysis of DNA microarray data. Girolami and Rogers

(2006) also used importance sampling for their variational Bayesian treatment of multi-

nomial probit regression with Gaussian process priors. In this paper, however, we pro-
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pose to make us of the considerable research in the field of Quasi Monte Carlo (QMC).

Quasi Monte Carlo samples are samples which are constructed to proportionally fill the

high density regions of the distribution from which one wishes to sample. The resulting

approximate integration can then be performed in a stable manner with fewer samples

than with regular Monte Carlo. Inspired by Yu et al. (2010) we use the extensible shifted

lattice points (ESLP) algorithm as proposed by Hickernell et al. (2000). This algorithm

scales well with the dimensionality of the integral. For details on generating such QMC

samples we refer you to the previous two references and appendix C. We thus approxi-

mate the expectation of (4) as:

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≈ 1

R

R∑
r=1

log

(
J∑
j=

ex
T
htj(Lhz

(r)+µh)

)

where Lh is the lower triangular Cholesky factor of Σh such that Σh = LhL
T
h , R is the

number of QMC samples from a standard multivariate normal distribution and each

draw is represented by z(r). This expression once again does not allow for analytic up-

date equations and hence requires numeric optimization. For a small number of draws

the lower bound can also not be guaranteed but this can be alleviated by increasing the

sample size. The number of QMC samples we used is determined by a parameter m

which results in a sample size of R = 2m. We used several values for m in the range of

6 − 12 and found that R = 26 = 64 worked well enough in our applications. Further-

more, we also considered a restricted version where the subjects covariance matrices were

restricted to diagonal matrices. We refer to these respective approaches as QMC and

QMCD.

Jensen’s inequality. A different approach to approximate the expectation of (4) was used

by Blei and Lafferty (2007), based on Jensen’s inequality, in the context of topic models.

As log(.) is a concave function one can simply apply Jensen’s inequality to obtain:

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ log

(
J∑
j=1

Eq(βh)

[
ex

T
htjβh

])
= log

(
K∑
j=1

ex
T
htjµh+ 1

2
xT
htjΣhxhtj

)
.

Again we considered an unrestricted and a restricted version and we denote these re-

spective methods as JI and JID. Knowles and Minka (2011) improved the flexibility

of the former bound by introducing additional parameters a = (a1:H,1:Th) and aht a J-
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dimensional vector. Their bound results in

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤

J∑
j=1

ahtjx
T
htjµh

+ log

(
J∑
j=1

e(xhtj−
∑J

j=1 ahtjxhtj)
T
µh+ 1

2(xhtj−
∑J

j=1 ahtjxhtj)
T
Σh(xhtj−

∑J
j=1 ahtjxhtj)

)
.

The additional flexibility tightens the inequality at the expense of introducing more pa-

rameters which need to be optimized. We again consider an unrestricted and a restricted

version of the subjects’ covariance matrices. These approaches, denoted here by KM

and KMD respectively, require an additional step in the coordinate ascent algorithm to

update the extra HTJ-dimensional parameter vector a. Both JI and KM , bound the

required expectation and hence they keep the lower bound property of the variational al-

gorithm intact. Both require numeric optimization in each iteration in order to maximize

the subjects’ variational parameters.

Bı̈¿1
2
hning-Lindsay. A different approach, which does not require numeric optimization

is to introduce a quadratic approximation to (4). The first quadratic approximation we

consider is due to a bound on the second order Taylor series expansion of equation (4)

around an extra J-dimensional vector of variational parameters Ψht. The resulting ex-

pectation is then

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ log

(
J∑
j=1

eΨhtj

)
+ (Xhtµh −Ψht)

T ∇ (Ψht)

+
1

2

[
XT

htAXhtΣh

]
+

1

2
(Xhtµh −Ψht)

T A (Xhtµh −Ψht) .

where A = 1
2

(
IJ − 1J1

T
J /J

)
, IJ is the J-dimensional identity matrix and 1J is a J-

dimensional vector of ones and with Ψht a J-dimensional vector of extra variational pa-

rameters. Note also that ∇ (Ψht) is the gradient of equation (4) evaluated at Ψht. This

quadratic bound follows from a result from Böhning and Lindsay (1988) and Böhning

(1992). We denote this method by BL. This bound has been successfully used by Khan

et al. (2010) for a variational treatment of mixed-data factor analysis due to its compu-

tational efficiency.

Bouchard. A different quadratic bound we considered is due to Bouchard (2007) which

is a multinomial generalization of a quadratic bound developed by Jaakkola and Jordan
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(2000). This bound also introduces extra variational parameters (α1:H,1:Th , t1:H,1:Th,1:J)

and is

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ αht +

J∑
j=1

xThtjµh − αht − thtj
2

+ λ (thtj)
[(
xThtjµh − αht

)2 − t2htj + xThtjΣhxhtj

]
+ log

(
1 + ethtj

)
where λ (t) = 1

4t
tanh

(
t
2

)
. This bound also leads to closed form updates for the sub-

jects’ parameters, conditional on the optimal HT -dimensional vector of α = α1:H,1:Th and

HTJ-dimensional vector t = t1:H,1:Th,1:J . We used this bound in several experimental set-

tings but found that it was way too loose and yielded very biased approximations for the

posterior mean parameters. Therefore we will not show any results of this bound but it

is included here for completeness sake.

Jebara-Choromanska. The final quadratic approach considered is due to Jebara and

Choromanska (2012) who developed an algorithm to find a quadratic bound around

some β̃h to equation (4) which tightens BL and generalizes BO. After taking expecta-

tions this bound leads to

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ log zht+

1

2

(
µh − β̃h

)T
Sht

(
µh − β̃h

)
+

1

2
tr [ΣhSht]+

(
µh − β̃h

)T
mht

where zht is a scalar, mht is a K-dimensional vector and Sht is a K × K-dimensional

matrix which are determined by the algorithm of Jebara and Choromanska (2012). The

algorithm can be found in appendix B. We will denote this approach as JC. It should

be noted that all three quadratic approaches considered here maintain the lower bound

property of the variational objective function. Furthermore, due to the fact that the

subjects’ variational parameters can be updated with closed form updates, these algo-

rithms tend to be computationally very efficient. The requirement that the bounds are

quadratic, on the other hand, hinders their flexibility.

Final algorithm and comments. Now that all bounds and approximations have been in-

troduced, we can formulate a typical coordinate ascent algorithm which was used to esti-

mate the models in our simulations. As an example we give the algorithm to obtain the

QMC approximation to the posterior distribution (more detail on the derivation of this

algorithm is provided in the appendices). These algorithms require several user-specified
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input decisions, namely the specification of hyperparameters for the prior distributions,

Algorithm 1 QMC Input X,y,β0,Ω0,S
−1, ν,Z

Initialize: µ1:H ,Σ1:H ,µζ,Σζ, ω = ν +H, Convergence = False

Υ =
{
S−1 +HΣζ +

∑H
h=1

[
Σh +

(
µh − µζ

) (
µh − µζ

)T]}−1

while Convergence = False do
for h = 1 to h = H do

Obtain Lh from LhL
T
h = Σh

β
(r)
h = Lhz

(r) + µh, ∀r = 1, . . . , R

µh,Σh = arg max
µh,Σh

∑Th
t=1 y

T
htXhtµh − 1

R

∑R
r=1 log

(∑J
j=1 e

xT
htjβ

(r)
h

)
−1

2
tr [ωΥΣh]− ω

2
µhΥµ

T
h + ωµThΥµζ + 1

2
log |Σh|

end for
Σζ =

(
HωΥ + Ω−1

0

)−1

µζ = Σζ

(
ωΥ

∑H
h=1µh + Ω−1

0 β0

)
Υ =

{
S−1 +HΣζ +

∑H
h=1

[
Σh +

(
µh − µζ

) (
µh − µζ

)T]}−1

Test Convergence
end while

Output: µ1:H ,Σ1:H ,µζ,Σζ,Υ

the initialization method, the convergence criterion and tolerance. We used uninforma-

tive but proper priors. The prior mean and variance of ζ were taken as respectively a

K-dimensional zero vector, β0 = 0K , and 100 times the K-dimensional identity matrix,

Ω0 = 100 × IK . An uninformative prior for an inverse-Wishart distribution is some-

what harder to select. We decided to put the prior degrees of freedom at ν = K + 3

and the prior scale matrix at S−1 = 2 × IK , i.e. two times the K-dimensional identity

matrix. As such the prior expected value of Ω is the K-dimensional identity matrix and

the variances of all the elements are infinite. All that is left to specify now is the con-

vergence criterion of the algorithm and a decent method to initialize the parameters. As

convergence criterion we took the relative change in the joint Euclidean norm of all the

variational parameters. The tolerance level for this convergence criterion was set at 10−4.

To initialize µζ and Σζ we used the Laplace approximation to the posterior distribution

of a regular conditional logit model based on all the data. As such a model ignores pos-

sible (and in our case known) heterogeneity we multiplied the resulting initial posterior

variance Ωζ by a factor H. We subsequently initialized the agent specific variational pa-

rameters µh and Σh by a Laplace approximation of an individual specific conditional

logit model with priors given by µζ and Σζ . All computations were done using R (R
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Core Team 2012) where we also used the optim routine to perform the numerical opti-

mization parts with the BFGS algorithm using analytical gradients for all parameters.

We now conclude this section with a brief summary of some published results concerning

variational algorithms with respect to multinomial logit models. As far as we are aware

the different approaches from the previous subsections have not been compared to each

other in the context of discrete choice models. Knowles and Minka (2011) tested several

bounds (JID, KMD, BL and BO) and the Taylor series approximation (BMD here) for

their tightness with respect to the expected log-sum-exponential function. They found

that BL was very loose and that KMD dominates JID. Furthermore, KMD performed

best of all bounds except when the inputs of the log-sum-exponential function were ex-

tremely variable. In that instance, BO performed best but that bound performed much

worse in all other cases. They also found that BMD performed best but did not con-

sider it for further experiments due to the fact that it is not a bound. They also tested

BO, KMD and JID on some simulated multinomial logit datasets using a slightly dif-

ferent algorithm (non-conjugate variational message passing) than our variational Bayes

method and found that KMD performed best. With respect to the mixed logit model

we are not aware of any results except for Braun and McAuliffe (2010) who used JI and

BMD. They did not report results on JI as they found that in their settings, BMD was

much better. In the following sections all these seven approaches will be compared on

their performance in the context of mixed logit models.

Numerical Experiments

Performance Assessment

In order to assess the performance of the various variational approaches in the context

of a mixed logit model we performed several simulation experiments which will be de-

tailed in the next subsections. As a benchmark for the variational algorithms we used

the function rhierMnlRwMixture from the bayesm package (Rossi 2012) which uses a

Gibbs sampler with a random walk Metropolis step which is explained in Rossi et al.

(2005, pg. 136-137). Rather than using this MCMC chain to explore the posterior dis-

tribution completely we chose to run this algorithm for as long as it took the variational

QMC algorithm to converge. This eliminates the need to and the trouble of checking for

convergence of the high dimensional MCMC chain for each experiment, which is a non-

trivial problem. Once the chain was stopped we removed the first half of the draws as
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burn-in. From the resulting draws we only kept every fifth draw, i.e. thinning, for prac-

tical convenience resulting in R draws. So for each dataset we obtain seven variational

results which are sets of parameters from the approximate parametric posterior distri-

bution and an MCMC sample of size R from (a part of) the posterior distribution. To

measure the accuracy of the different approaches we used the same procedure as Braun

and McAuliffe (2010) which compares out-of-sample predictions with the true predictive

choice distribution. So, suppose a new choice set Xnew is presented to an agent and sup-

pose, for the moment, that we know this agent’s tastes, βh. We can then calculate the

predictive choice distribution for this new choice set based on model (1). This predictive

choice distribution yields the probabilities that this respective agent selects the various

alternatives specified in the new choice set. Most of the time, however, we are not inter-

ested in a specific agent’s choices but rather in the choice probabilities of the ’average’

agent. Hence, we need to integrate these probabilities over the population heterogeneity

distribution which yields

ptrue (ynew|Xnew, ζ,Ω) =

∫
p (ynew|Xnew,β)NK (β|ζ,Ω) dβ. (5)

However, unlike in simulation studies, one generally does not know the heterogeneity dis-

tribution. One can estimate this distribution however. As we have posterior distributions

over model parameters in a Bayesian setting, this will require another set of integrals to

integrate over the posterior distributions of the parameters of the mixing distribution.

This results then in an estimated predictive choice distribution given by

p̂ (ynew|Xnew,D) =

∫ ∫
p (ynew|Xnew,β)NK (β|ζ,Ω) q

(
ζ|µ̂ζ , Σ̂ζ

)
q
(
Ω|Υ̂

−1
, ω̂
)
dβdζdΩ.

(6)

In order to calculate the true predictive choice distribution in (5) we averaged the choice

probabilities over 1000000 draws of β from the known, true heterogeneity distribution,

Nk (ζ,Ω). Braun and McAuliffe (2010) used this sample size to ensure that the Monte

Carlo error of this estimation is negligible compared to the variability of their results. To

calculate the estimated predictive choice distribution for the variational results in (6) we

generate 500 samples of ζ and Ω from q
(
ζ|µζ,Σζ

)
q
(
Ω|Υ−1, ω

)
. For each of these 500

samples we draw 10000 β vectors to evaluate the estimated predictive choice distribu-

tion. The average of these 5000000 predictive choice distributions is then the estimated

predictive choice distribution. Similarly, for the MCMC results, we use 10000 β sam-

ples for each of the R draws from the posterior to obtain the estimated predictive choice
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distribution. The true predictive choice distribution and the estimated predictive choice

distribution were always assessed for 25 new randomly generated choice sets. To com-

pare the true and the estimated predictive choice distributions we used the total varia-

tion metric which is a metric that compares probability distributions. The total variation

error can then be calculated as(Levin et al. 2009)

TV
[
ptrue (ynew|Xnew, ζ,Ω) , p̂ (ynew|Xnew,D)

]
=

1

2

J∑
j=1

∣∣ptrue
j (ynew|Xnew, ζ,Ω)− p̂j (ynew|Xnew,D)

∣∣ .
This error is contained in the interval [0, 1] and obviously smaller errors are preferred.

For each simulation scenario this metric was calculated for all the replications and the

reported results are based on the median total variation error over the 25 new choice

sets.

Uncorrelated Taste Parameters

In this simulation study five experimental factors were varied. The number of decision

makers, H, was considered to be 250 or 1000. The number of choice sets per agent were

taken as Th = 1, 5, 15 or 25. The number of alternatives J was either 3 or 12 and the

number of attributes K was 3 or 10. Finally there was a setting with a relatively high

population taste heterogeneity where the true Ω was set equal to the K-dimensional

identity matrix, IK . In the relatively low taste heterogeneity setting the true Ω was set

to 0.25 times the K-dimensional identity matrix, 0.25 × IK . The true mean ζ was set

at K equally spaced values between −2 and 2. Finally, the attribute values were inde-

pendent identically distributed normal variables, N (0, 0.52). Each of these simulation

settings was replicated 10 times.

-Insert Figure 1 about here-

-Insert Figure 2 about here-

The results of these simulations can be found in figures 1 and 2 which show the average

total variation error and average completion time (in minutes) over the 10 replications

for all experimental settings. In the cases when the variational algorithm was run with

a diagonal version of the decision makers’ covariance matrices and with an unrestricted



18

version, i.e. dense covariance matrices, we only report the restricted results. The rea-

son for this will be explained in a following subsection. We initially included the BO

approach in the simulation but stopped this early as this method yielded very biased

estimates for the posterior means of the subjects which indicates that the bound is too

loose to work properly in these experimental settings. Note also that the figures do not

include timing information for the MCMC chains. As these chains were generally not

run until convergence, these times are not very interesting here. Just know that these

chains were run for as long as the QMC approach was run, which is, generally somewhat

slower than the QMCD version. Looking at figure 1 we can see that there are four dis-

tinct clusters with respect to accuracy. We can clearly see that in most settings MCMC

performs some orders of magnitude worse than the other algorithms which is an indica-

tion that it did not have enough time to fully explore the posterior distribution. The dif-

ference is smallest when the number of choice sets per agent is small, i.e. when there is

not much information per decision maker in the data. The Taylor series approximation,

BM , on the other hand performs very well when the number of choice sets is relatively

large but very poorly when the number is low. This shows that this approximation can

be very inaccurate when there is not a lot of information per agent. Furthermore, we can

discern two other distinct groups. The group with KM and QMC is clearly the most

accurate overall which is followed by the group with BL, JC and JI. We can also see

that the difference between these two groups increases when the sample size H increases.

Finally, it can also be seen that generally the accuracy is higher when there are fewer

attributes, i.e. fewer parameters in the model, and when there are more choice sets per

agent. Looking at figure 2 many of these patterns reappear. The major difference here

is that MCMC does only slightly worse than KM and QMC. Hence, for these settings,

the MCMC chains converge quicker than when the heterogeneity is low. This group is

again followed by the group of BL, JC and JI, which are very similar when the num-

ber of alternatives is small, J = 3, and which can be ordered as JI, JC and BL when

the number of alternatives is large, J = 12. BM , as before, does very well when there

are relatively many choice sets per decision maker and is very inaccurate when there are

not. Looking at both figures it can clearly be seen that BL is by far the fastest of the

algorithms, followed by JC and JI. The former has the edge when there are three alter-

natives while the latter has the edge when there are twelve alternatives. When there are

only three alternatives, we can see that QMC is faster than BM and KM . This distinc-

tion however disappears when there are twelve alternatives.
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Correlated Taste Parameters

All the specifications of the population variance of the heterogeneous tastes in the pre-

vious section were diagonal matrices. This is a highly idealized set-up which represents

a small subset of potential heterogeneity distributions. Furthermore, it is doubtful that

in reality tastes for different attributes are truly independent. Therefore, we performed a

second set of simulations to assess the performance of the various variational approaches

in a setting with non-zero covariances between the taste parameters. In order to ob-

tain plausible settings for the population tastes we simulated data based on results re-

ported by Train and Weeks (2005). The original data were obtained by Train and Hud-

son (2000) and contained stated-preference choices made by 500 households among alternative-

fueled vehicles. Each of the respondents considered 15 choice sets with several attributes

describing the alternatives. Train and Weeks (2005) estimated several discrete choice

models with these data and we will use estimated parameters from a model with K = 7

attributes (Train and Weeks 2005, pg.13-14): price, willingness to pay for (WTP) oper-

ating cost, WTP range, WTP electric car, WTP hybrid car, WTP High performance,

WTP Medium/High performance. Note that several of these coefficients reflect tastes

for categorical attributes in the originial data. We will however use these parameters

with continuous attribute values. This results in a population mean taste vector ζ =

(−1.4934,−0.0489, 0.7636,−2.5353, 0.8738, 0.3584, 0.6047) and the following covariance

matrix Ω which represents the population taste heterogeneity for these attributes

Ω =



3.2844 0.0532 0.6262 −2.0619 1.0965 0.4893 0.7940

0.0532 0.0028 0.0101 −0.0333 0.0179 0.0084 0.0133

0.6262 0.0101 0.1812 −0.3915 0.2091 0.0932 0.1494

−2.0619 −0.0333 −0.3915 1.9827 −0.6851 −0.3038 −0.5110

1.0965 0.0179 0.2091 −0.6851 2.1182 0.1584 0.2688

0.4893 0.0084 0.0932 −0.3038 0.1584 0.5720 0.1174

0.7940 0.0133 0.1494 −0.5110 0.2688 0.1174 3.8189


.

Based on these taste parameters we simulated data specifying different levels of the num-

ber of agents H = 250 or H = 1000. The number of choice sets per agent were taken as

Th = 1, 5, 15 or 25 and the number of alternatives per choice set as J = 3 or J = 12.

Each of these simulation scenarios was once again replicated 10 times and all the at-

tributes were once more independent identically normally distributed variables, N (0, 0.52).

The performance of the various variational algorithms was again assessed by the median

total variation error of the predictive choice distributions for 25 new, random choice sets
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as described in the previous section.

-Insert Figure 3 about here-

The results of these simulations can be found in figure 3 which shows the average total

variation error and average completion time (in minutes) over the 10 replications for all

experimental settings. In the cases when the variational algorithm was run with a re-

stricted version of the decision makers’ covariance matrices and with an unrestricted ver-

sion, i.e. dense covariance matrices, we again only report the restricted results. Note also

that again the figure does not include timing information for the MCMC chains. Look-

ing at figure 3 we can see a similar overall pattern as before. The QMC approach seems

to be most accurate overall. The BM approach is very similar to QMC when the num-

ber of choice sets is large enough but is extremely inaccurate when this is not the case.

QCM and BM (sometimes) are closely followed by KM . The worst accuracy is seen to

come from the MCMC approach which indicates it clearly did not have enough time for

the chain to converge. The BL, JC and JI methods fall somewhere in between. We can

also observe that the accuracy increases when the number of alternatives is lower and

when the number of choice sets is larger. We observe again that BL is by far the fastest

method followed by JC when there are three alternatives and followed by JI when there

are twelve alternatives. We can also see that QMC is slightly faster than KM which in

turn is slightly faster than BM when there are three alternatives. When there are twelve

alternatives however, we see that KM is slightly faster than QMC and BM .

Diagonal Restriction

In the previous sections the presented results for the BM , JI, KM and QMC methods

were based on the diagonally restricted versions.

-Insert Figure 4 about here-

In figure 4 we show the performances of the restricted versions against the unrestricted

versions. With respect to time we can see that in most cases the restricted versions con-

verged faster than their unrestricted counterparts, which is to be expected. The case

of BM is an outlier here in that in quite a few cases the restricted version converged

faster. These, however, are the cases where the algorithm did not perform accurate at

all, i.e. diverged. With respect to the accuracy we can see that the restricted and the

unrestricted versions are very similar. Considering the significant speed-up of the algo-

rithms, we can see that using restricted decision makers’ covariance matrices works very

well.



21

Conclusions and Future Work

We have compared several approaches to approximate the posterior distribution in the

framework of mixed logit models. We found that several bounds were too loose to ad-

equately capture the posterior variation which resulted in relatively poor performance.

These bounds are the quadratic bounds, BL, BO, JC and the non quadratic bound JI.

The proposed bound of Knowles and Minka (2011) did perform well in the context of

mixed logit models on the other hand. Furthermore, it appears that the approximations,

opposed to bounds, considered here, outperform the bounds. The QMC approach es-

pecially performed well in all experimental settings. The BM approximation performed

equally well whenever the data contained enough information. In datasets with a small

number of agents and/or a small number of choice sets, however, this approximation’s

bias becomes too large and its performance decreases considerably. All in all, it appears

that using an appropriate approximation or bound, the variational approach is viable in

the context of mixed logit models. This may indicate an avenue of potential further re-

search, i.e. the development of new, non quadratic bounds which may simplify the algo-

rithms or speed up the optimization. Another potential avenue for further research may

be to look for an optimal combination of all useful bounds and/or approximations, i.e.

development of some hybrid algorithm. We also did not consider the question of optimal

visiting schedules for the various parameter updates. It is very likely that the coordinate

ascent algorithm’s convergence can be improved by optimizing such a schedule. Finally,

as the variational approach seems to work adequately, more complicated models could

be considered. For instance, the requirement that the mixing distribution is normal is a

suspect assumption which is likely not very realistic. One could improve the flexibility of

the model by using a finite mixture of mixed models. Traditional MCMC becomes very

burdensome for these types of models due to the multimodality in the posterior and the

label switching. A variational approach on the other hand only focuses on one mode and

hence there is no need to explore all the equivalent modes due to the label switching.

This will speed up the inference considerably at the potential small cost of some approxi-

mation bias.
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Notes

1Note that we use the same notation in this paper as Braun and McAuliffe (2010) for consistency.
2The differential entropy of a density f (x) is defined as H [f (x)] = −

∫
f (x) log f (x) dx.
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Figure 1: Total variation error and times till convergence (in minutes) for the low heterogene-
ity setting. Each observation is the average over 10 replications. The x-axes repre-
sent the number of choice sets per agent. Note that the y-axes are on a logarithmic
scale. Some results are clipped from above to improve the readability.
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Figure 2: Total variation error and times till convergence (in minutes) for the high hetero-
geneity setting. Each observation is the average over 10 replications. The x-axes
represent the number of choice sets per agent. Note that the y-axes are on a loga-
rithmic scale. Some results are clipped from above to improve the readability.
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Figure 3: Total variation error and times till convergence (in minutes). Each observation is
the average over 10 replications. The x-axes represent the number of choice sets per
agent. Note that the y-axes are on a logarithmic scale.



29

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.005

0.010

0.020

0.050

0.100

0.200

Unrestricted

R
es

tr
ic

te
d BM

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 5 10 20 50 100 200

0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0
200.0

Unrestricted

R
es

tr
ic

te
d BM

●
●●

●

●

●
●

●

●●●●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

● ●

●

0.01 0.02 0.05 0.10

0.01

0.02

0.05

0.10

Unrestricted

R
es

tr
ic

te
d JI

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 2.0 5.0 10.0 20.0 50.0

0.5

1.0

2.0

5.0

10.0

20.0

Unrestricted
R

es
tr

ic
te

d JI

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.005 0.010 0.020 0.050 0.100

0.005

0.010

0.020

0.050

0.100

Unrestricted

R
es

tr
ic

te
d KM

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 5 10 20 50 100 200

0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0

Unrestricted

R
es

tr
ic

te
d KM

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.005 0.010 0.020 0.050 0.100

0.005

0.010

0.020

0.050

0.100

Unrestricted

R
es

tr
ic

te
d QMC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 5 10 20 50 100

0.5

1.0

2.0

5.0

10.0

20.0

50.0

Unrestricted

R
es

tr
ic

te
d QMC

TV error Time [min]

Figure 4: Total variation error and times till convergence (in minutes) for all settings. Each
observation is the average over 10 replications. The x-axes represent the perfor-
mance of the algorithms with unrestricted decision makers’ covariance matrices.
The y-axes represent the performance of the algorithms with diagonally restricted
decision makers’ covariance matrices. The green dots represent the cases where
the number of choice sets, Th, was 15 or 25 whereas the cases where the number
of choice sets was 1 or 5 are represented by red triangles. The dashed lines are the
45◦ lines which represent identical performances
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A Variational Bayes for the Mixed Logit Model

In this section the development of equation (3), i.e. the expected joint log probability of

the data and the priors under the factorized posterior approximation plus the entropy of

the variational posterior distribution are shown in more detail. In order to avoid confu-

sion about different parameterizations, we define the following form for the normal and

inverse-Wishart densities:

p
(
ζ;µζ,Σζ

)
∝ |Σζ|−

1
2 e−

1
2(ζ−µζ)

T
Σ−1
ζ (ζ−µζ)

p
(
Ω; Υ−1, ω

)
∝ |Ω|−

ω+K+1
2 e−

1
2
tr(Υ−1Ω−1).

As the densities of q (βh) , h = 1, . . . , H are equivalent to the density of ζ, only the latter

details are shown. The log joint probability of the mixed logit model is, up to a constant

(Hyperparameters from priors are set before estimation and are thus constants. Any

term that only contains constants required for normalization of the normal and inverse-

Wishart distributions is dropped here.):

H∑
h=1

Th∑
t=1

{
yThtXhtβh − log

[
J∑
j=1

ex
T
htjβh

]}

+
H∑
h=1

{
−1

2
log |Ω| − 1

2
βThΩ−1βh −

1

2
ζTΩ−1ζ + βThΩ−1ζ

}
− 1

2
ζTΩ−1

0 ζ + ζTΩ−1
0 β0 −

ν +K + 1

2
log |Ω| − 1

2
tr
(
S−1Ω−1

)
. (7)

Because the assumed posterior distribution is factorized, we only require moments of the

normal and inverse-Wishart distribution to evaluate the expected value of equation (7),

which are fairly easy to derive. In what follows all the expectations are with respect to

the approximate posterior densities of the variables over which the expectation is taken.

For the normal expectations and entropy for the parameter ζ we have:

E [ζ] = µζ

E
[
ζTΩ0ζ

]
= E

[
tr
(
Ω0ζζ

T
)]

= tr
[
Ω0

(
Σζ + µζµ

T
ζ

)]
H [ζ] =

K

2
log (2πe) +

1

2
|Σζ| =

1

2
|Σζ|+ Constant.

The same expectations are required to evaluate the expectations for the βh=1:H param-

eters. For the inverse-Wishart expectations for the parameter Ω we have the following
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expectations (Gupta and Srivastava 2010):

E
[
Ω−1

]
= ωΥ

E [log |Ω|] = − log |Υ| −
K∑
k=1

ψ

(
ω + 1− k

2

)

H [Ω] =
K∑
k=1

log Γ

(
ω + 1− k

2

)
+
ωK

2
− K + 1

2
log |Υ|

− ω +K + 1

2

K∑
k=1

ψ

(
ω + 1− k

2

)
+ Constant

where ψ (.) represents the digamma function, ψ (x) = d
dx

log Γ (x), and Γ (x) represents

the gamma function, Γ (x) =
∫∞

0
tx−1e−tdt. When we plug these expectations into equa-

tion (7) we obtain the following expected joint log probability of the data and the priors,

again up to a constant:

H∑
h=1

Th∑
t=1

{
yThtXhtµh − Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]}

+
H∑
h=1

{
1

2
log |Υ|+ 1

2

K∑
k=1

ψ

(
ω + 1− k

2

)
− 1

2
tr
[
ωΥ

(
Σh + Σζ + µhµ

T
h + µζµ

T
ζ

)]
+ ωµThΥµζ

}

− 1

2
tr
[
Ω−1

0

(
Σζ + µζµ

T
ζ

)]
+ µTζΩ−1

0 β0 +
ν +K + 1

2
log |Υ|+ ν +K + 1

2

K∑
k=1

ψ

(
ω + 1− k

2

)
− ω

2
tr
[
S−1Υ

]
. (8)

The entropy of the variational posterior is up to a constant

H∑
h=1

{
1

2
log |Σh|

}
+

1

2
log |Σζ|+

K∑
k=1

log Γ

(
ω + 1− k

2

)
+
ωK

2
− K + 1

2
log |Υ|

− ω +K + 1

2

K∑
k=1

ψ

(
ω + 1− k

2

)
. (9)
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We can now calculate derivatives of the lower bound, i.e. (8) + (9), with respect to µζ,Σζ, ω

and Υ and set them to 0.

∇Σζ = −1

2
tr
[
HωΥ + Ω−1

0 −Σ−1
ζ

]
∇µζ = −

(
HωΥ + Υ−1

0

)
µζ + ωΥ

H∑
h=1

µh + Υ−1
0 β0

∇Υ =
ν +H

2
Υ−1 − ω

2

{
S−1 +HΣζ +

H∑
h=1

[
Σh +

(
µh − µζ

) (
µh − µζ

)T]}
∂ ((8) + (9))

∂ω
=
K

2
+
H + ν − ω

2

K∑
k=1

∂ψ
(
ω+1−k

2

)
∂ω

− 1

2
tr

{
S−1 +HΣζ +

H∑
h=1

[
Σh +

(
µh − µζ

) (
µh − µζ

)T]}

Solving for the variational parameters we get the following closed form update equations:

Σζ =
(
HωΥ + Ω−1

0

)−1

µζ = Σζ

(
ωΥ

H∑
h=1

µh + Ω−1
0 β0

)
ω = ν +H

Υ =

{
S−1 +HΣζ +

H∑
h=1

[
Σh +

(
µh − µζ

) (
µh − µζ

)T]}−1

.

The degrees of freedom parameter ω of the approximate posterior of ζ is not data depen-

dent and can be fixed at its optimal value from the start. The only unspecified parts of

the estimation algorithm are the updates with respect to µh and Σh for all h = 1, . . . , H.
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B Derivation of Bounds and Approximations

B.1 Taylor Series

Consider the second order Taylor series expansion of the function f (βh) = log
(∑J

j=1 e
xT
htjβh

)
around the current mean µh which results in

f (βh) = log

(
J∑
j=1

ex
T
htjβh

)
≈ log

(
J∑
j=1

ex
T
htjµh

)
+(βh − µh)

T ∇ (µh)+
1

2
(βh − µh)

T H (µh) (βh − µh)

where ∇ (µh) = XT
htphj, H (µh) = XT

ht

[
diag (pht)− phtpTht

]
Xht and where pht is a J-

dimensional vector with entries e
xThtjµh∑J

j
′
=1

e
xT

htj
′µh

,∀j = 1, . . . , J and diag (x) is an operator

that constructs a diagonal matrix out of the elements in x. Taking expectations with

respect to βh this leads to

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≈ log

(
J∑
j=1

ex
T
htjµh

)
+

1

2
tr [ΣhH (µh)] .

If we plug this approximation into equation (7) and collect all terms which only depend

on µh and Σh from equations (7) and (9) we obtain the following maximization problem:

arg max
µh,Σh

Th∑
t=1

yThtXhtµh−log

(
J∑
j=1

ex
T
htjµh

)
−1

2
tr [ΣhH (µh)]−

ω

2
tr [ΥΣh]−

ω

2
µThΥµh+ωµ

T
hΥµζ+

1

2
log |Σh| .

This approach is the BM and BMD method where the latter restricts Σh to a diago-

nal matrix. Obviously this approach will only work well if the approximation is close

enough.

B.2 Quasi Monte Carlo

The maximization function for the QMC approach is

arg max
µh,Σh

Th∑
t=1

yThtXhtµh−
1

R

R∑
r=1

log

(
J∑
j=1

ex
T
htjβ

(r)
h

)
−ω

2
tr [ΥΣh]−

ω

2
µThΥµh+ωµ

T
hΥµζ+

1

2
log |Σh| .
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This approach was also considered with unrestricted and a diagonally restricted variance

matrices Σh.

B.3 Jensen’s Inequality

As log (.) is a concave function one can apply Jensen’s inequality to obtain:

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ log

(
J∑
j=1

Eq(βh)

[
ex

T
htjβh

])
= log

(
K∑
j=1

ex
T
htjµh+ 1

2
xT
htjΣhxhtj

)
.

The latter expectation is simply the moment generating function of a multivariate nor-

mal distribution. If we plug this bound into equation (7) and collect all terms which only

depend on µh and Σh from equations (7) and (9) we obtain the following maximization

problem:

arg max
µh,Σh

Th∑
t=1

yThtXhtµh−log

(
J∑
j=1

ex
T
htjµh+ 1

2
xT
htjΣhxhtj

)
−ω

2
tr [ΥΣh]−

ω

2
µThΥµh+ωµ

T
hΥµζ+

1

2
log |Σh| .

This approach is the JI and JID method where the latter restricts Σh to a diagonal

matrix. To obtain the KM and KMD methods we need to introduce additional vari-

ational parameters. We start from the identity log
∑J

j=1 e
xT
htjβh =

∑J
j=1 ahtjx

T
htjβh +

log
∑J

j=1 e
(xhtj−

∑J
j=1 ahtjxhtj)

T
βh . Taking expectations and once again applying Jensen’s

inequality then leads to

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤

J∑
j=1

ahtjx
T
htjµh

+ log

(
J∑
j=1

e(xhtj−
∑J

j=1 ahtjxhtj)
T
µh+ 1

2(xhtj−
∑J

j=1 ahtjxhtj)
T
Σh(xhtj−

∑J
j=1 ahtjxhtj)

)
.

Plugging this into equation (7) we obtain a similar maximization problem as the previ-

ous one. However, we have introduced extra variational parameters a = (a1:H,1:Th,1:J)

which also need to be updated. Taking derivatives and equating them to 0 results in the

following fixed point update equations

ahtj =
ex

T
htjµh+ 1

2(xhtj−2
∑J

j=1 ahtjxhtj)
T
Σhxhtj∑J

j′=1 e
xT

htj
′µh+ 1

2

(
x
htj
′−2

∑J

j
′′
=1

a
htj
′′x

htj
′′
)T

Σhxhtj
′

∀h, t, j.
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This approach is the KM and KMD method where the latter restricts Σh to a diagonal

matrix.

B.4 Bı̈¿1
2hning-Lindsay

Define A = 1
2

(
IJ − 1J1

T
J /J

)
where IJ is the J-dimensional identity matrix and 1J is

a J-dimensional vector of ones. Böhning and Lindsay (1988) and Böhning (1992) show

that A ≥ H with respect to the Loewner ordering (A ≥ H with respect to the Loewner

ordering if A −H is positive semi-definite.). If we take a second order Taylor series ex-

pansion of the function f (Xhtβh) = log
(∑J

j=1 e
xT
htjβh

)
around some parameter vector

Ψht we know that for some specific vector Ψ∗ht we get the following equality

f (Xhtβh) = log

(
J∑
j=1

ex
T
htjβh

)
= log

(
J∑
j=1

eΨhtj

)
+ (Xhtβh −Ψht)

T ∇ (Ψht)

+
1

2
(Xhtβh −Ψht)

T H (Ψ∗ht) (Xhtβh −Ψht)

where ∇ (Ψht) and H (Ψ∗ht) are the gradient of f (Xhtβh) evaluated at Ψht and Ψ∗ht re-

spectively. Replacing H (Ψ∗ht) with A and taking expectations over βh we can obtain the

following bound:

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ log

(
J∑
j=1

eΨhtj

)
+ (Xhtµh −Ψht)

T ∇ (Ψht)

+
1

2

[
XT

htAXhtΣh

]
+

1

2
(Xhtµh −Ψht)

T A (Xhtµh −Ψht) .

From this bound it is possible to generate analytic update equations for the subject spe-

cific parameters by plugging it into equation (7) and equating derivatives with respect to

µh and Σh to 0 which results in:

Σh =

(
ωΥ +

Th∑
t=1

XT
htAXht

)−1

, h = 1, . . . , H

µh = Σh

{
ωΥµζ +

Th∑
t=1

XT
ht [yht −∇ (Ψht) +AΨht]

}
, h = 1, . . . , H.

Using derivatives again, it can be seen that the update for the extra variational parame-

ters Ψht, ∀h, t, turns out to be Ψht = Xhtµh.
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B.5 Bouchard

Bouchard (2007) observed that
∑J

j=1 e
xj ≤

∏J
j=1 (1 + exj). Replacing xj by xThtjβh − αht

and taking logarithms we arrive at log
(∑J

j=1 e
xT
htjβh

)
≤ αht +

∑J
j=1 log

(
1 + ex

T
htjβh−αht

)
.

Jaakkola and Jordan (2000) derived the well known tangential bound log (1 + ex) ≤ x−t
2

+
1
4t

tanh
(
t
2

)
(x2 − t2) + log (1 + et). Combining these two results and taking expectations

with respect to βh we obtain the following quadratic lower bound:

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ αht +

J∑
j=1

xThtjµh − αht − thtj
2

+ λ (thtj)
[(
xThtjµh − αht

)2 − t2htj + xThtjΣhxhtj

]
+ log

(
1 + ethtj

)
where λ (t) = 1

4t
tanh

(
t
2

)
. From this bound it is possible to generate analytic update

equations for the subject specific parameters by plugging it into equation (7) and equat-

ing derivatives with respect to µh and Σh to 0 which results in:

Σh =

(
ωΥ + 2

Th∑
t=1

J∑
j=1

λ (thtj)xhtjx
T
htj

)−1

, ∀h = 1, . . . , H

µh = Σh

[
ωΥµζ +

Th∑
t=1

J∑
j=1

(
yThtj −

1

2
+ 2αhtλ (thtj)

)
xhtj

]
, ∀h = 1, . . . , H.

The extra variational parameters can be updated by fixed point equations which are

αht =
J/2− 1 + 2

∑J
j=1 λ (thtj)x

T
htjµh

2
∑J

j=1 λ (thtj)
∀h, t

thtj =

√(
xThtjµh − αht

)2
+ xThtjΣhxhtj ∀h, t, j.

B.6 Jebara-Choromanska

Jebara and Choromanska (2012) developed an algorithm to find a quadratic bound

log
(∑J

j=1 e
xT
htjβh

)
≤ log zht + 1

2

(
βh − β̃h

)T
Sht

(
βh − β̃h

)
+
(
βh − β̃h

)T
mht around

some β̃. The algorithm outputs zht, mht and Sht and is:
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Algorithm 2 Input β̃h, Xht

Initialize: j = 1, zht = 0,mht = 0K ,Sht = zhtIK
while j ≤ J do

α = ex
T
htj β̃h

l = xhtj −mhj

Sht = Sht +
tanh( 1

2
log(a/zht))

2 log(a/zht)
llT

mht = mht + a
zht+a

l
zht = z + a
j = j + 1

end while
Output: zht,mht,Sht

After taking expectations this bound leads to

Eq(βh)

[
log

(
J∑
j=1

ex
T
htjβh

)]
≤ log zht+

1

2

(
µh − β̃h

)T
Sht

(
µh − β̃h

)
+

1

2
tr [ΣhSht]+

(
µh − β̃h

)T
mht.

This quadratic bound again leads to analytic updates of the subjects’ variational param-

eters in the form of

Σh =

(
ωΥ +

Th∑
t=1

Sht

)−1

µh = Σh

(
ωΥ

Th∑
t=1

Shtβ̃h −mht

)
.

We chose to update β̃h as µζ.

C Generating Quasi Monte Carlo Samples

In this section we briefly show how we constructed the QMC samples. We chose to con-

struct the QMC samples according to Hickernell et al. (2000) which are called extensi-

ble shifted lattice points (ESLP). For more details on the properties and optimal con-

struction of such samples we refer you to the previously mentioned reference. The goal of

QMC samples is to sample from the K-dimensional unit cube [0, 1)K in a way such that

the discrepancy between the empirical distribution of the QMC sample and the contin-

uous uniform distribution is small. If this goal is successful, relatively precise high di-
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mensional integration can be performed with a relatively small number of samples which

benefits the computational efficiency of the algorithm. Say that we require R samples

where R is some integer power of an integer base, i.e. R = bm, b ≥ 2 and b andm are in-

tegers. We also require a generating vector h of dimension K. Following Hickernell et al.

(2000) we use the generating vector h =
(
1, η, η2, . . . , ηK−1

)T
. The next step is to write

the integers 0, 1, 2, . . . , bm − 1 in base b form. So, for instance, if b = 2 and m = 3, we

have R = 23 = 8 samples. The integer 0 would be written as 0 × 20 + 0 × 21 + 0 × 22, 1

would be written as 1 × 20 + 0 × 21 + 0 × 22 all up to 7 = 1 × 20 + 1 × 21 + 1 × 22. So

now we have for all the integers 0, . . . , bm − 1 the coefficients of its base b representation

which can be written as

i =
bm−1∑
k=0

ikb
k = i0b

0 + i1b
1 + . . . .

Define now the function φb (i) as

φb (i) =
bm−1∑
k=0

ikb
−(k+1) = i0b

−1 + i1b
−2 + . . . .

The final element to generate the QMC sample is to introduce a random shift vector

u = (u1, . . . , uK)T which is an element of the unit cube [0, 1)K . The ith QMC sample

is now defined as ({φb (i)h1 + u1} , . . . , {φb (i)hK + uK})T where {x} is a function which

takes the fractional part of x, i.e. {x} = x (mod 1). Hickernell et al. (2000) used a peri-

odizing transformation on the final QMC samples as this appeared to increase the accu-

racy of the method. We also used this transformation which is defined as x
′

= |2x− 1|.
Finally, as we are interested in samples from a multivariate normal distribution rather

than from a multivariate uniform distribution we apply the inverse normal distribu-

tion transformation on all coordinates. This results in a QMC sample from a standard

K-dimensional normal distribution. In our algorithms we used base b = 2, exponents

m = 6, . . . , 12 for the conditional logit model and m = 6, 7, 8 for the mixed logit model.

Furthermore, we used η = 1571 from Hickernell et al. (2000, table 4.1) which is appropri-

ate for bases in 6, . . . , 12 and up to K = 33 dimensions.
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